
Confidence intervals for functionals in constrained inverse problems

via data-adaptive sampling-based calibration

Michael Stanley
mcstanle@alumni.cmu.edu

Pau Batlle†

pbatllef@caltech.edu

Pratik Patil‡

pratikpatil@berkeley.edu

Houman Owhadi†

owhadi@caltech.edu

Mikael Kuusela§

mkuusela@andrew.cmu.edu

Abstract

We address functional uncertainty quantification for ill-posed inverse problems where it is
possible to evaluate a possibly rank-deficient forward model, the observation noise distribution is
known, and there are known parameter constraints. We present four constraint-aware confidence
interval constructions extending the theoretical test inversion framework in Batlle et al. (2023)
by making the intervals both computationally feasible and less conservative. Our approach first
shrinks the potentially unbounded constraint set compact in a data-adaptive way, obtains sam-
ples of the relevant test statistic inside this set to estimate a quantile function, and then uses
these computed quantities to produce the constraint-aware confidence intervals. Our approach
to bounding the constraint set in a data-adaptive way is based on the approach by Berger and
Boos (1994), and involves defining a subset of the constraint set where the true parameter is
guaranteed to exist with high probability. The probabilistic guarantee of this compact subset
is then incorporated into the final coverage guarantee in the form of an uncertainty budget.
We then propose custom sampling algorithms to efficiently sample from this subset, even when
the parameter space is high-dimensional. Optimization-based interval methods formulate confi-
dence interval computation as two endpoint optimizations, where the optimization constraints
can be set to achieve different types of interval calibration while seamlessly incorporating pa-
rameter constraints. However, choosing optimization constraints to obtain coverage for a single
functional has been elusive. We show that all four proposed intervals achieve nominal coverage
for a particular functional both theoretically and in practice, with several numerical examples
demonstrating superior performance of our intervals over the OSB interval in terms of both
coverage and expected interval length. In particular, we show the superior performance of our
intervals in a realistic unfolding simulation from high-energy physics that is severely ill-posed
and involves a rank-deficient forward model.
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1 Introduction

This paper proposes a novel uncertainty quantification (UQ) approach for ill-posed inverse problems
characterized by a known parametric forward model1 f : Rp → Rn mapping a parameter x ∈ Rp to
an observation f(x) ∈ Rn, additive noise with a known distribution ε ∼ N (0,Σ), and constraints
on the forward model parameters denoted by x ∈ X , where X is primarily assumed to be of
the form Ax ≤ b. We consider scenarios where the parameter space dimension p may exceed the
observation space dimension n, which often results in an ill-posed problem. Additionally, we do
not require the forward model f to be injective, allowing for the possibility that f is many-to-one.
We assume observations are generated by y = f(x∗) + ε, where x∗ ∈ X is the true but unknown
model parameter. Our UQ object of interest is a confidence interval2, Cα(y), on a one-dimensional
quantity of interest (QoI) derived from x∗ by φ : X → R. Our approach produces constraint-aware
intervals with a finite-sample frequentist coverage guarantee, namely, for each α ∈ (0, 1)

P(φ(x∗) ∈ Cα(y)) ≥ 1− α for all x∗ ∈ X . (1)

The probability in the coverage guarantee (1) is taken over the distribution of the observation
y = f(x∗)+ε, where ε is the additive noise. The level α ∈ (0, 1) corresponds to the desired coverage
probability, meaning that the interval Cα(y) will contain the true value φ(x∗) with probability at
least 1− α for any realization of the noise ε.

This paper builds on the confidence interval framework of Batlle et al. (2023), which posits a
more general data-generating process, y ∼ Px∗ , and proposes a novel test-inversion framework for
constructing constraint-aware confidence intervals for inverse problem QoI’s. By proposing a testing
framework to evaluate if x∗ ∈ Φµ := {x ∈ X : φ(x) = µ} via the test statistic λ(µ,y), Batlle et al.
(2023) construct a confidence set as follows (see Equation (2.9)),

Cα(y) := {µ : λ(µ,y) ≤ qα(µ)}. (2)

As shown in Lemma 2.2 of Batlle et al. (2023), there are two ways to set qα(µ) using a supremum
over a particular quantile function, Qx(1− α) (we show a particular realization of such a quantile
function in the left-most panel of Figure 1.1), such that Cα(y) achieves the desired coverage,

Qmax
µ,1−α := sup

x∈Φµ∩X
Qx(1− α), (3)

Qmax
1−α := sup

x∈φ(X )
Qmax
µ,1−α = sup

x∈X
Qx(1− α). (4)

In practice, not only are Equations (3) and (4) difficult to compute because Qx(1 − α) is typi-
cally only accessible via sampling, but the optimizations can be expressed equivalently as chance-
constrained programs (see Lemma 3.1 in Batlle et al. (2023)), which are typically challenging to
solve. Furthermore, although Qmax

µ,1−α and Qmax
1−α are optimal with respect to the setup in which

they are analyzed, they can still produce overly conservative (larger than necessary) confidence
sets if the true x∗ is far away from the worst-case x against which the above maximum quantiles
protect. This paper addresses these practical and statistical challenges by including a bounded
data-informed subset of the parameter space, Bη with η ∈ (0, 1), such that P (x∗ ∈ Bη) ≥ 1− η (see
Section 3.1). We refer to Bη as the “Berger–Boos” set due to its inspiration from Berger and Boos

1Even though we write the forward model as a known function f , we only require evaluation access to the map
throughout the paper.

2We interchangeably use the terms “confidence set” and “confidence interval” since the latter may be obtained by
the former by simply retaining the set endpoints.

2



Figure 1.1: (Left) A particular quantile surface, Qx(1 − α), where x ≥ 0 and α = 0.32. This surface was
obtained via Monte Carlo sampling the LLR test statistic over a grid of x’s defined by the two-dimensional

constrained-Gaussian scenario similar to that in Section 6.1, but with h :=
(
1 1

)⊤
. (Right-Top) An

illustration of the Berger–Boos set and other, a 1−η confidence set for x∗, which prevents having to contend
with an unbounded parameter space. Additionally, it can eliminate “worst-case” parameter settings in X that
are far from the data, thus potentially making the resulting intervals less conservative. (Right-Bottom)
An illustration of an LLR test statistic curve, λ(µ,y), over the QoI domain and the interval endpoints that
result from using either Equation (5) for the “Sliced” interval or Equation (6) for the “Global” interval.

(1994). We show that we can reformulate Equations (3) and (4) to be constrained over Bη ⊂ X if
we also use a slightly larger quantile level, 1−γ for γ ∈ (α, 1), and such that 1−α = (1−η)(1−γ),
producing the following maximum quantiles,

qγ,η(µ) := sup
x∈Φµ∩Bη

Qx(1− γ), (5)

qγ,η := sup
x∈Bη

Qx(1− γ). (6)

Since qγ,η(µ) and qγ,η are defined over bounded subsets of X , we can propose a novel sampling
procedure to obtain design points covering Bη and use quantile regression to estimate the desired
quantile surface, Qx(1 − γ). The estimated quantile surface is then used to produce estimates of
either qγ,η(µ) or qγ,η and constructs a confidence set using a set definition similar to Equation (2),

Cα(y;Bη) := {µ : λ(µ,y) ≤ q}, (7)

where q is set to one of qγ,η(µ) or qγ,η to obtain the desired interval. We present a variety of ways
to perform the sampling and compare the different confidence set formulations and computations.

1.1 Context and related work

With advances in data collection and computational processing, high-dimensional ill-posed inverse
problems have become more prevalent, especially in fields like remote sensing and data assimilation.
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This setting includes a wide array of physical science applications, spanning Earth science (Rodgers,
2000), atmospheric science and remote sensing (Liu et al., 2016; Patil et al., 2022), and high energy
physics (Kuusela, 2016; Stanley et al., 2022), among many others. Providing guarantees for UQ in
parameter inference from indirect observations is essential for assessing the precision of scientific
inferences made in these contexts. However, the inherent ill-posed nature of these problems often
leads to inferences that are highly sensitive to noise, posing significant challenges for UQ. Namely,
the ill-posedness leads to an identifiability issue in which statistical inference is impossible with-
out providing some form of regularization, which usually takes either a deterministic (e.g., SVD
truncation (Höcker and Kartvelishvili, 1996) and Tikhonov regularization (Schmitt, 2012)) or prob-
abilistic (e.g., priors and Bayesian inference) form. Under some assumptions, these two approaches
are mathematically equivalent and are therefore subject to the same pitfalls, such as a disruption
of the coverage guarantees of downstream intervals as a result of the incurred regularization bias as
thoroughly discussed in Kuusela (2016). Our method’s focus on one-dimensional QoI’s and incor-
poration of parameter constraints allows for implicit regularization and therefore produces intervals
with the promised coverage guarantee while avoiding the problem of regularization bias altogether.

Although including parameter constraints provides implicit regularization and enables handling
non-trivial null spaces, it shifts complexity to statistical inference under constraints, a non-trivial
problem in even elementary settings (Gouriéroux et al., 1982; Wolak, 1987; Robertson et al., 1988;
Shapiro, 1988; Wolak, 1989; Molenberghs and Verbeke, 2007). One elegant solution to this problem
originates in what we refer to as optimization-based UQ, originating in the work of Burrus et al.
(1965) and Rust and Burrus (1972). Stark (1992a) extended and generalized their approach, calling
this method strict bounds, since it produced guaranteed simultaneous coverage interval estimators
complying with known physical constraints on the model parameters. This collection of work de-
fines endpoint optimization problems over the physically constrained parameter space to directly
compute confidence intervals for one-dimensional QoI’s. Not only does the optimization form of the
confidence interval computation shift statistical inference complexity to numerical optimization,
but it also allows known physical constraints to be directly included in the endpoint optimizations.
This practical advantage is dulled by the difficulty of proving the coverage properties of the inter-
vals resulting from the defined endpoint optimizations in the one-at-a-time setting. Even under the
relatively strong assumptions in Rust and Burrus (1972) of a linear forward model, non-negativity
parameter constraints and linear QoI, the authors were only able to conjecture the coverage of
their interval (known as the Burrus Conjecture). The interval coverage was unsuccessfully proven
in Rust and O’Leary (1994) (the error pointed out in Tenorio et al. (2007)) and finally generally
refuted in Batlle et al. (2023). These optimized-based intervals that have gained recent attention
take the form:

I(ψ2
α,y) :=

[
φl(ψ2

α,y), φ
u(ψ2

α,y)

]
=

[
min

x∈D(ψ2
α,y)

φ(x), max
x∈D(ψ2

α,y)
φ(x)

]
, (8)

where
D(ψ2

α,y) :=
{
x ∈ X : ∥y − f(x)∥22 ≤ ψ2

α

}
. (9)

The statistical challenge for intervals of this form is the choosing of ψ2
α such that I(ψ2

α,y) has
the desired coverage guarantee. It is important to note that the definition of D(ψ2

α,y) assumes
that the noise has been standardized; in other words, the covariance matrix of the noise has been
transformed to the identity matrix.

The literature proposes two settings to guarantee coverage. One approach is to set ψ2
α such that

D(ψ2
α,y) is itself a confidence set for x∗ in the parameter space. Since this choice would then
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automatically guarantee coverage for I(ψ2
α,y) regardless of the chosen QoI, this setting has been

called “simultaneous” in Rust and O’Leary (1994), and “Simultaneous Strict Bounds” (SSB) in
Stanley et al. (2022); Batlle et al. (2023) since it also aligns with the setting of the strict bounds
construction in Stark (1992a). Under the Gaussian assumption, this can be achieved by setting
ψ2
SSB,α := χ2

n,α, where χ
2
n,α is the upper α-quantile for a chi-squared distribution with n degrees of

freedom. Although this approach is relatively simple and obtains the desired coverage guarantee,
it is conservative since the guarantee holds for all possible QoI choices simultaneously. To tailor
the interval to one particular QoI, there is the “one-at-a-time” setting as described in Rust and
Burrus (1972); Rust and O’Leary (1994), or “one-at-a-time strict bounds” (OSB) as called in
Stanley et al. (2022); Batlle et al. (2023). Under the Gaussian assumption this proposed setting
was ψ2

OSB,α = χ2
1,α + s(y)2, where s(y)2 := minx∈X ∥y − f(x)∥22. Unlike the simultaneous setting,

D(ψ2
OSB,α,y) is not a 1 − α confidence set for x∗, which makes proving its coverage guarantee

difficult. The validity of this claim was proposed by the Burrus conjecture (Rust and Burrus, 1972)
and generally disproven by Batlle et al. (2023).

To address the challenge of calibrating strict bounds and optimization-based confidence intervals,
Batlle et al. (2023) approached these intervals as an inverted likelihood ratio test as shown in
Equation (2). The distribution of the log-likelihood ratio (LLR) statistic is non-standard due to the
presence of the constraints, adding to the complexity of controlling the type-I error of the test. This
framework development allowed for the general disproving of the long-standing Burrus conjecture,
invalidating the general calibration of the intervals proposed by Rust and Burrus (1972). However,
the framework revealed that the characterization of Qx(1−α) allowed for proper interval calibration
via Equations (3) or (4) in much more general settings than those in which the Burrus conjecture
applied (linear forward model, Gaussian noise, and linear functional).

1.2 Our approach and contributions

To address the computational challenges and statistical conservatism following from the use of
quantiles (3) or (4) in confidence set (2), this paper develops analogous maximum quantiles over
the bounded Berger–Boos set (quantiles (5) and (6)) for the altered confidence set (7). We refer
to the confidence intervals produced by quantile (5) as “Sliced”, since it considers the maximum
quantile along slices of the Berger–Boos set as defined by level-sets of the QoI. We refer to the
confidence intervals produced by quantile (6) as “Global”, since it considers the maximum quantile
over the entire Berger–Boos set. For both the sliced and global forms of the confidence interval, we
present and develop both optimization and sampling approaches. In total, these confidence interval
construction options produce four different interval varieties.

To validate the coverage guarantees of these interval varieties, we conduct a series of numerical
experiments to demonstrate the effectiveness of the intervals in various scenarios. Since the OSB
interval described in Patil et al. (2022) and Stanley et al. (2022) is the current standard approach
in this setting, it is our primary point of comparison. First, we present low-dimensional examples.
The first example is a two-dimensional constrained Gaussian noise model, a well-studied case in
the literature (see Tenorio et al. (2007), Batlle et al. (2023)), illustrating how our intervals are
competitive with the OSB interval in a scenario where the OSB interval is known to achieve nominal
coverage. The second example is a three-dimensional constrained Gaussian noise model, illustrating
the advantage of our method in achieving nominal coverage where the OSB interval fails. Second,
we apply our method to a simulated version of particle unfolding from high-energy physics (see
Stanley et al. (2022)), a binned deconvolution problem, in an 80-dimensional parameter space with
a rank-deficient linear forward model. We use the previously studied realistic setting from Stanley
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et al. (2022) where the OSB interval is known to provide coverage to show that our Sliced intervals
substantially outperform OSB in terms of expected length. Then, we use a parameter setting where
the OSB interval does not achieve nominal coverage, but our intervals do, with the Sliced intervals
still out-performing OSB in terms of expected length. This application highlights the practical
significance of our approach, with our confidence intervals consistently achieving nominal coverage
and often outperforming existing methods in terms of expected interval length.

The contributions of this work are both methodological and computational. Methodologically, we
propose new confidence interval constructions for the setting described at the beginning of the
section. Although the use of the Berger–Boos set is inspired by Berger and Boos (1994), they
originally applied it in a hypothesis testing setting for handling nuisance parameters. Masserano
et al. (2024) applied a similar idea to nuisance parameters in a classification setting, but to the
best of our knowledge, our paper is the first to apply the idea in the ill-posed inverse problem
UQ setting. Inspired by the methods used in simulation-based inference (Dalmasso et al. (2020,
2024); Masserano et al. (2023)) we apply the approach of estimating the quantile function of a test
statistic using simulated data. However, this work differs in the underlying model assumptions and
composite nature of the null hypotheses. In addition, the prior work assumed bounded and rela-
tively low-dimensional parameter spaces. The search for confidence interval endpoints is sometimes
done via the Robbins-Monro (RM) procedure, which iteratively refines estimates to achieve de-
sired coverage probabilities (Garthwaite and Buckland, 1992; Carpenter, 1999). Methods based on
quantile regression (Koenker, 2005) have been proposed to improve accuracy. For instance, Fisher
et al. (2020) introduced a technique that inverts estimated quantiles to determine the endpoints
of the confidence intervals. This work is the first to combine test inversion, sampling and quantile
regression to estimate calibrated constraint-aware confidence intervals.

Computationally, we propose two custom sampling methods designed specifically to draw design
points within the defined Berger–Boos set. This set can be particularly challenging to sample since it
is the intersection between a pre-image based on the observed data and linear parameter constraints,
which can produce sharp edges and corners. This set is also elongated due to the ill-posedness
of the underlying inverse problem. While there are some approaches to handle similar scenarios
arising in more traditional MCMC sampling (e.g., nested sampling (Skilling, 2004; Buchner, 2023)
and Hamiltonian Monte Carlo sampling with constraints (Pakman and Paninski, 2014)), these
algorithms can be intricate, so we develop the following alternatives. In the low-dimensional setting
(p < 10) where the forward model is linear and the noise distribution is Gaussian, we design an
accept-reject sampler based on sampling from p–balls as described in Voelker et al. (2017). Although
the approach in Voelker et al. (2017) can rapidly sample from the pre-image ellipsoids as defined
by the data-generating model assumptions, with even a simple non-negativity constraint on the
parameters, the proportion of rejected points quickly get impractically large for even moderate
dimensions. For moderate and higher dimensional settings (p ≥ 10), we leverage the Vaidya walk
MCMC algorithm from Chen et al. (2018) to generate random walks about a polytope enclosing the
Berger–Boos set. Using the Chebyshev ball center to define a notion of polytope centrality along
with the extreme points of the Berger–Boos set with respect to the QoI, we create two lines along
which starting positions are defined to generate a collection of parallel Markov chains. The design
points resulting from these chains are then combined to create the complete set of sampled design
points spanning the full range of the QoI values over the Berger–Boos set.

The rest of the paper proceeds as follows. In Section 2, we recapitulate the framework and theoretical
components of Batlle et al. (2023) upon which this paper’s work is built. Section 3 then presents
the theoretical Global and Sliced intervals under the Berger–Boos set formulation, along with
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the four interval constructions and theoretical justifications to guarantee that the constructed
sampling-based intervals converge in probability to their theoretical counterparts. In Section 4, we
give theoretical results regarding our proposed methods. Section 5 presents the custom sampling
algorithms along with a brief description of how quantile regression works in our intervals. Section 6
presents four numerical experiments to demonstrate the coverage and length advantages of our
intervals over the OSB interval. Finally, Section 7 provides some discussion and conclusions.

2 Background

A key part of the approach in Batlle et al. (2023) was to view the optimization-based intervals shown
by Equation (8) as inverted hypothesis tests, more specifically, a particular inverted likelihood ratio
test. This change in perspective allowed for interval analysis through the lens of the properties of
a particular log-likelihood ratio (LLR) test. We summarize this connection here, as it is critical to
our method development carried out in Section 3. Although the numerical examples in Section 6
focus on the linear-Gaussian version of the data-generating process, we follow the more general
exposition of Batlle et al. (2023) to indicate that this framework is not limited to that scenario.

Suppose y ∼ Px∗ , where Px∗ is a distribution parameterized by a fixed but unknown x∗ ∈ Rp. Let
ℓx(y) denote the log-likelihood of x evaluated at y. We furthermore suppose we know a set X ⊆ Rp
such that x∗ ∈ X .

The duality between hypothesis tests and confidence sets is well known in statistics (see, e.g.,
Chapter 7 of Casella and Berger (2002) or Chapter 5 of Panaretos (2016)). We invert the following
hypothesis test:

H0 : x
∗ ∈ Φµ ∩ X versus H1 : x

∗ ∈ X − Φµ, (10)

where Φµ := {x : φ(x) = µ}. Since we are looking to obtain a confidence interval on the real line,
it makes sense that each hypothesis test is defined by µ ∈ R. Notice that the composite structure
of the null hypothesis includes all parameter settings within the µ-level set of the functional of
interest.

We define the following test statistic to evaluate Test (10):

λ(µ,y) :=

 inf
x∈Φµ∩X

(
−2ℓx(y)

)
− inf

x∈X

(
−2ℓx(y)

)
, if Φµ ∩ X ̸= ∅,

∞, otherwise.
(11)

where µ denotes the level set of the null hypothesis, y is the observed data, and X is the constraint
set that is known to contain the parameter. The test is rejected if the test statistic is large, and hence
we automatically reject the null if Φµ ∩ X = ∅ independently of the observed data. Alternatively,
we can consider the test (10) only for µ ∈ φ(X ) to perform test inversion. We control the behavior
of this test statistic, and therefore the test, by bounding from above the probability of erroneously
rejecting the null hypothesis (i.e., type-1 error). As such, we consider the distribution of λ(µ,y)
under the null. For each x ∈ X , let µ = φ(x). Define Qx : (0, 1)→ R such that, for all α ∈ (0, 1),

P (λ(µ,y) ≤ Qx(1− α)) = 1− α, (12)

where the probability is over y ∼ Px. We refer to Qx as the quantile function of the LLR under
the null hypothesis at (x, φ(x) = µ). Since the null hypothesis is composite, using this quantile
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function to define a cutoff is not enough to control type-1 error. Thus, we use the sliced maximum
quantile function over the level-set under consideration:

Qmax
µ,1−α := sup

x∈Φµ∩X
Qx(1− α). (13)

Note, we refer to this version as “sliced” since we are considering the maximum of the quantile
function defined by the level-set of the functional which defines a slice through the constrained
parameter space. Qmax

µ,1−α as defined above controls the type-1 error for a specific value of µ. We can
define a more conservative confidence set using the following global maximum quantile:

Qmax
1−α := sup

µ∈φ(X )
Qmax
µ,1−α = sup

x∈X
Qx(1− α). (14)

By Lemma 2.1 in Batlle et al. (2023), the set

Cµα(y;X ) := {µ : λ(µ,y) ≤ Qmax
µ,1−α} ⊂ R (15)

defines a 1− α confidence set for the true functional value, µ∗ = φ(x∗).The global quantile (14) is
more conservative than the sliced quantile (13) since it holds for all null hypotheses, and therefore
the set

Cα(y;X ) := {µ : λ(µ,y) ≤ Qmax
1−α} ⊂ R (16)

is also a 1− α confidence set.

To connect this framework back to Interval (8), suppose the data generating process is of the form,
Px = N (Kx, I). The LLR test statistic is then

λ(µ,y) = min
x∈Φµ∩X

∥y −Kx∥22 −min
x∈X
∥y −Kx∥22 (17)

Batlle et al. (2023) (Theorem 2.4) proved that[
inf

µ:λ(µ,y)≤Qmax
1−α

µ, sup
µ:λ(µ,y)≤Qmax

1−α

µ

]
=

[
inf

x∈D(Qmax
1−α+s(y)

2,y)
φ(x), sup

x∈D(Qmax
1−α+s(y)

2,y)

φ(x)

]
, (18)

where D(·,y) is defined by Equation (9). This equivalence asserts that by setting ψ2
α := Qmax

1−α +
s(y)2, where s(y)2 := minx∈X ∥y −Kx∥22, we guarantee coverage for Interval (8). Furthermore,
it asserts that the original OSB interval formulation is only valid if and only if χ2

1,α ≥ Qmax
1−α (see

Lemma 2.2 and Corollary 2.3). Batlle et al. (2023) showed that this inequality does not hold in
general.

As explored in Batlle et al. (2023) and reiterated above, Interval (8) can be calibrated by computing
Qmax
µ,1−α or Qmax

1−α. However, pursuing calibration in this way is computationally challenging and sta-
tistically conservative. Both of these values require the ability to evaluate Qx. Without parameter
constraints, this quantile function can be constant under Gaussian-linear assumptions (Batlle et al.,
2023), i.e., the test statistic is pivotal. But even with a relatively simple two-dimensional Gaussian
noise model with non-negativity constraints, this quantile function becomes non-trivial (e.g., see
Figure 5.3 in Batlle et al. (2023)). Beyond the practical difficulty of dealing with the underlying
quantile function, both (13) and (14) can be expressed as chance-constrained optimization prob-
lems, which are known to be NP-hard in general and would need to be solved over an unbounded
constraint set (Geng and Xie, 2019; Pena-Ordieres et al., 2020; Batlle et al., 2023). Statistically,
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since both (13) and (14) are the largest quantile function values subject to their respective con-
straints, they are by definition conservative, especially in scenarios where the true x∗ is far from
these most conservative points. Since we do not know x∗, this conservatism is necessary under the
framework of Batlle et al. (2023).

As we see in Section 3, our method addresses both of these challenges. In scenarios where evaluating
Qx is difficult, we sample a collection of design points in a bounded subset of the constraint
set, sample the LLR under the null at each design point and use quantile regression to estimate
the quantile surface. Furthermore, we can potentially remove these most conservative points from
consideration by only considering parameter values that are not unlikely given the observed data.

3 Interval constructions

In this section, we present four related interval constructions to build on the theory developed
in Batlle et al. (2023) by addressing the key aforementioned challenges. The first implementation
challenge is to handle the potentially unbounded constraint set, for which we define and apply
the “Berger–Boos” set to create a data-dependent subset of the original constraint set. This set
leads to our four interval definitions, which follow a two-stage taxonomy; Global versus Sliced
and Inverted versus Optimized. The second implementation challenge is computing these interval
constructions in practice which we achieve using a combination of novel sampling algorithms and
quantile regression. We will cover this in a later section (Section 5).

We rewrite the data-generating process articulated in the introduction:

y = f(x∗) + ε, ε ∼ N (0, I), x∗ ∈ X (19)

where f : Rp → Rn is a known forward model and Cov(ε) = I, without loss of generality. Let
f−1(A) := {x : f(x) ∈ A} be the pre-image of a set A ⊂ Rn under the forward map f .

Although the assumed data-generating process given by Equation (19) is less general than that
of y ∼ Px∗ assumed in Section 2, it is still sufficiently general to contain the application areas
mentioned in Section 1.1. Slightly generalizing the form of the additive noise distribution would
make the construction of the Berger–Boos set more complicated, but is possible in principle.

3.1 Global and sliced confidence sets using the Berger–Boos set

Both Qmax
µ,1−α and Qmax

1−α in Section 2 suffer from the same theoretical and practical concerns. The-
oretically, they are both conservative in the sense that they must control type-1 error probability
under the worst case for the truth (i.e., the parameter setting with the largest quantile). Practi-
cally, not only can Qx be difficult to compute, but if the constraint set X is unbounded, computing
the aforementioned quantiles becomes even more difficult. These challenges both stem from the
composite nature of the null hypothesis. Berger and Boos (1994) introduce a compelling solution
in the context of hypothesis testing with nuisance parameters (a special case of hypothesis testing
on φ(x)), which is to control type-1 error only over a data-informed region of the parameter space.
Following their construction, we build a confidence interval that, instead of using the maximum
1 − α quantile over X in (14) (or X ∩ Φµ in (13)), uses a larger quantile (1 − γ with γ < α) but
that is maximized over a smaller set. The construction follows a three-step process:

(1) Choose η ∈ [0, α] and build a 1− η confidence interval for x∗, Bη. Under the additive Gaussian
noise assumption in Equation (19), letting Γη(y) := {y′ ∈ Rn : ∥y − y′∥22 ≤ χ2

n,η} we have
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P (f(x∗) ∈ Γη(y)) = 1− η, hence

Bη := f−1(Γη(y)) ∩ X = {x ∈ X : ∥y − f(x)∥22 ≤ χ2
n,η} (20)

is a 1−η confidence set for x∗3. We refer to this pre-image confidence set, Bη, as the “Berger–Boos”
set.

(2) Optimize the 1 − γ quantile of the test statistic only over Bη (or Bη ∩ Φµ), instead of X (or
X ∩Φµ) . Here, γ < α is chosen to ensure calibration. As proved in lemma 3.1, γ = α− η is a valid
choice.

(3) Use the obtained quantiles, which we define as

qγ,η(µ) := sup
x∈Bη∩Φµ

Qx(1− γ), (21)

qγ,η := sup
x∈Bη

Qx(1− γ), (22)

the construct the following sliced (sl) and global (gl) confidence sets:

Csl
α (y;Bη) := {µ : λ(µ,y) ≤ qγ,η(µ)}, (23)

Cgl
α (y;Bη) := {µ : λ(µ,y) ≤ qγ,η}. (24)

Analogous to the presentation in Batlle et al. (2023), we define sliced and global max-quantiles
that include the Berger–Boos set to control the type-1 error probability of Test (10). Both of these
max-quantiles maximize a larger γ-quantile over the set of interest instead of the α-quantile as
shown in (13) and (14).

The following Lemma (analogous to Lemma 2.1 in Batlle et al. (2023)) gives a sufficient condition
to select the values γ and η to ensure a 1− α coverage.

Lemma 3.1 (Setting η and γ to guarantee 1 − α coverage). Let α ∈ (0, 1) and define qγ,η(µ)
according (21) and Csl

α (y;Bη) according to (23). For η ∈ (0, α), Csl
α (y;Bη) is a 1−α confidence set

for µ∗ = φ(x∗) if γ ≤ α − η. The length of the obtained interval is a non-increasing function of γ
so the tightest interval will be obtained when equality is satisfied.

Proof. See Appendix A.1.

The coverage guarantee implied by Lemma 3.1 also implies coverage for Cgl
α (y;Bη), as shown in the

following Corollary.

Corollary 3.2. In the setting of Lemma 3.1. Cgl
α (y;Bη) is a 1 − α confidence set for µ∗ = φ(x∗)

if γ ≤ α− η.

Proof. See Appendix A.2.

Remark 1. Following the generality of the original construction, Lemma 3.1 generalizes to any
1 − η confidence set of x∗ and test statistic calibrated with the 1 − γ quantile. In our particular

3Intersecting the pre-image f−1(Γη(y)) with the constraint set X does not change the coverage probability since
we know x∗ ∈ X .
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case, since both the confidence set Bη and the test statistic λ(µ, y) depend on the Gaussian log-
likelihood ∥y−f(x)∥22, there is a stronger interpretation of the Berger-Boos construction. Whenever
Bη ∩ Φµ ̸= ∅, the Berger-Boos construction is equivalent to a data-dependant reduction of the
constraint set, replacing X for Bη both in the test statistic and the quantile optimization problems.
Since this is done after seeing the data, the optimized quantile needs to increase to 1 − α + η to
maintain 1− α coverage.

Navigating the Berger–Boos parameter choices and trade-offs. Setting η = 0 in Cgl
α (y;Bη)

we maximize Qx(1−γ) = Qx(1−α) over X , which returns Qmax
1−α from Equation (14). For η > 0, the

Berger–Boos construction restricts the quantile maximization to a smaller subset of the parameter
space while maximizing a larger 1− γ quantile to maintain the desired 1−α confidence level of the
final confidence set. Fundamentally, the choice of η reflects a trade-off between these two opposing
effects: As we increase η from 0, the set over which the quantile function is optimized shrinks,
but the quantile level is increased. In Section 6.2, we perform a numerical experiment comparing
average interval length for different values of η, showing that a small η > 0 can be beneficial not
only numerically (since in certain cases it allows sampling over a bounded set) but also in terms of
the average length of the resulting interval.

3.2 Interval constructions

There are possibly many ways to compute Cgl
α (y;Bη) and Csl

α (y;Bη) in practice. Obtaining either
set comes down to the computation of qγ,η(µ) and qγ,η. If the quantile function Qx and its gradient
∇xQx could be evaluated, computing these quantities could potentially be achieved using a first-
order numerical optimizer. However, we emphasize that since the sliced max-quantile, qγ,η(µ), is a
function of the level-set parameter, µ, such an optimization would have to be done for each possible
functional value. Since such easy function and gradient evaluations rarely exist (see Batlle et al.
(2023) for some examples where such evaluations are possible), this paper develops a sampling-
based approach to estimate these quantities to construct Confidence Sets (23) and (24). As we
demonstrate below, once we estimate qγ,η(µ) and qγ,η, we can either use the output from the
sampling algorithm to compute the Global or Sliced interval via classical test inversion, or we
can use the estimated max-quantiles in optimizations similar to those in Interval (18). As such,
we introduce four interval constructions; Global Inverted, Global Optimized, Sliced Inverted, and
Sliced Optimized. These four options are summarized in Section 3.2.

We leverage our ability to sample λ(µ,y) by sampling y ∼ N (f(x), I) to estimate the desired
max-quantiles. We present two algorithms, both of which first generate a random set of design
points from the Berger–Boos set. If we can directly efficiently compute the desired quantile at each
design point, this capability is leveraged in Algorithm 1. If we cannot afford such a computation,
Algorithm 2 presents an alternative, which first samples one realization of the LLR test statistic
at each sampled design point, and then performs quantile regression with the generated pairs of
design points and LLR values to estimate the underlying quantile surface. The sampled design
points and either the exact or estimated quantiles at the design points are then used to produce
the final intervals.

Both algorithms start by sampling Bη uniformly at random to generate a collection of M design
points across the Berger–Boos set, i.e., x1,x2, . . . ,xM ∼ U (Bη). Even under the additive Gaussian
noise assumption where the pre-image f−1(Γη(y)) is an ellipsoid, this step is non-trivial since the
ill-posedness can produce an extremely narrow or unbounded ellipsoid, resulting in sharp bound-
aries when intersected with the known constraints in addition to a large portion of the pre-image
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lying outside of X , making rejection-sampling challenging. We address these sampling challenges in
Section 5.1. If computing λ(µ,y) for a given µ and y is inexpensive, Algorithm 1 directly estimates
the quantile function at each design point. This computation is most likely inexpensive when there
are closed-form solutions to the LLR’s subordinate optimizations. As shown in Algorithm 1, an easy
way to estimate each design point’s quantile is to sample its test statistic N times and take the
appropriate percentile. More often, computing λ(µ,y) is expensive since it involves two constrained
optimizations which are possibly non-convex due to either the constraints or the forward model, or
just numerically challenging due to the ill-posedness of the problem. In this scenario, one can use
Algorithm 2 to sample one realization of the test statistic at each design point and estimate the
quantile function over the Berger–Boos set using quantile regression. While Algorithm 1 relies upon
computational strength to compute the LLR N ×M times, Algorithm 2 shifts complexity to the
quantile regression and relieves the computational burden by assuming that there is information
to be shared about the quantile surface between design points (namely that the quantile surface is
smooth). The emphasis on the quantile regression further necessitates that the quantile regression
be performed well. We discuss some considerations to this end in Section 5.2. We note that although
Algorithm 1 and Algorithm 2 make use of the additive Gaussian noise assumption, they are not
necessarily limited to this assumption given the proper adjustments to the Berger–Boos set, as-
suming one still has the ability to sample from the data-generating process. Since these approaches
are sampling-based, it is necessary to show convergence as the number of samples gets large.

The approach of Algorithm 2 is inspired by recent uncertainty quantification approaches in likelihood-
free inference where one can sample from a likelihood but cannot easily compute it. Specifically,
we draw inspiration from the use of quantile regression in Dalmasso et al. (2020, 2024); Masserano
et al. (2023, 2024). Although these approaches differ in detail and implementation from our ap-
proach (e.g., they typically focus on settings with low-dimensional x), they overlap in the sampling
and quantile regression perspectives, which effectively allow machine learning to supplement for
computationally intensive or intractable forward models. Namely, rather than assuming a purely
stochastic forward model and therefore only being able to sample from the likelihood, we assume f
is a deterministic function involved in λ(µ,y), which is a random quantity due to the additive noise.
Since Algorithm 2 involves training a quantile regressor, it includes separate training and testing
sets of design points over the Berger–Boos set and samples from their respective test statistics.

Algorithm 1 Direct estimation of quantiles

Input: α, γ, η ∈ (0, 1) such that γ = α− η, M,N ∈ N.
1: Construct Berger–Boos confidence set: Create Γη(y) ⊆ Rn such that P (f(x∗) ∈ Γη(y)) ≥

1− η. f−1 (Γ(y)) is also a 1− η confidence set for x∗, as is Bη = f−1(Γη(y)) ∩ X .
2: Sample from the Berger–Boos confidence set, Bη: Sample x1, . . . ,xM ∼ U (Bη).
3: for k = 1, 2, . . . ,M do
4: Sample noise realizations: Sample N noise realizations: ε1, . . . , εN ∼ N (0, I).
5: Sample from the LLR distribution: Create an ensemble of LLR draws under xk: {λi}Ni=1,

where λi := λ (φ(xk), f(xk) + εi;X ).
6: Compute percentile estimate of the γ-quantile: Compute the (1− γ)× 100 percentile

of the LLR samples for the data generating process under xk, i.e., q̂
k
γ := λ({(1−γ)N}), where

{·} denotes the nearest whole number and λ(i) denotes the i-th order statistic.
7: end for

Output: Pairs of sampled design points and their respective γ-quantiles, i.e., {(xk, q̂kγ)}Mk=1.
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Algorithm 2 Quantile regression estimate of quantile surface

Input: α, γ, η ∈ (0, 1) such that γ = α− η; Mtr,M ∈ N.
1: Construct Berger–Boos confidence set: Create Γη(y) ⊆ Rn such that P (f(x∗) ∈ Γη(y)) ≥

1− η. f−1 (Γ(y)) is also a 1− η confidence set for x∗, as is Bη = f−1(Γη(y)) ∩ X .
2: Sample from the Berger–Boos confidence set Bη: Sample x1, . . . ,xMtr ∼ U (Bη) design

points to train the quantile regressor and x̃1, . . . , x̃M ∼ U (Bη) test points to invert the interval,
generatingMtr+M total samples. Since the test points are used for the interval inversion, they
are used as out-of-sample points for the quantile regressor.

3: for k = 1, 2, . . . ,Mtr do
4: Sample a noise realization: Sample a noise realization: εk ∼ N (0, I).
5: Sample from the LLR distribution: Compute the LLR under xk with sampled noise εk:

λk := λ (φ(xk), f(xk) + εk;X ).
6: end for
7: Estimate the quantile function using quantile regression: Using the generated pairs
{(xk, λk)}Mtr

k=1, estimate the upper γ-conditional quantile function, q̂γ(x), using quantile regres-
sion.

Output: Generate γ-quantile predictions at out-of-sample test points, {(x̃k, q̂γ(x̃k))}Mk=1.

With the generated pairs from Algorithms (1) and (2), we present two strategies to estimate each

of Cgl
α (y;Bη) and Csl

α (y;Bη). To streamline notation, let
(
xk, q

k
γ

)
denote the k-th pair from either

algorithm. This is notationally helpful since Algorithm 1 only generates one set of parameter sam-
ples, whereas Algorithm 2 generates two. That is, using Algorithm 1, xk := xk and qkγ := q̂kγ and

using Algorithm 2, xk := x̃k and qkγ := q̂γ(x̃k).

To estimate the global confidence set, we estimate qγ,η using the empirical maximum, q̂ := maxk q
k
γ .

This results in the following two interval constructions:

Cgl
opt(y) := min /max

{
φ(x) : x ∈ D(q̂ + s(y)2,y)

}
(25)

Cgl
inv(y) := min /max

{
φ(xk) : k = 1, . . . ,M and λ(φ(xk),y;X ) ≤ q̂

}
, (26)

We refer to Interval (26) as the Global Inverted interval construction since it is endpoints defined
by only those sampled parameter values that comport with the maximum estimated quantile LLR
cutoff. We refer to Interval (25) as the Global Optimized interval since its endpoints are defined by

the extreme functional values of a feasible region defined by q̂. Although, Cgl
inv(y) ̸= Cgl

opt(y) due
to finite sample, they are asymptotically equal and in practice show similar performance in terms
of coverage and expected length, as shown in Section 6. We prove the consistency of the interval
constructed via inversion and via optimization in Theorem 4.1. Since the endpoints of both the
inverted and optimized intervals converge in probability to the endpoints of Cgl

α (y;Bη), the two
interval constructions are asymptotically equivalent.

To estimate the sliced set, we estimate qγ,η(µ) using a rolling maximum of the sampled qkγ values,
as ordered by the sampled functional values, and directly accept or reject functional values based
on their estimated quantile. These approaches result in two interval constructions:

Csl
opt(y) := min /max

{
µ ∈ R : λ(φ(µ),y;X ) ≤ m̂γ(µ)

}
, (27)

Csl
inv(y) := min /max

{
φ(xk) : k = 1, . . . ,M and λ(φ(xk,y;X ) ≤ qkγ)

}
, (28)
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Table 1: Summary of methods based on global and sliced max quantile, and whether they are optimization-
based or inversion-based.

Category Global max quantile Sliced max quantile

Inversion-based methods Interval (26) Interval (28)
Optimization-based methods Interval (25) Interval (27)

where m̂γ(µ) denotes rolling estimate of qγ,η(µ) defined as follows. We refer to Isl(y) as the “sliced”
index set, i.e., those indices for which the LLR at a particular functional value is less than the
estimated quantile at a design point generating that functional value.

The rolling maximum quantile is defined using estimated quantiles ordered by the sampled func-
tional values. Choose “rolling” parameter, T ∈ N, and let σ(1), σ(2), . . . , σ(M) define an ordering

such that µσ(k) ≤ µσ(k+1) for all k = 1, . . . ,M − 1. Define Qk := {qσ(k)γ , q
σ(k−1)
γ , . . . , q

σ(k−T )
γ }

Then, for a given µ ∈
[
minx∈Bη φ(x),maxx∈Bη φ(x)

]
, define k∗(µ) := argmink|µ−µσ(k)| and define

m̂γ(µ) := max{q ∈ Qk∗(µ)}. Using the rolling maximum quantile is one possible way to estimate
qγ,η(µ). One could also bin the quantiles by functional value, compute the maximum predicted
quantile in each bin, and then fit a nonparametric regression to fit the maximum binned quantiles
to the functional values.

This estimator choice for m̂γ(µ) affects how one computes Csl
opt(y). To see why, note that we can

re-express Csl
opt(y) as follows:

Csl
opt(y) := min /max

{
φ(x) : x ∈ D(m̂γ(φ(x)) + s(y)2,y)

}
. (29)

As such, one could substitute the estimated m̂γ(·) into each endpoint optimization. However, this
estimated curve is likely not convex in x and therefore complicates the optimizations. One could
also pursue a root-finding approach to find the set of µ such that λ(µ,y) = m̂γ(µ) since these
intersection points define a set of accepted functional values. This approach can also be complex
in proportion to the complexity of the estimated curve. In our view, the most pragmatic approach
is to simply determine all µk such that λ(µk,y;X ) ≤ m̂γ(µk), and then define the endpoints of
Csl
opt(y) to be the minimum and maximum of those accepted sampled values. The consistency of the

computed endpoints for both the inverted and optimized sliced intervals is proven in Theorem 4.1.
Similar to the global interval constructions, the consistency of both constructions to Csl

α (y;Bη) also
establishes the asymptotic equivalent of the inverted and optimized approaches.

Although both Algorithms 1 and 2 can produce a quantile estimate, it is worth noting a few key
differences between the two. First, Algorithm 1 involves a nested sampling loop. Thus, any statistical
guarantee regarding the validity of its output has the two moving parts of the accuracy of q̂kγ as N
gets large and the proximity of the approximated quantile to the true maximum quantile function
value over Bη as M gets large. By contrast, Algorithm 2 only has one sampling loop and estimates
the full quantile function surface over Bη, producing an estimate of the maximum as a consequence,
but is reliant on smoothness to do an accurate regression with finitely many data points.

4 Theoretical justification

In this section, we provide convergence results for the interval constructions of the previous sec-
tion. We prove that, under certain assumptions, whenever Algorithm 1 or Algorithm 2 are used to
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estimate the maximum quantiles, the global interval constructions (25) and (26) converge in prob-

ability to the true global interval Cgl
α (y;Bη) in (24), and the sliced interval constructions (27) and

(28) converge in probability to the true sliced interval Csl
α (y;Bη) in (23). Although our approach

involving quantile regression is inspired by the approaches in Dalmasso et al. (2020, 2024); Masser-
ano et al. (2023) and therefore requires similar theoretical results to connect the consistency of
the quantile estimation with the interval validity, our approach is sufficiently different and requires
novel theoretical insights. First, the inversion of a hypothesis test with a composite null adds a layer
of complexity to the proofs. Dalmasso et al. (2024) does address composite null hypotheses, but in
the context of nuisance parameters where they use a profile likelihood approach. Second and more
fundamentally, Dalmasso et al. (2024); Masserano et al. (2023) construct confidence sets which are
shown to achieve the desired coverage level asymptotically in the number of samples used to train
the quantile regressor. By contrast, we show that our computed intervals converge in probability
to the theoretical Intervals (23) and (24) which achieve the correct coverage by definition. Third
and finally, since we use the sampled points to invert the interval, it is insufficient to show that the
cutoff is consistent as the results in Dalmasso et al. (2020, 2024); Masserano et al. (2023) show.
Our inverted intervals require proof that the samplers can get arbitrarily close to the true endpoint
boundaries.

Throughout the following results, we assume that for fixed γ ∈ (0, 1), Qx(1 − γ) is a continuous
function of x. We refer the reader to Kibzun and Kan (1997) for a full analysis of the properties of
parametrized quantile functions. We furthermore assume that Bη is a compact set without isolated
points, so that the sampling methods eventually sample close to every point.

Theorem 4.1. Assume that Qx(1 − γ) is a continuous function of x, and let Bη be compact and
without isolated points. Let the quantile regression in Algorithm 2 be consistent for all x, i.e, such
that P(|q̂γ(x) − Qx(1 − γ)| > ε) → 0 as Mtr → ∞ is satisfied ∀ε > 0. We will write

p−→ for
convergence in probability, understood as N,M →∞ if Algorithm 1 is used and as Mtr,M →∞ if
Algorithm 2 is used. For either algorithm, we have, for a given observation y:

1. Cgl
inv(y)

p−→ Cgl
α (y),

2. Csl
inv(y)

p−→ Csl
α (y).

Further assume that there exists a point µ ∈ φ(Bη) satisfying λ(µ,y;X ) < qγ,η, then

3. Cgl
opt(y)

p−→ Cgl
α (y).

Finally, further assuming technical conditions discussed in Appendix B, then

4. Csl
opt(y)

p−→ Csl
α (y).

Proof. See Appendix B.

Note that if λ(µ,y) is convex in µ, as it is for linear forward models and quantities of interest
(Batlle et al., 2023, Proposition 2.5), the condition of the existence of µ satisfying λ(µ,y;X ) <
qγ,η is equivalent to the interval not being empty. For nonlinear forward models, it is a slightly
stronger condition. For the convergence of the sliced optimized version, one needs to show that
infµ:λ(µ,y)≤m̂γ(µ) µ converges to infµ:λ(µ,y)≤mγ(µ) µ as m̂γ(µ) converges to mγ(µ). In order to do so,

we study the convergence of optimization problems of the form inf
µ:f̂(µ)≥0

µ to infµ:f(µ)≥0 µ as f̂

converges to f . Although the result is not true in general, we provide sufficient technical conditions
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about f and the uniformness of convergence of f̂ to f for the result to hold. We discuss the details
in Appendix B.

5 Implementation methodology

5.1 Sampling the pre-image Berger–Boos set

The viability of this method directly relies upon our ability to sample from the Berger–Boos set,
Bη = f−1(Γη(y)) ∩ X . Under the assumed data generating process in Equation (19), the Berger–
Boos set is defined as follows:

Bη = f−1(Γη(y)) ∩ X =
{
x ∈ X : (y − f(x))⊤Σ−1(y − f(x)) ≤ χ2

n,η

}
, (30)

where we have generalized to a non-identity covariance matrix, Σ, to make the following exposition
more general. This set is equivalent to the set over which the strict bounds intervals are optimized
in Stark (1992b), also called “SSB” intervals in Stanley et al. (2022); Batlle et al. (2023). Note,
however, that one would use χ2

n,α instead of χ2
n,η for 1− α interval computation in that scenario.

We discuss sampling Bη in the linear-Gaussian case, where f(x) = Kx, as this scenario aligns
with the numerical experiments presented in Section 6. We present two sampling approaches; the
“Voelker-Gossman-Stewart” (VGS) algorithm based on Voelker et al. (2017) for efficiently sampling
ellipsoids uniformly at random in low-dimensional scenarios and an MCMC-based algorithm we call
the Polytope sampler based on the Vaidya walk presented in Chen et al. (2018). When f is linear
and has full column rank, Bη is an ellipsoid intersected with the constraint set, making the VGS
algorithm an effective option in low dimensional settings (see Section 5.1.1). In all other scenarios,
especially higher dimensional ones, the Polytope sampler is a better option, as naive accept-reject
algorithms become intractable (see Section 5.1.2).

5.1.1 VGS Sampler for low-dimensional and full column rank settings

Under the linear-Gaussian assumptions, when K has full column rank, it can be shown that

Bη =
{
x ∈ X : (x− x̂)⊤K⊤Σ−1K(x− x̂) ≤ χ2

n,η

}
, (31)

where x̂ is the Generalized Least-Squares (GLS) estimator. Equation (31) describes an ellipsoid in
Rp intersected with X with axis directions and lengths determined by χ2

n,η and the eigenvectors and

eigenvalues of K⊤Σ−1K, respectively (see Rust and Burrus (1972) for more details). An ellipsoid is
nothing but a deformed ball. As such, we can sample uniformly at random from the ellipsoid in Rp
using an algorithm sampling uniformly at random from a p–ball, followed by an appropriate linear
transformation and translation. We can then include an additional accept-reject step to account
for the constraint set X . Note, all subsequent discussions of spheres and balls assume unit radii
and centering at the origin. Also note that because the ellipsoid in (31) is centered around the GLS
estimator, we can sample points first from within an ellipsoid of the same shape centered at the
origin, and then translate those points by x̂.

Voelker et al. (2017) propose a particularly efficient and clever algorithm to sample uniformly at
random from the p–ball by proving a connection between uniform sampling on the (p + 1)-sphere
(i.e., the surface of the ball in Rp+2) and uniform sampling within the p–ball (i.e., within the unit
ball in Rp). Namely, one can sample a Gaussian z̃ ∼ N (0, Ip+2) and normalize z := z̃/∥z̃∥2 to
sample a point uniformly at random from the (p+ 1)-sphere. Next, one simply drops the last two
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elements of z to obtain a point that is uniformly sampled from within a p–ball. The validity of
this approach is substantiated by Lemma 1 and Theorem 1 in Voelker et al. (2017) and relies upon
a distribution result about the ratio of chi-squared distributions and preservation of distribution
under an orthogonal transformation. To denote sampling a point following this procedure, we use
the notation x ∼ VGS(p).

To sample from our desired ellipsoid in (31), first consider the eigendecomposition of K⊤Σ−1K =
PΩP⊤, where Ω = diag

(
ω2
1, ω

2
2, . . . , ω

2
p

)
, ωi is the i-th eigenvalue of K⊤Σ−1K and P is an

orthonormal matrix where the columns vectors are the eigenvectors of K⊤Σ−1K. Denote Ω1/2 =
diag (ω1, ω2, . . . , ωp) and by extension, Ω−1/2 = diag

(
ω−1
1 , ω−1

2 , . . . , ω−1
p

)
when ωi > 0 for all i.

These decompositions imply the correct transformation to apply to points sampled from the p–ball

via x ∼ VGS(p). Namely, define w :=
√
χ2
n,ηPΩ−1/2x. To know that w is sampled from the correct

ellipsoid, it should be the case that w⊤K⊤Σ−1Kw ≤ χ2
n,η, as then we can simply make the update

w ← w+ x̂ to ensure that we have a point sampled from (31). This guarantee is verified as follows:

w⊤K⊤Σ−1Kw = w⊤PΩ1/2Ω1/2P⊤w

= χ2
n,η · x⊤Ω−1/2P⊤PΩ1/2Ω1/2P⊤PΩ−1/2x (32)

= χ2
n,η · x⊤x ≤ χ2

n,η,

where P⊤P = I by definition and the last line follows since we know x is sampled from the p–ball
and therefore x⊤x ≤ 1. Equation (32) justifies that the w samples lie within the desired ellipsoid,
and their uniform distribution follows from the uniform distribution of x in the p–ball since the
distribution is preserved under a linear transformation. Finally, we accept w if w ∈ X and reject if
w /∈ X . This procedure for sampling at random from Bη is summarized in Algorithm 3.

Algorithm 3 VGS Sampler

Input: p ∈ N, M ∈ N, P , Ω−1/2, x̂, χ2
n,η.

1: Define S := {} to be the initialized set in which the sampled points are to be placed.
2: for k = 1, 2, . . . ,M do
3: Sample from the p–ball using VGS: xk := z1:p/∥z∥2, where z ∼ N (0, Ip+2) and z1:p

denotes taking the first through p-th indices (inclusive).

4: Transform VGS output: wk :=
√
χ2
n,ηPΩ−1/2xk.

5: Translate wk by the GLS estimator: wk ← wk + x̂.
6: Accept-Reject to incorporate constraints: If wk ∈ X , then add S ← S ∪ {wk}, else

start loop iteration k again.
7: end for

Output: S containing uniformly sampled points over Bη (as defined in (31)).

Generating samples using the VGS Sampler is efficient, but its feasibility diminishes in high dimen-
sions because of the accept-reject step. To illustrate this point, consider the simple scenario where
X = Rp+, i.e., the non-negative orthant of Rp and suppose we sample from the p–ball intersected
with Rp+ by sampling x ∼ VGS(p) where P = Ω = I, x̂ = 0 and we use 1 instead of χ2

n,η. Then,
P(x ∈ Rp+) = 2−p and the acceptance probability of each sample goes to zero exponentially in p.
To make this point slightly more general, we generate data y ∼ N (x∗

p, Ip) where x∗
p ∈ Rp+ and is a

vector of ones. For a collection of dimensions p ∈ [2, 30], we sample x ∼ VGS(p) with P = Ω = I
and x̂ = y to estimate the probability that x is in Rp+ and plot the results in the left panel of
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Figure 5.1. Since the acceptance probability decays exponentially (under 10−4 for 30 dimensions),
it becomes clear that this algorithm is inefficient in dimensions larger than 10, since the acceptance
probability quickly becomes prohibitively small in regimes where a larger sample size is even more
important.

Dimension is only one of two primary complicating factors. Not only is less of a (potentially)
shifted p–ball’s volume in the non-negative orthant as p grows but if our data are generated via
y ∼ N (Kx∗, Ip) with x∗ ∈ Rp+ where the condition number of K is large, it is possible that
even less of the ellipsoid from which the VGS Sampler draws points intersects with the parameter
constraint. To illustrate this point, we generate a single observation from the aforementioned model
using a K ∈ R40×40 as described in Section 6.3. The x∗ ∈ R40

+ is created in the same way as that
of Section 6.3.1. The right panel of Figure 5.1 shows a computed probability mass function for the
number of coordinates in a VGS Sampler draw (with P and Ω defined such that K⊤K = PΩP⊤)
complying with the non–negativity parameter constraints. Equivalently, the right panel of Figure 5.1
shows the computed probability mass function for the number of coordinates lying within the
Berger–Boos set. For this particular setup, we critically note that out of 5 × 104 draws from the
VGS Sampler, none of the draws had all coordinates comply with the non-negativity constraint.
By contrast, for the aforementioned noise model where we more simply sample from the p–ball
intersected with the non-negative orthant, the computed acceptance probability is approximately
3.35 × 10−6, in both cases emphasizing the VGS Sampler’s poor performance in high-dimensional
and ill-conditioned forward model regimes.

Figure 5.1: Numerical illustrations of the VGS Sampler’s infeasibility in high dimensional regimes. The left
panel shows the computed acceptance probability of a point drawn by the VGS Sampler with data generated
from a non-negatively constrained Gaussian noise model. Crucially, at only 30 dimensions, the acceptance
probability is already less than 10−4 for this particular setup. The right panel shows the computed probability
mass function for the number of non-negative constraint complying coordinates of a VGS sample with data
generated from a non-negatively constrained linear Gaussian model in 40 dimensions with a non-identity
forward model. Since this is an example using a forward model with a large condition number (≈ 1.6× 104),
we critically note that there is empirically zero probability of generating a sample within the non-negativity
constraints.

5.1.2 Polytope sampler for general settings

In settings where the forward model is not linear and full column rank, Algorithm 3 fails. The
ineffectiveness of this algorithm expands if the condition number of the linear forward model is
large such that most of the pre-image ellipsoid defining the Berger–Boos set lies outside of the con-
straint set. Although these scenarios induce particular geometric challenges, in the linear-Gaussian
case with convex X we are still fundamentally sampling a convex set for which there is a vast
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literature. For example, there is a vast sampling literature for computing Bayesian posteriors in
high dimensions via nested sampling (Skilling, 2004; Ashton et al., 2022; Buchner, 2023). In partic-
ular, nested sampling has been successfully applied in high-dimensional cosmology settings using
sophisticated approaches to strategically sample the parameter space by restricting prior sampling
in various ways (Buchner, 2023; Montel et al., 2023). Although these approaches provide tools ad-
dressing a sampling setting similar to ours (i.e., the Berger–Boos set can be viewed as a portion of
the parameter space defined by a cutoff on the likelihood) they are ultimately aimed at sampling
from a particular distribution (i.e., the posterior), which is a stronger criterion than required here.
For sampling general convex sets, simple algorithms like Hit-and-Run are available (Smith, 1984;
Lovasz, 1999; Lovasz and Vempala, 2006). However, in the particular case considered here, more
sophisticated and efficient algorithms can be devised. In particular, there exists a deep literature
on random walks over polytopes such that the asymptotic stationary distribution of the walk is
a uniform distribution over the polytope of interest (Kannan and Narayanan, 2012; Narayanan,
2016; Chen et al., 2018). As such, we propose to first construct a bounding polytope, Pd composed
of d half-spaces around Bη, sample C random walks within the Berger–Boos set using the Vaidya
walk as described in Chen et al. (2018) each starting at a point from a collection of strategically
chosen locations, and then combine the parallel chains to create the final sample set. The detailed
algorithm can be seen in Algorithm 4.

Although MCMC algorithms are typically evaluated using trace plots on individual dimensions of
the parameter space, given the high-dimensionality of the problem and the final step combining
several MCMC chains in the parameter space started from different positions, it is more meaningful
to evaluate this algorithm’s ability to sample fully from the functional space. Namely, we can solve
for the largest and smallest values the functional can take within the Berger–Boos set as follows:

IBB(y) :=

[
µlBB, µ

u
BB

]
=

[
min
x∈Bη

φ(x),max
x∈Bη

φ(x)

]
. (33)

When φ(x) = h⊤x for some h ∈ Rp, IBB(y) corresponds to the SSB interval in Stanley et al. (2022).

Computing the sets Csl
α (y;Bη) and Cgl

α (y;Bη) well is then contingent upon sampling functional
values within IBB(y) well since a functional value can only be included in the inverted set if the
sampler has a non-zero probability of sampling arbitrarily close to it. By “well”, we informally mean
that the sampled functional values range at least between the endpoints of IBB(y) and that if we
partition IBB(y) into n sub–intervals, that most if not all of the sub–intervals contain at least one
sample. In practice, it will often be the case that the sampled functional values can lie outside the
endpoints of IBB(y) since the MCMC chains are sampling a bounding polytope of the Berger–Boos
set.

Choosing the bounding polytope. Any bounded polytope of Bη is the intersection of a finite
number of half-spaces defined in Rp. The task of constructing a bounding polytope is then equivalent
to choosing a collection of d hyperplanes in Rp to construct a set Pd := {x ∈ Rp : Ax ≤ b} such
that Bη ⊆ Pd, where A ∈ Rd×p and b ∈ Rd. Let a⊤

i ∈ Rp denote the i-th row vector of A. We
compute bi (the i-th element of b) as

bi = max
x∈Bη

a⊤
i x. (34)

This construction ensures the necessary inclusion. We consider three approaches to pick the vectors
ai: (i) using the constraints X , (ii) using the known eigenvectors defining the bounded directions
of the pre-image ellipsoid, and (iii) randomly. In practice, we combine these approaches to ensure
that we consider only parameter settings in agreement with our physical constraints, and to tighten
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the bounding Berger–Boos set polytope as much as possible. There is a tradeoff with respect to
the latter consideration since the mixing time and computational cost for the Vaidya walk increase
with the number of hyperplanes (Chen et al., 2018).

To incorporate the known parameter constraints, consider the non-negativity constraint used in
Section 6, i.e., x ∈ Rp+. To enforce non-negativity, we set ai = −ei for i = 1, . . . , p, where ei is
defined by its i-th element set to one and the rest of its elements set to zero and bi = 0. These
choices produce p rows in A corresponding to the desired lower bounds (i.e., xi ≥ 0 for all i), but
we can compute an additional p constraints using (34) with ai := ei for i = p + 1, . . . 2p. These
2p constraints define a hyperrectangle enclosing the Berger–Boos set in the parameter space. To
incorporate polytope constraints based upon the forward model, we use the ellipsoidal definition
of the pre-image as shown in (31) and eigendecomposition of K⊤Σ−1K = PΩP⊤ shown in (32).
Note that this ellipsoid form is valid under the linear-Gaussian noise assumption and for all K.
In the event that K is not full column rank, the ellipsoid defined by Equation (31) is still defined
via the pseudo–inverse of of K⊤ΣK but where the ellipsoid is unbounded in some directions. The
column vectors of P corresponding to the non-zero entries on the diagonal of Ω are the eigenvectors
corresponding to the bounded principal axes. As such, both pi and −pi for i = 1, . . . , p (the column
vectors of P ) can be used as rows of A with their corresponding bounds defined by (34). Finally, to
further tighten the polytope around the Berger–Boos set, we sample a multivariate Gaussian, i.e.,
ai ∼ N (0, Ip) to include random hyperplanes. Note, it is possible that the unbounded directions
of the ellipsoid defined by Equation (31) are not bounded when intersecting with the parameter
constraint set and hence there is no bounding polytope. In this case, our interval construction
should be unbounded since there is not enough information to produce a bounded confidence set
for the quantity of interest.

Once the components (A, b) have been defined using some or all of the above hyperplane generation
strategies, the Vaidya walk can immediately be employed to perform a random walk around the
polytope. The primary intuitive requirement we wish to satisfy with any sampling scheme in this
context is that every region of the Berger–Boos set has a non-zero probability of being sampled.
Asymptotically, the Vaidya walk samples the desired polytope uniformly at random, which satisfies
a stronger requirement. In practice, the need to sample non-uniformly can arise if there are partic-
ularly meaningful parameter settings in regions that are difficult for the random walk to reach. We
explore such a case in Section 6.2. Additionally, although the asymptotic distribution of the Vaidya
sampler is theoretically sufficient, in practice it often has some difficulty reaching the corners of
the generated polytope. Although MCMC chain mixing is typically evaluated by looking at trace
plots, this diagnostic is insufficient here because the dimension is high and the defined polytope can
make different dimensions difficult to compare. Instead, we consider how well the sampler samples
the functional values φ(x). This motivates taking a collection of starting points between the SSB
endpoints and the Chebyshev center of the polytope, as described in the following section.

Constructing the parallel chain starting points. Although the random walks defined in Chen
et al. (2018) asymptotically sample uniformly over Pd, given the long and thin shape of the pre-
image, running the Vaidya walk from even a “good” starting position does not consistently sample
the functional space well. Instead, we use the following heuristic to construct several parallel chains
that constitute a complete sample when combined. We define an even number of starting points, C ∈
2N, to roughly span the Berger–Boos set, run the Vaidya walk forMp steps from each starting point
to collect parameter settings {x̃1, . . . , x̃Mp}, and combine the samples from each walk, resulting in
C ×Mp total samples. In practice, C and Mp are chosen to yield a total of M samples as desired
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for Algorithm 1 or Algorithm 2. Since we have designed this process to avoid the neccessity of any
individual chain reaching its asymptotic distribution, we do not need a burn–in period for any chain
as long as we are confident that the union of the sampled points sufficiently covers Interval (33) so
that we may accept or reject any quantity of interest value in that interval. We define the collection
of starting points using the line segments defined by the parameters generating the endpoints of
IBB(y) and the Chebyshev center of Pd as defined in Boyd and Vandenberghe (2004), and denoted
by xc. This point is the center of the largest ball contained within Pd and therefore acts as a way
to characterize the center of Pd. We denote the parameter settings generating the endpoints of
IBB(y) by x̂l for the lower endpoint and x̂u for the upper endpoint. We then define a uniform grid

of values {τl}
C/2
l=1 such that τl ∈ (0, 1) and τl < τl+1 for all l. For each k ∈ [C], define k′ := ⌈k/2⌉

and set xstartk := τk′x̂
l + (1 − τk′)xc if k is odd and xstartk := τk′x̂

u + (1 − τk′)xc if k is even.
Creating starting positions along the lines connecting these endpoints and the Chebyshev center
accommodates the chosen polytope while helping ensure that samples are chosen spanning the
range of possible functional values over the Berger–Boos set.

The empirical performance of the Polytope sampler can be seen in Figure 5.2, showing (left) a
histogram of the functional values sampled and (right) a trace plot for the sampled Vaidya walks
starting from points constructed as described above. These plots are generated for one observation
from the 80-dimensional ill-posed inverse problem in the coverage study performed in Section 6.3.
Critically, the histogram shows that the Polytope sampler samples the functional space well and
the trace plot shows that our starting point construction heuristic performs well in practice.

Figure 5.2: Polytope sampler output for a realization of the 80-dimensional ill-posed inverse problem studied
in Section 6.3. The left panel contains a histogram of sampled functional values which both span and cover
well the range of IBB(y) (shown by the dashed gray lines in both plots). The right panel contains trace
plots of the 14 Vaidya walks (each indicated by a different color) which together constitute the full sample.
Our heuristic for choosing starting points along the lines connecting the parameter settings generating the
endpoints of IBB(y) and the Chebyshev center of the polytope provides a good initial spread of starting
functional values.

Sampling from the Berger–Boos set. With Pd and the starting positions defined, we construct
a sample S := {x̃1, . . . , x̃C×Mp}. We leave the details of the Vaidya walk to the original paper
Chen et al. (2018), but note an essential radius tuning parameter of the algorithm that must be
chosen. This radius impacts the spread of a Gaussian proposal distribution for the walk and thus
affects a new proposed point’s acceptance probability. Choosing a too large radius results in a low
acceptance rate of proposed steps, thus creating walk that does not mix well. In contrast, choosing a
too small radius results in a high acceptance rate with relatively small step sizes. In practice, we find
a radius setting of 0.5 works well as it produces an acceptance probability of ≈ 33.3%, producing
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a reasonable trade off between taking meaningful steps and not rejecting too many steps.

Algorithm 4 Polytope sampler

Input: Mp ∈ N and C ∈ 2N. A ∈ Rd×p, b ∈ Rd. {τl}
C/2
l=1 , where τl ∈ (0, 1) and τl < τl+1 for all l.

1: Let S := {} be the set in which we store all sampled parameter settings.
2: Construct Chebyshev center: Solve for xc using the following optimization.

maximize
xc,r

r

subject to a⊤
i xc + r∥ai∥2 ≤ bi, i = 1, . . . , d.

3: Compute φ extremes of Berger–Boos set: Extreme points are computed with respect to
the functional of interest:

x̂l := argmin φ(x) subject to x ∈ Bη,
x̂u := argmax φ(x) subject to x ∈ Bη. (35)

4: for k = 1, 2, . . . , C do
5: Construct starting point: Define k′ := ⌈k/2⌉. Define xstartk = τk′x̂

l + (1 − τk′)xc if k is
odd and xstartk = τk′x̂

u + (1− τk′)xc if k is even.
6: Run the Vaidya walk for Mp steps: Collect samples {x̃1, . . . , x̃Mp} and add them to S.
7: end for

Output: S containing sampled points over Bη.

5.2 Quantile regression

Algorithm 2 explained in Section 3.2 involves using quantile regression to learn a quantile surface
from a collection of pairs of design points and samples from the LLR test statistic. As previously
mentioned, similar approaches have been taken in Dalmasso et al. (2020, 2024); Masserano et al.
(2023, 2024), and since quantile regression is a technique facilitating our interval constructions,
we will only give a brief overview of quantile regression and some different ways to implement it.
Fundamentally, given a one-dimension random variable z ∼ Px that depends on the parameter
x ∈ Rp, we are interested in the upper γ-quantile at every parameter setting, i.e.,

Px(z > Qx(1− γ)) = γ. (36)

We note that the quantile surface itself is not random, so we can use draws from the distribution Px

to estimate Qx at a given parameter setting x. However, as noted in Section 3.2, performing such
an estimate is not always computationally feasible, and intuitively, we might expect quantiles to
vary smoothly over the parameter space, which would imply that information about a quantile at
x1 should be related to a quantile at x2 if these points are close. In statistics literature, estimating
Qx is framed as estimating a quantile function conditional on known covariates and is often thought
of as a generalization of estimating the conditional median (Koenker and Hallock, 2001). Just as
conditional mean and conditional median estimation can be accomplished by using an appropriate
loss function (sum of squares and absolute differences, respectively), estimating conditional quantiles
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can be accomplished by minimizing the pinball loss defined as follows:

Lγ(z, q) :=

{
(1− γ)(q − z), z < q,

−γ(z − q), z ≥ q.
(37)

(Koenker, 2005; Steinwart and Christmann, 2011). As such, estimating the quantile surface can
be framed as a risk-minimization problem, leaving only standard modeling choices to fill in for
q in (37). Although initial efforts were focused on linear parametric quantile regressors (Koenker
and Bassett Jr, 1978), in recent years, modeling efforts have focused on nonparametric varieties.
Meinshausen (2006) adapted random forests to quantile regression. Takeuchi et al. (2006) leveraged
Reproducing Kernel Hilbert Spaces to construct smooth quantile regressors. Closer to our applica-
tion, Masserano et al. (2023) used neural networks to optimize the pinball loss to learn the quantile
surface for their application.

Using the design points in the Berger–Boos set as sampled via the VGS or Polytope samplers,
Algorithm 2 shows how we sample from the test statistic distribution defined at each design point
to define a data set to fit a quantile regressor. We use the Gradient Boosting Regressor implemented
in scikit-learn (Pedregosa et al., 2011) with the “quantile” loss function (i.e., pinball loss defined in
eq. (37)) to fit the quantile surface for our numerical examples in Section 6. This algorithm involves
a collection of hyperparameters (i.e., the minimum number of samples required to split an internal
node, the minimum number of samples required to be a leaf node, the maximum depth of any
individual estimator, the learning rate, and the number of estimators) which we determine using
10-fold cross validation in a pilot study ahead of our simulation experiments in Section 6. Although
one may use any quantile regression approach to estimate the quantile surface, we emphasize the
importance of choosing an approach that can accommodate a nonlinear surface in the parameters
(such as the Gradient Boosting Regressor) as the parameter constraints are known to produce
nonlinear quantile surfaces in even simple examples as seen in Batlle et al. (2023).

6 Numerical experiments

For scenarios within the linear-Gaussian case of data-generating process (19), the OSB interval can
be regarded as the previous the state-of-the-art option for computing constraint-aware confidence
intervals. Although these intervals have empirically achieved nominal coverage in applications (Patil
et al., 2022; Stanley et al., 2022), they generally do not guarantee coverage (Batlle et al., 2023).
As such, we use the OSB interval in the following numerical experiments as a main comparison
point to the intervals defined in this paper. In scenarios where the OSB interval achieves at least
nominal coverage, we show that our intervals are either competitive or better in terms of expected
interval length. In scenarios where the OSB interval does not achieve nominal coverage, our intervals
do achieve nominal coverage and can have shorter expected length. We provide four numerical
experiments to make these points. The first set of two uses a constrained Gaussian noise model setup
in two or three dimensions. These two experiments illustrate the aforementioned points in addition
to constituent parts of the interval computation process due to the relatively low dimensions. The
second set of two considers a wide-bin deconvolution setup inspired by particle unfolding in high-
energy physics (Stanley et al., 2022). This setup features an 80-dimensional parameter space with a
rank-deficient forward model and is thus a substantially more complicated computational scenario
compared to the two or three-dimensional Gaussian noise models. These examples demonstrate the
superior performance of our intervals over OSB in terms of both coverage and expected length.

In the following experiments, we form 68% confidence intervals, set η = 0.01 and compute γ
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according to Lemma 3.1. We draw 103 observations from each data-generating process to estimate
both coverage and expected interval length for our four interval constructions and the OSB interval.
We additionally provide 95% confidence intervals in the form of orange line segments to characterize
statistical error for both coverage and expected length estimates. The coverage confidence intervals
are Clopper-Pearson intervals for the success probability parameter of a binomial distribution, while
the expected length confidence intervals are the average length plus/minus the appropriately scaled
standard error of the mean.

6.1 Constrained Gaussian in two dimensions

The two-dimensional Gaussian noise model is defined as follows:

y = x∗ + ε, ε ∼ N (0, I2) , x∗ ∈ R2
+, (38)

where φ(x) = x1 − x2 and x∗ =
(
0.5 0.5

)⊤
. The LLR is then given as follows:

λ(µ,y) = min
x1−x2=µ
x∈R2

+

∥y − x∥22 − min
x∈R2

+

∥y − x∥22. (39)

This example first appeared in Tenorio et al. (2007) as a case where the OSB interval allegedly fails
to achieve nominal coverage when the true parameter x∗ is such that φ(x∗) = 0. However, Batlle
et al. (2023) overturned this result by proving OSB validity in this case. As such, this example is
important to include because of its historical context and OSB interval validity. The proof that
the OSB interval covers in this particular example relies upon showing that Qmax

1−α = χ2
1,α for all

α ∈ (0, 1), where χ2
1,α is the upper α-quantile of a chi-squared distribution with one degree of

freedom. Alternatively stated, it holds that λ(φ(x∗),y;R2
+) is stochastically dominated by χ2

1. This
result is shown in Lemma 4.4 of Batlle et al. (2023).

Estimated coverage and length results are shown in Figure 6.1. We note that all four of our interval
constructions are competitive with OSB in terms of coverage, while all of our interval constructions
have higher estimated expected length, apart from the Sliced constructions which are within statis-
tical error of OSB. Since the OSB interval is defined using Qmax

1−α = χ2
1,α and the α-quantile surface of

the LLR rapidly approaches this global max-quantile as one moves away from the origin (see Figure
5.3 in Batlle et al. (2023)), the OSB interval lengths are difficult to beat in practice with intervals
based on the Berger–Boos sets since these sets likely contain parameter settings with quantiles near
χ2
1,α. The left panel of Figure 6.2 shows four realizations of the data-generating process with the

observations shown as red points. For each observation, the blue points show uniformly distributed
draws within its Berger–Boos set, sampled using the VGS sampler. Cross-referencing the spread of
the Berger–Boos set samples in Figure 6.2 with Figure 5.3 in Batlle et al. (2023), it is clear that
there are always samples in the parameter space where the quantile surface is nearly the same as the
χ2
1,α quantile. Further, when including the Berger–Boos set in the interval construction, we instead

construct our intervals using the γ-quantile, where γ < α, as the LLR cutoff, resulting in a more
relaxed constraint. This fact can be clearly observed in the central panel of Figure 6.2, showing
the sampled γ-quantiles within the Berger–Boos set of one observation from the data generating
process. Since a non-trivial portion of this distribution is above χ2

1,α, the longer average length of
the Global intervals is explained. In the right panel of Figure 6.2, for the same observation, we show
the estimated sliced max-quantile function, m̂γ(µ), in orange alongside χ2

1,α. Since this estimated

function is above χ2
1,α at their intersection points with the underlying LLR function shown in the

solid blue line, it further makes sense that the Sliced interval constructions provide no additional
length improvement compared to the OSB interval in this particular setting.
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Figure 6.1: Estimated coverages and expected lengths across all four interval constructions and OSB for
comparison at the 68% level for the two-dimensional constrained Gaussian setting. All four of our interval
constructions are comparable to OSB with respect to coverage, but OSB shows better-expected length
performance, aside from our two sliced interval constructions. Although the OSB intervals are defined using
the global max-quantile (Qmax

1−α) and therefore can potentially be improved upon by limiting the considered
parameter space via the Berger–Boos set, due to the rapidity with which the α-quantile surface meets the
χ2
1,α quantile (see Figure 5.3 in Batlle et al. (2023)), the OSB interval lengths are difficult to beat in practice.

6.2 Constrained Gaussian in three dimensions

As seen in the previous example, in a case where the OSB interval is known to achieve nominal
coverage, its expected length can be difficult to beat. However, OSB coverage guarantee can be
difficult to prove or disprove, since it amounts to proving stochastic dominance on the non-trivial
LLR statistic. In such situations, our intervals immediately provide a clear theoretical advantage.
One such case involving a three-dimensional constrained Gaussian case was explored in Batlle et al.
(2023), to which we now apply our four interval constructions. The three-dimensional Gaussian noise
model is defined as follows:

y = x∗ + ε, ε ∼ N (0, I3) , x∗ ∈ R3
+, (40)

where φ(x) = x1 + x2 − x3 and x∗ =
(
0.03 0.03 1

)⊤
. The LLR is then defined as follows:

λ(µ,y) = min
x1+x2−x3=µ

x∈R3
+

∥y − x∥22 − min
x∈R3

+

∥y − x∥22. (41)

Figure 6.3 shows estimated coverage and expected length across all four interval constructions and
the OSB interval. While the OSB interval fails to attain nominal coverage in this example, all four
of our interval constructions do, with the Sliced constructions providing the best calibration. While
the Global constructions pay a fairly steep price for coverage in expected interval length, the Sliced
constructions navigate the trade-off well, paying for coverage with only slightly longer intervals
compared to the OSB interval.

The setting of x∗ used here is slightly different than that of Batlle et al. (2023), where x∗ =(
0 0 1

)⊤
was used. In Batlle et al. (2023), this setting was used as a counter-example for OSB

coverage, since Qx∗(1− α) > χ2
1,α for at least some α ∈ (0, 1). However, as shown in Figure 5.5 of

Batlle et al. (2023), when α = 0.05, Qx∗(1−α) ≤ χ2
1,α for x∗ =

(
t t 1

)⊤
when t is approximately

greater than e−2 ≈ 0.135, which indicates that parameter settings violating stochastic dominance
by χ2

1 exist close to the parameter constraint boundary. The location of these key parameter settings
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Figure 6.2: (Left) Four realizations of the data-generating process where the observations are shown in red.
For each realization, the blue points are uniformly distributed samples from its Berger–Boos set, sampled
using the VGS sampler. (Center) For a realization of the data-generating process, we plot the distribution
of γ-quantiles for the points sampled by the VGS sampler. Notably, a non-trivial percent of these are
above χ2

1,α defining the OSB interval. (Right) For the same realization, we plot the estimated sliced max-
quantile function, m̂γ(µ) in orange alongside χ2

1,α in red. The blue points correspond to sampled parameter
values, each of which has a functional and quantile value, while the solid blue line shows the LLR over the
functional varies. All intervals can be read immediately from this image by inspecting where the blue LLR
curve intersects the sampled points.

Figure 6.3: Estimated coverage and expected length across all four interval constructions and OSB for com-
parison at the 68% level for the three-dimensional constrained Gaussian example. All four of our interval
constructions achieve nominal coverage while the OSB interval does not. While the Global interval construc-
tions pay a steep price in expected length compared to OSB, the Sliced constructions are only slightly longer
than OSB.

presents a challenge for the Polytope sampler described by Algorithm 4. In Appendix C.1, Algo-
rithm 5 presents a modified version of Algorithm 4 that better handles sampling in this example.

Berger–Boos set experiment. For this model, we investigate the effect of changing the parameter
η that controls the Berger–Boos construction in the global interval. We compute intervals for
different y and fixed x∗ = (2, 2, 0),x∗ = (3, 3, 0) and x∗ = (5, 5, 0) as η ranges between 0 and
α = 0.32. The lengths of such intervals, averaged over the data y, are shown in Figure 6.4. In this
example the maximum quantile is achieved at x = (0, 0, t) for large t, and, as expected, the benefit
of using a small η > 0 becomes more pronounced as the true x∗ becomes farther from the point
that achieves the maximum quantile. However, as η grows too close to α the downside of optimizing
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the 1 − α + η quantile instead of 1 − α outweighs the benefit of optimizing it over a smaller set,
resulting in larger intervals. This suggests that a small η > 0 is a reasonable default, as suggested
originally by Berger and Boos (1994).

Figure 6.4: Confidence interval lengths in the Berger–Boos setting, averaged over values of y, for varying η
and x∗. The minimum average length occurs at a small η > 0, showing that the construction is beneficial
if η is tuned correctly. This occurs because even for moderately small η, the Berger–Boos set, which is a
three-dimensional sphere intersected with the non-negative orthant, avoids the point with the highest 1− α
quantile.

6.3 Wide-bin deconvolution

While the numerical experiments in Sections (6.1) and (6.2) show that our interval constructions
are competitive with the OSB interval in scenarios where it is known to provide coverage and
superior to the OSB interval by achieving nominal coverage when OSB does not, this section shows
the superior performance of our interval constructions relative to OSB in a more complex high-
dimensional setting. We consider the problem of computing a confidence interval for the sum of
adjacent bins of a deconvolved histogram as described in Stanley et al. (2022). This problem is a
core statistical problem of particle unfolding in high-energy physics. For more detailed information,
we refer the reader to Kuusela and Panaretos (2015); Kuusela (2016); Kuusela and Stark (2017);
CMS Collaboration (2016, 2019).

The data-generating process is linear with Gaussian noise,

y = Kx∗ + ε, ε ∼ N (0, I), x∗ ≥ 0, (42)

where K ∈ R40×80 and φ(x) = h⊤x. The vector h defines the bin-adjacent aggregation. In particle
unfolding, the vectors x∗ and y represent particle counts within discretized bins. A collection of
h vectors can act to sum the contents of adjacent bins to effectively lower the resolution of the
inference problem. The LLR is then defined as follows:

λ(µ,y) = min
h⊤x=µ
x∈R80

+

∥y −Kx∥22 − min
x∈R80

+

∥y −Kx∥22. (43)

We emphasize two features of this setup that complicate the task of computing confidence intervals
for φ(x). First, the forward model, K, has a non-trivial null space and a large condition number,
making any inverse problem point estimation and UQ markedly challenging. Typically, this sort
of ill-posedness is handled with regularization of some kind, but as is well-known in the inverse
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problem literature and specifically shown in Kuusela (2016), including such regularization induces
a bias, which can undercut desired statistical guarantees (e.g., coverage) of the inference object
of interest. Including constraints and focusing on a particular functional of the parameter vector
implicitly regularizes the problem (Patil et al., 2022; Stanley et al., 2022), but shifts the problem
difficulty to inference with constraints. Although Batlle et al. (2023) and this paper proposes a the-
oretical framework to perform inference with constraints, the second challenge is in the practical
implementation due to the high-dimensional parameter space in scenarios like this example. As we
show in the following sections, the Polytope sampler described by Algorithm 4 and quantile regres-
sion do an adequate job producing samples and fitting quantile surfaces in this high-dimensional
space to ensure the desired coverage of the interval constructions.

As extensively discussed in Stanley et al. (2022), the OSB interval (i.e., using χ2
1,0.05 in the

optimization-based interval construction) produces empirically valid confidence intervals in all
tested scenarios, albeit typically with over-coverage. In the scenarios considered in Stanley et al.
(2022), the underlying function generating the true histogram means (x∗ ∈ R80

+ ) was relatively
smooth, likely contributing to the over-coverage. As such, we present two true parameter settings
for x∗ in (42) to highlight two advantages of our interval constructions over the OSB interval. First,
we use the original smooth parameter setting from Stanley et al. (2022) to show how our intervals
improve over-coverage relative to the OSB interval by reducing the expected interval length. Sec-
ond, we present an “adversarial” setting where our interval constructions achieve nominal coverage
while the OSB interval does not. Figure 6.5 shows the smooth and adversarial settings for x∗. We
constructed the adversarial setting by first computing our interval constructions on the smooth
setting and then looking at the maximum out-of-sample predicted quantile for a generated obser-
vation with a large predicted quantile. For each observation drawn within both settings, we draw
2.1× 104 samples using the Polytope sampler as described by Algorithm 4.

Figure 6.5: Parameter values for the smooth and
adversarial settings for x∗ used to illustrate our in-
terval construction versus the OSB interval. The
adversarial setting is made more difficult by the
sharp jumps in parameter values.

6.3.1 Smooth setting

Using the smooth x∗ shown in Figure 6.5, Stanley et al. (2022) showed that the OSB interval
over-covers at the 95% level. Furthermore, it was shown that the OSB interval was the shortest
across a range of other interval options, including SSB, prior optimized, and minimax. As such, for
this setting, we show that our interval constructions not only achieve nominal coverage, but the
sliced constructions dramatically reduce over-coverage compared to OSB by producing substan-
tially shorter intervals on average. Estimated coverage and expected interval lengths are shown in
Figure 6.6.
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Both Global interval constructions and OSB dramatically over-cover which highlights the con-
servatism of the Global constructions. These estimated coverage values indicate that within each
observation’s Berger–Boos set, there is a parameter setting against which the method has to protect
that is substantially more difficult to cover than the true realistic parameter setting. Interestingly,
both Global constructions produce markedly longer intervals on average compared with the OSB
interval. Aligning with the intuition from the Global and Sliced construction definitions, the Sliced
intervals are less conservative as seen by their lower over-coverage and significantly smaller aver-
age lengths. Importantly, both Sliced constructions are shorter on average compared to the OSB
interval, with the Sliced Inverted showing an 18.7% reduction in average length and the Sliced
Optimized showing a 11.1% reduction in average length.

Figure 6.6: Estimated coverage and expected length across all four interval constructions and OSB at the
68% level for the smooth wide-bin deconvolution experiment. While the Global interval constructions over-
cover like the OSB interval, the Sliced interval constructions reduce both over-coverage and expected interval
length.

6.3.2 Adversarial setting

The key result in Section 6.3.1 is that the Sliced interval constructions both reduce over-coverage
and expected interval length compared with the OSB interval. In this section, we show that for
the adversarial parameter setting the OSB interval does not achieve nominal coverage, whereas all
four of our interval constructions do achieve nominal coverage while still reducing the expected
interval length in the case of the Sliced interval constructions compared to the OSB interval. The
corresponding estimated coverage and expected length results are shown in Figure 6.7.

Both Global interval constructions and the Sliced Optimized interval over-cover, with the Sliced
Optimized over-covering to a lesser extent than the Global intervals. The Sliced Inverted interval
achieves nominal coverage within the statistical uncertainty. The estimated expected lengths tell a
story similar to that of the smooth example, with the Global intervals showing the longest average
interval lengths, the Sliced intervals showing the shortest, and the OSB interval being between the
two. Importantly, the Sliced intervals are again significantly shorter than the OSB interval, even
though the OSB interval does not achieve nominal coverage. The Sliced Inverted interval shows a
18.9% average interval length reduction over OSB while the Sliced Optimized interval shows an
11.4% average interval length reduction.

For both the smooth and adversarial experiments, we note the differences in coverage and expected
length between the two Sliced interval constructions. Although both approaches theoretically com-
pute the same interval, significant differences can arise from their construction. For instance, the
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Figure 6.7: Estimated coverage and expected length across all four interval constructions and OSB at the
68% level for the adversarial wide-bin deconvolution experiment. While the OSB interval fails to achieve
nominal coverage, all four of our interval constructions do. Interestingly, the Sliced interval constructions are
meaningfully shorter than the OSB interval while also providing coverage.

Sliced Inverted intervals are constructed by accepting individual functional values, which makes
each point’s acceptance dependent upon the quality of the quantile regressor at that point. By con-
trast, since the Sliced Optimized intervals essentially smooth over the max quantiles as a function
of the functional space, the intervals are less sensitive to the quantile regressor’s performance at
any individual point. In the above simulation studies, there were realizations of the data for which
the Sliced Inverted construction only accepted a single functional value sample thereby making the
confidence interval a single point. We found the Sliced Optimized construction to be more robust
in these settings as the max quantile values were shared in a sliding window over the functional
space.

7 Conclusion

This paper proposes several confidence interval constructions for functionals in constrained ill-
posed inverse problems. Our approach is based on two key ideas: data-adaptive constraints using
a Berger–Boos construction and sampling-based inversion. Two independent decisions when con-
structing intervals provide four different valid intervals: Global versus Sliced, using the quantile
function either over the entire or along level-set slices of the Berger–Boos set and Inverted ver-
sus Optimized, constructing the interval either by individually accepted functional values via the
estimated quantile function or using the estimated quantile function in endpoint optimizations.
All of the constructions are built upon the preliminary constraint by the data-informed Berger–
Boos set, followed by a sampling procedure to estimate a quantile function that can be used to
invert or optimize the interval endpoints. We have validated the method (including all four afore-
mentioned interval constructions) through several numerical examples, demonstrating its ability to
provide correct coverage, better calibration, and comparable or shorter interval length compared to
the OSB interval baseline. Overall, our approach offers a flexible framework that can incorporate
constraints directly and can be tailored to various types of inverse problems. The main takeaway
is that data–adaptive constraining helps improve the length of the resulting confidence intervals,
and enables sampling which makes it feasible to carry out the test inversion needed to construct
confidence intervals with a desired nominal coverage.

There are several promising directions for future work. One direction is to find ways to extend
our method to even higher-dimensional problems, which are more challenging. This would involve
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developing improved techniques to handle the curse of dimensionality and exploring the trade-off
between accuracy and computational complexity. For the approaches in this paper in particular,
this extension would require a more tailored sampling approach. Another direction is to leverage
more sophisticated machine learning algorithms (deep learning models or ensemble methods) to
improve the estimate of the quantile function and thus improve the accuracy and efficiency of our
confidence intervals. Additionally, applying our approach to other applications involving ill-posed
inverse problems, such as medical imaging or geophysics, would provide further validation of the
effectiveness of our approach. Finally, it is of interest to conduct a further theoretical analysis of
our approach under different constraints and noise conditions to better understand its limitations
and strengths. This would involve studying the statistical properties of our confidence intervals and
investigating the impact of various assumptions on their performance. Of particular interest are
relaxations of the linear forward model and Gaussian noise assumptions to extend our method’s
application domain. Although the original theoretical foundation developed in Batlle et al. (2023)
does not make these assumptions, our implementation relies upon them for the tractability of the
sampling algorithms. Overall, these future research directions have the potential to demonstrate
the applicability and robustness of our approach in a wide range of domains.
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Appendix

This document serves as an appendix to the paper “Confidence intervals for functionals in constrained inverse
problems via data-adaptive sampling-based calibration”. Below we provide an organization for the appendix,
followed by a summary of the main notation used in both the paper and the appendix. The equation and figure
numbers in this appendix begin with the letter “S” to differentiate them from those appearing in the main paper.

Organization

The content of this appendix is organized as follows.

Appendix Description

Appendix A Proofs in Section 3 (Proofs of Lemma 3.1 and Corollary 3.2)

Appendix B Proofs in Section 4 (Proof of Theorem 4.1)

Appendix C Additional details and illustrations in Section 6 (importance-like sampler)

Table 2: Roadmap of the supplement.

Notation

An overview of the main notation used in this paper is as follows.

Notation Description

Non-bold lower
or upper case

Denotes scalars (e.g., α, µ, Q).

Bold lower case Denotes vectors (e.g., x, y, h).
Bold upper case Denotes matrices (e.g., K, I).
Calligraphic font Denotes sets (e.g., X , C, D).

R Set of real numbers.
R+ Set of non-negative real numbers.
[n] Set {1, . . . , n} for a positive integer n.

∥u∥2 The ℓ2 norm of vector u.
∥f∥L2 The L2 norm of function f .

K⊤ The transpose of a matrix K ∈ Rm×p.
Im or I The m×m identity matrix.
v ≤ u Lexicographic ordering for vectors v and u.
A ⪯ B The Loewner ordering for symmetric matrices A and B.

1{A} Indicator random variable associated with event A.
Y = Oα(X) Deterministic big-O notation, indicating that Y is bounded by |Y | ≤ CαX.
Cα A numerical constant that may depend on the parameter α in context.
Op Probabilistic big-O notation.
p−→ Convergence in probability.

X ⪰ Y Stochastic dominance of X by Y , indicating that P(X ≥ z) ≥ P(Y ≥ z) for all z ∈ R.

Table 3: Summary of main notation used in the paper and the appendix.
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A Proofs in Section 3

A.1 Proof of Lemma 3.1

We reproduce the original argument in Berger and Boos (1994), originally stated in terms of p-
values, translated into our quantile setting. Fix any x∗ ∈ X and consider the sets:

• A1 = {y : Bη(y) ∋ x∗}

• A2 = {y : λ(µ∗,y) ≤ Qx(1− γ)}

• A3 = {y : λ(µ∗,y) ≤ qγ,η(µ∗)} = {y : λ(µ∗,y) ≤ supx∈Bη∩Φµ∗
Qx(1− γ)}

We now have that P(y ∈ A1) = 1−η,P(y ∈ A2) = 1−γ, and that (A1∩A2) ⊂ (A1∩A3). Therefore,

P(y /∈ A3) = P(y /∈ A3,y ∈ A1) + P(y /∈ A3,y /∈ A1) (S.1)

≤ P(y /∈ A2,y ∈ A1) + P(y /∈ A1) (S.2)

≤ P(y /∈ A2) + P(y /∈ A1) (S.3)

= γ + η (S.4)

so that P(y ∈ A3) ≥ 1− γ − η. Imposing 1− γ − η ≥ 1− α gives the desired result.

A.2 Proof of Corollary 3.2

By definition, qµγ,η ≤ qγ,η for all µ ∈ R. Therefore, Csl
α (y;Bη) ⊆ C

gl
α (y;Bη), and thus

Px∗
(
µ∗ ∈ Cgl

α (y;Bη)
)
≥ Px∗

(
µ∗ ∈ Csl

α (y;Bη)
)
≥ 1− α. (S.5)

B Proof of Theorem 4.1

Throughout the proof, we make use of the following lemma:

Lemma B.1. Let f : Rn → R and X ⊂ Rn such that min
x∈X

f(x) is achieved, and at least one of the

minimizers x∗ satisfies:

1. f is continuous at x∗,

2. x∗ is not an isolated point of X (i.e., ∀δ > 0, Bδ(x
∗) ∩ X ̸= ∅).

Let µ be a measure on X such that µ(B) > 0 for all B ⊆ X such that λLeb(B) > 0 (where λLeb(B)
refers here to the Lebesgue measure of the set B). Let Ym = min

i=1,...,m
f(xi), where xi are i.i.d. samples

from µ. Then Ym
p−→ f(x∗).

Proof. Fix ε > 0 and let us show that P(|Ym − f(x∗)| > ε)→ 0. Since f is continuous at x∗ there
exists a δ > 0 such that f(Bδ(x

∗)) ⊂ Bε(f(x∗)) so that,

P(|Ym − f(x∗)| ≥ ε) ≤ P(xi /∈ Bδ(x∗), ∀i = 1, . . . ,m) = (Px∼µ(x /∈ Bδ(x∗)))m. (S.6)

Since x∗ is not an isolated point, we have λLeb(Bδ(x
∗)∩X ) > 0 and therefore Px∼µ(x /∈ Bδ(x∗)) < 1

and P(|Ym − f(x∗)| ≥ ε)→ 0.

We begin by proving that the empirical maximums of the quantiles obtained both by Algorithm 1
and Algorithm 2 (assuming the quantile regressor is consistent) converge to the true max quantile.
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Algorithm 1 Let qdeγ,η := max
i=1,...,M

q̂iγ(N), where we explicitly write the dependence with the num-

ber of samples and the index i refers to the quantile estimated at the i-th sampled point xi. We aim
to show that qdeγ,η

p−→ qγ,η. We know that q̂iγ(N) converges in probability to QPxi
(1− γ) as N →∞.

We have

∣∣∣qdeγ,η − qγ,η∣∣∣ ≤ ∣∣∣∣qdeγ,η − max
i=1,...,M

QPxi
(1− γ)

∣∣∣∣+ ∣∣∣∣ max
i=1,...,M

QPxi
(1− γ)− qγ,η

∣∣∣∣ . (S.7)

The first term can be made smaller than ε/2 as N →∞ by convergence of the estimator, and the
second term can be made smaller than ε/2 asM →∞ by application of Lemma B.1 to the quantile
function (maximizing instead of minimizing).

Algortihm 2 The proof is identical to that of Algorithm 1, with the only difference of replacing
the quantiles estimated via Monte Carlo sampling to those estimated by the quantile regression,
and N to Mtr, the number of samples needed to train the quantile regression. Since the quantile
regression is assumed to be consistent, the first term can be made arbitrarily small as Mtr grows,
and the result follows.

Since identical convergence results apply for both algorithms, henceforth we will not explicitly
distinguish: The proof is written in terms of N , which can be replaced by Mtr.

B.1 Proof of Statement 1 (Global Inverted)

Recall,

Cgl
inv(y) =

[
min

k∈{1,...,M}:λ(φ(xk),y)≤q̂(N)
φ(xk), max

k:λ(φ(xk),y)≤q̂(N)
φ(xk)

]
(S.8)

=

[
min

k∈{1,...,M}:λ(µk,y)≤q̂(N)
µk, max

k:λ(µk,y)≤q̂(N)
µk

]
(S.9)

where q̂(N) := max
i=1,...,M

q̂iγ(N), the estimated quantiles of the sampled xi ∈ Bη and µi := φ(xi). Note

that µi are samples in φ(Bη) ⊂ R. Also note that we have more explicitly written out the interval
definition (i.e., Equation (26)) to emphasize clarity rather than presentation.

Consider the left extreme of the interval, a similar argument follows from the right extreme. Consider
three quantities:

µ1(N,M) := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ q̂(N) (S.10)

µ2(M) := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ qγ,η (S.11)

µ3 := minµ s.t. µ ∈ φ (Bη) and λ(µ,y) ≤ qγ,η (S.12)

Our goal is to show that as N,M → ∞, µ1
p−→ µ3. Lemma B.1 shows that µ2

p−→ µ3. Indeed,
the minimization over the indices k such that the condition is satisfied can be seen as a rejection
sampling strategy in which all accepted samples are samples of the feasible region of the optimization
in µ3. As M grows, since the sampler eventually samples all areas of φ(Bη), some samples are
guaranteed to be close to the optimum with high probability. Finally, for fixed M and N going
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to infinity, µ1
p−→ µ2. This follows from the continuity of the optimization problem with respect

to the right-hand side of the constraint, and the fact that max
i=1,...,M

q(xi)
p−→ qγ,η. It follows that as

N,M →∞, µ1
p−→ µ3.

B.2 Proof of Statement 2 (Sliced Inverted)

The proof technique is similar to the one of Statement 1, replacing q̂(N) := max
i=1,...,M

q̂iγ(N) for q̂kγ(N).

Defined then, similarly as in the previous proof:

µ1(N,M) := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ q̂kγ(N) (S.13)

µ2(M) := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ qγ,η(µk) (S.14)

µ3 := minµ s.t. µ ∈ φ (Bη) and λ(µ,y) ≤ qγ,η(µ) (S.15)

where qγ,η(µ) = maxx∈Φµ∩Bη Qx(1 − γ). As N → ∞, q̂kγ(N) → Qxk
(1 − γ). Lemma B.1 can be

used to show µ2
p−→ µ3, because the sampler strategy used that first samples xk and then accepts

µk = φ(xk) as a sample if λ(φ(xk),y) < qkγ , it can be shown that for every feasible point µ, there
is eventually a sample close to it.

Finally, µ1 will become arbitrarily close to µ2 asM grows large, since both are taking the minimum
over samples that are sampled densely from the feasible set, meaning accepted µk will eventually
be close to µ3 for both the case of µ1 and the case of µ2

B.3 Proof of Statement 3 (Global Optimized)

We prove the continuity of the optimization problem,

max
µ∈φ(Bη)

µ s.t. λ(µ,y) ≤ q, (S.16)

as a function of q in the positive measure interval (λ(µ,y), qγ,η]. Therefore, convergence in probabil-
ity follows as we have convergence in probability to qγ,η as N,M →∞, which in particular implies
that the maximum quantile estimate is in the interval (λ(µ,y), qγ,η] almost surely. We do so by
appealing to the maximum theorem (Ok, 2007, § E.3), which, in general, guarantees continuity of
functions of the form f∗(θ) = sup{f(x, θ) : x ∈ C(θ)} as long as f is continuous, C is a continuous
compact-valued correspondence and C(θ) is non-empty for all θ ∈ Θ. The continuity of C comes
from the continuity of the LLR, f is equal to the identity and the strict feasibility condition ensures
C is non-empty in Θ := (λ(µ,y), qγ,η].

B.4 Proof of Statement 3 (Sliced Optimized)

We will prove sufficient conditions for convergence of inf
µ:f̂k(µ)≥0

µ to inf
µ:f(µ)≥0

µ as f̂k converges to f ,

and the result will follow by taking f̂k(µ) = m̂γ(µ)−λ(µ,y) and f(µ) = mγ(µ)−λ(µ,y). A similar

argument can be repeated for the supremum. Use use the notation f̂k to indicate that k sampled
points are used to estimate this function via the definition of m̂γ(µ) (see Section 3.2).

Lemma B.2. Let f : R→ R be a function, and let fk be a sequence of functions fk : R→ R. Let
µ∗ = inf

f(µ)≥0
µ and µk = inf

fk(µ)≥0
µ. Let the sequence of functions {fk} be such that for all δ > 0,

P
(
sup
µ
|fk(µ)− f(µ)| > δ

)
→ 0 as k →∞, (S.17)
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namely, fk converges in probability uniformly to f . Furthermore, let f be such that for all ε > 0,
there exists δ′ > 0 such that |f(µ)| > δ′ if and only if |µ− µ∗| < ε. Then, we have µk

p−→ µ∗.

We then have µk
p−→ µ∗.

Proof. Assume for the sake of contradiction that there exists ε > 0 such that P (|µk − µ∗| ≥ ε) does
not go to 0. Then, by the condition on f , it must follow that P (|f(µk)| > δ) does not go to 0. But,

P (|f(µk)| > δ) ≤ P (|f(µk)− fk(µk)| > δ) + P (|fk(µk)| > δ) , (S.18)

and the right-hand side goes to 0 by uniform convergence in probability (first term) and by feasibility
of µk (second term).

C Additional details and illustrations in Section 6

C.1 Importance-like sampler for the three-dimensional example in Section 6.2

Since the parameter settings with quantiles meaningfully larger than χ2
1,α are located close to

the constraint boundary, a sampling challenge is presented. Using the samplers as described in
Section 5.1 results in under-sampling of this large-quantile region since both samplers provide
uniform random samples over the Berger–Boos set. Algorithm 5 presents a modified version of
Algorithm 1, an importance-like sampler to increase the probability mass of samples close to the
constraint boundary. Note, we say “importance-like” because we do not provide any theoretical
guarantee regarding this sampler’s ability to produce draws from a particular target distribution.
We tailored Algorithm 5 to settings with a non–negativity constraint and hand-tuned the length
scale parameter to the particular three-dimensional example in Section 6.2.

Algorithm 5 Importance-like sampler for three-dimensional constrained Gaussian

Input: Number of samples: M ∈ N, inverse length scale: γp, and order of norm: q ∈ (0, 1).

1: Instantiate a list S of length M to store sampled points.
2: while |S| < M do
3: Draw M − |S| realizations from Algorithm 4: x̃1, . . . , x̃M−|S|
4: for k = 1, . . . ,M − |S|: do
5: Compute the probability of accepting the k-th draw: pk := exp (−γp∥x̃k∥q).
6: Draw zk ∼ Bernoulli(pk).
7: if zk = 1 then
8: S[k]← x̃k
9: end if

10: end for
11: end while

Output: Sampled parameters in Berger–Boos set S.

The key to Algorithm 5 is the additional accept/reject step where the k-th sample is accepted
with probability pk. Additionally, by setting q ∈ (0, 1), we prioritize retaining samples closer to
the non-negativity boundary. This effect can be seen in Figure S.1, where the vast majority of
samples are found closer to the constraint boundary. The ability of Algorithm 5 to better sample
the high-quantile regions of the Berger–Boos set can be seen in Figure S.2. In particular, for the
functional values µ ∈ (−4,−2), the importance-like sampler is substantially more effective than the
Polytope sampler at finding parameter setting with γ-quantiles greater than 1.1.
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Figure S.1: When sampling points using Algorithm 5, the vast majority of samples are found closer to the non-
negativity constraint boundary. The true parameter setting is shown by the red point, while the parameter
settings sampled by Algorithm 5 are shown by the blue points. This sampling prioritization helps adequately
sample the regions of the Berger–Boos set where the quantile surface is larger than χ2

1,α. Furthermore, the
vast majority of sampled points lie within the Berger–Boos set with some lying outside within the bounding
polytope.

Figure S.2: The importance-like sampler described by Algorithm 5 is more effective than the Polytope sampler
described by Algorithm 4 at sampling parameter settings with γ-quantile greater than 1.1. Each parameter
setting sampled by Algorithm 5 is shown by a blue point. This improved ability helps ensure the coverage
guarantee shown in the left panel of Figure 6.3.
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