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Abstract

We address the problem of functional uncertainty quantification for ill-posed inverse problems
where it is possible to evaluate a possibly rank-deficient forward model, the observation noise
distribution is known, and there are known parameter constraints. We present four constraint-
aware confidence interval constructions extending the theoretical test inversion framework in
Batlle et al. (2023) by making the intervals both computationally feasible and less conservative.
Our approach makes the potentially unbounded constraint set compact in a data-adaptive way,
samples from this set and relevant test statistics to estimate a quantile function, and then uses
these computed quantities to produce the constraint-aware confidence intervals. Our approach
to bounding the constraint set in a data-adaptive way is based on the approach by Berger and
Boos (1994), and involves defining a subset of the constraint set where the true parameter is
guaranteed to exist with high probability. The probabilistic guarantee of this compact subset
is then incorporated into the final coverage guarantee in the form of an uncertainty budget.
We then propose custom sampling algorithms to efficiently sample from this subset, even when
the parameter space is high-dimensional. Optimization-based interval methods formulate confi-
dence interval computation as two endpoint optimizations, where the optimization constraints
can be set to achieve different types of interval calibration while seamlessly incorporating pa-
rameter constraints. However, choosing optimization constraints to obtain coverage for a single
functional has been elusive. We show that all four proposed intervals achieve nominal coverage
for a particular functional both theoretically and in practice, with several numerical examples
demonstrating superior performance of our intervals over the OSB interval in terms of both
coverage and expected interval length. In particular, we show the superior performance of our
intervals in a realistic unfolding simulation from high-energy physics that is severely ill-posed
and involves a rank-deficient forward model.
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1 Introduction

This paper proposes a novel uncertainty quantification (UQ) approach for ill-posed inverse problems
characterized by a known parametric forward model1 f : Rp → Rn mapping a parameter x ∈ Rp
to an observation in Rn, additive noise with a known distribution ε ∼ N (0,Σ), and constraints
on the forward model parameters denoted by x ∈ X , where X is primarily assumed to be of
the form Ax ≤ b. We consider scenarios where the parameter space dimension p may exceed the
observation space dimension n, which often results in an ill-posed problem. Additionally, we do not
require the forward model f to be injective, allowing for the possibility that f is many-to-one. We
assume observations are generated by y = f(x∗)+ε, where x∗ ∈ X is the true but unknown model
parameter. Our UQ object of interest is a confidence interval, Iα(y), on a one-dimensional quantity
of interest (QoI) derived from x∗ by φ : X → R. Our approach produces constraint-aware intervals
with a finite-sample frequentist coverage guarantee, namely, for each α ∈ (0, 1)

P(φ(x∗) ∈ Iα(y)) ≥ 1− α for all x∗ ∈ X . (1)

The probability in the coverage guarantee (1) is taken over the distribution of the observation
y = f(x∗)+ε, where ε is the additive noise. The level α ∈ (0, 1) corresponds to the desired coverage
probability, meaning that the interval Iα(y) will contain the true value φ(x) with probability at
least 1− α for any realization of the noise ε.

This paper builds on the confidence interval framework of Batlle et al. (2023), who provided a
unified perspective for many previous interval constructions by introducing a particular hypothesis
test framework which, when inverted, yields confidence intervals that can be computed using two
endpoint optimizations. By characterizing the quantile function of a particular log-likelihood ratio
test statistic, they produced two interval constructions of increasing complexity and statistical
power: one calibrates the interval to the largest value of the quantile function over the entire
constrained parameter space, while the other calibrates the interval to the largest values of the
quantile function as sliced along level sets of the constrained parameter space defined by the QoI. As
such, one of the primary computational challenges of computing the intervals described therein is the
potentially unbounded constraint set over which to search for these worst-case parameter settings.
A significant challenge also arises from the fact that we do not know the exact distribution of the
test statistic or the precise location where the maximum quantile is achieved, making it difficult
to determine the worst-case parameter settings directly. This paper solves this unboundedness
challenge by shrinking the constraint set in a data-adaptive way to produce the compact “Berger-
Boos” set, inspired by Berger and Boos (1994). We then introduce a custom sampling algorithm to
draw a set of design points in this set such that each respective thetest statistic can be sampled,
thereby producing a dataset on which to train a quantile regressor to learn the quantile function.
We finally use the learned quantile functions to define four interval constructions, all satisfying (1)
with finite-data guarantees as the number of samples of our algorithm approaches infinity.

With advances in data collection and computational processing, high-dimensional ill-posed inverse
problems have become more prevalent, especially in fields like remote sensing and data assimila-
tion. This setting includes a wide array of physical science applications, spanning Earth science
(Rodgers, 2000), atmospheric science and remote sensing (Liu et al., 2016; Patil et al., 2022), and
high energy physics (Kuusela, 2016; Stanley et al., 2022), among many others. Guaranteed UQ in
parameter inference from indirect observations is essential for assessing the precision of scientific

1Even though we write the forward model as a known function f , we only require evaluation access to the map
throughout the paper.
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inferences made in these contexts. However, the inherent ill-posed nature of these problems often
leads to inferences that are highly sensitive to noise, posing significant challenges for UQ. Namely,
the ill-posedness leads to an identifiability issue in which statistical inference is impossible with-
out providing some form of regularization, which usually takes either a deterministic (e.g., SVD
truncation (Höcker and Kartvelishvili, 1996) and Tikhonov regularization (Schmitt, 2012)) or prob-
abilistic (e.g., priors and Bayesian inference) form. Under some assumptions, these two approaches
are mathematically equivalent and are therefore subject to the same pitfalls, namely a disruption
of the coverage guarantees of downstream intervals as a result of the incurred regularization bias as
thoroughly discussed in Kuusela (2016). Our method’s focus on one-dimensional QoI’s and incor-
poration of parameter constraints allows for implicit regularization and therefore produces intervals
with the promised coverage guarantee while avoiding the problem of regularization bias altogether.

Although including parameter constraints provides implicit regularization and enables handling
non-trivial null spaces, it shifts complexity to statistical inference under constraints, a non-trivial
problem in even elementary settings (Gouriéroux et al., 1982; Wolak, 1987; Robertson et al., 1988;
Shapiro, 1988; Wolak, 1989; Molenberghs and Verbeke, 2007). One elegant solution to this problem
originates in what we refer to as optimization-based UQ, originating in the work of Burrus et al.
(1965) and Rust and Burrus (1972). Stark (1992a) extended and generalized their approach, calling
this method strict bounds, since it produced guaranteed simultaneous coverage interval estimators
complying with known physical constraints on the model parameters. This collection of work de-
fines endpoint optimization problems over the physically constrained parameter space to directly
compute confidence intervals for one-dimensional QoI’s. Not only does the optimization form of the
confidence interval computation shift statistical inference complexity to numerical optimization,
but it also allows known physical constraints to be directly included in the endpoint optimizations.
This practical advantage is dulled by the difficulty of proving the coverage properties of the inter-
vals resulting from the defined endpoint optimizations in the one-at-a-time setting. Even under the
relatively strong assumptions in Rust and Burrus (1972) of a linear forward model, non-negativity
parameter constraints and linear QoI, the authors were only able to conjecture the coverage of
their interval (known as the Burrus Conjecture). The interval coverage was unsuccessfully proven
in Rust and O’Leary (1994) (the error pointed out in Tenorio et al. (2007)) and finally generally
refuted in Batlle et al. (2023). These optimized-based intervals that have gained recent attention
take the form:

I(ψ2
α,y) :=

[
φl(ψ2

α,y), φ
u(ψ2

α,y)

]
=

[
min

x∈D(ψ2
α,y)

φ(x), max
x∈D(ψ2

α,y)
φ(x)

]
, (2)

where
D(ψ2

α,y) :=
{
x ∈ X : ∥y − f(x)∥22 ≤ ψ2

α

}
. (3)

The statistical challenge for intervals of this form is then to choose ψ2
α such that I(ψ2

α,y) has
the desired coverage guarantee. It is important to note that the definition of D(ψ2

α,y) assumes
that the noise has been standardized; in other words, the covariance matrix of the noise has been
transformed to the identity matrix.

The literature proposes two settings to guarantee coverage. One approach is to set ψ2
α such that

D(ψ2
α,y) is itself a confidence set for x∗ in the parameter space. Since this choice would then

automatically guarantee coverage for I(ψ2
α,y) regardless of the chosen QoI, this setting has been

called “simultaneous” in Rust and O’Leary (1994), and “Simultaneous Strict Bounds” (SSB) in
Stanley et al. (2022); Batlle et al. (2023) since it also aligns with the setting of the strict bounds
construction in Stark (1992a). Under the Gaussian assumption, this can be achieved by setting
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ψ2
SSB,α := χ2

n,α, where χ
2
n,α is the upper α-quantile for a chi-squared distribution with n degrees of

freedom. Although this approach is relatively simple and obtains the desired coverage guarantee,
it is conservative since the guarantee holds for all possible QoI choices simultaneously. To tailor
the interval to one particular QoI, there is the “one-at-a-time” setting as described in Rust and
Burrus (1972); Rust and O’Leary (1994), or “one-at-a-time strict bounds” (OSB) as called in
Stanley et al. (2022); Batlle et al. (2023). Under the Gaussian assumption this proposed setting
was ψ2

OSB,α = χ2
1,α + s(y)2, where s(y)2 := minx∈X ∥y − f(x)∥22. Unlike the simultaneous setting,

D(ψ2
OSB,α,y) is not a 1 − α confidence set for x∗, which makes proving its coverage guarantee

difficult. The validity of this claim was proposed by the Burrus conjecture (Rust and Burrus, 1972)
and generally disproven by Batlle et al. (2023).

To address the challenge of calibrating strict bounds and optimization-based confidence intervals,
Batlle et al. (2023) approached these intervals as an inverted likelihood ratio test. The distribution
of the log-likelihood ratio (LLR) statistic is non-standard due to the presence of the constraints,
adding to the complexity of finding these max quantiles. This framework development allowed for
the general disproving of the long-standing Burrus conjecture, invalidating the general calibration
of the intervals proposed by Rust and Burrus (1972). However, the framework reveals that the
characterization of a particular quantile function allows for proper interval calibration in much more
general settings than those in which the Burrus conjecture applied (linear forward model, Gaussian
noise, and linear functional). Batlle et al. (2023) introduces the concept of “Maximum Quantile”
(MQ) in two forms: one based on a global quantile, qα, and one based on a level-set quantile, qα(µ).
While these quantiles provide valid one-at-a-time confidence intervals, they are challenging to obtain
and tend to be conservative, protecting against the worst-case scenario. As mentioned in Batlle
et al. (2023), finding these max quantiles can be formulated as chance-constrained optimization
problems which are known to be strongly NP-hard (Geng and Xie, 2019). In lower-dimensional
examples, gradient-free optimizers can be used to find these max quantiles, but this approach
becomes intractable in higher dimensions. Although these quantiles offer coverage even in the
worst-case scenario, they can be much larger than the quantile generated by the true parameter if
the constraint set is unbounded (e.g., with non-negativity constraints). Therefore, we aim to find
an alternative approach that is more computationally feasible and less conservative than these max
quantiles.

We propose constructing confidence intervals in the present setting in the following way. We first
use the observed data to define a 1 − η confidence set in the parameter space, referred to as
the “Berger-Boos” set following Berger and Boos (1994), which intersects with known parameter
constraints to create a smaller bounded region of the constrained parameter space. A custom
sampling algorithm is then developed to draw design points from the Berger-Boos set followed by
sampling their respective test statistics. These sampled design points and test statistics constitute
a data set on which a quantile regressor is trained to estimate the underlying quantile function.
With this estimated quantile function, we construct confidence intervals along two axes; Global
versus Sliced and Inverted versus Optimized. The Global intervals are computed using an estimate
of the largest quantile in the Berger-Boos set whereas the Sliced intervals rely upon estimating the
max quantile along level sets of the quantity of interest. These two options are analogous to the
global and level-set quantiles defined in Batlle et al. (2023). On the other axis, the Inverted interval
constructions directly accept or reject design points sampled in the Berger-Boos set according to
their test statistic evaluation and the estimated quantile surface, producing an interval in the QoI
space. The Optimized intervals use the estimated quantile function to define ψ2

α in (3) and proceed
to compute the interval endpoints via the corresponding optimizations. By balancing the level of the
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Berger-Boos confidence set (1 − η) and the computed quantile (γ), we ensure the final confidence
intervals achieve the desired coverage level (1 − α). This approach is flexible and does not rely
on assumptions about the linearity of the forward model, Gaussianity of the noise, non-negativity
of the parameter constraints, or linearity of the functional. Although implementing this method
becomes more challenging with relaxed assumptions, it can accommodate such violations.

To validate our method, we conduct a series of numerical experiments to demonstrate the effec-
tiveness of the intervals in various scenarios. Since the OSB interval described in Patil et al. (2022)
and Stanley et al. (2022) is the current standard approach in this setting, it is our primary point
of comparison. First, we present low-dimensional examples. The first example is a two-dimensional
constrained Gaussian noise model, a well-studied case in the literature (see Tenorio et al. (2007),
Batlle et al. (2023)) and illustrates how our intervals are competitive with the OSB interval in
a scenario where the OSB interval is known to achieve nominal coverage. The second example
is a three-dimensional constrained Gaussian noise model, which illustrates the advantage of our
method in achieving nominal coverage where the OSB interval fails. Second, we apply our method
to a simulated version of particle unfolding from high-energy physics (see Stanley et al. (2022)), a
binned deconvolution problem, in an 80-dimensional parameter space with a rank-deficient linear
forward model. We use the previously studied setting realistic setting from Stanley et al. (2022)
where the OSB interval is known to provide coverage to show that our Sliced intervals substantially
outperform OSB in terms of expected length. Then, we use a parameter setting where the OSB
interval does not achieve nominal coverage, but our intervals do, with the Sliced intervals still out-
performing OSB in terms of expected length. This application highlights the practical significance
of our approach, with our confidence intervals consistently achieving nominal coverage and often
outperforming existing methods in terms of expected interval length.

The contributions of this work are both methodological and computational. Methodologically, we
propose new confidence interval constructions for the setting described at the beginning of the
section. Although the use of the Berger-Boos set is inspired by Berger and Boos (1994), they
originally applied it in a hypothesis testing setting for handling nuisance parameters. Masserano
et al. (2024) applied a similar idea to nuisance parameters in a classification setting, but to the
best of our knowledge, our paper is the first to apply the idea in the ill-posed inverse problem
UQ setting. Inspired by the methods used in simulation-based inference (Dalmasso et al. (2020,
2021); Masserano et al. (2023)) we apply the approach of estimating the quantile function of a test
statistic using simulated data. However, this work differs in the underlying model assumptions and
composite nature of the null hypotheses. In addition, the prior work assumed bounded and rela-
tively low-dimensioanl parameter spaces. The search for confidence interval endpoints is sometimes
done via the Robbins-Monro (RM) procedure, which iteratively refines estimates to achieve de-
sired coverage probabilities (Garthwaite and Buckland, 1992; Carpenter, 1999). Methods based on
quantile regression (Koenker, 2005) have been proposed to improve accuracy. For instance, Fisher
et al. (2020) introduced a technique that inverts estimated quantiles to determine the endpoints
of the confidence intervals. This work is the first to combine test inversion, sampling and quantile
regression to estimate calibrated constraint-aware confidence intervals.

Computationally, we propose two custom sampling methods designed specifically to draw design
points within the defined Berger-Boos set. This set can be particularly challenging to sample since it
is the intersection between a pre-image based on the observed data and linear parameter constraints,
which can produce sharp edges and corners. This set is also quite elongated due to the ill-posedness
of the underlying inverse problem. While there are some approaches to handle similar scenarios
arising in more traditional MCMC sampling (e.g., nested sampling (Skilling, 2004; Buchner, 2023)
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and Hamiltonian Monte Carlo sampling with constraints (Pakman and Paninski, 2014)), these
algorithms can be intricate, so we develop the following alternatives. In the low-dimensional setting
(p < 10) where the forward model is linear and Gaussian noise distribution, we design an accept-
reject sampler based on sampling from p-balls as described in Voelker et al. (2017). Although
the approach in Voelker et al. (2017) can rapidly sample from the pre-image ellipsoids as defined
by the data-generating model assumptions, with even a simple non-negativity constraint on the
parameters, the proportion of rejected points quickly get impractically large for even moderate
dimensions. For moderate and higher dimensional settings (p ≥ 10), we leverage the Vaidya walk
MCMC algorithm from Chen et al. (2018) to generate random walks about a polytope enclosing
the Berger-Boos set. Using the Chebyshev ball center to define a notion of polytope centrality along
with the extreme points of the Berger-Boos set with respect to the QoI, we create two lines along
which starting positions are defined to generate a collection of parallel Markov chains. The design
points resulting from these chains are then combined to create the complete set of sampled design
points, which crucially span the full range of the QoI values over the Berger-Boos set.

The rest of the paper proceeds as follows. In Section 2, we recapitulate the framework and the-
oretical components of Batlle et al. (2023) upon which this paper’s work is built. Section 3 then
presents the theoretical Global and Sliced intervals under the Berger-Boos set formulation, along
with the four interval constructions and theoretical justifications to guarantee that the constructed
sampling-based intervals converge in probability to their theoretical counterparts. In Section 4, we
give theoretical results regarding our proposed methods. Section 5 presents the custom sampling
algorithms along with a brief description of how quantile regression works in our intervals. Sec-
tion 6 presents four numerical experiments to demonstrate the coverage and length advantages of
our intervals over the OSB interval. Finally, Section 7 provides some discussion and conclusions.

2 Background

A key part of the approach in Batlle et al. (2023) was to view the original optimization-based
intervals as inverted hypothesis tests. More specifically, a particular inverted likelihood ratio test.
This change in perspective allowed for interval analysis through the lens of the testing properties
of a particular log-likelihood ratio (LLR) test statistic. We summarize this connection here, as it is
critical to our method development carried out in Section 3. Although the numerical examples in
Section 6 focus on the linear-Gaussian version of the data-generating process, we follow the more
general exposition of Batlle et al. (2023) to indicate how this framework is not limited to that
scenario.

Suppose y ∼ Px∗ , where Px∗ is a distribution parameterized by a fixed but unknown x∗ ∈ Rp. Let
Lx(y) denote the likelihood of Px evaluated at y and similarly ℓx(y) the log-likelihood evaluated
at y. We furthermore suppose that we know x∗ ∈ X .

The duality between hypothesis tests and confidence sets is a well-studied connection in statistics
(see, e.g., Chapter 7 of Casella and Berger (2002) or Chapter 5 of Panaretos (2016)). We invert the
following hypothesis test:

H0 : x
∗ ∈ Φµ ∩ X versus H1 : x

∗ ∈ X − Φµ, (4)

where Φµ := {x : φ(x) = µ}. Since we are looking to obtain a confidence interval in R, it makes
sense that each hypothesis test is defined by µ ∈ R. Notice that the composite structure of the null
hypothesis includes all parameter settings within the µ-level set of the functional of interest.
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We define the following test statistic to evaluate Test (4):

λ(µ,y;X ) := inf
x∈Φµ∩X

−2ℓx(y)− inf
x∈X
−2ℓx(y), (5)

where µ denotes the level set of the null hypothesis, y is the observed data, and X is the constraint
set in which we know the parameter exists. We control the behavior of this test statistic, and
therefore the test, by bounding above the probability of erroneously rejecting the null hypothesis
(i.e., type-1 error control). As such, we consider the distribution of λ(µ,y;X ) under the null. For
each x ∈ X , let µ = φ(x) and suppose y ∼ Px. Define QPx : (0, 1)→ R such that, for all α ∈ (0, 1),

P (λ(µ,y;X ) ≤ QPx(1− α)) = 1− α. (6)

We refer to QPx as the quantile function of the LLR under the null hypothesis at (x, φ(x) = µ).
Since the null hypothesis is composite, using this quantile function to define a cutoff is not enough
to control type-1 error. Thus, we use the sliced maximum quantile function over the level set under
consideration:

Qmax
µ,1−α := sup

x∈Φµ∩X
QPx(1− α). (7)

Note, we refer to this version as “sliced” since we are considering the maximum of the quantile
function defined by the level-set of the functional defining a slice through the constrained parameter
space. By Lemma 2.1 in Batlle et al. (2023), the set Cα(y;X ) := {µ : λ(µ,y;X ) ≤ Qmax

µ,1−α} ⊂ R
defines a 1 − α confidence set for the true functional value, µ∗ = φ(x∗). Qmax

µ,1−α as defined above
controls type-1 error for a value of µ specified in advance. We can define a more conservative
confidence set using the following global maximum quantile:

Qmax
1−α := sup

µ∈φ(X )
Qmax
µ,1−α. (8)

(8) is more conservative than (7) since it holds for all null hypotheses, and therefore also produces
a 1− α confidence set.

Connecting this framework back to Interval (2), suppose the data generating process is of the form,
Px = N (Kx, I). The LLR test statistic is then:

λ(µ,y;X ) = min
x∈Φµ∩X

∥y −Kx∥22 −min
x∈X
∥y −Kx∥22 (9)

Batlle et al. (2023) (Theorem 2.4) proved that[
inf

µ:λ(µ,y)≤Qmax
1−α

µ, sup
µ:λ(µ,y)≤Qmax

1−α

µ

]
=

[
inf

x∈D(Qmax
1−α+s(y)

2,y)
φ(x), sup

x∈D(Qmax
1−α+s(y)

2,y)

φ(x)

]
. (10)

This equivalence asserts that ψ2
α := Qmax

1−α+s(y)
2 guarantees coverage for Interval (2). Furthermore,

it asserts that the original OSB interval formulation is only valid if and only if χ2
1,α ≥ Qmax

1−α. Batlle
et al. (2023) showed that this inequality does not hold in general.

As explored in Batlle et al. (2023) and reiterated above, Interval (2) can be calibrated by computing
Qmax
µ,1−α or Qmax

1−α. However, pursuing calibration in this way is computationally challenging and
statistically conservative. Both of these values require the ability to evaluate QPx either directly if
this function is explicitly known, or indirectly through sampling. Without parameter constraints,
this quantile function can be constant under Gaussian-linear assumptions (Batlle et al., 2023), i.e.,
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the test statistic is pivotal. But even in a relatively simple two-dimensional Gaussian noise model
example with non-negativity constraints, this quantile function becomes non-trivial (e.g., see Figure
5.3 in Batlle et al. (2023)). Beyond the practical difficulty of dealing with the underlying quantile
function, both (7) and (8) can be expressed as chance-constrained optimization problems, which
are known to be NP-hard in general (Geng and Xie, 2019; Pena-Ordieres et al., 2020; Batlle et al.,
2023). Statistically, since both (7) and (8) are the largest quantile function values subject to their
respective constraints, they are by definition conservative, especially in scenarios where the true x∗

is far from these most conservative points. Since we do not know x∗, this conservatism is potentially
warranted.

As we see in Section 3, our method addresses both of these challenges. In scenarios where sampling
the LLR under the null hypothesis is difficult, we sample a collection of design points in a bounded
subset of the constraint set, sample the LLR under the null at each design point and use quantile
regression to estimate the quantile surface. Furthermore, we can potentially remove these most
conservative points from consideration by only considering parameter values that are not unlikely
given the observed data.

3 Adaptive confidence interval: constructions and theoretical jus-
tifications

Having reiterated the theoretical framework originally presented in Batlle et al. (2023), in this
section, we present four related interval constructions to implement this theory. The first imple-
mentation challenge is to handle the potentially unbounded constraint set, for which we define and
apply the “Berger-Boos” set to create a data-dependent subset of the original constraint set. This
set leads to our four interval definitions, which follow a two-stage taxonomy; Global versus Sliced
and Inverted versus Optimized. The second implementation challenge is computing these interval
constructions in practice which we achieve using a combination of novel sampling algorithms and
quantile regression. We will cover this in the following section (Section 5).

We rewrite the data-generating process articulated in the introduction:

y = f(x∗) + ε, ε ∼ N (0, I), x∗ ∈ X (11)

where f : Rp → Rn is a known forward model and Cov(ε) = I, without loss of generality. Let
f−1(A) := {x : f(x) ∈ A} be the pre-image of a set A ⊂ Rn under the forward map f .

3.1 Global and sliced confidence sets using the Berger-Boos set

Both Qmax
µ,1−α and Qmax

1−α in Section 2 suffer from the same theoretical and practical concerns. The-
oretically, they are both conservative in the sense that they must control type-1 error probability
under the worst case for the truth (i.e., the parameter setting with the largest quantile). Practically,
not only can QPx be difficult to optimize but if the constraint set X is unbounded, computing the
aforementioned quantiles becomes even more difficult. These challenges both stem from the com-
posite nature of the null hypothesis. Berger and Boos (1994) introduce one compelling solution in
the context of hypothesis testing with nuisance parameters, which is to control type-1 error only
over a data-informed region of the parameter space. A similar approach can be applied to the afore-
mentioned sliced and global max-quantiles, where we limit the maximization to the intersection of
the original sets and a data-informed set. This solution addresses both the potential theoretical
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conservatism of controlling type-1 error over the entire parameter space and the practical difficulty
of dealing with unboundedness.

For η ∈ (0, 1), under the additive Gaussian noise assumption, we can easily find a 1− η confidence
set, Γη(y), such that P (f(x∗) ∈ Γη(y)) = 1 − η, namely Γη(y) := {y′ ∈ Rn : ∥y − y′∥22 ≤ χ2

n,η}.
Define Bη := f−1(Γη(y)) ∩ X and Bµη := Bη ∩ Φµ. We refer to this pre-image confidence set, Bη,
as the “Berger-Boos” set. The pre-image of Γη(y) in the observation space with either Bµ

∗
η or Bη

provides a confidence set in the parameter space such P(x∗ ∈ Bµ
∗
η ) ≥ 1−η and P(x∗ ∈ Bη) ≥ 1−η.

Notice that intersecting the pre-image f−1(Γη(y)) with the constraint set X or X ∩ Φµ∗ does not
change the coverage probability since we know x∗ ∈ X and x∗ ∈ X ∩ Φµ∗ .

Analogous to the presentation in Batlle et al. (2023), we define sliced and global max-quantiles that
include the Berger-Boos set to control the type-1 error probability of Test (4). Respectively, these
are defined as follows:

qγ,η(µ) := max
x∈Bµ

η

QPx(1− γ), (12)

qγ,η := max
x∈Bη

QPx(1− γ), (13)

which define the following sliced (sl) and global (gl) confidence sets:

Csl
α (y;Bη) := {µ : λ(µ,y;Bη) ≤ qγ,η(µ)} (14)

Cgl
α (y;Bη) := {µ : λ(µ,y;Bη) ≤ qγ,η}. (15)

Both of these max-quantiles maximize a larger γ-quantile over the set of interest instead of the
α-quantile as shown in (7) and (8). The following Lemma (analogous to Lemma 2.1 in Batlle et al.
(2023)) gives a sufficient condition to select the values γ and η to ensure a 1− α confidence set.

Lemma 3.1 (Setting η and γ to Guarantee 1 − α Coverage). Let α ∈ (0, 1) and define qγ,η(µ)
according (12) and Csl

α (y;Bη) according to (14). For η ∈ (0, α), Csl
α (y;Bη) is a 1−α confidence set

as long as (1− γ)(1− η) = 1− α.

Proof. See Appendix A.1.

The coverage guarantee implied by Lemma 3.1 also implies coverage for Cgl
α (y;Bη), as shown in the

following Corollary.

Corollary 3.2. Assume the same setting as Lemma 3.1. Cgl
α (y;Bη) is a 1 − α confidence set as

long as (1− γ)(1− η) = 1− α.

Proof. See Appendix A.2.

Navigating the Berger-Boos parameter choices and trade-offs. Setting η = 0 in Cgl
α (y;Bη)

we maximize QPx(1−γ) = QPx(1−α) over X , which returns Qmax
1−α from Equation (8). For η > 0, the

Berger-Boos construction restricts the quantile maximization to a smaller, bounded subset of the
parameter space while maximizing a larger quantile to maintain the desired 1− α confidence level
of the final interval. Fundamentally, the choice of η reflects a trade-off between these two opposing
effects: As we increase η away from 0, the set over which the quantile function is optimized shrinks,
but the quantile level (which is equal to 1 − γ = 1−α

1−η ) is increased. In Section 6.2, we perform a
numerical experiment comparing average interval length for different values of η, showing that a
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small η > 0 can be beneficial not only numerically (since it permits sampling in a bounded space)
but also in terms of average length.

3.2 LLR invariance under the BB set

The argument proving Lemma 3.1 relies on guaranteeing P
(
µ∗ ∈ Csl

α (y;Bη) | x∗ ∈ Bη
)
≥ 1− γ. We

emphasize that the introduction of the Berger-Boos set implies a change to the test being inverted.
Namely, instead of working with the assumption x∗ ∈ X , we assume x∗ ∈ Bη = f−1(Γη(y)) ∩ X .
This refined assumption propagates to the test statistic definition such that we compute λ(µ,y;Bη)
instead of λ(µ,y;X ). Because both the Berger-Boos set and the LLR depend on the term ∥f(x)−
y∥22, we have λ(µ,y;Bη) = λ(µ,y;X ), which we state formally in the following lemma.

Lemma 3.3 (LLR Invariance). Suppose x∗ ∈ Bη. For all µ ∈ R and y ∈ Rm, λ(µ,y;Bη) =
λ(µ,y;X ).

Proof. See Appendix A.3.

Fundamentally, there are two ways to consider the incorporation of the Berger-Boos set into the
confidence set definitions with respect to the underlying quantile function of the LLR. One way
is to see the Berger-Boos set as a way to “cut out” a section of the quantile function defined
under the original constraint set. Another way is that for any instantiation of the Berger-Boos set,
there is a unique quantile function defined only on that set that is not necessarily equal to the
original quantile function defined over the entire constraint set when limited to the Berger-Boos
set. Lemma 3.3 states that these two ways are the same when the true parameter is contained in the
Berger-Boos set. Note that the proof relies upon the particular ellipsoidal form of the Berger-Boos
set constraint which allows us to directly compare quantities with the LLR objective functions
under the Gaussian assumption. As such, this invariance depends upon selecting the Berger-Boos
set in accordance with the noise distribution. Although this choice makes intuitive sense, the point
is worth making since the geometry of the Berger-Boos set is potentially something the statistician
can choose.

Given this invariance, in the subsequent theoretical and computational development involving the
LLR within the Berger-Boos set, we use λ(µ,y;X ) since it is more streamlined.

3.3 Interval constructions

There are possibly many ways to compute Cgl
α (y;Bη) and Csl

α (y;Bη) in practice. Obtaining either
set comes down to the computation of qγ,η(µ) and qγ,η. If the quantile function QPx and its gradient
∇xQPx could be evaluated, computing these quantities could potentially be achieved using a first-
order numerical optimizer. However, we emphasize that since the sliced max-quantile, qγ,η(µ), is
a function of the level-set parameter, µ, such an optimization would have to be done for each
possible functional value. Unfortunately, such easy function and gradient evaluations rarely exist.
As such, this paper develops a sampling-based approach to estimate these quantities to construct
Confidence Sets (14) and (15). As we demonstrate below, once we estimate qγ,η(µ) and qγ,η, we
can either use the output from the sampling algorithm to compute the Global or Sliced interval via
classical test inversion, or we can use the estimated max-quantiles in Optimizations (10). As such,
we introduce four interval constructions; Global Inverted, Global Optimized, Sliced Inverted, and
Sliced Optimized.
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Since we can typically sample λ(µ,y;X ) by sampling y ∼ Px, our approach leverages this ability
to estimate the desired max-quantiles. We present two algorithms, both of which first generate
a random set of design points from the Berger-Boos set defined by the observation. If we can
directly efficiently compute the desired quantile at each design point, this capability is leveraged in
Algorithm 1. If we cannot afford such a computation, Algorithm 2 presents an alternative, which
first samples one realization of the LLR test statistic at each sampled design point, and then
performs quantile regression with the generated pairs of design points and LLR values to estimate
the underlying quantile surface. The sampled design points and either true or estimated quantiles
at the design points are then used to produce the final intervals.

Both algorithms start by sampling Bη = f−1(Γη(y)) ∩ X uniformly at random to generate a col-
lection of M design points across the Berger-Boos set, i.e., x1,x2, . . . ,xM ∼ U (Bη). This step is
non-trivial, even under an additive Gaussian noise assumption where the pre-image is an ellipsoid
since the ill-posedness can produce an extremely narrow or unbounded ellipsoid, resulting in sharp
boundaries when intersected with the known constraints. We address these sampling challenges in
Section 5.1. If computing λ(µ,y;X ) for a given µ and y is inexpensive, Algorithm 1 directly esti-
mates the quantile function at each design point. This computation is most likely inexpensive when
there are closed-form solutions to the LLR’s subordinate optimizations. As shown in Algorithm 1,
an easy way to estimate each design point’s quantile is to sample its test statistic N times and
take the appropriate percentile. More often, computing λ(µ,y;X ) is expensive since it involves two
constrained optimizations which are possibly non-convex, or just numerically challenging due to
the ill-posedness of the problem. In this scenario, one can use Algorithm 2 to sample one realization
of the test statistic at each design point and estimate the quantile function over the Berger-Boos
set using quantile regression. While Algorithm 1 relies upon computational strength to compute
the LLR N ×M times, Algorithm 2 shifts complexity to the quantile regression and relieves the
computational burden by assuming that there is information to be shared about the quantile sur-
face between design points. The emphasis on the quantile regression further necessitates that the
quantile regression be performed well. We discuss some considerations to this end in Section 5.2.
We note that although Algorithm 1 and Algorithm 2 make use of the additive Gaussian noise as-
sumption, they are not limited to this assumption. The consistency of the output for Algorithm 1 is
proven by Lemma 4.1, while the consistency of the output of Algorithm 2 is proven by Lemma 4.2.

The approach of Algorithm 2 is inspired by recent uncertainty quantification approaches in likelihood-
free inference where one can sample from a likelihood but cannot easily compute it Dalmasso et al.
(2020, 2021); Masserano et al. (2023, 2024). Although these approaches differ in detail and imple-
mentation from our approach (e.g., they typically focus on low-dimensional settings), they overlap
in the sampling and quantile regression perspectives, which effectively allow Machine Learning to
act as a bridge over the chasm caused by computationally intensive or intractable forward models.
Namely, rather than assuming a stochastic forward model and therefore only being able to sam-
ple from the likelihood, we assume f is a deterministic function involved in λ(µ,y;X ), which is
a random quantity due to the additive noise. This test statistic is likely difficult to compute for
the reasons mentioned above, and therefore sampling once from its distribution is computationally
expedient.

With the generated pairs from Algorithm 1 and Algorithm 2, we present two strategies to estimate
Cgl
α (y;Bη) and two strategies to estimate Csl

α (y;Bη). To streamline notation, let
(
xk, q

k
γ

)
denote the

k-th pair from either algorithm. This is notationally helpful since Algorithm 1 only generates one
set of parameter samples, whereas Algorithm 2 generates two. That is, using Algorithm 1, qkγ := q̂kγ
and using Algorithm 2, qkγ := q̂γ(x̃k).

11



Algorithm 1 Direct estimation of quantile surface

Input: α, γ, η ∈ (0, 1), M,N ∈ N.
1: Construct Berger-Boos confidence set: Create Γη(y) ⊆ Rm such that P (f(x∗) ∈ Γ(y)) ≥

1−η. The pre-image f−1 (Γ(y)) is also a 1−η confidence set for x∗, as is Bη = f−1(Γη(y))∩X .

2: Sample from the Berger-Boos confidence set Bη: Sample x1, . . . ,xM ∼ U (Bη).
3: for k = 1, 2, . . . ,M do
4: Sample noise realizations: Sample N noise realizations from the known noise distribution:

ε1, . . . , εN ∼ N (0, I).
5: Sample from the LLR distribution: Create an ensemble of LLR draws under xk: {λi}Ni=1,

where λi := λ (φ(xk), f(xk) + εi).
6: Compute percentile estimate of the γ-quantile: Compute the (1− γ)× 100 percentile

of the LLR samples for the data generating process under xk, i.e., q̂
k
γ := λ({(1−γ)N}), where

{·} denotes the nearest whole number and λ(i) denotes the i-th order statistic.
7: end for

Output: Pairs of sampled design points and their respective γ-quantiles, i.e., {(xk, q̂kγ)}Mk=1.

Algorithm 2 Quantile regression estimate of quantile surface

Input: α, γ, η ∈ (0, 1); Mtr,M ∈ N.
1: Construct Berger-Boos confidence set: Create Γη(y) ⊆ Rm such that P (f(x∗) ∈ Γ(y)) ≥

1−η. The pre-image f−1 (Γ(y)) is also a 1−η confidence set for x∗, as is Bη = f−1(Γη(y))∩X .

2: Sample from the Berger-Boos confidence set Bη: Sample x1, . . . ,xMtr ∼ U (Bη) design
points to train the quantile regressor and x̃1, . . . , x̃M ∼ U (Bη) test points to invert the interval,
generatingMtr+M total samples. Since the test points are used for the interval inversion, they
are used as out-of-sample points for the quantile regressor.

3: for k = 1, 2, . . . ,Mtr do
4: Sample a noise realization: Sample a noise realization from the known noise distribution:

εk ∼ N (0, I).
5: Sample from the LLR distribution: Compute the LLR under xk with sampled noise εk:

λk := λ (φ(xk), f(xk) + εk).
6: end for
7: Estimate the quantile function using quantile regression: Using the generated pairs
{(xk, λk)}Mtr

k=1, estimate the upper γ-conditional quantile function, q̂γ(x), using quantile regres-
sion.

Output: Generate γ-quantile predictions at out-of-sample test points, {(x̃k, q̂γ(x̃k))}Mk=1.

To estimate the global confidence set, we estimate qγ,η using the empirical max q̂ := maxk q
k
γ . This

results in the following two interval constructions:

Cgl
inv(y) :=

[
min

k∈Igl(y)
φ(xk), max

k∈Igl(y)
φ(xk)

]
, (16)

Cgl
opt(y) :=

[
min

x∈D(q̂+s(y)2,y)
φ(x), max

x∈D(q̂+s(y)2,y)
φ(x)

]
, (17)

where Igl(y) = {k : λ(φ(xk),y;X ) ≤ q̂} ⊆ [M ]. We refer to Igl(y) as the “global” index set, i.e.,
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those indices for which the LLR at a particular functional value is less than the maximum estimated
quantile. We refer to Interval (16) as the Global Inverted interval construction since it is endpoints
defined by only those sampled parameter values that comport with the LLR cutoff. We refer to
Interval (17) as the Global Optimized interval construction since its endpoints are defined by the

extreme functional values of a feasible region defined by q̂. Although, Cgl
inv(y) ̸= Cgl

opt(y) due to finite
sample, they are asymptotically equal and in practice show similar performance in terms of coverage
and expected length, as shown in Section 6. We prove the consistency of the interval constructed
via inversion in Lemma 4.3 and via optimization in Lemma 4.5. Since the endpoints of both the
inverted and optimized intervals both converge in probability to the endpoints of Cgl

α (y;Bη), the
two interval constructions are asymptotically equivalent.

To estimate the sliced set, we estimate qγ,η(µ) using a rolling maximum of the sampled qkγ values,
as ordered by the sampled functional values. This results in two interval constructions:

Csl
inv(y) :=

[
min

k∈Isl(y)
φ(xk), max

k∈Isl(y)
φ(xk)

]
, (18)

Csl
opt(y) :=

[
min
µ∈L(y)

µ, max
µ∈L(y)

µ

]
, (19)

where Isl(y) = {k : λ(φ(xk),y;X ) ≤ qkγ} ⊆ [M ], L(y) := {µ : λ(µ,y;X ) ≤ m̂γ(µ)} and m̂γ(µ)

denotes rolling estimate of qγ,η(µ) defined as follows. We refer to Isl(y) as the “sliced” index set,
i.e., those indices for which the LLR at a particular functional value is less than the estimated
quantile at a design point generating that functional value.

The rolling maximum quantile is defined using estimated quantiles ordered by the sampled func-
tional values. Choose “rolling” parameter, T ∈ N. Namely, let σ(1), σ(2), . . . , σ(M) define an or-

dering such that µσ(k) ≤ µσ(k+1) for all k = 1, . . . ,M − 1. Define Qk := {q
σ(k)
γ , q

σ(k−1)
γ , . . . , q

σ(k−T )
γ }

Then, for a given µ ∈
[
minx∈Bη φ(x),maxx∈Bη φ(x)

]
, define

k∗(µ) := argmin
k
|µ− µσ(k)|. (20)

and m̂γ(µ) := max{q ∈ Qk∗(µ)}. Using the rolling maximum quantile is one possible way to estimate
qγ,η(µ). One could also bin the quantiles by functional value, compute the maximum predicted
quantile in each bin, and then fit a nonparametric regression to fit the maximum binned quantiles
to the functional values.

This estimator choice for m̂γ(µ) affects how one computes Csl
opt(y). To see why, note that we can

re-express Csl
opt(y) as follows:

Csl
opt(y) :=

[
min

x∈D(m̂γ(φ(x))+s(y)2,y)
φ(x), max

x∈D(m̂γ(φ(x))+s(y)2,y)
φ(x)

]
. (21)

As such, one could substitute the estimated m̂γ(·) into each endpoint optimization. However, this
estimated curve is likely not convex in x and therefore complicates the optimizations. One could
also pursue a root-finding approach to find the set of µ where λ(µ,x;X ) = m̂γ(µ). This approach
can also be complex in proportion to the complexity of the estimated curve. In our view, the most
pragmatic approach is to simply determine all µk = φ(x̃k) such that λ(µk;y;X ) ≤ m̂γ(µk), and
then define the endpoints of Csl

opt(y) to be the minimum and maximum of those accepted sampled
values. The consistency of the computed endpoints for both the inverted and optimized sliced
intervals is proven in Lemmas 4.4 and 4.6, respectively. Similar to the global interval constructions,
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Table 1: Summary of methods based on global and sliced max quantile, and whether they are optimization-
based or inversion-based.

Category Global max quantile Sliced max quantile

Inversion-based methods Interval (16) Interval (18)
Optimization-based methods Interval (17) Interval (19)

the consistency of both constructions to Csl
α (y;Bη) also establishes the asymptotic equivalent of the

inverted and optimized approaches.

The statement and result of Lemma 3.1 show that given α ∈ (0, 1), the statistician has the flexibility
to select (η, γ) such that (1 − η)(1 − γ) = 1 − α. In practice, one selects α ∈ (0, 1) followed by
η ∈ (0, α), implying a unique value for γ. As mentioned in the discussion following Lemma 3.1,
larger values of η mean smaller Berger-Boos sets and smaller upper-quantiles. Ideally, one wants
to pick η ∈ (0, α) that minimizes the maximum γ-quantile over the Berger-Boos set, but this is
difficult to do in practice.

4 Theoretical results

Although both Algorithm 1 and Algorithm 2 can produce an estimate qγ , it is worth noting a few
key differences between the two. First, Algorithm 1 involves a nested sampling loop. Thus, any
statistical guarantee regarding the validity of its output has the two moving parts of the accuracy
of q̂kγ as N gets large and the proximity of qγ to the true maximum quantile function value over
Bη as M gets large. By contrast, Algorithm 2 only has one sampling loop and estimates the full
quantile function surface over Bη, producing an estimate of the maximum as a consequence.

In this subsection, we provide the necessary mathematical results supporting the use of Algorithm 1
and Algorithm 2 as estimators for qγ,η in addition to proving that extremes of the estimated intervals

defined in Section 3.3 converge in probability to their respective theoretical targets, Cgl
α (y;Bη)

and Csl
α (y;Bη). Let qdeγ,η denote the empirical max-quantile from Algorithm 1 and qqrγ,η denote the

empirical max-quantile from Algorithm 2. Lemma 4.1 proves the consistency of qdeγ,η as an estimator
for qγ,η and Lemma 4.2 proves the consistency of qqrγ,η as an estimator for qγ,η. Note that by changing
the set that is sampled in the algorithms, the results hold true both for estimating the global and
sliced maximum quantiles. Lemma 4.5 and Lemma 4.3 then establishes that the Global interval
constructions using either qdeγ,η or qqrγ,η to estimate the max-quantile converge in probability to the

true Global interval, Cgl
α (y;Bη). Finally, Lemma 4.4 and Lemma 4.6 establish that the Sliced interval

constructions using the estimated quantiles from Algorithm 2 converge in probability to Csl
α (y;Bη).

Throughout the following results, we assume that for fixed γ ∈ (0, 1), QPx(1 − γ) is a continuous
function of x. We refer the reader to Kibzun and Kan (1997) for a full analysis of the properties of
parametrized quantile functions. We furthermore assume that X ∩Bη does not have isolated points,
so that the sampling method eventually samples close to every point. A key lemma supporting the
following results and pertaining to these two assumptions is stated and proven in Lemma B.1.

Lemma 4.1 (Consistency of qdeγ,η). Let qdeγ,η be generated from Algorithm 1. We have qdeγ,η
p−→ qγ,η

as N,M →∞.

Proof. See Appendix B.1.
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To establish a similar consistency result for Algorithm 2, it is necessary to assume the consistency
of quantile regression estimator used to estimate QPx(1 − γ). Consistency is true for a variety of
nonparametric quantile regression options (e.g., Meinshausen (2006); Takeuchi et al. (2006)). We
define consistency as follows:

Definition 1 (Consistency of a quantile estimator). Let C ⊂ X be compact, ϵ > 0, and γ ∈ (0, 1).
For each x ∈ C, the quantile estimator q̂γ is consistent if

P(|q̂γ(x)−QPx(1− γ)| > ϵ)→ 0 as Mtr →∞. (22)

We also write q̂γ(x)
p−→ QPx(1− γ).

Using the consistency of a quantile estimator, Lemma 4.2 shows the implied consistency of the
maximum quantile.

Lemma 4.2 (Consistency of qqrγ,η). Let qqrγ,η be the maximum estimated quantile output of Algo-
rithm 2. Suppose q̂γ is a consistent estimator per Definition 1. Then, qqrγ,η is a consistent estimate
of qγ,η.

Proof. See Appendix B.2.

By Lemmas 4.1 and 4.2, it is guaranteed that as the number of samples gets large, the resulting
maximum quantile estimate approaches the true maximum quantile over f−1(Γη(y)) ∩ X with
high probability. We henceforth assume we have access to an algorithm with these guarantees to
estimate quantiles (and in particular, the maximum quantiles) and prove that it can be used to
asymptotically approximate the optimal confidence intervals.

We prove the asymptotic equality of the four total interval constructions: The inversion and the
optimization approach to both Cgl

α (y;Bη) and Csl
α (y;Bη). In particular, we focus on convergence

in probability to the extremes of the interval. We assume henceforth continuity of the quantity of
interest function φ The first two results analyze the inverted constructions.

Lemma 4.3. The extremes of Cgl
inv(y) converge in probability to the extremes of Cgl

α (y;Bη) as
M →∞

Proof. See Appendix B.3.

Lemma 4.4. The extremes of Csl
inv(y) converge in probability to the extremes of Csl

α (y;Bη) as
Mtr,M →∞

Proof. See Appendix B.4.

Convergence of the optimized constructions requires extra assumptions. For the global version, we
assume the existence of a strictly feasible point in the optimization problems in (21). If λ(µ,y;X )
is convex in µ, as it is for linear forward models and quantities of interest, see (Batlle et al., 2023,
Proposition 2.5), this condition is equivalent to the interval having positive Lebesgue measure.

Lemma 4.5. For all y ∈ Rm such that there exists a point µ ∈ φ(X ∩ Bη) satisfying λ(µ,y;X ) <
qγ,η, C

gl
opt(y) converges in probability to Cgl

α (y;Bη) as Mtr,M →∞.

Proof. See Appendix B.5.
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For the convergence of the local optimized version, we aim to show infµ:λ(µ,y)≤m̂γ(µ) µ to infµ:λ(µ,y)≤mγ(µ) µ
as m̂γ(µ) converges tomγ(µ). We study convergence of optimization problems of the form inf

µ:f̂(µ)≥0
µ

to infµ:f(µ)≥0 µ as f̂ converges to f . While the result is not true in general, we provide sufficient

technical conditions about f and the uniformness of convergence of f̂ to f for the result to hold.
We discuss the details in appendix B.

Lemma 4.6. (Informal). Assume m̂γ(µ)
p−→ mγ(µ) uniformly as Mtr →∞ for all µ and technical

conditions of smoothness and lack of oscillation of mγ(µ) − λ(µ, y). Then, Csl
opt(y) converges in

probability to Csl
α (y;Bη) as M →∞.

Proof. See Appendix B.6.

5 Adaptive confidence interval: implementation methodology

5.1 Sampling the pre-image Berger-Boos set

The viability of this method directly relies upon our ability to sample from the Berger-Boos set,
Bη = f−1(Γη(y))∩X . Under the assumed data generating process in Equation (11), the Berger-Boos
set is defined as follows:

Bη = f−1(Γη(y)) ∩ X =
{
x ∈ X : (y − f(x))⊤Σ−1(y − f(x)) ≤ χ2

n,γ

}
, (23)

where we have generalized to a non-identity covariance matrix, Σ. This set is equivalent to the set
over which the strict bounds intervals are optimized in Stark (1992b), also called “SSB” intervals
in Stanley et al. (2022); Batlle et al. (2023). Note however, that one would use χ2

n,α instead of χ2
n,γ

for interval computation in that scenario.

We discuss sampling Bη in the linear-Gaussian case, where f(x) = Kx, as this scenario aligns
to the numerical experiments presented in Section 6. We present two sampling approaches; the
“Voelker-Gossman-Stewart” (VGS) algorithm based on Voelker et al. (2017) for efficiently sampling
ellipsoids uniformly at random in low-dimensional scenarios and an MCMC-based algorithm we call
the Polytope sampler based on the Vaidya walk presented in Chen et al. (2018). When f is linear and
full-column rank, Bη is an ellipsoid intersected with the constraint set, making the VGS algorithm
an effective option (see Section 5.1.1). In all other scenarios, especially higher dimensional ones,
the Polytope sampler is a better option, as naive accept-reject algorithms become intractable (see
Section 5.1.2).

5.1.1 VGS Sampler for low-dimensional and full column rank settings

Under the linear-Gaussian assumptions, when K is full column rank, it can be shown that

Bη =
{
x ∈ X : (x− x̂)⊤K⊤Σ−1K(x− x̂) ≤ χ2

n,γ

}
, (24)

where x̂ is the Generalized Least-Squares (GLS) estimator. Equation (24) describes an ellipsoid in
Rp intersected with X with axis directions and lengths determined by χ2

n,γ and the eigenvectors and

eigenvalues of K⊤Σ−1K, respectively (see Rust and Burrus (1972) for more details). An ellipsoid is
nothing but a deformed ball. As such, we can sample uniformly at random from the ellipsoid in Rp
using an algorithm sampling uniformly at random from a p-ball, followed by the appropriate linear
transformation and translation. We can then include an additional accept-reject step to account
for the constraint set, X . Note, all subsequent discussions of spheres and balls assume unit radii
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and centering at the origin. Also note that because the ellipsoid in (24) is centered around the GLS
estimator, we can sample points first from within an ellipsoid of the same shape centered at the
origin, and then translate those points by x̂.

Voelker et al. (2017) propose a particularly efficient and clever algorithm to sample uniformly at
random from the p-ball by proving a connection between uniform sampling on the (p + 1)-sphere
(i.e., the surface of the ball in Rp+2) and uniform sampling within the p-ball (i.e., within the unit
ball in Rp). Namely, one can sample a Gaussian z̃ ∼ N (0, Ip+2) and normalize z := z̃/∥z̃∥2 to
sample a point uniformly at random from the (p+ 1)-sphere. Next, one simply drops the last two
elements of z to obtain a point that is uniformly sampled from within a p-ball. The validity of
this approach is substantiated by Lemma 1 and Theorem 1 in Voelker et al. (2017) and relies upon
a distribution result about the ratio of chi-squared distributions and preservation of distribution
under orthogonal transformation. To denote sampling a point from this procedure, we use the
notation x ∼ VGS(p).

To sample from our desired ellipsoid in (24), first consider the eigendecomposition of K⊤Σ−1K =
PΩP⊤, where Ω = diag

(
ω2
1, ω

2
2, . . . , ω

2
p

)
, ωi is the i-th eigenvalue of K⊤Σ−1K and P is an

orthonormal matrix where the columns vectors are the eigenvectors of K⊤Σ−1K. Denote Ω1/2 =
diag (ω1, ω2, . . . , ωp) and by extension, Ω−1/2 = diag

(
ω−1
1 , ω−1

2 , . . . , ω−1
p

)
for when ωi > 0 for all i.

These decompositions imply the correct transformation to apply to points sampled from the p-ball

via x ∼ VGS(p). Namely, define w :=
√
χ2
n,γPΩ−1/2x. To know that w is sampled from the correct

ellipsoid, it should be the case that w⊤K⊤Σ−1Kw ≤ χ2
n,γ , as then we can simply make the update

w := w+ x̂ to ensure that we have a point sampled from (24). This guarantee is verified as follows:

w⊤K⊤Σ−1Kw = w⊤PΩ1/2Ω1/2P⊤w

= χ2
n,γ · x⊤Ω−1/2P⊤PΩ1/2Ω1/2P⊤PΩ−1/2x (25)

= χ2
n,γ · x⊤x ≤ χ2

n,γ ,

where P⊤P = I by definition and the last line follows since we know x is sampled from the p-ball
and therefore x⊤x ≤ 1. Finally, we accept w if w ∈ X and reject if w /∈ X . This procedure for
sampling at random from Bη is summarized in Algorithm 3.

Algorithm 3 VGS Sampler

Input: p ∈ N, M ∈ N, P , Ω−1/2, x̂, χ2
n,γ .

1: Define S := {} to be the initialized set in which the sampled points are to be placed.
2: for k = 1, 2, . . . ,M do
3: Sample from the p-ball using VGS: xk := z1:p/∥z∥2, where z ∼ N (0, Ip+2) and z1:p

denotes taking the first through p-th indices (inclusive).

4: Transform VGS output: wk :=
√
χ2
n,γPΩ−1/2xk.

5: Translate wk by the GLS estimator: wk ← wk + x̂.
6: Accept-Reject to incorporate constraints: If wk ∈ X , then include S[k] ← wk, else

start loop iteration k again.
7: end for

Output: S containing uniformly sampled points over Bη (as defined in (24)).

Generating samples from the VGS Sampler is efficient, but its feasibility diminishes in high dimen-
sions because of the accept-reject step. To illustrate this point, consider the simple scenario where
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X = Rp+, i.e., the non-negative orthant of Rp and suppose we sample from the p-ball intersected
with Rp+. Let x ∼ VGS(p). Then, P(x ∈ Rp+) = 2−p and the acceptance probability of each sample
goes to zero exponentially in p. To more concretely make this point, we generate data y ∼ N (x∗

p, Ip)
where x∗

p ∈ Rp+ and is a vector of ones. For a collection of dimensions p ∈ [2, 30], we estimate the
probability that x̃ ∼ VGS(p) is in Rp+ and plot the results in the left panel of Figure 5.1. Since the
acceptance probability decays exponentially (under 10−4 for 30 dimensions), it becomes clear that
this algorithm is efficient in dimensions larger than 10, since the acceptance probability quickly
becomes prohibitively small in regimes where larger sample sizes are even more important.

Dimension is only one of two primary complicating factors. Not only is less of a (potentially)
shifted p-ball’s volume in the non-negative orthant as p grows but if our data are generated via y ∼
N (Kx∗, Ip) with x∗ ∈ Rp+ where the conditioning number of K is large, even less of the ellipsoid
from which the VGS Sampler draws points intersects with the parameter constraint. To illustrate
this point, we generate a single observation from the aforementioned model using a K ∈ R40×40 as
described in Section 6.3. The x∗ ∈ R40 is created in the same way as that of Section 6.3.1. The right
panel of Figure 5.1 shows a computed probability mass function for the number of coordinates in
a VGS Sampler draw complying with the non-negativity parameter constraints. For this particular
setup, we critically note that out of 5×104 draws from the VGS Sampler, none of the draws had all
coordinates comply with the non-negativity constraint. By contrast, for the aforementioned noise
model, the computed acceptance probability is approximately 3.35×10−6, in both cases emphasizing
the VGS Sampler’s poor performance in high-dimensional and non-identity forward model regimes.

Figure 5.1: Numerical illustrations of the VGS Sampler’s infeasibility in high dimensional regimes. The left
panel shows the computed acceptance probability of a point drawn by the VGS Sampler with data generated
from a non-negatively constrained Gaussian noise model. Crucially, at only 30 dimensions, the acceptance
probability is already less than 10−4 for this particular setup. The right panel shows the computed probability
mass function for the number of non-negative constraint complying coordinates of a VGS Sample with data
generated from a non-negatively constrained linear Gaussian model in 40 dimensions with a non-identity
forward model. Since this is an example using a forward model with a high conditioning number (≈ 1.6×104),
we critically note that there is empirically zero probability of generating a sample within the non-negativity
constraints.

5.1.2 Polytope sampler for general settings

In settings where the forward model is not linear and full-column rank, Algorithm 3 fails. The inef-
fectiveness of this algorithm expands if the conditioning number of the linear forward model is large
such that most of the pre-image ellipsoid lies outside of the constraint set. Although these scenarios
induce particular geometric challenges, we are still fundamentally sampling a convex set for which
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there is a vast literature. In the statistics literature, there is a vast sampling literature for comput-
ing Bayesian posteriors in high dimensions via nested sampling (Skilling, 2004; Ashton et al., 2022;
Buchner, 2023). In particular, nested sampling has been successfully applied in high-dimensional
cosmology settings using sophisticated approaches to strategically sample the parameter space by
restricting prior sampling in various ways (Buchner, 2023; Montel et al., 2023). Although these
approaches provide tools addressing a sampling setting similar to ours (i.e., the Berger-Boos set
can be viewed as a portion of the parameter space defined by a cutoff on the likelihood) they
are ultimately aimed at sampling from a particular distribution (i.e., the posterior), which is a
stronger criterion than required here. For sampling general convex sets, simple algorithms like Hit-
and-Run are available (Smith, 1984; Lovasz, 1999; Lovasz and Vempala, 2006). However, with more
assumptions, more sophisticated and efficient algorithms can be devised. In particular, there exists
a deep literature on random walks over polytopes such that the asymptotic stationary distribution
of the chain is a uniform distribution over the polytope of interest (Kannan and Narayanan, 2012;
Narayanan, 2016; Chen et al., 2018). As such, we propose to first construct a bounding polytope,
Pd composed of d halfspaces around Bη, sample C random walks within the Berger-Boos set using
the Vaidya walk as described in Chen et al. (2018) each starting at a point from a collection of
strategically chosen positions, and then combine the parallel chains to create the final sample set.
The precisely written algorithm can be seen in Algorithm 4.

Although MCMC algorithms are typically evaluated using trace plots on individual dimensions
of the parameter space, given the final step combining several MCMC chains in the parameter
space started from different positions, it is more meaningful to evaluate this algorithm’s ability to
sample fully from the functional space. Namely, we can solve for the largest and smallest values the
functional can take within the Berger-Boos set as follows:

IBB(y) :=

[
µlBB, µ

u
BB

]
=

[
min
x∈Bη

φ(x),max
x∈Bη

φ(x)

]
. (26)

When φ(x) = h⊤x for some h ∈ Rp, IBB(y) corresponds to the SSB interval in Stanley et al. (2022).

Computing the sets Csl
α (y;Bη) and Cgl

α (y;Bη) well is then contingent upon sampling functional
values within IBB(y) well since a functional value can only be included in the inverted set if the
sampler has a non-zero probability of sampling arbitrarily near it. By “well”, we informally mean
that the sampled functional values range at least between the endpoints of IBB(y) and that if we
partition IBB(y) into n pieces, that most if not all of the pieces contain at least one sample. In
practice, it will often be the case that the sampled functional values can lie outside the endpoints
of IBB(y) since the MCMC chains are sampled in a bounding polytope of the Berger-Boos set.

Choosing the bounding polytope. Any bounded polytope of Bη is the intersection of a finite
number of half-spaces defined in Rp. The task of constructing such a bounding polytope is then
equivalent to choosing a collection of d hyperplanes in Rp to construct a set Pd := {x ∈ Rp : Ax ≤
b} such that Bη ⊆ Pd, where A ∈ Rd×p and b ∈ Rd. Let ai ∈ Rp denote the i-th row vector of A.
We compute bi (the i-th element of b) as

bi = max
x∈Bη

a⊤
i x. (27)

This construction ensures the necessary inclusion. We consider three approaches to pick the vectors,
ai; from the physical constraints, from the known eigenvectors defining the bounded directions of
the pre-image ellipsoid, and randomly. In practice, we combine these approaches to ensure that we
consider only parameter settings in agreement with our physical constraints, and to tighten as much
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as possible the bounding-Berger-Boos set polytope as much as possible. There is a tradeoff with
respect to the latter consideration since the mixing time and computational costs for the Vaidya
walk increase with the number of hyperplanes (Chen et al., 2018).

To incorporate the physical constraints, consider the non-negativity constraint used in Section 6,
i.e., x ∈ Rp+. To enforce non-negativity, we set ai := −ei for i = 1, . . . , p, where ei is defined by its
i-th element set to one and the rest of its elements set to zero and bi := 0. These choices produce p
rows in A corresponding to the desired lower bounds (i.e., xi ≥ 0 for all i), but we can compute an
additional p constraints using (27) with ai := ei for i = p + 1, . . . 2p. These 2p constraints define
a hyperrectangle enclosing the Berger-Boos set in the parameter space. To incorporate polytope
constraints based upon the forward model, we use the ellipsoidal definition of the pre-image as shown
in (24) and eigendecomposition of K⊤Σ−1K = PΩP⊤ shown in (25). Note that this ellipsoid form
is valid under the Gaussian noise assumption. The column vectors of P corresponding to the non-
zero entries on the diagonal of Ω are the eigenvectors corresponding to the bounded principal axes.
As such, both pi and −pi can be used as rows of A with their corresponding bounds defined by
(27). Finally, to further tighten the polytope around the Berger-Boos set, we sample a multivariate
Gaussian, i.e., ai ∼ N (0, Ip) to include random hyperplanes.

Once the components (A, b) have been defined using some or all of the above hyperplane genera-
tion strategies, the Vaidya walk can immediately be employed to perform a random walk around
the space. The primary intuitive requirement we wish to satisfy with any sampling scheme in this
context is that every region of the Berger-Boos set has a non-zero probability of being sampled.
Asymptotically, the Vaidya walk samples the desired polytope uniformly at random, which satisfies
a stronger requirement. In practice, the need to sample non-uniformly can arise if there are partic-
ularly meaningful parameter settings in regions that are difficult for the random walk to reach. We
explore such a case in Section 6.2. Additionally, although the asymptotic distribution of the Vaidya
sampler is theoretically sufficient, in practice it often has difficulty reaching the corners of the gen-
erated polytope. Although MCMC chain mixing is typically evaluated by looking at trace plots,
this diagnostic is insufficient here because the dimension is high and the defined polytope can make
different dimensions difficult to compare. Instead, we consider how well the sampler samples the
functional space. This motivates taking a collection of starting points between the SSB endpoints
and the Chebyshev center, as described in the following section.

Constructing the parallel chain starting points. Although the random walks defined in Chen
et al. (2018) asymptotically sample uniformly over Pd, given the long and thin nature of the pre-
image, running the Vaidya walk from even a “good” starting position does not consistently sample
the functional space well. Instead, we use the following heuristic to construct several parallel chains
that constitute a complete sample when combined. We define an even number of starting points,
C ∈ 2N, to roughly span the Berger-Boos set, run the Vaidya walk for Mp steps from each starting
point to collect parameter settings {x̃1, . . . , x̃Mp} for each starting point, and combine the samples
from each walk, resulting in C ×Mp total samples. In practice, C and Mp are chosen to yield a
total of M samples as desired for Algorithm 1 or Algorithm 2. We define the collection of starting
points as convex combinations of the parameter settings generating the endpoints of IBB(y) and
the Chebyshev center of Pd as defined in Boyd and Vandenberghe (2004), and denoted by xc. This
point is the center of the largest ball contained within Pd and therefore acts as a center of Pd.
We denote the parameter settings generating the endpoints of IBB(y) by x̂l for the lower endpoint

and x̂u for the upper endpoint. We then define a grid of values {τl}
C/2
l=1 such that τl ∈ (0, 1) and

τl < τl+1 for all l. For each k ∈ [C], define k′ := ⌈k/2⌉ and set xstartk := τk′x̂
l+(1−τk′)xc if k is odd
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and xstartk := τk′x̂
u+ (1− τk′)xc if k is even. Creating starting positions along the lines connecting

these endpoints and the Chebyshev center accommodates the chosen polytope while helping ensure
that samples are chosen spanning the range of possible functional values over the Berger-Boos set.

Empirical performance for the Polytope sampler can be seen in Figure 5.2, showing a histogram
of the sampled functional values in the left panel and a trace plot for the sampled Vaidya walks
starting from points constructed as described above in the right panel. These plots are generated for
one observation from the 80-dimensional ill-posed inverse problem in the coverage study performed
in Section 6.3. Critically, the histogram shows that the Polytope sampler samples the functional
space well and the trace plot shows that our starting point construction heuristic performs well in
practice.

Figure 5.2: Polytope sampler output for a realization of the 80-dimensional ill-posed inverse problem studied
in Section 6.3. The left panel contains a histogram of sampled functional values which both span and well
cover the range of IBB(y) (shown in by the dashed gray lines in both plots). The right panel contains
trace plots of the 14 Vaidya walks (each indicated by a different color line) which together constitute the
full sample. Our heuristic for choosing starting points along the lines connecting the parameter settings
generating the endpoints of IBB(y) and the Chebyshev center of the polytope provides a good initial spread
of starting functional values.

Sampling from the Berger-Boos set. With Pd and starting positions defined, we construct
a sample S := {x̃1, . . . , x̃C×Mp}. We leave the details of the Vaidya walk to the original paper
(Chen et al., 2018), but note an essential radius hyperparameter of the algorithm that must be
chosen. This radius impacts the covariance of a Gaussian proposal distribution for the walk and
thus affects a new proposed point’s acceptance probability. Choosing a radius too large results in
a low acceptance rate of proposed steps, thus creating a relatively sedentary walk. In contrast,
choosing a radius too small results in a high acceptance rate with relatively small step sizes. In
practice, we find a radius setting of 0.5 works well.

5.2 Quantile regression

Algorithm 2 explained in Section 3.3 involves using quantile regression to learn a quantile surface
from a collection of pairs of design points and samples from LLR test statistics sampled at each
design point. As previously mentioned, similar approaches have been taken in Dalmasso et al.
(2020, 2021); Masserano et al. (2023, 2024), and since quantile regression is a technique facilitating
our interval constructions, we wish only to give a brief overview of quantile regression and some
different ways to implement it. Fundamentally, given a one-dimension random variable z ∼ Px that
depends on the parameter x ∈ Rp, we are interested in the upper γ-quantile at every parameter
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Algorithm 4 Polytope sampler

Input: Mp ∈ N and C ∈ 2N. A ∈ Rd×p, b ∈ Rd. {τl}
C/2
l=1 , where τl ∈ (0, 1) and τl < τl+1 for all l.

1: Let S := {} be the set in which we store all sampled parameter settings.
2: Construct Chebyshev center: Solve for xc using the following optimization.

maximize
xc,r

r

subject to a⊤
i xc + r∥ai∥2 ≤ bi, i = 1, . . . , d.

3: Compute φ extremes of Berger-Boos set: Extreme points are computed with respect to
the functional of interest:

x̂l := argmin φ(x) subject to x ∈ Bη,
x̂u := argmax φ(x) subject to x ∈ Bη. (28)

4: for k = 1, 2, . . . , C do
5: Construct starting point: Define k′ := ⌈k/2⌉. Define xstartk = τk′x̂

l + (1 − τk′)xc if k is
odd and xstartk = τk′x̂

u + (1− τk′)xc if k is even.
6: Run the Vaidya walk for M steps: Collect samples {x̃1, . . . , x̃Mp} and add them to S.
7: end for

Output: S containing sampled points over Bη.

setting, i.e.,
Px(z > QPx(1− γ)) = γ. (29)

We note that the quantile surface itself is not random, so we can use draws from the distribution Px

to estimate QPx at a given parameter setting, x. However, as noted in Section 3.3, performing such
an estimate is not always computationally feasible, and intuitively, we might expect quantiles to
change smoothly over the parameter space, which would imply that information about a quantile at
x1 should be related to a quantile at x2 if these points are close. In statistics literature, estimating
QPx is framed as estimating a quantile function conditional on known covariates and is often thought
of as a generalization of estimating the conditional median (Koenker and Hallock, 2001). Just as
conditional mean and conditional median estimation can be accomplished by using an appropriate
loss function (sum of squares and absolute differences, respectively), estimating conditional quantiles
can be accomplished by minimizing the pinball loss defined as follows:

Lγ(z, q) :=

{
(1− γ)(q − z) z < q

γ(z − q) z ≥ q.
(30)

(Koenker, 2005; Steinwart and Christmann, 2011). As such, estimating the quantile surface can
be framed as a risk-minimization problem, leaving only standard modeling choices to fill in for
q in (30). Although initial efforts were focused on linear parametric quantile regressors (Koenker
and Bassett Jr, 1978), in recent years, modeling efforts have focused on nonparametric varieties.
Meinshausen (2006) adapted random forests to quantile regression. Takeuchi et al. (2006) leveraged
Reproducing Kernel Hilbert Spaces to construct smooth quantile regressors. Closer to our applica-
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tion, Masserano et al. (2023) used neural networks to optimize the pinball loss to learn the quantile
surface for their application.

6 Numerical experiments

For scenarios within the data-generating process (11), the OSB interval was the state-of-the-art op-
tion for computing constraint-aware confidence intervals. Although these intervals have empirically
achieved nominal coverage in applications (Patil et al., 2022; Stanley et al., 2022), they generally do
not Batlle et al. (2023). As such, we use the OSB interval in the following numerical experiments
as a main comparison point to the intervals defined in this paper. In scenarios where the OSB
interval achieves at least nominal coverage, we show that our intervals are either competitive or
better in terms of estimated expected interval length. In scenarios where the OSB interval does not
achieve nominal coverage, our intervals do achieve nominal coverage and in one instance, have a
shorter estimated expected length. We provide four numerical experiments to make these points.
The first set of two uses a constrained Gaussian noise model setup in two and three dimensions,
respectively. These two experiments illustrate the aforementioned points in addition to constituent
parts of the interval computation process due to the relatively low dimensions. The second set of
two considers a wide-bin deconvolution setup inspired by particle unfolding in high-energy physics
(Stanley et al., 2022). This setup features an 80-dimensional parameter space with a rank-deficient
forward model and is thus a substantially more complicated computational scenario compared to
the two and three-dimensional Gaussian noise models. These examples demonstrate the superior
performance of our intervals over OSB in terms of both coverage and expected length.

In the following experiments, we estimate 68% confidence intervals, set η = 0.01 and compute γ
according to Lemma 3.1. We draw 103 observations from each data-generating process to estimate
both coverage and expected interval length for our four interval constructions and the OSB interval.
We additionally provide 95% confidence intervals in the form of orange line segments to characterize
statistical error for both coverage and expected length estimates. The coverage confidence intervals
are Clopper-Pearson intervals for the probability of success parameter of a binomial distribution,
while the expected length confidence intervals are the average length plus/minus the appropriately
scaled standard error.

6.1 Constrained Gaussian in two dimensions

The two-dimensional Gaussian noise model is defined as follows:

y = x∗ + ε, ε ∼ N (0, I2) , x∗ ∈ R2
+, (31)

where φ(x) = x1 − x2 and x∗ =
(
0.5 0.5

)⊤
. The LLR is then defined as follows:

λ(µ,y;R2
+) = min

x1−x2=µ
x∈R2

+

∥y − x∥22 − min
x∈R2

+

∥y − x∥22. (32)

This example first appeared in Tenorio et al. (2007) as an example where the OSB interval failed
to achieve nominal coverage when the true parameter x∗ is such that φ(x∗) = 0. However, Batlle
et al. (2023) overturned this result by proving OSB validity in this case. We note that the OSB
interval does not generally provide coverage for two-dimensional cases when φ(x∗) ̸= 0, but we
leave this analysis to future work. As such, this example is important to include because of its
methodological historical context and OSB interval validity. The proof that OSB intervals cover in
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this particular example relies upon showing that Qmax
1−α = χ2

1,α for all α ∈ (0, 1), where χ2
1,α is the

upper α-quantile of a chi-squared distribution with one degree of freedom. Alternatively stated, it
must be the case that λ(φ(x∗),y;R2

+) is stochastically dominated by χ2
1. This result is shown in

Lemma 4.4 of Batlle et al. (2023).

Estimated coverage and length results are shown in Figure 6.1. We note that all four of our interval
constructions are competitive with OSB in terms of coverage, while all but our Sliced Inverted
interval have higher estimated expected length. Since the OSB interval is defined using Qmax

1−α = χ2
1,α

and the α-quantile surface of the LLR rapidly approaches this global max-quantile as one moves
away from the origin (see Figure 5.3 in Batlle et al. (2023)), the OSB interval lengths are difficult
to beat in practice with intervals based on the Berger-Boos sets since these sets likely contain
parameter settings with quantiles near χ2

1,α. The left panel of Figure 6.2 shows four realizations of
the data-generating process with the observations shown as red points. For each observation, the
blue points show uniformly distributed draws within its Berger-Boos set, sampled using the VGS
sampler. Cross-referencing the spread of the Berger-Boos set samples in Figure 6.2 with Figure
5.3 in Batlle et al. (2023), it is clear that there are always samples in the parameter space where
the quantile surface is nearly the same as the χ2

1,α quantile. Further, when including the Berger-
Boos set in the interval construction, we instead construct our intervals using the γ-quantile, where
γ < α, as the LLR cutoff, resulting in a more relaxed constraint. This fact can be clearly observed
in the central panel of Figure 6.2, showing the sampled γ-quantiles within the Berger-Boos set of
one observation from the data generating process. Since a non-trivial portion of this distribution
is above χ2

1,α, the longer average length of the Global intervals is explained. In the right panel of
Figure 6.2, for the same observation, we show the estimated sliced max-quantile function, m̂γ(µ), in
orange alongside χ2

1,α. Since this estimated function is above χ2
1,α at their intersection points with

the underlying LLR function shown in the solid blue line, it further makes sense that the Sliced
interval constructions provide no additional length improvement compared to the OSB interval.

Figure 6.1: Estimated coverages and expected lengths across all four interval constructions and OSB for
comparison at the 68% level for the two-dimensional constrained Gaussian setting. All four of our interval
constructions are competitive with OSB with respect to coverage, but OSB shows better expected length
performance, aside from our two sliced interval constructions. Although the OSB intervals are defined using
the global max-quantile (Qmax

1−α) and therefore can potentially be improved upon by limiting the considered
parameter space via the Berger-Boos set, due to the rapidity with which the α-quantile surface meets the
χ2
1,α quantile (see Figure 5.3 in Batlle et al. (2023)), the OSB interval lengths are difficult to beat in practice.
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Figure 6.2: (Left) Four realizations of the data-generating process where the observations are shown in red.
For each realization, the blue points are uniformly distributed samples from its Berger-Boos set, sampled
using the VGS sampler. (Center) For a realization of the data-generating process, we plot the distribution
of γ-quantiles for the points sampled by the VGS sampler. Notably, a non-trivial percent of these are
above χ2

1,α defining the OSB interval. (Right) For the same realization, we plot the estimated sliced max-
quantile function, m̂γ(µ) in orange alongside χ2

1,α in red. The blue points correspond to samples in the
center histogram, while the solid blue line shows the LLR over the functional space. All intervals can be read
immediately from this image.

6.2 Constrained Gaussian in three dimensions

As seen in the previous example, in a case where the OSB interval is known to achieve nominal
coverage, its expected length can be difficult to beat. However, an OSB interval coverage guarantee
is difficult to prove, since it amounts to proving stochastic dominance on the non-trivial LLR
object. As such, in situations where the OSB interval does not provide nominal coverage, our
intervals immediately provide a clear theoretical advantage. One such three-dimensional constrained
Gaussian case was explored in Batlle et al. (2023), to which we apply our four interval constructions.
The three-dimensional Gaussian noise model is defined as follows:

y = x∗ + ε, ε ∼ N (0, I3) , x∗ ∈ R3
+, (33)

where φ(x) = x1 + x2 − x3 and x∗ =
(
0.03 0.03 1

)⊤
. The LLR is then defined as follows:

λ(µ,y;R3
+) = min

x1+x2−x3=µ
x∈R3

+

∥y − x∥22 − min
x∈R3

+

∥y − x∥22. (34)

Figure 6.3 shows estimated coverage and expected length across all four interval constructions and
the OSB interval. While the OSB interval fails to attain nominal coverage in this example, all four
of our interval constructions do, with the Sliced constructions only slightly over-covering. While
the Global constructions pay a fairly steep price for coverage in expected interval length, the Sliced
constructions navigate well the tradeoff, paying for coverage with only slightly longer intervals
compared to the OSB interval.

The setting of x∗ used here is slightly different from that of Batlle et al. (2023), where they used

x∗ =
(
0 0 1

)⊤
. In Batlle et al. (2023), this setting was used as a counter-example for OSB

coverage, since the QPx∗ (1−α) > χ2
1,α at least some α ∈ (0, 1). However, as shown in Figure 5.5 of

Batlle et al. (2023), when α = 0.05, QPx∗ (1−α) ≤ χ2
1,α for x∗ =

(
t t 1

)⊤
when t is approximately

greater than e−2, which indicates that parameter settings violating stochastic dominance by χ2
1 exist
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Figure 6.3: Estimated coverage and expected length across all four interval constructions and OSB for com-
parison at the 68% level for the three-dimensional constrained Gaussian example. All four of our interval
constructions achieve nominal coverage while the OSB interval does not. While the Global interval construc-
tions pay a steep price in expected length compared to OSB, the Sliced constructions are only slightly longer
than OSB.

close to the parameter constraint boundary. The location of these key parameter settings presents
a challenge for the Polytope sampler described by Algorithm 4. In Appendix C.1, Algorithm 5
presents a modified version of Algorithm 4 that better handles sampling in this example.

Berger-Boos set experiment. For this model, we investigate the effect of changing the parameter
η that controls the Berger-Boos construction. We compute intervals for different y and fixed x∗ =
(5, 5, 0) as η ranges between 0 and α = 0.32. The length of such intervals is shown in Figure 6.4.
We observe that the optimal value of η is around 0.01. Following these numerical results in the
low-dimensional example, we choose η = 0.01 for α = 0.32 (so that γ = 0.313) as a reasonable (but
not necessarily optimal) default value throughout the examples, achieving competitive performance
with this choice. Notably, this keeps the γ-quantile close to the original α-quantile of interest.

Figure 6.4: Confidence interval lengths in the Berger-Boos setting for different values of y and varying η
(left) and representation of the Berger-Boos set in relation to the maximum quantile point (right). The
minimum average length occurs at η > 0, showing that the construction is beneficial. This occurs because
even for moderately small η, the Berger-Boos set, which is a three-dimensional sphere intersected with the
non-negative orthant, avoids the line with the 1 − α highest quantile, and the 1 − γ quantile in the set is
smaller than the 1− α quantile in that line.
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6.3 Wide-bin deconvolution

While the numerical experiments in Section 6.1 and Section 6.2 show that our interval construc-
tions are competitive with the OSB interval in scenarios where it is known to provide coverage and
superior to the OSB interval by achieving nominal coverage when OSB does not, this section shows
the superior performance of our interval constructions relative to OSB in a more complex setting.
We consider the problem of computing a confidence interval for the sum of adjacent bins of a decon-
volved histogram as described by Stanley et al. (2022). This problem is a core statistical problem
of particle unfolding in high-energy physics. For more detailed information, we refer the reader
to Kuusela and Panaretos (2015); Kuusela (2016); Kuusela and Stark (2017); CMS Collaboration
(2016, 2019). The data-generating process is linear with Gaussian noise,

y = Kx∗ + ε, ε ∼ N (0, I), x∗ ≥ 0, (35)

where K ∈ R40×80 and φ(x) = h⊤x. The vector h defines the bin-adjacent aggregation. The LLR
is then defined as follows:

λ(µ,y;R80
+ ) = min

h⊤x=µ
x∈R80

+

∥y −Kx∥22 − min
x∈R80

+

∥y −Kx∥22. (36)

We emphasize two features of this setup that complicate the task of computing confidence intervals
for φ(x). First, the forward model, K, has a non-trivial null space, making any inverse problem
point estimation and UQ markedly challenging. Typically, this sort of ill-posedness is handled with
regularization of some kind, but as is well known in the inverse problem literature and specifically
shown in Kuusela (2016), including such regularization induces a bias, which can undercut desired
statistical guarantees (e.g., coverage) of the inference object of interest. Including constraints and
focusing on a particular functional of the parameter vector implicitly regularizes the problem, but
shifts the problem difficulty to inference with constraints. Although Batlle et al. (2023) and this
paper proposes a theoretical framework to do inference with constraints, the second challenge is
in the implementation due to the high-dimensional parameter space of scenarios like this exam-
ple. As we show in the following sections, the Polytope sampler described by Algorithm 4 and
quantile regression does an adequate job producing samples and fitting quantile surfaces in this
high-dimensional space to ensure the desired coverage guarantee of the interval constructions.

As extensively discussed in Stanley et al. (2022), the OSB interval (i.e., using χ2
1,0.05 in the

optimization-based interval construction) produces empirically valid confidence intervals in all
tested scenarios, albeit typically with over-coverage. Since the scenarios considered in Stanley et al.
(2022) were designed to be realistic particle unfolding simulations, the underlying intensity function
generating the true histogram means (x∗ ∈ R80

+ ) was relatively smooth, likely contributing to the
over-coverage for the internal bin aggregations. As such, we present two true parameter settings for
x∗ in (35) to highlight two advantages of our interval constructions over the OSB interval. First,
we use the original smooth “realistic” parameter setting from Stanley et al. (2022) to show how
our intervals improve over-coverage relative to the OSB interval by reducing the expected interval
length. Second, we present an “adversarial” setting where our interval constructions achieve nomi-
nal coverage while the OSB interval does not. Figure 6.5 shows the realistic and adversarial settings
for x∗. We constructed the adversarial setting by first computing our interval constructions on the
realistic setting and then looking at the maximum out-of-sample predicted quantile for a particu-
lar generated observation, y. For each observation drawn within both settings, we draw 2.1 × 104

samples using the Polytope sampler as described by Algorithm 4.
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Figure 6.5: The figure shows the parameter values
for the realistic and adversarial settings for x∗ used
to illustrate our interval construction performances
versus the OSB interval. The realistic setting for
which the OSB interval over-covers is relatively
smooth compared to the adversarial setting.

6.3.1 Realistic setting

Using the realistic x∗ shown in Figure 6.5, Stanley et al. (2022) showed that the OSB interval
over-covers at the 95% level. Furthermore, it was shown that the OSB interval was the shortest
across a range of other interval options, including SSB, prior optimized, and minimax. As such, for
this setting, we show that our interval constructions not only achieve nominal coverage, but the
sliced constructions dramatically reduce over-coverage compared to OSB by producing substan-
tially shorter intervals on average. Estimated coverage and expected interval lengths are shown in
Figure 6.6.

Both Global interval constructions and OSB dramatically over-cover which highlights the con-
servatism of the Global constructions. These estimated coverage values indicate that within each
observation’s Berger-Boos set, there is a parameter setting against which the method protects that
is substantially more difficult to cover than the true realistic parameter setting. Interestingly, both
Global constructions produce markedly longer intervals on average compared with the OSB in-
terval. Aligning with the intuition from the Global and Sliced construction definitions, the Sliced
intervals are less conservative as seen by their lower over-coverage and dramatically lower average
lengths. Interestingly, the Sliced Inverted intervals have higher coverage and lower average length
compared to the Sliced Optimized. Importantly, both Sliced constructions are shorter on average
compared to the OSB interval, with the Sliced Inverted showing an 18.8% reduction in average
length and the Sliced Optimized showing a 17.0% reduction in average length.

6.3.2 Adversarial setting

The critical result in Section 6.3.1 is that the Sliced interval constructions both reduce over-coverage
and expected interval length compared with the OSB interval. In this section, we show that for
a true parameter setting where the OSB interval does not achieve nominal coverage, all four of
our interval constructions do achieve nominal coverage while still reducing the expected interval
length in the case of the Sliced interval constructions compared to the OSB interval. The estimated
coverage and expected length results are shown in Figure 6.7.

Both Global interval constructions and the Sliced Optimized interval over-cover, with the Sliced
Optimized over-covering to a lesser extent than the Global intervals. The Sliced Inverted interval
achieves nominal coverage within statistical error. The estimated expected lengths tell a story
similar to that of the realistic example, with the Global intervals showing the longest average
interval lengths, the Sliced showing the shortest, and the OSB interval being right in the middle.
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Figure 6.6: Estimated coverage and expected length across all four interval constructions and OSB for
comparison at the 68% level for the realistic wide-bin deconvolution experiment. While the Global interval
constructions over-cover like the OSB interval, the Sliced interval constructions both reduce over-coverage
and expected interval length.

Importantly, the Sliced intervals are again dramatically shorter than the OSB interval, even though
the OSB interval does not achieve nominal coverage. The Sliced Inverted interval shows a 19.5%
average interval length reduction over OSB while the Sliced Optimized shows an 11.7% average
interval length reduction.

Figure 6.7: Estimated coverage and expected length across all four interval constructions and OSB for
comparison at the 68% level for the adversarial wide-bin deconvolution experiment. While the OSB interval
fails to achieve nominal coverage, all four of our interval constructions do. Interestingly, the Sliced interval
constructions are meaningfully shorter than the OSB interval on average.

7 Conclusion

This paper proposes several confidence interval constructions for functionals in constrained ill-posed
inverse problems. Our approach is based on two key ideas: data-adaptive constraints using a Berger-
Boos construction and sampling-based inversion. Two independent decisions when constructing
intervals provide four different valid intervals: Global/Sliced, depending on the optimization domain
of the quantile function and Inverted/Optimized, depending on the construction after the sampling
process. All of the constructions are built upon the preliminary constraint by the data-informed
Berger-Boos set, followed by a sampling procedure to estimate a quantile function that can be used
to invert or optimize the intervals. We have validated the method (including all four aforementioned
interval constructions) through several numerical examples, demonstrating its ability to provide
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correct coverage and better calibration compared to the OSB interval baseline approach. Overall,
our approach offers a flexible framework that can incorporate constraints directly and can be tailored
to various types of inverse problems. The main takeaway is that data-adaptive constraining helps
improve the length of the resulting confidence intervals, while sampling makes it feasible to carry
out the test inversion needed to construct confidence intervals with the desired nominal coverage.

There are several promising directions for future work. One direction is to extend our method
to even higher dimensional problems, which are more challenging. This would involve developing
techniques to handle the curse of dimensionality and exploring the trade-off between accuracy and
computational complexity. For the approaches in this paper in particular, this extension would
require a more tailored sampling approach. Another direction is to leverage more sophisticated
machine learning algorithms (deep learning models or ensemble methods) to improve the estimate
of the quantile function and thus improve the accuracy and efficiency of our confidence intervals.
Additionally, applying our approach to other applications of ill-posed inverse problems, such as
medical imaging or geophysics, would provide further validation of the effectiveness of our approach.
Finally, it is of interest to conduct a further theoretical analysis of our approach under different
constraints and noise conditions to better understand its limitations and strengths. This would
involve studying the statistical properties of our confidence intervals and investigating the impact
of various assumptions on their performance. Overall, these future research directions have the
potential to enhance the applicability and robustness of our approach in a wide range of domains.
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Appendix

This document serves as an appendix to the paper “ Confidence intervals for functionals in constrained inverse
problems via data-adaptive sampling-based calibration.” Below we provide an organization for the appendix,
followed by a summary of the main notation used in both the paper and the appendix. The equation and figure
numbers in this appendix begin with the letter “S” to differentiate them from those appearing in the main paper.

Organization

The content of this Appendix is organized as follows.

Appendix Description

Appendix A Proofs in Section 3 (Proofs of Lemmas 3.1, 3.3, 4.1 and 4.2 and Corollary 3.2)

Appendix C Additional details and illustrations in Section 6 (importance-like sampler)

Table 2: Roadmap of the supplement.

Notation

An overview of the main notation used in this paper is as follows.

Notation Description

Non-bold lower
or upper case

Denotes scalars (e.g., α, µ, Q).

Bold lower case Denotes vectors (e.g., x, y, h).
Bold upper case Denotes matrices (e.g., K, I).
Calligraphic font Denotes sets (e.g., X , C, D).

R Set of real numbers.
R+ Set of non-negative real numbers.
[n] Set {1, . . . , n} for a positive integer n.

∥u∥2 The ℓ2 norm of vector u.
∥f∥L2 The L2 norm of function f .

K⊤ The transpose of a matrix K ∈ Rm×p.
Im or I The m×m identity matrix.
v ≤ u Lexicographic ordering for vectors v and u.
A ⪯ B The Loewner ordering for symmetric matrices A and B.

1{A} Indicator random variable associated with event A.
Y = Oα(X) Deterministic big-O notation, indicating that Y is bounded by |Y | ≤ CαX.
Cα A numerical constant that may depend on the parameter α in context.
Op Probabilistic big-O notation.
p−→ Convergence in probability.

X ⪰ Y Stochastic dominance of X by Y , indicating that P(X ≥ z) ≥ P(Y ≥ z) for all z ∈ R.

Table 3: Summary of main notation used in the paper and the appendix.
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A Proofs in Section 3

A.1 Proof of Lemma 3.1

Let α ∈ (0, 1) and η ∈ (0, α). Fix the true parameter value, x∗ ∈ X , and let µ∗ = φ(x∗). We use
the notation Px∗(A) to denote the probability of event A when the true parameter is x∗. We first
show that Px∗

(
µ∗ ∈ Csl

α (y;Bη) | x∗ ∈ Bη
)
≥ 1− γ, from which the result follows by the law of total

probability.

Following from the definitions of the constituent objects, we have:

Px∗
(
µ∗ ∈ Csl

α (y;Bη) | x∗ ∈ Bη
)
= Px∗

(
λ(µ∗,y;Bη) ≤ qµ

∗
γ,η | x∗ ∈ Bη

)
(S.1)

≥ Px∗
(
λ(µ∗,y;Bη) ≤ QPx∗ (1− γ) | x∗ ∈ Bη

)
= 1− γ. (S.2)

Since the above steps hold for any chosen x∗ ∈ X , we have Px∗
(
µ∗ ∈ Csl

α (y;Bη) | x∗ ∈ Bη
)
≥ 1− γ,

for all x∗ ∈ X .

By definition, we have Px∗ (x∗ ∈ Bη) ≥ 1 − η, for all x∗ ∈ X . The law of total probability implies
the following decomposition:

Px∗
(
µ∗ ∈ Csl

α (y;Bη)
)
= Px∗

(
µ∗ ∈ Csl

α (y;Bη),x∗ ∈ Bη
)
+ Px∗

(
µ∗ ∈ Csl

α (y;Bη),x∗ /∈ Bη
)

(S.3)

≥ Px∗
(
µ∗ ∈ Csl

α (y;Bη) | x∗ ∈ Bη
)
(1− η) + 0 · η (S.4)

≥ (1− γ)(1− η), (S.5)

for all x∗ ∈ X . Hence, Px∗
(
µ∗ ∈ Csl

α (y;Bη)
)
≥ 1− α for all x∗ ∈ X if (1− γ)(1− η) = 1− α.

A.2 Proof of Corollary 3.2

By definition, qµγ,η ≤ qγ,η for all µ ∈ R. Therefore, Csl
α (y;Bη) ⊆ C

gl
α (y;Bη), and thus

Px∗
(
µ∗ ∈ Cgl

α (y;Bη)
)
≥ Px∗

(
µ∗ ∈ Csl

α (y;Bη)
)
≥ 1− α. (S.6)

A.3 Proof of Lemma 3.3

We show the equivalence by showing how each constituent optimization of the LLR is unchanged
by including the Berger-Boos set into its constraints. First, the assumption x∗ ∈ Bη implies Bη ̸= ∅.
It also follows by definition that Bη ⊆ X and further Bη ∩ Φµ ⊆ X ∩ Φµ, for all µ ∈ R. As such, it
follows that

min
x∈Bη∩Φµ

∥y −Kx∥22 ≥ min
x∈X∩Φµ

∥y −Kx∥22, (S.7)

min
x∈Bη

∥y −Kx∥22 ≥ min
x∈X
∥y −Kx∥22. (S.8)

Suppose x̂ minimizes ∥y−Kx∥22 over X ∩Φµ and that ∥y−Kx̂∥22 > χ2
m,η. This assumption violates

(S.7), therefore ∥y −Kx̂∥22 ≤ χ2
m,η. Then x̂ ∈ Bη ∩ Φµ and since the minimum over Bη ∩ Φµ must

always be greater than or equal to the minimum over X ∩ Φµ, x̂ also minimizes ∥y −Kx∥22 over
Bη ∩ Φµ. The same argument applies to minimizing over Bη and X .

Therefore, since minx∈Bη∩Φµ∥y − Kx∥22 = minx∈X∩Φµ∥y − Kx∥22 and minx∈Bη∥y − Kx∥22 =
minx∈X ∥y −Kx∥22, we conclude that λ(µ,y;Bη) = λ(µ,y;X ).
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B Proofs in Section 4

Throughout the proofs, we make use of the following lemma:

Lemma B.1. Let f : Rn → R and X ⊂ Rn such that min
x∈X

f(x) is achieved, and at least one of the

minimizers x∗ satisfies:

1. f is continuous at x∗

2. x∗ is not an isolated point of X (i.e., ∀δ > 0, Bδ(x
∗) ∩ X ̸= ∅)

Let µ be a measure on X such that µ(B) > 0 for all B ⊆ X such that λ(B) > 0. Let Ym =

min
i=1,...,m

f(xi), where xi are i.i.d samples from µ. Then Ym
p−→ f(x∗)

Proof. Fix ε > 0 and let us show that P(|Ym − f(x∗)| > ε)→ 0. Since f is continuous at x∗ there
exists a δ > 0 such that f(Bδ(x

∗)) ⊂ Bε(f(x∗)) so that

P(|Ym − f(x∗)| ≥ ε) ≤ P(xi /∈ Bδ(x∗), ∀i = 1, . . . ,m) = (Px∼µ(x /∈ Bδ(x∗)))m (S.9)

Since x∗ is not an isolated point, we have λ(Bδ(x
∗) ∩ X ) > 0 and therefore Px∼µ(x /∈ Bδ(x∗)) < 1

and P(|Ym − f(x∗)| ≥ ε)→ 0

B.1 Proof of Lemma 4.1

By definition, qdeγ,η = max
i=1,...,M

q̂iγ(N), where we explicitly write the dependence with the number of

samples and the index i refers to the quantile being estimated at i-th sampled point xi. We know
that as N →∞, q̂iγ(N) converges in probability to QPxi

(1− γ). We have

∣∣∣qdeγ,η − qγ,η∣∣∣ ≤ ∣∣∣∣qdeγ,η − max
i=1,...,M

QPxi
(1− γ)

∣∣∣∣+ ∣∣∣∣ max
i=1,...,M

QPxi
(1− γ)− qγ,η

∣∣∣∣ (S.10)

The first term can be made smaller than ε/2 as N →∞ by convergence of the estimator, and the
second term can be made smaller than ε/2 asM →∞ by application of Lemma B.1 to the quantile
function (maximizing instead of minimizing).

B.2 Proof of Lemma 4.2

The proof is identical to that of Lemma 4.1, with the only difference of replacing the quantiles
estimated via sampling to the quantile regressor, and N to Mtr, the number of samples needed to
train the quantile regressor. Since the quantile regression is assumed to be consistent, the result
follows.

B.3 Proof of Lemma 4.3

Recall,

Cgl
inv(y) =

[
min

k:λ(φ(xk),y)≤q̂
φ(xk), max

k:λ(φ(xk),y)≤q̂
φ(xk)

]
(S.11)
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=

[
min

k:λ(µk,y)≤q̂
µk, max

k:λ(µk,y)≤q̂
µk

]
(S.12)

where q̂ := max
i=1,...,M

q(xi), the xi’s are samples from X ∩Bη and µi := φ(xi). Note that µi are samples

in φ(X ∩ Bη) ⊂ R. Also note that we have more explicitly written out the interval definition (i.e.,
Equation (16)) to emphasize clarity rather than presentation. Additionally, to make notion more
compact, we have written the LLR as λ(φ(x),y) rather than λ(φ(x),y;X ) as done elsewhere.

Consider the left extreme of the interval without loss of generality, since a similar argument follows
from the right extreme. Consider three quantities:

µ1 := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ q̂ (S.13)

µ2 := minµk s.t. k = 1, . . . ,M and λ(µk,y) ≤ qγ,η (S.14)

µ3 := minµ s.t. µ ∈ φ (X ∩ Bη) and λ(µ,y) ≤ qγ,η (S.15)

Our goal is to show that as M → ∞, µ1
p−→ µ3. Lemma B.1 shows that µ2

p−→ µ3. Indeed, the
minimization over the indices k such that the condition is satisfied can be seen as a rejection
sampling strategy in which all accepted samples are samples of the feasible region of the optimization
in µ3. As M grows, since the sampler eventually samples all areas of φ(X ∩ Bη), some samples are

guaranteed to be close to the optimum with high probability. It remains to show that µ1
p−→ µ2.

This follows from continuity of the optimization problem with respect to the right hand side of the
constraint, and the fact that max

i=1,...,M
q(xi)

p−→ qγ,η.

B.4 Proof of Lemma 4.4

We have a memoryless sampler that first samples xk and then accepts hTxk as a sample if
λ(hTxk,y) < qkγ . If we consider the problem that we want to solve:

max
µ∈φ(X∩Bη)

s.t. λ(µ, y) ≤ max
htx=µ

q(x)

It then holds that all the sampled µi satisfy λ(µi, y) ≤ maxhtx=µi q(x) and are therefore feasible
to the optimization problem. Furthermore, using an argument analogous to Lemma B.1, it can be
shown that for every feasible point µ, there is eventually a sample close to it. This is because the
quantity of interest is continuous, the measures of the samplers in x space and the sampler in µ
space sample everywhere eventually, and the larger a quantile can be for an accepted µi is exactly
maxhtx=µ q(xi)), by definition of our sample acceptance rule .

B.5 Proof of Lemma 4.5

We prove continuity of the optimization problem

max
µ∈φ(X∩Bη)

s.t. λ(µ, y) ≤ q (S.16)

as a function of q in the positive measure interval (λ(µ,y), qγ,η]. Therefore, convergence in prob-
ability follows as we have convergence in probability to qγ,η, which in particular implies that the
maximum quantile estimate is in the interval (λ(µ,y), qγ,η] almost surely. We do so by appealing
to the maximum theorem (Ok, 2007, § E.3), which, in general, guarantees continuity of functions
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of the form f∗(θ) = sup{f(x, θ) : x ∈ C(θ)} as long as f is continuous, C is a continuous compact-
valued correspondence and C(θ) is non-empty for all θ ∈ Θ. The continuity of C comes from the
continuity of the LLR, f is equal to the identity and the strict feasibility condition ensures C is
non-empty in Θ := (λ(µ,y), qγ,η]

B.6 Proof of Lemma 4.6

We will prove sufficient conditions for convergence of inf
µ:f̂k(µ)≥0

µ to inf
µ:f(µ)≥0

µ as f̂k converges to f ,

and the result will follow by taking f̂k(µ) = m̂γ(µ)−λ(µ,y) and f(µ) = mγ(µ)−λ(µ,y). A similar

argument can be repeated for the supremum. Use use the notation f̂k to indicate that k sampled
points are used to estimate this function via the definition of m̂γ(µ) (see Section 3.3).

Lemma B.2. Let f : R→ R be a function, and let fk be a sequence of functions fk : R→ R. Let
µ∗ = inf

f(µ)≥0
µ and µk = inf

fk(µ)≥0
µ. Let the sequence of functions {fk} be such that for all δ > 0,

P
(
sup
µ
|fk(µ)− f(µ)| > δ

)
→ 0 as k →∞, (S.17)

namely, fk converges in probability uniformly to f . Furthermore, let f be such that for all ε > 0,
there exists δ′ > 0 such that |f(µ)| > δ′ if and only if |µ− µ∗| < ε. Then, we have µk

p−→ µ∗.

We then have µk
p−→ µ∗.

Proof. Assume for the sake of contradiction that there exists ε > 0 such that P (|µk − µ∗| ≥ ε) does
not go to 0. Then, by the condition on f , it must follow that P (|f(µk)| > δ) does not go to 0. But,

P (|f(µk)| > δ) ≤ P (|f(µk)− fk(µk)| > δ) + P (|fk(µk)| > δ) (S.18)

And the right-hand side goes to 0 by uniform convergence in probability (first term) and by feasi-
bility of µk (second term)

C Additional details and illustrations in Section 6

C.1 Importance-like sampler for the three-dimensional example in Section 6.2

Since the parameter settings with quantiles meaningfully larger than χ2
1,α are located close to the

constraint boundary, a sampling challenge is presented. Using the samplers as described in Sec-
tion 5.1 results in under-sampling of this large-quantile region since both samplers provide uniform
random samples over the Berger-Boos set. Algorithm 5 presents an importance-like sampler to in-
crease the probability mass of samples close to the constraint boundary. Note, we say “importance-
like” because we do not provide any theoretical guarantee regarding this sampler’s ability to produce
draws from a particular target distribution. We alternatively tailored Algorithm 5 to the particular
three-dimensional example in Section 6.2.

The key to Algorithm 5 is the additional accept/reject step where the k-th sample is accepted
with probability pk. Additionally, by setting q ∈ (0, 1), we prioritize retaining samples closer to
the non-negativity boundary. This effect can be seen in Figure S.1, where the vast majority of
samples are found closer to the constraint boundary. The ability of Algorithm 5 to better sample
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Algorithm 5 Importance-like sampler for three-dimensional constrained Gaussian

Input: Number of samples: M ∈ N, inverse length scale: γp, and order of norm: q ∈ (0, 1).

1: Instantiate a list S of length M to store sampled points.
2: while |S| < M do
3: Draw M realizations from Algorithm 4: x̃1, . . . , x̃M
4: for k = 1, . . . ,M : do
5: Compute the probability of accepting the k-th draw: pk := exp (−γp∥x̃k∥q).
6: Draw zk ∼ Bernoulli(pk).
7: if zk = 1 then
8: S[k]← x̃k
9: end if

10: end for
11: end while

Output: Sampled parameters in Berger-Boos set S.

the high-quantile regions of the Berger-Boos set can be seen in Figure S.2. In particular, for the
functional values µ ∈ (−4,−2), the importance-like sampler is substantially more effective than the
Polytope sampler at finding parameter setting with γ-quantiles greater than 1.1.
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Figure S.1: When sampling points using Algorithm 5, the vast majority of samples are found closer to
the non-negativity constraint boundary. The true parameter setting is shown by the red point, while the
parameter settings sampled by Algorithm 5 are shown by the blue points. This sampling prioritization helps
adequately sample the regions of the Berger-Boos set where the quantile surface is larger than χ2

1,α.

Figure S.2: The importance-like sampler described by Algorithm 5 is more effective than the Polytope sampler
described by Algorithm 4 at sampling parameter settings with γ-quantile greater than 1.1. Each parameter
setting sampled by Algorithm 5 is shown by a blue point. This improved ability helps ensure the coverage
guarantee shown in the left panel of Figure 6.3.
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