
Delay-Optimal Streaming Codes under
Source-Channel Rate Mismatch

Pratik Patil, Ahmed Badr and Ashish Khisti
Electrical and Computer Engineering

University of Toronto
Toronto, ON, M5S 3G4

Email: {ppatil, abadr, akhisti}@comm.utoronto.ca

Wai-Tian Tan
Mobile and Immersive Experience Lab

Hewlett Packard Laboratories
1501 Pagemill Road

Palo Alto, CA, 94304

Abstract—We study low-delay error correction codes for
streaming-recovery over a class of packet-erasure channels. In
our setup, the encoder observes one source frame everyM time
slots, but is required to transmit a channel packet in each time
slot. The decoder is required to reconstruct each source frame
within a playback delay of T source frames. The collection ofM
transmitted channel packets between successive source frames is
called a (channel) macro-packet. For a certain class of burst-
erasure channels, we characterize the associated capacity and
develop explicit codes that attain the capacity. We recover as
a special case, the capacity whenM = 1, studied in earlier
works. Our proposed code constructions involve splitting each
source frame into two groups of sub-symbols, applying unequal
error protection and carefully allocating source and parity-check
sub-symbols within each macro-packet. Our constructions are a
non-trivial extension of the previously proposed codes forM = 1.
Simulation results indicate significant gains over baseline error
correction codes for the Gilbert model for burst erasures.

I. I NTRODUCTION

Emerging applications such as video/audio conferencing,
mobile gaming and cloud computing impose stringent end-to-
end latency constraints and are inherently streaming in nature.
The sender terminal must encode a source stream in real-time,
and the destination must output each source frame within a
fixed playback deadline. The end-to-end latency is generally
less than250 ms [1, Table 1, pp. 7]. The round-trip time in
traditional networks can alone approach such limits. Thus we
need advanced techniques for error correction, rate control,
and scalable compression optimized for the delay-constrained
and streaming nature of such applications.

In this paper we propose a novel class of delay-optimized
error correction codes for real-time streaming over burst-loss
channels. Commonly used error correction codes operate on
message blocks. To apply them to streaming data, we need
to either buffer data packets at the encoder or accumulate all
packets at the decoder before any recovery is possible. To
reduce delay we need to keep the codeword lengths short,
which in turn reduces their error correction capability [2].

Low-delay error correction codes for streaming sources have
been recently studied in [3]–[5] and further generalized in[6],
[7]. The focus in [3]–[5] was on burst-erasure channels. The
transmitter is required to encode a stream of source packets
sequentially and the receiver is required to reconstruct each
source packet in the stream with a fixed delay. The channel

can introduce an erasure burst of a given maximum length.
The maximum achievable rate was characterized in this setup
and a new class of codes, Maximally Short Codes (MS),
were shown to outperform the classical Maximum Distance
Separable (MDS) codes. More recently [6], [7] propose robust
extensions of streaming codes that are resilient against both
burst and isolated losses.

The above works however assume that the source and
channel transmission rates are identical i.e., one source packet
arrives before the transmission of every channel packet. In
many practical systems there is a mismatch between the source
and channel transmission rates. For example in most video
streaming systems, each source frame arrives once approxi-
mately every40 ms, whereas the interval between successive
channel packets is typically much smaller. Thus a large number
of channel packets may need to be transmitted in-between
the arrival of two successive source frames. We refer to
this mismatched scenario assource-channel rate mismatch. A
straightforward way of implementing the streaming codes in
this scenario is to split each source frame into multiple packets
such that there is one source packet for each transmitted
channel packet. We show that such a naive approach is sub-
optimal and propose a new class of optimal codes for this
mis-matched scenario. Due to page constraints, we only focus
on the case of burst erasure channels in this paper. Robust
extensions that are resilient against both burst and isolated
losses are reported in [8]. For other related works on low-
delay streaming codes we refer to [9]–[16].

II. SYSTEM MODEL

We study low-delay codes when there is a mismatch be-
tween source and channel frame rates. We assume that one
source packet arrives at the encoder everyM channel packets.
We call the collection of suchM channel-packets as a macro-
packet. Each source packet is encoded into the channel stream
in a causal fashion and needs to be reconstructed at the
destination after a delay ofT macro-packets (or equivalently
T source packets). In this work we focus on the burst-erasure
channels i.e., we assume that up toB consecutive channel
packets are erased in a single burst. Fig. 1 depicts the system
under consideration. We discuss the operation of each of the
blocks in Fig. 1 in detail below.



Fig. 1. System under consideration. EachX[i, :] denotes a (channel) macro-
packet consisting ofM channel packets(x[i, 1], . . . ,x[i,M ]). One source
packet arrives at the start of each macro packet. The channel erases up toB
consecutive channel packets. Each source packet needs to bereconstructed
with a delay ofT macro packets.

Encoder: At each i ≥ 0, the encoder receives a source
packets[i] ∈ F

k
q , whereFq denotes the underlying base-field

andk denotes the number of sub-symbols ins[i]. At the start
of macro-packeti, the encoder generatesM channel packets
x[i, j] ∈ F

n
q , j = {1, . . . ,M} which can depend on all the

observed source packets up to that time i.e.1,

x[i, j] = fi,j(s[0], s[1], · · · , s[i]) (1)

and transmit them in theM slots corresponding to the macro-
packeti. It will be convenient to use the notation

X[i, :] = [x[i, 1] | . . . | x[i,M ]] ∈ F
n×M
q (2)

to denote the macro-packeti. Fig. 1 denotes the operation
of our system whereas Fig. 2 denotes the structure of each
macro-packet.

Channel: The received packets corresponding to macro-
packet i are denoted byy[i, j] for j = {1, . . . ,M}. We
assume a burst erasure channel. The channel can introduce an
erasure burst of maximum lengthB channel packets starting
at arbitrary time slot[is, js] during the transmission ofX[is, :]
and ending at[if , jf ] during the transmission ofX[if , :]. Thus,
the output channel packets are given by,

y[i, j] =

{

⋆, for [i, j] ∈ {[is, js], [if , jf ]} ,

x[i, j], otherwise.
(3)

We note that the erasure burst can occur across multiple chan-
nel macro packets as shown in Fig. 2. The erasure burst can
also start at any arbitrary position within each macro-packet.
We will denote the set of all channel packets corresponding to
time indexi by the matrixY[i, :] = [y[i, 1] | . . . | y[i,M ]] ∈
F
n×M
q , where againy[·] denotes a column vector of lengthn.
Decoder: The decoder is required to decode each source

packet with a maximum delay ofT macro packets i.e., the
decoder uses a reconstruction functiongi(.):

ŝ[i] = gi(Y[0, :],Y[1, :], · · · ,Y[i+ T, :]). (4)

The rate of the streaming code is defined as the ratio of the
entropy of the source packet to the size of the channel macro
packet i.e.,

R =
H(s)

n×M
. (5)

Note that in (5) we assume that the source sequence{s[i]}i≥0

is sampled i.i.d. from a distributionps(·). We say that a rate
R is achievable if there exists a streaming code of rateR such
thatPr(ŝ[i] 6= s[i]) = 0, for eachi ≥ 0. The largest achievable
rate is the streaming capacity, which is the quantity of interest.

1The vectorss[i] andx[i, j] denote column vectors. We will later use the
notations†[i] andx†[i, j] to denote the transpose of these vectors.

Fig. 2. Channel Model. The erasure burst spans a total ofB channel symbols
as shown. Each source packets[i] arrives just before the transmission of
X[i, :] and needs to be reconstructed by the destination after a delay of T
macro-packets.

III. M AIN RESULT

The following Theorem provides a characterization of the
streaming capacity defined in the previous section.

Theorem 1: For the streaming setup in section II, with
any M , T andB, the streaming capacity C is given by the
following expression:

C =







T
T+b

, B′ ≤ b
T+b

M, T ≥ b,
M(T+b+1)−B

M(T+b+1) , B′ > b
T+b

M, T > b,
M−B′

M
, B′ > M

2 , T = b,
0, T < b.

(6)

where the constantsb andB′ are defined via

B = bM +B′, B′ ∈ {0, . . . ,M − 1}, b ∈ N
0. (7)

�

The proof of Theorem 1 is divided into two main parts. The
code construction is illustrated in section V while the converse
appears in section VI. In the remainder of this section we
elaborate on the different cases associated with (6).

We note that the capacity is zero ifT < b. It can be easily
verified that in this case, there exists an erasure burst of length
B that spans all underlying channel packets up to the deadline
thus making the recovery impossible. This case will therefore
not be discussed further in the paper.

Next consider the case whenT = b, which corresponds to
the minimum possible delay for which the capacity is positive.
In this case the capacity in Theorem 1 reduces to the following:

C =

{
1
2 , 0 ≤ B′ ≤ M

2 , T = b,
M−B′

M
, M

2 ≤ B′ ≤ M, T = b.
(8)

Since a burst of lengthB spans at-leastb macro-packets, dur-
ing the recovery ofs[i] we can only use the unerased symbols
of Y[i, :] andY[i + b, :]; all the intermediate macro-packets
are completely erased. It turns out that a simple repetition
code that usesmin

{
M −B′, M

2

}
information packets and an

identical number of parity check packets in each macro-packet
achieves the capacity whenT = b.

Finally, whenT > b the capacity in Theorem 1 is given by
the following

C =

{
T

T+b
, 0 ≤ B′ ≤ b

T+b
M,T > b

M(T+b+1)−B

M(T+b+1) , b
T+B

M < B′ ≤ M − 1, T > b
(9)

Examining (9) we note that, quite remarkably, the capacity
does not decrease withB′ as it is increased in the interval
[0, b

T+b
M ]. We refer the reader to Fig. 4 in section VII where

this characteristic of the capacity function is illustrated using
a numerical example.



IV. BACKGROUND

In this section we review previously proposed code con-
structions — Strongly-MDS codes and SCo codes — and
study their error correction properties in the present setup.
We will conclude that the rates achieved by these schemes
do not meet the stated capacity in Therem 1. Nevertheless our
proposed codes build upon these ideas, and hence their review
is essential before stating the proposed construction.

A. Strognly-MDS Codes

Classical erasure codes are designed for maximizing the
underlying distance properties. In a streaming setup, roughly
speaking, such codes will be able to recover all the missing
source symbols simultaneously once sufficiently many par-
ity checks have been collected. In this section, we review
error correction properties of a class of deterministic codes
- Strongly-MDS codes [17], [18] that are relevant for our
streaming setup.

Consider a systematic Strongly-MDS(n, k,m) code that
maps an input source streams[i] ∈ F

k
q to an outputx[i] ∈ F

n
q

using a memorym encoder i.e.,

x[i] =

(
m∑

t=0

s†[i− t] ·Gt

)†

(10)

whereG0, . . . ,Gm are k × n matrices with elements inFq.

Let x[i] =

[
s[i]
p[i]

]

, and suppose that the sub-symbols in

x[i] = (s1[i], . . . , sk[i], p1[i], . . . , pn−k[i])
† are transmitted

sequentially in the interval[i ·n, (i+1)n−1] over the channel.
Then the code results in following error correction properties
in the streaming setup. For proof, see [8, Appendix B].

Lemma 1:

1) For any j ∈ [0,m], the following holds: if no more
than (n − k)(j + 1) sub-symbols are erased in the
interval [0, (j + 1)n − 1] the source symbols[0] =
(s1[0], . . . , sk[0]) can be recovered by time(j+1)n−1.

2) If the channel introduces an erasure-burst of lengthB
sub-symbols in the interval[0, B− 1], whereB ≤ (n−
k)(j +1), then all erased source symbols are recovered
by time (j + 1)n− 1.

Intuitively property 2 above states that a Strongly-MDS
code does simultaneous recovery of all the erased source
symbols in the burst, once sufficiently many parity checks are
available. We refer to codes with such a property as Baseline
Erasure Codes (BEC), and use this throughout the rest of the
paper.

From Property 2, an(n, k, T ) BEC code, is guaranteed to
recover from an erasure burst of lengthB channel packets
(equivalently up tonB sub-symbols) with a delay ofT if

B ≤
(n− k)

n
M(T + 1). (11)

UsingR = k
n

we have that an(n, k,m) BEC code with

RBEC = 1−
B

M(T + 1)
(12)

is feasible.

B. Streaming Codes (SCo) for M = 1

Unlike the erasure codes in the previous section, Maximally
Short Codes (MS) introduced in [4] and further generalized
in [6, Section IV-B] enable sequential recovery in the presence
of burst-erasures. These codes are constructed for the special
case when there is no mis-match between the source and
channel frame rates i.e.,M = 1. A (B, T ) SCo code encodes
a stream of source packetss[i] ∈ F

T
q into a stream of channel

packetsx[i] ∈ F
T+B
q such that every source symbols[i] can

be recovered with a delay ofT when the channel introduces
an erasure burst of length at-mostB. Note that rate of an SCo
code isR = T

T+B
. We briefly review the SCo construction

from [6]. The encoding steps are as follows:
1. Split each source symbols[i] ∈ F

T
q into two groups

u[i] ∈ F
B
q andv[i] ∈ F

T−B
q .

2. Apply a BEC code from the previous sub-section on the
symbolsv[i] and generate parity-check symbols

p†
v[i] =

T∑

j=1

v†[i− j] ·Hv
j , pv[i] ∈ F

B
q , (13)

where the matricesHv
j are (T −B)×B matrices associated

with the systematic Strongly-MDS code.
3. Super-impose theu[·] symbols ontopv[·] and let

q[i] = pv[i] + u[i− T ]. (14)

The channel input at timei is given by x†[i] =
(u[i],v[i],q[i])

†
∈ F

T+B
q .

For decoding of the SCo codes from an erasure burst starting
at time i, the interferingu[·] symbols (c.f. (14)) until time
t = i+ T − 1 which have not been erased are canceled from
parity checksq[·]. All the lostv[·] symbols are then recovered
by time t = i + T − 1. Once all thev[·] symbols have been
recovered, eachu[i], . . . ,u[i+B−1] can be recovered at their
deadline by cancelingp[·] from the associatedq[·] symbols.

Adapting SCo codes for Mis-Matched Case: We now dis-
cuss how the SCo codes can be adapted to the mis-matched
case. We propose to split each symbols[i] into M sub-
symbols, one for each time-slot in the macro-packet and then
apply an SCo code to this expanded source stream.

• Assume that eachs[i] ∈ F
TM
q and split eachs[i] =

(w[i, 1], . . . ,w[i,M ]) wherew[i, j] ∈ F
T
q holds.

• Apply a (B,MT ) SCo code of rate

RSCO =
MT

MT +B
=

T

T + b+ B′

M

(15)

to the source stream{w[·, j]}, whereM · T denotes the
delay in channel-packets. Transmit the associated channel
packetx[i, j] in slot j of the macro-packeti.

Note that the delay ofM · T channel packets implies that
the source packetw[i, j] is recovered at time[i + T, j] for
eachj ∈ {1, 2, . . . ,M}. Thus the entire source packets[i] is
guaranteed to be recovered by at the end of macro-packeti+T ,
thus satisfying the delay constraint. We note that (15) only
attains the capacity whenB′ = 0 andB < MT . Furthermore
if B > MT the above construction is not feasible and the rate
attained is zero.



V. CODE CONSTRUCTION

We present the encoding steps and the decoding analysis
for T > b in (6) in Theorem 1. The case whenT = b uses a
repetition code and will not be treated due to space constraints.

A. Encoding

The main encoding steps are as described below:

1) Source Splitting: Partition each source vectors[i] ∈ F
k
q

into k sub-symbols and divide them into two groups
uvec[i] ∈ F

ku
q andvvec[i] ∈ F

kv
q as follows:

s[i] = (s1[i], . . . , sk[i])

= (u1[i], . . . , uku
[i]

︸ ︷︷ ︸

uvec[i]

, v1[i], . . . , vkv
[i]

︸ ︷︷ ︸

vvec[i]

) (16)

Note thatku + kv = k.
2) BEC Parity Checks: Apply a (kv + ku, kv, T )

BEC code of rate kv

kv+ku
to the sub-stream of

vvec[·] symbols generatingku parity-check sub-symbols,
qvec[i] = (q1[i], . . . , qku

[i]) ∈ F
ku
q for each macro-

packet. In particular we have that

qvec[i] =





T∑

j=0

v†
vec[i− j] ·Hj





†

(17)

where Hj ∈ F
kv×ku
q are the sub-matrices associated

with the BEC code.
3) Parity-Check Generation: Combine theqvec[·] parity-

checks with theuvec[·] symbols after applying a shift of
T to generate final parity-checkspvec[i] ∈ Fku

q i.e.,

pvec[i] = qvec[i] + uvec[i− T ]. (18)

4) Re-shaping: In order the construct the macro-packet
X[i, :], reshapeuvec[i], vvec[i] and pvec[i] into groups
each ofn sub-symbols generating following matrices:

U[i, :] =

[

u[i, 1] · · · u[i, r]
u[i, r + 1]

0

]

∈ F
n×r+1
q

V[i, :] =
[

0

v[i, 1]
v[i, 2] · · · v[i,M − 2r − 1]

0

v[i,M − 2r]

]

∈ F
n×M−2r
q

P[i, :] =

[

p[i, r + 1]
0

p[i, r] · · · p[i, 1]

]

∈ F
n×r+1
q

where

u
vec

[i] =















u[i, 1]
u[i, 2]

.

.

.
u[i, r + 1]















, v
vec

[i] =















v[i, 1]
v[i, 2]

.

.

.
v[i,M − 2r]















,p
vec

[i] =















p[i, 1]
p[i, 2]

.

.

.
p[i, r + 1]















,

r ∈ N
0 is defined viaku = r · n + r′ for r′ ∈

{0, 1, . . . , n− 1}.
Note thatu[i, j] ∈ F

n
q for each j ∈ {1, . . . , r} and

u[i, r + 1] ∈ F
r′

q . The splitting ofpvec[i] into p[i, j]
follows in an analogous manner. In particular we can
write

p[i, j] = u[i− T, j] + q[i, j], j = 1, . . . , r + 1 (19)

whereq[i, j] is a sub-sequence ofqvec[i] defined in a
similar manner. In the splitting ofvvec[i] into v[i, j] we
note thatv[i, 1],v[i,M −2r] ∈ F

n−r′

q whereasv[i, j] ∈
F
n
q for 2 ≤ j ≤ M − 2r − 1.

5) Macro-Packet Generation ConcatenateU[i, :], V[i, :]
andP[i, :] to construct the channel macro packetX[i, :]
as follows2
X[i, :] = [x[i, 1], . . . ,x[i,M ]] =
[

u[i, 1] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] · · ·

. . . v[i,M − 2r − 1]
p[i, r + 1]

v[i,M − 2r]
p[i, r] · · · p[i, 1]

]

.

(20)

Note that the channel macro-packet at timei is denoted
by X[i, :] ∈ F

n×M
q and thejth channel packet inX[i, :]

by x[i, j] ∈ F
n
q for j ∈ {1, . . . ,M}. Since each macro-

packet hasku + kv source sub-symbols andku parity-
check sub-symbols, we have that2ku + kv = nM .

Rate of the code described above isR = k
nM

= ku+kv

2ku+kv
. We

choose following parameters for the two cases in Theorem 1.
1. B′ ≤ b

T+b
M : ku = Mb, kv = M(T − b)

2. B′ > b
T+b

M : ku = B′, kv = M(T + b+ 1)− 2B

B. Decoding

We show that above code construction can completely re-
cover from any arbitrary burst of lengthB within the deadline.
We consider a channel that introduces such a burst of length
B = bM + B′ starting fromx[i, j] for j ∈ {1, . . . ,M}. The
total number of patterns to consider isM .

We begin by considering the burst pattern starting atx[i, 1]
which erasesX[i], . . . ,X[i+b−1],x[i+b, 1], . . . ,x[i+b,B′].
We will then discuss the cases when the burst begins atx[i, j]
wherej > 1. The main steps in the decoding are as follows:

1) In each macro-packett ∈ [i + b, i + T − 1] recover all
un-erasedqvec[t] subtracting outuvec[t − T ] from the
associatedpvec[t] as the former are not erased (c.f. (18)).

2) Recover all erasedvvec[·] symbols by macro-packeti+
T − 1 using the underlying BEC code.

3) Computeqvec[i+T ], . . . ,qvec[i+T+b] as they combine
vvec[·] symbols which are either not erased or recovered
in the previous step.

4) Subtractqvec[i+ T ], . . . ,qvec[i+ T + b] from pvec[i+
T ], . . . ,pvec[i+T +b] to recoveruvec[i], . . . ,uvec[i+b]
respectively within a delay ofT macro packets. At this
point all the source packets have been recovered with a
delay ofT macro-packets as required.

It only remains to show the sufficiency of the BEC code in
the recovery during the second step. This can be established
by showing that no more thankuT sub-symbols are lost for
the (ku + kv, kv, T ) BEC code(vvec[t],qvec[t]) due to the
above erasure burst. The recovery then follows using Property
2 of Lemma 1. For exact details, refer [8, Appendix D]

In the above decoding steps, we only considered bursts that
start atx[i, 1]. Here, we extend the decoding steps for erasure
bursts that start at any channel packet within the macro packet.
Consider an erasure burstsBj of lengthB = bM+B′ starting
at x[i, j] for j = {1, . . . ,M}. The main decoding steps are

2The expression assume thatM−2r > 1. If M−2r = 1 then thevvec[i]
symbols will only occupy one single column and the symbols ofu[i, r + 1]
andp[i, r+1] may be present in the same column. The analysis also applies
in this case. We can easily show thatM − 2r > 0 in all of our analysis.



Fig. 3. Periodic erasure channel used in the converse in Section VI

similar to those described above where we first recoverall
the erasedvvec[·] simultaneously and then sequentially recover
uvec[·] at their respective deadlines. To show the sufficiency
of BEC code for the recovery ofvvec[i], we can argue that
going fromBj to Bj+1 we do not increase the total number of
erased sub-symbols in the(vvec[i],qvec[i]) BEC code. Thus
the case whenj = 1 is in-fact the worst case. Due to space
constraints, we skip the details of the argument here. Readers
are referred to [8, Section V-C] for in depth decoding analysis.

VI. CONVERSE

To establish the converse to Theorem 1, we first consider
the caseT > b. We show that any achievable rateR must
satisfy

R ≤ min

(
M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
,

T

T + b

)

. (21)

Consider a periodic erasure channel with periodic bursts of
lengthB and guard intervals of lengthM(b+T+1)−B macro-
packets as shown in Fig. 3. Each period containsTperiod =
T + b+ 1 macro-packets. By definition, we requires[0] to be
recovered by the end of macro-packett = T , s[1] by macro-
packetT + 1 and so on. The last erased source packets[b] in
the first period is to be recovered at the end of macro packet
b+ T . Thus all ofX[0, :], . . . ,X[b, :] can reconstructed at the
end of macro-packetb+ T and we can treat these erasures
as having never happened and repeat the argument for the
next period. Thus any streaming code must be a feasible code
for such a channel. Since the capacity of the periodic erasure
channel is just the fraction of non-erased symbols, it follows
that

R ≤
M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
(22)

which establishes the first inequality in (21). To establishthe
second inequality, we consider a periodic erasure channel with
burst lengthsB̂ = bM ≤ B. We can see that it is sufficient to
takeTperiod = T + b. Therefore repeating the above argument
we have that

R ≤
T

T + b
. (23)

For the caseT = b, we can easily show that

R ≤ min

(
M −B′

M
,
1

2

)

. (24)

Combining (21) and (24), the converse follows.
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Fig. 4. Achievable rates for different code constructions for a given burst
length B and delay ofT = 5 macro packets with each havingM = 20
channel packets.

VII. N UMERICAL COMPARISONS ANDSIMULATIONS

Fig. 4 illustrates a numerical example comparing capacity
with some baseline schemes. The achievable rate is shown on
the y-axis and the associated erasure burst length is shown
on the x-axis. We considerM = 20 and a delay ofT = 5
macro packets and burst lengthB is varied from 40 to 110.
The capacity is shown by the blue-curve marked with squares
whereas the red curve marked with circles denotes the rate
achieved by a suitable modification of the SCo code [4], [6]
which is discussed in Section IV-B. We note that the curves
intersect wheneverB is an integer multiple ofM , indicating
the optimality of the SCo codes for these special values i,e,
at B = {40, 60, 80, 100}. Furthermore for burst lengthsB >
MT = 100, SCo codes are not feasible and the associated
rate is zero. The capacity function is constant in the intervals
B ∈ [40, 45], [60, 67], [80, 88], [100, 110], as indicated in (9)
and monotonically decreasing in the rest of the intervals. The
third class of codes — Baseline Erasure Codes — discussed
in Section IV-A are erasure codes that onlysimultaneously
recover all the erased source symbols after the erasure burst.
Since they do not perform sequential recovery, their achievable
rates are significantly lower.

In our simulations in Fig. 5, we consider a two-state Gilbert
channel model. In the bad state, each channel packet is
lost with a probability of1 whereas in the good state, the
loss probability is0. We let α and β denote the transition
probability from the good state to the bad state and vice versa,
respectively for this channel. Note that the average burst length
for this channel is1

β
whereas the average loss rate isα

α+β
.
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Fig. 5. Gilbert Channel Experiments with different parameters illustrating the loss probabilities of different code constructions.

In Fig. 5(a), we selectα = 10−5 and β is varied on the
x-axis in the interval[0.1, 0.4] which in turn changes the burst
length distribution. We further selectM = 10, i.e.,10 channel
packets are generated for every source packet received at the
encoder. We fix the rateR = 3/5 and the delayT = 3
macro packets. Under these conditions, the BEC code can
correct burst erasures of length up toBBEC = 16, whereas
a Streaming Code (SCo) achievesBSCo = 20. The optimal
code achievesB = 24. This gain in the burst-length is reflected
in Fig. 5(a) as one can see that the proposed codes achieve a
smaller loss probability. While the code parameters in Fig. 5(a)
correspond to the first case in (6) the code parameters used in
Fig. 5(b) correspond to the second case in (6). In this case
we selectM = 20, T = 4 and R = 9/14. The achievable
burst lengths for the BEC and SCo codes areBBEC = 35,
BSCo = 44 while the optimal codes achieveB = 50. We
again selectα = 10−5 and varyβ on the x-axis as illustrated.

VIII. C ONCLUSIONS

Motivated by the application to wireless video, we propose
a new family of low-delay streaming codes when the is a
mismatch between the source frame rate and channel trans-
mission rate. Our proposed codes are optimal over the burst-
erasure channel. We show that a naive extension of previously
proposed streaming codes designed when the source-channel
rates are matched can be sub-optimal. We also explicitly
characterize the associated capacity and show that it remains
constant over a certain interval of burst-lengths, as illustrated
in Fig. 4. Simulation results over the Gilbert channel are also
presented to show the improvements from the proposed codes
in achievable packet-loss rate.

In this paper we only focused on the case when the channel
is an erasure burst channel. Our constructions can be naturally
extended to the case when the channel introduces both burst
and isolated erasures. Such an extension can be done using a
layered approach as was done for the case of matched source-
channel rates in [6], [7] and is discussed in [8].
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