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Abstract—We study low-delay error correction codes for can introduce an erasure burst of a given maximum length.
streaming-recovery over a class of packet-erasure channelsnl The maximum achievable rate was characterized in this setup
our setup, the encoder observes one source frame evely time and a new class of codes, Maximally Short Codes (MS),

slots, but is required to transmit a channel packet in each time h t toerf the classical Maxi Dist
slot. The decoder is required to reconstruct each source frame were shown (o oufperform the classical Maximum Listance

within a playback delay of T source frames. The collection ofif ~ Separable (MDS) codes. More recently [6], [7] propose robus
transmitted channel packets between successive source fragis extensions of streaming codes that are resilient agairtst bo
called a (channel) macro-packet. For a certain class of burst- pyrst and isolated losses.

erasure channels, we characterize the associated capacity and The above works however assume that the source and

develop explicit codes that attain the capacity. We recover as h It . t identical |
a special case, the capacity wher/ — 1, studied in earlier Cchannel transmission rates are identical I.e., one solackep

works. Our proposed code constructions involve splitting each arrives before the transmission of every channel packet. In
source frame into two groups of sub-symbols, applying unequal many practical systems there is a mismatch between theesourc
error protection and carefully allocating source and parity-check and channel transmission rates. For example in most video
sub-symbols within each macro-packet. Our constructions are a streaming systems, each source frame arrives once approxi-

non-trivial extension of the previously proposed codes fol/ = 1. tel 10 h the int | bet .
Simulation results indicate significant gains over baseline error mately everyz) ms, whereas tne interval between successive

correction codes for the Gilbert model for burst erasures. channel packets is typically much smaller. Thus a large rermb
of channel packets may need to be transmitted in-between
|. INTRODUCTION the arrival of two successive source frames. We refer to

Emerging applications such as video/audio conferencinthjs mismatched scenario asurce-channel rate mismatch. A
mobile gaming and cloud computing impose stringent end-tstraightforward way of implementing the streaming codes in
end latency constraints and are inherently streaming iareat this scenario is to split each source frame into multiplekpac
The sender terminal must encode a source stream in real-tisiech that there is one source packet for each transmitted
and the destination must output each source frame withincleannel packet. We show that such a naive approach is sub-
fixed playback deadline. The end-to-end latency is generatiptimal and propose a new class of optimal codes for this
less than250 ms [1, Table 1, pp. 7]. The round-trip time inmis-matched scenario. Due to page constraints, we onlysfocu
traditional networks can alone approach such limits. Thas wn the case of burst erasure channels in this paper. Robust
need advanced techniques for error correction, rate dontrextensions that are resilient against both burst and esblat
and scalable compression optimized for the delay-comstdai losses are reported in [8]. For other related works on low-
and streaming nature of such applications. delay streaming codes we refer to [9]-[16].

In this paper we propose a novel class of delay-optimized
error correction codes for real-time streaming over bloss-
channels. Commonly used error correction codes operate oiWe study low-delay codes when there is a mismatch be-
message blocks. To apply them to streaming data, we ndegen source and channel frame rates. We assume that one
to either buffer data packets at the encoder or accumulbte stlurce packet arrives at the encoder evefrychannel packets.
packets at the decoder before any recovery is possible. We call the collection of suchi/ channel-packets as a macro-
reduce delay we need to keep the codeword lengths shpedcket. Each source packet is encoded into the channeirstrea
which in turn reduces their error correction capability.[2] in a causal fashion and needs to be reconstructed at the

Low-delay error correction codes for streaming sourceg haglestination after a delay &f macro-packets (or equivalently
been recently studied in [3]-[5] and further generalize{bin T source packets). In this work we focus on the burst-erasure
[7]. The focus in [3]-[5] was on burst-erasure channels. Thehannels i.e., we assume that up /Boconsecutive channel
transmitter is required to encode a stream of source packptkkets are erased in a single burst. Fig. 1 depicts thensyste
sequentially and the receiver is required to reconstruch eaunder consideration. We discuss the operation of each of the
source packet in the stream with a fixed delay. The chanrmbcks in Fig. 1 in detail below.

Il. SYSTEM MODEL
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Fig. 1. System under consideration. EaXlfi, :] denotes a (channel) macro- Burst of length B Deadline tbr_S[i],lDeadlineﬁJr_S[i;ll
packet consisting of\/ channel packet$x[i, 1],...,x[i, M]). One source I
packet arrives at the start of each macro packet. The charemdup taB +=i+T+1
consecutive channel packets. Each source packet needsrecdmstructed Fig. 2. Channel Model. The erasure burst spans a tot& ohannel symbols
with a delay of7" macro packets. as shown. Each source packsi] arrives just before the transmission of
X[i,:] and needs to be reconstructed by the destination after g dél&
macro-packets.

Encoder: At eachi > 0, the encoder receives a source
packets|[i] € F’; whereF, denotes the underlying base-field m
andk denotes the number of sub-symbolssii. At the start . ) o

. M AIN RESULT

xli,j] € F?, j = {1,...,M} which can depend on all the Streaming capacity defined in _the previoqs sectipn. .
observed source packets up to that time'j.e. Theorem 1:d For rtlhe streaming se_tupcln_ se_ctlonbll, r‘]’V'th
. . any M, T and B, the streaming capacit IS given the
xlij] = fij (s[0],s[1], -+ ,sil) M lowing expression. 9 Capany & is gen By
and transmit them in thé/ slots corresponding to the macro- T B < b M. T>b
: ; ; ; T4’ =Ty - =D
packets:. It will be convenient to use the notation MIT+40)-B  pr o b ar 7o p
X[i,:) = [x[i,1] | ... | x[i, M]] € F}*M ) C=g Marer B TM“JT’:b B C)
to denote the macro-packet Fig. 1 denotes the operation 0 M T < b ’

(r);a(():trjg_:ﬁ'f(eerg whereas Fig. 2 denotes the structure of ee\‘/snere the constantsand B’
Channel: The received packets corresponding to macro- B =bM+B', B €{0,....M ~1},beN°. (7)
packeti are denoted byy[i,j] for j = {1,...,M}. We O
assume a burst erasure channel. The channel can introduce arhe proof of Theorem 1 is divided into two main parts. The
erasure burst of maximum lengiB channel packets startingcode construction is illustrated in section V while the cense

are defined via

at arbitrary time slofi, j5] during the transmission &K[is,:] appears in section VI. In the remainder of this section we
and ending ali ¢, j¢] during the transmission &[iy, :|. Thus, elaborate on the different cases associated with (6).
the output channel packets are given by, We note that the capacity is zeroif < b. It can be easily
« for [i,§] € {[is: js, [is, 57} verified that in this case, there exists an erasure bursngtfe
yli,jl=19 . . - R (3) B that spans all underlying channel packets up to the deadline
x[i,7], otherwise. : ! . ) )
thus making the recovery impossible. This case will therefo

We note that the erasure burst can occur across multiple- chagt pe discussed further in the paper.
also start at any arbitrary position within each macro-pack the minimum possible delay for which the capacity is positiv
We will denote the set of all channel packets corresponding |f, thjs case the capacity in Theorem 1 reduces to the follgwin
F2xM where againy[-] denotes a column vector of length %}_B/ " :
Decoder: The decoder is required to decode each source ;3 <B' <M, T=b.
packet with a maximum delay df macro packets i.e., the Since a burst of lengtl3 spans at-least macro-packets, dur-
decoder uses a reconstruction functigf.): ing the recovery ok[i] we can only use the unerased symbols
. . . . re completely erased. It turns out that a simple repetition
The rate of the streaming code is defined as the ratio of t Sde that usesin {M _ B % information packets and an

nel macro packets as shown in Fig. 2. The erasure burst caext consider the case whéh — b. which corresponds to
time index: by the matrixY[s,:] = [y[i, 1] | ... | y[i, M]] € 1 0<B <M T—p
C= ? G
M
§li = ¢;(Y[0,:), Y[L,:), -+, Y[i + T, ]). (4) of Y[i,:] andY[i +b,:]; all the intermediate macro-packets
entropy of the source packet to the size of the channel Mag8ntical number of parity check packets in each macro-giack

packet i.e., achieves the capacity whéhn = b.
R= H(s) ) 5 Finally, whenT > b the capacity in Theorem 1 is given by
_ nx M the following
Note that in (5) we assume that the source sequésicg ;> . 0<B < 5 MT>b
is sampled i.i.d. from a distributiops(-). We say that a rate ¢ — Thbin_s L T T 9)
R is achievable if there exists a streaming code of faguch T 0 M < B <M —-1,T>b

thatPr(s[i] # s[i]) = 0, for eachi > 0. The largest achievable Examining (9) we note that, quite remarkably, the capacity
rate is the streaming capacity, which is the quantity ofrege does not decrease witB’ as it is increased in the interval
[0, 75 M]. We refer the reader to Fig. 4 in section VIl where

1The vectorss[i] andx[i, j] denote column vectors. We will later use thethis characteristic of the capacity function is illustchiesing
notations’[i] andx'[i, j] to denote the transpose of these vectors. a numerical example.



V. BACKGROUND B. Streaming Codes (SCo) for M =1

In this section we review previously proposed code con- Unlike the erasure codes in the previous section, Maximally
structions — Strongly-MDS codes and SCo codes — ar8hort Codes (MS) introduced in [4] and further generalized
study their error correction properties in the present [setun [6, Section IV-B] enable sequential recovery in the prese
We will conclude that the rates achieved by these schemsfsburst-erasures. These codes are constructed for théakpec
do not meet the stated capacity in Therem 1. Nevertheless ease when there is no mis-match between the source and
proposed codes build upon these ideas, and hence thewrevitannel frame rates i.el/ = 1. A (B, T) SCo code encodes
is essential before stating the proposed construction. a stream of source packei| € ]FqT into a stream of channel

acketsx[i] € FI*+5 such that every source symbsli] can
A. Srognly-MDS Codes Ee recove[zjed quth a delay af Wheril the chanr?el ti);iqtr]oduces

Classical erasure codes are designed for maximizing thg erasure burst of length at-mdst Note that rate of an SCo
underlying distance properties. In a streaming setup,iyug code isR = 2. We briefly review the SCo construction
speaking, such codes will be able to recover all the missi@m [6]. The encoding steps are as follows:

source symbols simultaneously once sufficiently many par: Split each source symbai[i] € F{ into two groups
ity checks have been collected. In this section, we reviey;] ¢ FZ andv[i] € FT-5.
error correction properties of a class of deterministicesod2, Apply a BEC code from the previous sub-section on the

- Strongly-MDS codes [17], [18] that are relevant for ousymbolsv|i] and generate parity-check symbols
streaming setup.

T
Consider a systematic Strongly-MD@:, k, m) code that plli] = ZVT[Z' —j]-HY, pofi] € FZ, (13)
maps an input source streafi] € IF’; to an outputx[i] € Fy =1
using a memoryn encoder i.e., where the matrice$l} are (T — B) x B matrices associated
m f with the systematic Strongly-MDS code.
x[i] = | Y s'fi—t]- Gy (10) 3. Super-impose tha[.] symbols ontop,[-] and let
t=0 . . .
where Gy, ..., G, arek x n matrices with elements iff,. qlil = po[i] + uli — T]. (14)

Lot il — | Sl d that the sub bol The channel input at timei is given by x'[i] =
et x[i] = { pli ], and suppose that the sub-symbols "eu[i],v[i],q[i})T € FI+5,
x[i] = (s1[i],...,sxli],p1li],...,pn_x]i])T are transmitted For decoding of the SCo codes from an erasure burst starting
sequentially in the intervdk-n, (i+1)n— 1] over the channel. at time i, the interferingu[-] symbols (c.f. (14)) until time
Then the code results in following error correction projsrt ¢t =i+ 7 — 1 which have not been erased are canceled from
in the streaming setup. For proof, see [8, Appendix B].  parity checksy[-]. All the lostv[-] symbols are then recovered
Lemma 1: by timet¢ =i+ T — 1. Once all thev[-] symbols have been
1) For anyj € [0,m], the following holds: if no more recovgred, each[i],....,u[iJrB—l] can bg recovered at their
than (n — k)(j + 1) sub-symbols are erased in théleadline by canceling[] from the associated[] symbols.
interval [0, (j + 1)n — 1] the source symbok[0] = Adapting SCo codes for Mis-Matched Case: We now dis-
(s1[0], . .., s1[0]) can be recovered by timg+1)n—1. Cuss how the SCo codes can be adapted to the mis-matched
2) If the channel introduces an erasure-burst of length ase. We propose to split each symbdi] into M sub-
sub-symbols in the intervd, B — 1], where B < (n— Symbols, one for each time-slot in the macro-packet and then
k)(j + 1), then all erased source symbols are recover&@Ply an SCo code to this expanded source stream.
by time (5 + 1)n — 1. o Assume that each|i] € FI™ and split eachs[i] =
Intuitively property 2 above states that a Strongly-MDS  (W[i, 1], ..., w[i, M]) wherewli, j] € F; holds.
code does simultaneous recovery of all the erased sourca Apply a (B, MT) SCo code of rate
symbols in the burst, once sufficiently many parity checles ar RSCO _ MT T
available. We refer to codes with such a property as Baseline MT+B T+b+ %
Erasure Codes (BEC), and use this throughout the rest of the g the source strearfw][-, j|}, where M - T denotes the
paper. delay in channel-packets. Transmit the associated channel
From Property 2, arﬁn,k‘,T) BEC COde, is guaranteed to packetx[i’j} in S|ot]’ of the macro-packezt_
recover from an erasure burst of length channel packets
(equivalently up tonB sub-symbols) with a delay df if
(n—k)
n

(15)

Note that the delay of\/ - T' channel packets implies that

the source packetv[i, j] is recovered at timgi + T, j] for

M(T +1). (11) eachj € {1,2,...,M}. Thus the entire source packst] is

] . ) guaranteed to be recovered by at the end of macro-pa¢ket

Using R = J we have that arin, k,m) BEC code with thus satisfying the delay constraint. We note that (15) only
RBEC _ 1 _ B (12) attains the capacity wheB’ = 0 and B < MT. Furthermore

M(T+1) if B> MT the above construction is not feasible and the rate
is feasible. attained is zero.

B <



We present the encoding steps and the decoding analysis
for T > b in (6) in Theorem 1. The case whé&h= b uses a
repetition code and will not be treated due to space congstai

V. CODE CONSTRUCTION 5) Macro-Packet Generation ConcatenatdJ[i,:], V[i,:
andP]i,:] to construct the channel macro packet, :
as followg

X[i,:] = [x[i, 1], ..., x[i, M]] =

ufz,r + 1]

[ ufi, 1] ‘ ‘ alir) | 0T, ‘ vii, 2] ‘
A. Encoding )
. . . . V[i) M —2r — 1] ‘ VI[;[Z}‘; t ]2-],,1} ‘ p[iv 7'} ) ‘ p[iv 1] j| .
The main encoding steps are as described below: ' 20)

1)

2)

3)

4)

Source Splitting: Partition each source vectsi] € F¥
into & sub-symbols and divide them into two groups
Uyec[i] € FEv and vy [i] € Fiv as follows:

Note that the channel macro-packet at tifrie denoted
by X[i,:] € F;*™ and thejth channel packet iX[i, :]
by x[i,j] € Fy for j € {1,..., M}. Since each macro-

s[i] = (s1[i], - -, skli]) packet hast, + k, source sub-symbols anfd, parity-
= (wr[d], .. up, [i], v1[d], - . ., o, [d]) (16) check sub-symbols, we have tht, + &k, = ni.
Rate of the code described aboveHs= -A; = Jutke We

Uyec [7] Vyec 1]

choose following parameters for the two cases in Theorem 1.

Note thatk, + k, = k. / b .

u Tt Ry 1.B' < -2 M: k, = Mb, k, = M(T —b)
BEC Parity Checks: Apply a (k, + ku,k,,T) , T B
BEC code of rate —%:— to the sub-stream of 2.B' > pigM: by = B', by = M(T+b+1)-2B

Vyec|] Symbols generaktziﬁévz parity-check sub-symbols, B. Decoding
Avec(i] = (@[i], .. qr,[i]) € Fy» for each macro-  \we show that above code construction can completely re-
packet. In particular we have that cover from any arbitrary burst of length within the deadline.
f We consider a channel that introduces such a burst of length
(17) B =bM + B’ starting fromx[i, j] for j € {1,...,M}. The
total number of patterns to considerfig.
g We begin by considering the burst pattern starting[at1]
with the BEC code. which eraseX[i], ..., X[i+b—1],x[i+b,1],...,x[i+b, B].
Parity-Check Generation: Combine theque.[] parity- We wiII. then discuss 'the cases when the purst begindiaf]
checks with thau,e.[-] symbols after applying a shift of wherej > 1. The main steps in the decoding are as follows:
T to generate final parity-checks.c.[i] € F- i.e., 1) In each macro-packete [i +b,i + T — 1] recover all
. . . un-erasedgy.[t] subtracting outu,..[t — 7] from the
. Prec[i] = Avecli] + tvec[i = T, (18) associateg'°°[t] as the former are not erased (c.f. (18)).
Re-shaping: In order the construct the macro-packet 2) Recover all erased,..[:] symbols by macro-packett

T
Qvec [L] = Z V:rzec [Z - ]] : Hj
j=0

where H; € F}»**« are the sub-matrices associate

X[i,:], reshapeuyec[i], Vyec[i] @and pyec[i] into groups
each ofn sub-symbols generating following matrices:

3) Computeqyec[i+T],. ..

T — 1 using the underlying BEC code.
, Qvec|i+T+b] as they combine

Ul [ i1 ‘ ‘ alisy] | 0l 1] } Jp— _vvec[~] sympols which are either not erased or recovered
0 9 in the previous step.
Vii,:] = 4) Subtractqyec[i + T, ..., Qvec|t + T + b] from pyecfi +
v[? . ‘ Vi, 2] ‘ ‘ il M — 2r — 1] ‘ - MO_QT] } € Frx M2 T], ..,pvec[er_T_er] to recovemvec[z],...,uvec[z+b]_

) ‘ respectively within a delay df” macro packets. At this
P[i,:] = [ % ‘ pli,7] | -+ ‘ pli, 1] } eFyx point all the source packets have been recovered with a
where delay of T macro-packets as required.

a2 M pli.1] It only remains to show the sufficiency of the BEC code in
wveers] = vVeCli] = ' L pVeCli] = ’ the recovery during the second step. This can be established
i 1) it M — 20] ol 1] by showing that no more thak,T" sub-symbols are lost for
r € N is defined viak, = r-n + ¢ for v/ € the (ku + ky,ky,T) BEC code(v™[i],q"[t]) due to the
{0,1,...,n—1}. above erasure burst. The recovery then follows using Ptyper

.,r} and 2 of Lemma 1. For exact details, refer [8, Appendix D]

In the above decoding steps, we only considered bursts that
a@tart atx[i, 1]. Here, we extend the decoding steps for erasure
ursts that start at any channel packet within the macrogiack

Consider an erasure burdis of length B = bM + B’ starting
at x[i, j] for j = {1,...,M}. The main decoding steps are

Note thatuli,j] € F for eachj € {1,..
ufi,r + 1] € F7'. The splitting of p¥°[i] into p[i, ]
follows in an analogous manner. In particular we c
write

pli,jl=u[i—=T,j] +dqdi,j], j=1,....,7r+1 (19)
where qi, j] is a sub-sequence ef**°[i] defined in a
similar manner. In the splitting of"*°[i] into v i, j] we
note thatvl[i, 1], v[i, M — 2r] € F*~"" whereasv[i, j] €
Fy for2<j<M-—2r—1.

2The expression assume that—2r > 1. If M —2r = 1 then thev¥°°[4]
symbols will only occupy one single column and the symbolsifif r + 1]
andpli, 7 + 1] may be present in the same column. The analysis also applies
in this case. We can easily show thiat — 2r > 0 in all of our analysis.
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similar to those described above where we first recaler ‘ ‘ M=20T=5 ‘

the erased,..[-] simultaneously and then sequentially recove oo, ot

u..[-] at their respective deadlines. To show the sufficienc “err * MEP Codes

of BEC code for the recovery oév*[i], we can argue that S I =y

going from; to B;,; we do not increase the total numbero ¢ | .,

. . © N "

erased sub-symbols in thervee[i], g¥*°[i{]) BEC code. Thus © . ““"--:::%“

the case when = 1 is in-fact the worst case. Due to spact 0551 !::::::'-.___-

constraints, we skip the details of the argument here. Read ] -

are referred to [8, Section V-C] for in depth decoding analys 5 - — - - - - =

Burst Length (B)
VI. CONVERSE Fig. 4. Achievable rates for different code constructions & given burst

length B and delay of7" = 5 macro packets with each havingd = 20

To establish the converse to Theorem 1, we first consid&p"e! packets.
the casel’ > b. We show that any achievable rafé must
satisfy

VIl. NUMERICAL COMPARISONS ANDSIMULATIONS
R < min (

MT+b+1)—(OM+B) T ) 21)

M(T+b+1) "T+b) Fig. 4 illustrates a numerical example comparing capacity
Consider a periodic erasure channel with periodic bursts wfth some baseline schemes. The achievable rate is shown on
length B and guard intervals of length/ (b+7'+1)—B macro- the y-axis and the associated erasure burst length is shown
packets as shown in Fig. 3. Each period contdipsi.c = on the x-axis. We considel/ = 20 and a delay ofl’ = 5
T + b+ 1 macro-packets. By definition, we requis] to be macro packets and burst length is varied from 40 to 110.
recovered by the end of macro-packet 7', s[1] by macro- The capacity is shown by the blue-curve marked with squares
packetT + 1 and so on. The last erased source paskétin whereas the red curve marked with circles denotes the rate
the first period is to be recovered at the end of macro packgthieved by a suitable modification of the SCo code [4], [6]
b+ T. Thus all ofX[0,:],...,X]b,:] can reconstructed at thewhich is discussed in Section IV-B. We note that the curves
end of macro-packet + 7' and we can treat these erasureiitersect wheneveB is an integer multiple of\/, indicating
as having never happened and repeat the argument for e optimality of the SCo codes for these special values ie,
next period. Thus any streaming code must be a feasible cede3 = {40, 60, 80, 100}. Furthermore for burst lengthB >
for such a channel. Since the capacity of the periodic eeasw/T = 100, SCo codes are not feasible and the associated
channel is just the fraction of non-erased symbols, it feflo rate is zero. The capacity function is constant in the iratisrv

that B € [40,45],[60,67], 80, 88],[100, 110], as indicated in (9)
p< MT+b+1)— (M + B') (22) @nd monotonically decreasing in the rest of the intervale T
- M(T+b+1) third class of codes — Baseline Erasure Codes — discussed

which establishes the first inequality in (21). To estabtis® in Section IV-A are erasure codes that ordynultaneously
second inequality, we consider a periodic erasure chanitiel wecover all the erased source symbols after the erasuré burs
burst lengthsB = bM < B. We can see that it is sufficient toSince they do not perform sequential recovery, their acttiley
take Tperioa = T+ b. Therefore repeating the above argumemates are significantly lower.

we have that In our simulations in Fig. 5, we consider a two-state Gilbert
R< T . (23) channel model. In the bad state, each channel packet is
—T+b lost with a probability of1 whereas in the good state, the
For the casd’ = b, we can easily show that loss probability is0. We let o« and 3 denote the transition
R < min (M - B 1) (24) probability from the good state to the bad state and viceavers
- M 2 respectively for this channel. Note that the average bargjth

Combining (21) and (24), the converse follows. for this channel i% whereas the average loss rate&iﬁﬁ.
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