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Abstract

Generalized cross-validation (GCV) is a widely-used method for estimating the squared out-
of-sample prediction risk that employs a scalar degrees of freedom adjustment (in a multiplicative
sense) to the squared training error. In this paper, we examine the consistency of GCV for esti-
mating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show
that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this
shortcoming, we identify a correction that involves an additional scalar correction (in an addi-
tive sense) based on degrees of freedom adjusted training errors from each ensemble component.
The proposed estimator (termed CGCV) maintains the computational advantages of GCV and
requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator
stems from a finer inspection of the ensemble risk decomposition and two intermediate risk esti-
mators for the components in this decomposition. We provide a non-asymptotic analysis of the
CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators
under Gaussian features and a linear response model. Furthermore, in the special case of ridge
regression, we extend the analysis to general feature and response distributions using random
matrix theory, which establishes model-free uniform consistency of CGCV.

1 Introduction

Ensemble methods are an important part of the toolkit in current machine learning practice. These
methods combine multiple models and improve predictive accuracy and stability compared to any
single component model (Hastie et al., 2009; Dietterich, 1998, 2000). Bagging and its variants form
an important class of ensemble methods that average predictors fitted on different subsamples of
the full dataset. The classical literature on bagging includes work by Breiman (1996); Bühlmann
and Yu (2002); Friedman and Hall (2007), among others. There has been a flurry of recent work on
characterizing the risk behavior of such subsampling-based ensemble methods in high dimensions;
see, e.g., Loureiro et al. (2022); Adlam and Pennington (2020b); Mücke et al. (2022); Patil et al.
(2023); Du et al. (2023). These works demonstrate that the risk can be significantly reduced by
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properly choosing the size of the ensemble. Complementary to characterizing and understanding
the risk behavior, it is important to have a reliable method for estimating these risks when im-
plementing ensemble methods. Accurate risk estimation provides a benchmark for comparing the
performance of different ensemble configurations and provides insights into the expected perfor-
mance of the combined model on unseen data. In particular, Du et al. (2023); Patil and Du (2023)
demonstrate that the implicit regularization provided by ensembling amounts to ridge regulariza-
tion, and optimizing over both the ensemble and subsample size helps to mitigate double descent
behaviors. In this paper, our primary focus is on risk estimation techniques suitable for ensemble
methods, when these ensembles are composed of penalized least-squares estimators. Several tuning
parameters define an ensemble even for a single penalty function, including the regularization pa-
rameter and the subsample size. Developing consistent risk estimators informs the selection of the
optimal ensemble (regularization parameters and subsample size) and leads to better generalization
performance.

One widely recognized technique for risk estimation is Generalized Cross-Validation (GCV). GCV
adjusts the training error multiplicatively based on a factor known as degrees of freedom correction.
GCV is conceptually motivated as an approximation to leave-one-out cross-validation and provides
consistent risk estimation without sample splitting and refitting; see, e.g., Chapter 7 of Hastie
et al. (2009) and Chapter 5 of Wasserman (2006). The consistency of GCV has been extensively
studied, initially for fixed-X design settings and linear smoothers (Golub et al., 1979; Craven and
Wahba, 1979). Subsequent work has extended this to the random-X settings, which are arguably
more relevant in modern machine learning applications where observations are drawn from some
underlying distribution rather than being predetermined. In particular, the consistency of GCV for
ridge regression has been shown in Patil et al. (2021, 2022); Wei et al. (2022) in various settings.
For ridge regression, the consistency holds for arbitrary response models with only the assumption
of bounded moments. Beyond ridge regression, the consistency of GCV is shown for Lasso in
(Miolane and Montanari, 2021; Celentano et al., 2023) and for convex regularized estimates in
(Bellec, 2023, Section 3). For linear base estimators (e.g., least squares estimator, ridge, etc.), the
degrees of freedom of the ensemble estimator is simply the average of degrees of freedom for all
base predictors. The first question that this paper asks is the following:

Is GCV still consistent for ensembles of general penalized estimators?

Perhaps the simplest base predictor to study this question is ridge regression, which has emerged
as a simple but powerful tool, particularly when dealing with high-dimensional data without any
special sparsity structure. Recent work by Du et al. (2023) considers the problem of risk estimation
for ensembles of ridge predictors. The authors analyze the use of GCV for the full ensemble
ridge estimator when the number of ensemble components goes to infinity, demonstrating that
GCV is consistent for the prediction risk. However, an intriguing surprise from their work is the
inconsistency of GCV for any finite ensemble: The intricate correlation caused by overlapping
samples in different subsampled datasets complicates risk estimation and necessitates a correction.
This finding suggests a limitation of GCV and prompts the question of whether this inconsistency
is special to ridge regression or is a broader issue with GCV’s applicability to other models as well.
And, in particular, this prompts the second key question of our paper:

Is there a GCV correction that is consistent for all possible ensemble sizes?

Understanding these two questions forms the basis of our work. We propose a novel risk estimator
that addresses the limitations of naive GCV for ensembles of penalized estimators. Focusing on
convex penalized predictors, we show that for a finite ensemble size larger than one, the GCV
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Figure 1: CGCV is consistent for finite ensembles of penalized estimators while GCV is not. We
show a numerical comparison between the true squared risk (Risk), GCV error (GCV), and corrected GCV
(CGCV) for ensembles across different tuning parameters λ and ensemble sizes M , over 1000 repetitions of
the datasets. The left panel shows ridge ensembles with different λ and M . Data is generated from a linear
model with Gaussian design, (n, p) = (2000, 500), and a signal-to-noise ratio of 1. The subsample size is
fixed at k = 800. The right panel shows the plot of lasso ensembles under the same setting as the left panel
except for a different range of λ. Further details of the experimental setup are given in Section 4.4.

is always inconsistent and deviates from the true risk by an additive error that we characterize
explicitly. Understanding this additive error leads to a novel correction to GCV, and we provide
both non-asymptotic and asymptotic analyses of this corrected GCV under two different sets of
data-generating assumptions. Our non-asymptotic analysis is restricted to Gaussian features and
well-specified linear models, allowing general strongly convex penalty functions. Our asymptotic
analysis is more general in accommodating random matrix theory features beyond Gaussianity
and arbitrary data models while being restricted to ridge predictors. Our asymptotic analysis also
enables the analysis of the “ridgeless” predictors (minimum-norm interpolators) in the overparame-
terized regime. For the case of ridge regression, this also allows us to show the uniform consistency
in the regularization parameter. Before diving into the precise details of our contributions, we
present our results in Figure 1, which demonstrates the clear gap between GCV and true risk. Our
proposed corrected GCV (CGCV), on the other hand, accurately estimates the risk across varying
settings for ensembles of both ridge and lasso predictors.

1.1 Summary of results

In the classical low-dimensional regime, where the feature dimension p is fixed, the excess prediction
risk goes to zero as the sample size n diverges. Thus, the average training error itself already
serves as a consistent estimator of the risk. In the proportional asymptotic regime, where the
feature size p scales proportionally with the sample size n, the prediction risk typically converges
to a non-vanishing constant (Bayati and Montanari, 2011; El Karoui, 2013; Thrampoulidis et al.,
2018, among others). Therefore, the regime of primary interest for our results is the proportional
asymptotic regime. More formally, we implicitly consider a sequence of regression problems, say,
indexed by n. The dimension p(n), the distribution of the observations, the estimators and penalty

3



under consideration, and the subsample size k(n) all implicitly depend on n with p(n), k(n) growing
with n. We omit the dependence on n to lighten the notation and write simply, e.g., p for the
dimension and k for the subsample size. Throughout the paper, the ratio p/n is bounded from
above by a constant independent of n, so that by extracting a subsequence if necessary, we may
assume that p/n has a finite limit. While several of our results are non-asymptotic with explicit
dependence on certain problem parameters, we also state consistency results asymptotically using
p−→/

a.s.−−→ (convergence in probability/almost sure convergence), oP(·) and OP(·) notation, which are
defined with respect to the aforementioned sequence of regression problems. Our contributions are
four-fold, as summarized below.

1. Inconsistency of GCV for finite ensembles. We establish that ordinary GCV is inconsis-
tent in estimating the squared out-of-sample prediction risk of finite ensembles with more than
one penalized estimator (Theorem 3). Here, we assume strongly convex penalties that include
ridge regression and elastic net, among others; and the inconsistency result of Theorem 3 ap-
plies to base estimators that have normalized degrees of freedom bounded away from 0 (see
Remark 8 for details).

2. Corrected GCV for finite ensembles. We introduce a novel risk estimator, termed cor-
rected GCV (CGCV), designed to estimate the prediction risk of the arbitrary ensemble of
penalized estimators (Definition 1). The proposed estimator employs a scalar data-dependent
correction term (in an additive sense) that incorporates degrees of freedom adjusted training
errors of individual component estimators (Figure 2). Importantly, CGCV preserves all the
computational advantages inherent to GCV, since it requires neither sample splitting nor model
refitting nor out-of-bag risk estimation.

3. Non-asymptotic analysis under Gaussian designs. The structure of CGCV stems from
inspecting the ensemble risk decomposition and two intermediate risk estimators that we con-
struct for the components in this decomposition (Equations (11) and (12)). For Gaussian
features and a well-specified linear model, we provide non-asymptotic bounds for these com-
ponent estimators (Theorem 1). Building on these, we provide a non-asymptotic bound for
the proposed corrected GCV estimator (Theorem 2). Our error bounds decrease at the n−1/2

rate and provide explicit dependence on problem parameters such as the ensemble size M , the
subsample size k, and the strong convexity parameter of the penalty (Equations (21) and (22)).
The derived rates are pertinent within the scope of the proportional asymptotic regime.

4. Asymptotic analysis under general designs. For general feature structure (multiplica-
tively) composed of an arbitrary covariance matrix and independent components with bounded
4+ η moments and response vector with bounded 4+ η moments for some η > 0, we show that
the intermediate risk estimators are asymptotically consistent for ridge ensemble (Theorem 4).
We further show uniform consistency in the regularization level λ that includes the case of
ridgeless regression for both intermediate estimators and, consequently, CGCV (Theorem 5
and Theorem 6). The asymptotic analysis allows us to relax the data and model assumptions
while obtaining model-free uniform consistency of CGCV in the regularization parameter.

1.2 Related work

In this section, we describe related work on ensemble risk analysis and risk estimation, as well as
a detailed comparison to other baseline risk estimation approaches based on sample splitting and
out-of-bag risk estimation.
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GCV for linear smoothers. Risk estimation is a crucial aspect of statistical learning that plays
an important role in model evaluation and selection. Over the years, a myriad of methods have
been proposed, each with its own strengths and limitations. Among these, GCV has emerged as a
widely adopted technique for risk estimation. GCV is conceptually motivated as an approximation
to leave-one-out cross-validation, a method that provides unbiased estimates of the true prediction
error but can be computationally expensive (Hastie et al., 2009). The origins of GCV can be traced
back to the work of Golub et al. (1979) and Craven and Wahba (1979), where it was studied in the
context of fixed-X design settings for linear smoothers. These settings, where the predictors are
considered fixed and non-random, are common in experimental designs. The consistency of GCV
was subsequently investigated in a series of papers by Li (1985, 1986, 1987). More recently, the focus
has shifted toward the random-X and high-dimensional setting. This change in focus is motivated
by modern machine learning applications, which often deal with large datasets and where predictors
are typically considered to be random variables drawn from some distribution rather than fixed
values. In this context, GCV has been the subject of considerable research attention. In particular,
Leeb (2008) establishes the consistency of GCV for the ordinary least-squares, and the consistency
of GCV for ridge regression has been established in a number of recent studies in various data
settings by Adlam and Pennington (2020a); Patil et al. (2021, 2022); Wei et al. (2022); Han and Xu
(2023); Misiakiewicz and Saeed (2024), which provide different flavors of results (both asymptotic
and non-asymptotic).

GCV beyond linear smoothers. Generalized cross-validation was initially defined for linear
smoothers, where the sum of training errors is adjusted multiplicatively by the trace of the smooth-
ing matrix. There is a general way of understanding this estimator, and the definition of GCV for
estimators that are not linear smoothers can be extended by using degrees of freedom adjustments.
The notion of degrees of freedom of linear estimate β̂ dates back to the pioneering paper of Stein
(1981). This literature established the multivariate version of Stein’s formula and proposed an unbi-
ased estimator for estimating the mean square error of a Gaussian multivariate mean, which is often
called Stein’s Unbiased Risk Estimate (SURE). For example, under the linear model y = Xβ0 + ε
with Gaussian covariates X ∈ Rn×p and Gaussian noise ε ∈ Rn, the Stein’s Unbiased Risk Estimate

has expression ŜURE = ∥y −Xβ̂∥22 + 2σ2d̂f − nσ2, where σ2 is the noise variance, and

d̂f = tr[(∂/∂y)Xβ̂] (1)

is the degrees of freedom of the estimate β̂. The SURE is unbiased in the sense that E[ŜURE] =
E[∥Xβ̂−Xβ0∥22]. This definition of degrees of freedom as the trace of the Jacobian yields a natural
generalization of the GCV formula, where the trace of the smoothing matrix (for linear smoothers)
is replaced by d̂f, i.e., the trace of the Jacobian (∂/∂y)Xβ̂. Moving beyond the estimation of the
in-sample error ∥Xβ̂ − Xβ0∥22, this generalization of GCV beyond linear smoothers is known to
be consistent in the sense:

∥y −Xβ̂∥22/n
(1− d̂f/n)2

/(
∥Σ1/2(β̂ − β0)∥22 + σ2

)
p−→ 1,

under linear models with jointly normal observations (xi, yi) and E[xix⊤
i ] = Σ. This consistency is

proven for the lasso (Bayati and Montanari, 2011; Bayati et al., 2013; Miolane and Montanari, 2021;
Celentano et al., 2023), and for regularized least-squares with general convex penalty (Bellec, 2023,
Section 3). Bellec and Shen (2022) generalized the above GCV estimator for the risk ∥Σ1/2(β̂ −
β0)∥22 + ∥ε∥22/n in the context of regularized M-estimation where the noise has possibly infinite
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variance. Tan et al. (2022) studied a generalization of GCV to estimate the out-of-sample error in
a multi-task regression model where each response yi is vector-valued.

Closely related to GCV, Rad and Maleki (2020) introduced the Approximate Leave-One Out (ALO)
estimator for the out-of-sample error of regularized M-estimators and showed the consistency of
ALO under smoothness assumptions on the data-fitting loss and the regularizer. Xu et al. (2019)
used Approximate Message Passing to develop risk estimates for estimators constructed with sep-
arable loss and separable regularizer, and showed that these estimates, including ALO, enjoy finite
error bounds. ALO has been extended to non-differentiable regularizers (Rad and Maleki, 2020,
Section 2.2) as well as non-differentiable losses and non-differentiable regularizers (Wang et al.,
2018). Its theoretical accuracy has recently been demonstrated for LASSO and elastic net (Auddy
et al., 2023).

Ensemble risk characterization. Ensemble methods combine weak predictors to produce strong
predictors and are a common part of the statistical machine learning toolkit (Hastie et al., 2009).
Several variants exist such as bagging (Breiman, 1996; Bühlmann and Yu, 2002), random forests
(Breiman, 2001), stacking (Wolpert, 1992), among others. These methods are widely used because
of their ability to improve prediction accuracy and robustness. The risk behavior of ensemble
methods has been a topic of recent interest. Patil et al. (2023) provide a strategy for analyzing
the risk of an ensemble of general predictors and present exact risk asymptotics for an ensemble of
ridge predictors. Other related work on ensemble risk analysis include LeJeune et al. (2020); Ando
and Komaki (2023); Loureiro et al. (2022); Adlam and Pennington (2020b), among others, which
provide insights into the fluctuations in risk of ensemble methods, demonstrating that the risk can
be significantly reduced by properly choosing the ensemble size. They also highlight the importance
of the correlation structure among the predictors in determining the risk of the ensemble. Recently,
Du et al. (2023) show that the naive extension of the GCV estimator for the ridge ensemble is
generally inconsistent for a finite ensemble size M > 1, but it becomes consistent again when M
approaches infinity. The follow-up work of Patil and Du (2023) provides certain structural and risk
equivalences between subsampling and ridge regularization. This work identifies an inflation factor
of ∆/M , for some finite bias term ∆ (independent ofM), between the risk of the ensemble at a given
regularization level and full ridge at a larger “induced” regularization level. This inflation vanishes
as M → ∞. Even though GCV is consistent for ridge regression (M = 1) or the infinite-ensemble
ridge (M = ∞), these two works suggest that the naive extension of GCV for finite-ensemble ridge
may be inconsistent for 1 < M <∞.

Comparison with sample splitting and out-of-bag risk estimation. In the context of en-
semble learning, other types of cross-validation methods include the sample-split CV and out-of-bag
CV, which utilize test samples to estimate the out-of-sample risk. The sample-split CV is the most
common strategy for risk estimation (Patil et al., 2023). However, this approach presents several
drawbacks. The estimator can suffer from finite-sample efficiency due to the inherent sample split-
ting: V -fold CV estimates the risk of an estimator trained on (V − 1)n observations only instead
of the risk of the estimator trained on the full dataset of size n. Figure 1 of Rad and Maleki (2020)
provides a clear illustration of this drawback. Furthermore, the accuracy of the estimator can suffer
when dealing with large subsample sizes. On the other hand, Lopes (2019); Lopes et al. (2020);
Du et al. (2024) use out-of-bag risk estimates to extrapolate the risk estimation. Their estimators
provide a more efficient risk estimator without sample splitting but do not perform well with large
subsample sizes, as the out-of-bag sample size becomes small. In light of the aforementioned limi-
tations of existing methods, our aim is to develop a risk estimator that fulfills certain desiderata.
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First, we would like an estimator that does not require sample splitting. This would address the
issue of finite-sample efficiency faced by split cross-validation. Second, we aim to extend the appli-
cability of GCV to accommodate any ensemble size. This would overcome the limitation of GCV
being inconsistent for finite ensembles, as identified in Du et al. (2023). In this paper, we present
two intermediate risk estimators that fulfill both these desiderata, which ultimately lead to our
final corrected GCV.

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we set our notation and define the
ensemble estimators and their prediction risks. In Section 3, we define our risk estimators and
provide a qualitative comparison to other related risk estimators. In Section 4, we provide a
finite-sample analysis under stronger assumptions on the feature and response distributions. In
Section 5, we show that the risk estimators are consistent under mild assumptions on the feature
and response distributions for ridge ensembles. Section 6 concludes the paper and offers several
follow-up directions. Proofs of all the theoretical results are included in the supplement, which also
contains a summary of the notational conventions used throughout the paper. The source code for
generating all the experimental figures in this paper can be accessed at: [code repository].

2 Background

Consider the standard supervised regression setting where we observe n i.i.d. samples {(xi, yi) : i ∈
[n]} in Rp × R, where [n] stands for the index set {1, 2, . . . , n}. Let X ∈ Rn×p denote the feature
matrix whose i-th row contains x⊤

i and y ∈ Rn denote the response vector whose i-th entry is yi.

2.1 Ensemble estimator and prediction risk

For each m ∈ [M ], let Im be a non-empty subset of [n]. Let (XIm ,yIm) denote the corresponding
random design matrix and response vector associated with the subsampled dataset {(xi, yi) : i ∈
Im}. For each of the subsampled datasets (XIm ,yIm) for m ∈ [M ], we consider a penalized least-
squares estimator:

β̂m ∈ argmin
b∈Rp

1

2|Im|
∑
i∈Im

(yi − x⊤
i b)

2 + gm(b) = argmin
b∈Rp

1

2|Im|
∥LIm(y −Xb)∥22 + gm(b) (2)

where gm : Rp → R is a prespecified convex penalty and LIm is the diagonal projection matrix
with entries (LIm)ii = I{i ∈ Im}. Following Stein (1981), we define the degrees of freedom of the
estimator β̂m as:

d̂fm = tr[(∂/∂y)Xβ̂m]. (3)

For the estimator defined in (2) using the full data (xi, yi)i∈[n] with particular choices of the

penalty function g, the quantity d̂f has explicit expressions; see, for example, Zou and Hastie
(2007); Tibshirani and Taylor (2012); Dossal et al. (2013); Vaiter et al. (2012, 2017); Bellec and
Shen (2022)) among others. Table 1 presents the explicit known formulae for the lasso, ridge, and
elastic net.

The ensemble estimator constructed using (2) from the subsample datasets {(XIm ,yIm)}m∈[M ] is
defined as:

β̃M
(
{Im}Mm=1

)
:=

1

M

M∑
m=1

β̂m. (4)
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Table 1: Explicit formulae for the degrees of freedom in (3) of the estimator (2) for commonly used penalty

functions. Here Ŝ = {j ∈ [p] : e⊤j β̂m ̸= 0} is the set of active variables, XŜ is the submatrix of XIm made of

columns indexed in Ŝ. See Zou and Hastie (2007); Tibshirani and Taylor (2012); Dossal et al. (2013); Bellec
and Zhang (2021), among others.

Estimator β̂m Regularizer gm(b) Degrees of freedom d̂fm

Lasso λ∥b∥1 |Ŝ|
Ridge λ

2∥b∥
2
2 tr

[
XIm

(
X⊤
Im

XIm + |Im|λI
)−1

X⊤
Im

]
Elastic net λ1∥b∥1 + λ2

2 ∥b∥22 tr
[
X
Ŝ

(
X⊤
Ŝ
X
Ŝ
+ |Im|λ2I

)−1
X⊤
Ŝ

]
Though it is possible to extend the analysis by using unequal weights for the ensemble estimator
(4), we focus on the equal-weighted ensemble estimator for simplicity; see Remark 4 for more
discussion. For brevity, we will omit the dependency on {Im}m∈[M ] for the ensemble estimator and

simply write β̃M when it is clear from the context. By the linearity property of the trace operator,
the degrees of freedom of the ensemble estimator can be easily shown to be the average of the
individual degrees of freedom:

d̃fM =
1

M

M∑
m=1

d̂fm. (5)

We assess the performance of theM -ensemble predictor β̃M via conditional squared prediction risk:

RM := E(x0,y0)

[
(y0 − x⊤

0 β̃M )2 | (X,y), {Im}Mm=1

]
, (6)

where (x0, y0) is an independent test point sampled from the same distribution as the training
dataset (X,y). Note that the conditional risk RM is a scalar random variable that depends on
both the dataset (X,y) and the random samples {Im : m ∈ [M ]}. Our goal is to construct
estimators for RM that work for all choices of ensemble sizes M .

2.2 GCV for ensemble estimator

Before we delve into our proposed estimators, let us first consider the ordinary Generalized Cross-
Validation (GCV) estimator. Suppose that we have a linear predictor f̂(x) = x⊤β̂ where β̂ is
obtained through (2) based on the dataset (X,y). With the notation d̂f in (1), the ordinary GCV
estimator for the prediction risk of this estimate β̂ is defined as:

R̂gcv =
∥y −Xβ̂∥22/n
(1− d̂f/n)2

. (7)

The numerator of the GCV estimator, representing the average training error, usually underes-
timates the true prediction risk. The denominator of the GCV estimator, smaller than one, is
designed to correct this underestimation. On the other hand, the denominator of the GCV esti-
mator accounts for this training “optimism”. Note that this definition of the degree-of-freedom
adjusted estimator coincides with the classic definition of GCV for linear smoother (Golub et al.,
1979; Craven and Wahba, 1979), where the trace of the smoothing matrix represents the degrees of
freedom of the linear predictor. Existing literature provides a rich theoretical background for the
consistency and efficiency of the ordinary GCV estimator. For instance, its behaviors have been
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analyzed by Bayati and Montanari (2011); Bayati et al. (2013); Miolane and Montanari (2021); Ce-
lentano et al. (2023) for the lasso and in Section 3 of Bellec (2023) for penalized M-estimator. For
ridge regression, Patil et al. (2021) show the uniform consistency of the ordinary GCV even in the
overparameterized regimes when the feature size p is larger than the sample size n. Beyond ridge
regression, the consistency of the estimator (8) is shown to be consistent for other convex penalized
estimators under suitable design conditions, see for example, Bayati and Montanari (2011); Bayati
et al. (2013); Bellec (2023).

Two natural extensions of GCV for bagging can be considered. For the first extension ((8) below),
the subsamples I1, . . . , IM are sampled without looking at the data, and subsequently only the
training data (xi, yi)i∈I1:M is used for training, where I1:M = ∪Mm=1Im. Then, since the training
data is (xi, yi)i∈I1:M , a natural extension of the ordinary GCV for the ensemble estimator (4) is the
following estimator:

∥LI1:M (y −Xβ̃M )∥22/|I1:M |
(1− d̃fM/|I1:M |)2

, (8)

where LI is a diagonal matrix whose i-th diagonal entry is one if i ∈ I and zero otherwise. In the
special case when the ensemble size is M = 1 or the subsample size is k = n, the definition reduces
to the ordinary GCV (7), for which consistency has been established under various settings. For
ensemble size M > 1, there is less understanding of the behaviors of this estimator for general
predictors. However, it is shown to be inconsistent when the ensemble size is M = 2 for ridge
predictors (Du et al., 2023). The inconsistency in large part happens because, for a finite ensemble
size M , the residuals computed using the bagged predictor contain non-negligible fractions of out-
of-sample and in-sample, and all of them are treated equally.

For the second extension, we consider that all data (xi, yi)i∈[n] is used even if some i ∈ [n] does not
belong to any of the subsamples I1, . . . , IM . This leads to the ensemble GCV:

R̃gcv
M =

∥(y −Xβ̃M )∥22/n
(1− d̃fM/n)2

. (9)

As M → ∞ with uniformly sampled I1, . . . , IM , the union I1:M closely approaches the full set
[n] and the difference between (8) and (9) vanishes. Both (8) and (9) are consistent as M tends

to infinity for ridge predictors (Du et al., 2023); namely, R̃gcv
∞

p−→ R∞. For finite ensemble sizes,
however, (9) is generally preferred over (8) because one may gain efficiency from more observations
(except when considering ensemble sizes that are neither extremely large nor when considering
no ensemble). As we will show in Theorem 3, the ensemble GCV estimator, as defined in (9), is
generally inconsistent for finite ensemble sizes. The primary goal of this paper is to fully understand
this phenomenon, correct the inconsistency of GCV estimate (9), and develop a risk estimator that
is consistent for all ensemble sizes M .

3 Proposed GCV correction

In this section, we aim to address the limitations of the naive GCV estimators (8) and (9), which,
as we demonstrate, fail to produce consistent estimates for the true prediction risk (6) under
finite ensemble sizes M > 1. By introducing term-by-term adjustments for each term of the
decomposition (10) below, we derive corrected and consistent risk estimators that hold for any
ensemble size M .
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3.1 Intermediate risk estimators

We begin by considering the decomposition of (6) into its constituent components. The motivation
behind our proposed risk estimators stems from this decomposition. It is easy to see that the risk
of the M -ensemble estimator can be decomposed as follows:

RM =
1

M2

∑
m,ℓ∈[M ]

Ex0,y0

[
(y0 − x⊤

0 β̂m)(y0 − x⊤
0 β̂ℓ) | (X,y), {Im, Iℓ}

]
=

1

M2

∑
m,ℓ∈[M ]

(β̂m − β0)
⊤Σ(β̂ℓ − β0) + σ2︸ ︷︷ ︸
Rm,ℓ

. (10)

Here, β0 := E[x0x
⊤
0 ]

−1E[x0y0] denotes the coefficient vector of linear projection of y0 onto x0, and
σ2 := E[(y0−x⊤

0 β0)
2] denotes the energy in the residual component in the response. As indicated in

(10), we will denote the component in the risk decomposition corresponding to β̂m and β̂ℓ by Rm,ℓ.
The fundamental idea behind our risk estimators is to estimate each component Rm,ℓ individually.
The final risk estimator is then the sum of these estimated risk components.

We propose an adjustment for each term Rm,ℓ in the risk decomposition, which leads to a
√
n-

consistent estimator. This adjustment is a key component of our proposed risk estimators and
contributes to their improved performance over the ordinary GCV estimator. Before we present
the corrected GCV estimators, we first introduce two intermediate estimators that give rise to our
final correction.

Estimator using overlapping observations. Our first estimator is defined as analogous to RM ,
with each of Rm,ℓ replaced by its estimate R̂ovlp

m,ℓ defined below:

R̃ovlp
M =

1

M2

∑
m,ℓ∈[M ]

R̂ovlp
m,ℓ , R̂ovlp

m,ℓ =
(yIm∩Iℓ −XIm∩Iℓβ̂m)

⊤(yIm∩Iℓ −XIm∩Iℓβ̂ℓ)/|Im ∩ Iℓ|
(1− d̂fm/|Im|)(1− d̂fℓ/|Iℓ|)

. (11)

Here, the superscript “ovlp” is used because the numerator of R̂ovlp
m,ℓ uses only the overlapping

observations of subsets Im and Iℓ when computing the residuals. In contrast, our next estimator
will use all the available observations when computing similar residuals.

The intuition behind the ovlp-estimator (11) is that the summand in (11) is consistent for the cor-
responding summand in (10). This result is already known for m = ℓ under suitable conditions; see,
for example, Bellec (2023) and references therein. In the present paper, we extend this consistency
result from m = ℓ to any pair of (m, ℓ)m,ℓ∈[M ], see Theorem 1 for a formal statement.

Remark 1 (Special cases of the ovlp-estimator). We consider two special cases under equal sub-
sample sizes with |Im| = k for all m ∈ [M ]: (a) When k = n, the estimator in (11) matches with

ordinary GCV estimator (7), which is consistent. (b) When M = 1, notice that R̃ovlp
M is equal to

the GCV in (8) restricted to k subsampled observations. Thus, (11) is consistent for M = 1.

It is worth noting that the definition of the ovlp-estimator implicitly requires |Im ∩ Iℓ| > 0, which
necessitates a large enough subsample size k to guarantee the overlapping sets Im ∩ Iℓ are not
empty. Furthermore, when the regularization is near zero (e.g., in ridgeless estimators), the term
1− d̂fm/|Im| in the denominator can approach zero, further degrading the estimator’s performance.
To address these shortcomings, it is beneficial to use data from both Im and Iℓ, as well as other
observations, to estimate the individual terms in the decomposition (10). This motivates us to
construct the next estimator.

10



Estimator using all observations. We propose the following estimator, which estimates each of
Rm,l using all the data (X,y). The expression is given below:

R̃full
M =

1

M2

∑
m,ℓ∈[M ]

R̂full
m,ℓ, R̂full

m,ℓ =
(y −Xβ̂m)

⊤(y −Xβ̂ℓ)/n

1− d̂fm/n− d̂fℓ/n+ (d̂fmd̂fℓ/|Im||Iℓ|) · |Im ∩ Iℓ|/n
. (12)

In contrast to the “ovlp” estimator in (11), we use superscript “full” in (12), which refers to
the risk estimator that uses all the available observations (y and X are used in the numerator
to compute residuals). Because the two intermediate estimators use different proportions of the
samples to quantify the optimism, they require different degrees of freedom adjustments presented
in the denominators.

Compared to R̃ovlp
M , the full-estimator offers several advantages. Firstly, it utilizes all available

data, which is beneficial, especially when the subsample sizes |Im| and |Iℓ| are small, or the union
of subsets is limited. Secondly, its denominator is lower bounded by a positive constant, ensuring
numerical stability, especially for base estimators with regularization close to zero. It is worth
noting that hybrid estimators can be constructed that utilize data points in a range between the
extreme cases of the intersection and the full set of observations. We will not focus on such hybrid
strategies in this paper.

Remark 2 (Special cases of the full-estimator). As with Remark 1, we consider two special cases:
(a) When k = n, observe from (13) that (12) matches with (9), which is consistent, as argued
previously. (b) When M = 1, the full-estimator in (12), reduces to:

R̃full
1 =

(y −Xβ̃1)
⊤(y −Xβ̃1)/n

1− 2d̃f1/n+ (d̃f1)2/(kn)
(13)

=
(y −Xβ̃1)

⊤L1(y −Xβ̃1)/n+ (y −Xβ̃1)
⊤L1c(y −Xβ̃1)/n

1− 2d̃f1/n+ (d̃f1)2/(kn)
, (14)

where L1c = In − L1 and L1 = LI1 for brevity. To see that (13) is consistent for any subsample
size k, from the consistency of ordinary GCV for a single base predictor and no bagging, with
observations (xi, yi)i∈I1 and sample size k = |I1|, from Section 3 of Bellec (2023), we have

(y −Xβ̃1)
⊤L1(y −Xβ̃1)/k

(1− d̃f1/k)2R1

p−→ 1, (15)

where R1 is the risk of β̃1. Moreover, by the law of large numbers as (n− k) → ∞,

(y −Xβ̃1)
⊤L1c(y −Xβ̃1)

R1(n− k)

p−→ 1. (16)

Writing (15) and (16) as 1 + oP(1) and substituting into (14), we get that

R̃full
1

R1
=

[1 + oP(1)] · (1− d̃f1/k)
2 · (k/n) + [1 + oP(1)] · (n− k)/n

1− 2d̃f1/n+ (d̃f1)2/(kn)

p−→ 1.

3.2 Corrected GCV for ensembles

Though the two intermediate estimators are consistent, the nature of the term-by-term correction
requires enumeration over all pairs of m, ℓ ∈ [M ]. This quadratic complexity in M prevents them
from being computationally tractable and practical for large M . To mitigate the computational
drawbacks of the intermediate estimators, we further propose a corrected GCV estimator as below.
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Figure 2: Illustration of the corrected generalized cross-validation for subsampled ensembles with equal
subsample sizes k.

Definition 1 (Corrected GCV for ensemble estimator). The corrected GCV estimator for ensemble
size M is defined as:

R̃cgcv,ovlp
M =

∥y −Xβ̃M∥22/n
(1− d̃fM/n)2︸ ︷︷ ︸

R̃gcv
M

− 1

M

{
(d̃fM/n)

2

(1− d̃fM/n)2

1

M

∑
m∈[M ]

(
n

|Im|
− 1

)
R̂ovlp
m,m

}
︸ ︷︷ ︸

correction

. (17)

We will also consider the alternative expression:

R̃cgcv,full
M =

∥y −Xβ̃M∥22/n
(1− d̃fM/n)2︸ ︷︷ ︸

R̃gcv
M

− 1

M

{
(d̃fM/n)

2

(1− d̃fM/n)2

1

M

∑
m∈[M ]

(
n

|Im|
− 1

)
R̂full
m,m

}
︸ ︷︷ ︸

correction

, (18)

where the only difference is the use of R̂full
m,m instead of R̂ovlp

m,m in the rightmost sum in (18).

The evaluation of (18) (and (17)) only requires computing three components: (1) the full training
of the ensemble estimator; (2) the average d̃fM defined in (5); and (3) the correction term that is
built on the intermediate estimators. More importantly, this proposed estimator can be evaluated
only in linear time with respect to M . See Figure 2 for an illustration of computing (18).

The correction term in (18) is derived from the insights gained through the intermediate estima-

tors R̃ovlp
M and R̃full

M . It allows us to alleviate the computational challenges posed by the pairwise
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enumeration in the intermediate estimators, leading to an estimator that retains the advantages
of both while being more computationally tractable. While the correction is defined with respect
to GCV in (9), one can also derive another correction with respect to (8). We prefer to present
the correction with respect to (9) because it leads to a slightly simpler expression and because, in
this case, the correction is always positive. Our theoretical results in the next section show the
corrected GCV estimator (18) is consistent (Theorem 2), and the naive extension of GCV in (9)
over-estimates the risk with positive probability (Theorem 3).

Remark 3 (Special cases of corrected GCV). As with Remarks 1 and 2, we consider two special
cases: (a) When k = n, observe that the correction term is zero and the first term R̃gcv

1 is consistent

as argued previously; thus, R̃cgcv,full
M is consistent. (b) When M = 1, it is also not hard to see that

R̃cgcv,full
1 is consistent. As argued in Section 3.1, both R̂ovlp

1,1 and R̂full
1,1 are consistent. Now writing

(15) and (16) as 1 + oP(1),

R̃cgcv,full
1

R1
=

[1 + oP(1)](1− d̃f1/k)
2k/n+ [1 + oP(1)](n− k)/n

(1− d̃f1/n)2
− [1 + oP(1)](d̃f1/n)

2(n− k)/k

(1− d̃f1/n)2
p−→ 1.

Here, the last equality follows because

k

n
(1− d̃f1/k)

2 +
n− k

n
− n− k

k
(d̃f1/n)

2 = 1− 2d̃f1/n+ d̃f21/(kn)−
n− k

k
(d̃f1/n)

2

= 1− 2d̃f1/n+ d̃f21/n
2 = (1− d̃f1/n)

2.

Remark 4 (Unequal weighted ensemble). When defining the ensemble estimator in (4) with un-
equal weights, one can derive a similar corrected GCV estimator. This requires modifying the risk
expansion in (10) and using the intermediate estimators presented in Section 3.1. For simplicity,
we present and analyze the corrected GCV with equal weights. Because the individual estimators
are i.i.d. conditioned on data, among all choices of deterministic weights that sum to 1, the optimal
combination of weights is simply 1/M for the lowest expected risk.

One way to see this is to note that, since the penalties g1, . . . , gM are the same, the component
estimators β̂1, . . . , β̂M are exchangeable. Because of exchangeability, for weights (w1, . . . , wM ),
the expected risk is a convex polynomial of degree 2 that is invariant by permutation of the M
inputs. By symmetry, a minimum is achieved at equal weights w1 = · · · = wM . Indeed, if
a minimum is achieved at w∗

1, . . . , w
∗
M , it is also achieved at the average over all permutations

1
M !

∑
π(w

∗
π(1), . . . , w

∗
π(M)) by Jensen’s inequality, and this average is proportional to (1, 1, . . . , 1).

More broadly, this is a consequence of the Purkiss Principle (Waterhouse, 1983). Thus, if we
further restrict the weights to sum to 1, the optimal choice for each weight is 1/M .

Our goal in the rest of the paper is to establish consistency properties of the corrected GCV for
any M and to provide convergence rates under various assumptions on the data and component
estimators. We will provide a non-asymptotic analysis in Section 4 and an asymptotic analysis in
Section 5. In both sections, we assume the following sampling scheme.

Assumption A (Sampling strategy). The subsample sets {Im}Mm=1 are independent of (X,y)
and i.i.d., uniformly distributed over subsets of [n] with cardinality k.

Before we dive into our analysis, it is worth reiterating that the intermediate estimators (11)
and (12) are defined for ensembles fitted on subsamples DIm for m ∈ [M ] of arbitrary sizes and
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component estimators fitted on different penalty functions gm for m ∈ [M ]. While our proofs are
simplified by assuming equal subsample sizes, this condition can be relaxed for certain theoretical
claims to follow in Section 4.1. The formulation of the modified GCV, on the other hand, assumes
that the same penalty function is used for estimators across subsamples and that subsample sizes
do not vary much to ensure the validity of certain degrees of freedom concentrations, as we will
explain in Section 4.2.

4 Non-asymptotic analysis for general ensembles

In this section, we provide a non-asymptotic analysis of the estimators introduced in the previous
section. Our analysis is applicable to general convex penalized estimators such as ridge regression
and elastic net, among others.

To facilitate our analysis, we will need to impose certain assumptions on the data generation
process. Specifically, we will assume Gaussian features and linear models as encapsulated in the
assumptions below. These assumptions serve as a starting point but are not indispensable for more
specialized estimators, as we discuss in Section 5.

Assumption B (Feature structure). The design matrix X ∈ Rn×p has i.i.d. rows xi for i ∈ [n]
each drawn from a Gaussian distribution: xi ∼ N (0,Σ).

Assumption C (Response structure). The response vector y has i.i.d. entries yi for i ∈ [n]
each drawn from a linear model with Gaussian noise: yi = x⊤

i β0 + εi, where εi ∼ N (0, σ2) is
independent of xi.

Although these assumptions may appear restrictive, they serve to simplify our analysis and enable
us to derive the estimate of risk as well as prove explicit non-asymptotic bounds. These assumptions
can be substantially relaxed for specialized base estimators. In Section 5, we will demonstrate that
we can significantly relax these assumptions by focusing on a specific base estimator of ridge(less)
regression.

Assumption D (Penalty structure). The penalty function gm : Rp → R in (2) is µ-strongly
convex with respect to Σ for µ > 0, i.e., the function b 7→ gm(b) − (µ/2)b⊤Σb is convex in
b ∈ Rp.

If gm is twice continuously differentiable, Assumption D is equivalent to infb∈Rp ∇2gm(b) ⪰ µΣ,
where ∇2gm(b) ∈ Rp×p is the Hessian matrix. For instance, if gm(b) = b⊤Σwb/2 (general-
ized ridge penalty) with a positive definite matrix Σw ∈ Rp×p, Assumption D holds with µ =
σmin(Σw)/σmax(Σ). In particular, µ = λ/σmax(Σ) when gm(b) = λ∥b∥22/2. Note that the strong
convexity penalty guarantees a certain differentiable structure of the penalized least-squares es-
timator (2) with respect to (X,y) (see, for example, Theorem 1 of Bellec and Shen (2022) and
Appendix A.1), which helps us in the proof to bound certain quantities in terms of µ. This strong
convexity assumption can be relaxed in certain cases, including the lasso gm(b) = λ∥b∥1, as studied
in Celentano et al. (2023); Bellec (2023); however, the proof argument will be largely different from
the proof used in the current paper. Finally, note that in the case of p/n < 1, if the smallest
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eigenvalue of Σ is uniformly lower bounded by a constant away from 0, then the strongly convex
assumption is not needed; we only need the penalty to be convex. For an explicit statement and
proof of this fact in the context of Theorem 1, see Appendix A.7.

4.1 Guarantees for intermediate risk estimators

Our first result provides a non-asymptotic guarantee on the intermediate estimators. Recall the
notation in (10): the estimation target is RM =M−2

∑
m,ℓRm,ℓ, where Rm,ℓ = (β̂m−β0)

⊤Σ(β̂ℓ−
β0) + σ2. For notational convenience, we introduce the following notation for each m, ℓ ∈ [M ],

dovlpm,ℓ := |Im ∩ Iℓ|
(
1− d̂fm

|Im|

)(
1− d̂fℓ

|Iℓ|

)
, dfullm,ℓ := n− d̂fm − d̂fℓ +

d̂fmd̂fℓ
|Im||Iℓ|

|Im ∩ Iℓ|, (19)

which are the denominators in the definitions of R̂ovlp
m,ℓ and R̂full

m,ℓ in (11) and (12). Now, we are

ready to provide the theoretical results of R̂ovlp
m,ℓ and R̂full

m,ℓ in Theorem 1.

Theorem 1 (Finite-sample bounds for intermediate estimators). Suppose Assumptions A–D
hold. Let c = k/n, γ = max(1, p/n), and τ = min(1, µ). Then there exists an absolute constant
C > 0 such that the following holds:

E
[∣∣∣dovlpm,ℓ

n
·
R̂ovlp
m,ℓ −Rm,ℓ√
Rm,mRℓ,ℓ

∣∣∣] ≤ C
γ7/2

τ2c3
√
n
, E

[∣∣∣dfullm,ℓ

n
·
R̂full
m,ℓ −Rm,ℓ√
Rm,mRℓ,ℓ

∣∣∣] ≤ C
γ5/2

τ2c2
√
n
. (20)

Furthermore, if the same penalty gm is used for subsample estimate (2) across all m ∈ [M ],
for any ϵ ∈ (0, 1), we have

P
(∣∣∣1− R̃ovlp

M

RM

∣∣∣ > ϵ

)
≤ C

M3γ11/2

ϵτ4c7
√
n
, P

(∣∣∣1− R̃full
M

RM

∣∣∣ > ϵ

)
≤ C

M3γ9/2

ϵτ4c2
√
n
. (21)

Thus, if (M,µ−1, p/n, n/k) are bounded from above by a constant independent of n, we have

R̃ovlp
M /RM = 1 +OP(n

−1/2), R̃full
M /RM = 1 +OP(n

−1/2).

Theorem 1 shows the rate of convergence for both the ovlp- and full-estimator are n−1/2. Fixing
other problem parameters (τ, c, γ,M), this bound in n−1/2 is tight up to constants; e.g., see argu-
ment around equation (2.6) of Bellec (2023) in the case of M = 1 and the Ordinary Least-Squares.

It is worth noting that the upper bounds regarding R̃ovlp
M and R̃full

M in (20) and (21) are slightly
different, especially in the dependence of the ratio c = k/n and γ; the upper bounds of the full-
estimator are tighter than the ovlp-estimator in terms of its dependencies on c and γ. While these
upper bounds may not be optimal in the dependence on c and γ, we empirically observe that the
relative error of the full-estimator is smaller than the ovlp-estimator, especially when c is small—see
Figure 3. We do not claim that the dependence on the parameter M is tight; rather, it appears to
be an artifact of our proof technique. Specifically, while the current bound suggests thatM ≪ n1/6

is needed for the bound to approach zero, this condition is not necessary in practice. Empirical
results in Section C.6 indicate that the proposed estimators perform well for all values of M . A
major improvement for the current polynomial dependence in M would come from replacing the
bounds (20) by novel exponential probability bounds for a single pair (m, ℓ) ∈ [M ]2. Union bounds
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over [M ]2 pairs would then only induce a logarithmic dependence in M . Exponential bounds for
the risk ∥Σ1/2(β̂m − β0)∥2 and the residual ∥y −Xβ̂m∥2 are available, thanks to the CGMT (Ce-
lentano et al., 2023; Loureiro et al., 2021). To derive exponential bounds for (21), one would also
need similar exponential concentration bounds for the inner products (β̂m − β0)

⊤Σ(β̂ℓ − β0) and
for the degrees of freedom d̂fm. One avenue to obtain exponential bounds for the inner products
is the conditional Gordon inequality developed in (Celentano and Montanari, 2021, Lemma F.2
and appendix L). On the other hand, we are not aware at this point of any tool that can provide
exponential inequalities for the degrees of freedom d̂fm, except in the special case of the Lasso (Ce-
lentano et al., 2023, Theorem 8). The reason that the Lasso case is special and that this argument
does not generalize to penalty functions different from the ℓ1 norm is discussed in (Bellec, 2023,
around equation (3.8)).

Note that the guarantees in Theorem 1 are in a multiplicative form. This is preferable to the more
common additive bounds because, in the regimes we study, the risk RM may have varied scales
with different subsample sizes; for example, when the subsample size is near the feature size and
the regularization parameter is small, in which cases the risk can be high (Patil et al., 2023). It is
also worth noting that we do not assume either the pure signal energy (i.e., ∥β0∥22) or the effective
signal energy (i.e., ∥Σ1/2β0∥22) is bounded. This is possible because of the multiplicative bounds.

Remark 5 (Diminishing strong convexity parameter). The upper bounds in (20) and (21) give
explicit dependence on the strong convexity parameter µ of Assumption D through τ = min(1, µ).
Our results thus allow to choose µ decreasing in n, for instance µ = n−1/8−ϵ is sufficient to ensure
that the upper bounds of (20) and (21) go to 0 as n→ ∞ whileM, c−1, γ are bounded by constants.

Remark 6 (Extensions beyond strongly convex regularizers). Without any strong convexity as-
sumption on the penalty (i.e., µ = 0), results such as Theorem 4 for M = 1 cannot be established
using known techniques even for the well-studied lasso, unless additional assumptions are made
on the subsample size. In particular, Proposition 4 of Celentano et al. (2023) shows that in the
current proportional asymptotic regime with n ≍ p, the risk of a single lasso may be unbounded
if the number of samples used to train the lasso falls below the Donoho-Tanner phase transition
described in Section 3 of (Celentano et al., 2023). While the consistency of GCV for a single lasso
is a consequence of this theory above this phase transition (Celentano et al., 2023, Theorem 9),
below the phase transition both ∥Σ1/2(β̂ − β0)∥2 and 1/(1− d̂f/n) are unbounded for certain β0.
Furthermore, the constants appearing in the upper bounds in Celentano et al. (2023) explode as the
sample size approaches the phase transition. We are not aware of any currently known techniques
suitable for studying GCV below this phase transition, and we believe new ideas are needed. Thus,
in the present context, where we subsample Im of size k = |Im|, small values of k would eventually
fall below the phase transition, in which case the theoretical analysis of bagging GCV is currently
out of reach.

We numerically compare the performance of the ovlp- and full-estimators for the ridge ensemble in
Figure 3. It is clear that the relative error of the full-estimator is smaller than the ovlp-estimator
across different subsample size k and tuning parameter λ, especially when k is small and the tuning
parameter λ is small. We also observe that, as k increases towards the full sample size n, the
performance of ovlp-estimator and full-estimator are getting closer; this makes sense because the
expressions of ovlp-estimator and full-estimator will be the same when k = n. For comparison
between the ovlp- and full-estimators in the context of the elastic net ensemble and the lasso
ensemble, we observe a similar comparative trend, and the results are shown in Appendix C.1.
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Figure 3: Full-estimator R̃full
M performs better than ovlp-estimator R̃ovlp

M across different regu-
larization and for small subsample size k. Plots of relative errors of the “ovlp” and “full” estimators
for ridge ensemble with ensemble size M = 10. The left panel shows the results with ridge penalty λ = 1
and varying subsample size k. The right panel shows the results with subsample size k = 300 and varying
ridge penalty λ. The data generating process is the same as in Figure 1. More details on the experimental
setup can be found in Section 4.4.

4.2 Guarantees for corrected GCV

The next result provides non-asymptotic guarantees for corrected GCV. Recall the form of the two
variants of CGCV, R̃cgcv,full

M and R̃cgcv,ovlp
M from (18) and (17), respectively:

R̃cgcv,#
M :=

∥y −Xβ̃M∥22/n
(1− d̃fM/n)2

− (d̃fM/n)
2

(1− d̃fM/n)2

1

M2

(n
k
− 1
) M∑
m=1

R̂#
m,m,

where # ∈ {full, ovlp}, depending on which estimate is used in the rightmost sum to estimate
Rm,m.

Theorem 2 (Finite-sample bounds for corrected GCV). Suppose Assumptions A–D hold. Let
c = k/n, γ = max(1, p/n), and τ = min(1, µ). Assume that the same penalty gm is used for
each m ∈ [M ] in (2). Then, for any ϵ ∈ (0, 1), there exists an absolute constant C > 0 such
that the following holds:

P
(∣∣∣1− R̃cgcv,ovlp

M

RM

∣∣∣ > ϵ
)
≤ C

M4γ15/2

ϵτ6c6
√
n
, P

(∣∣∣1− R̃cgcv,full
M

RM

∣∣∣ > ϵ
)
≤ C

M4γ13/2

ϵτ6c4
√
n
. (22)

Thus, if (M,µ−1, p/n, n/k) are bounded by constants independent of n, we have

R̃cgcv,ovlp
M /RM = 1 +OP(n

−1/2), R̃cgcv,full
M /RM = 1 +OP(n

−1/2).

The upper bounds presented in Theorem 2 provide dependence of the accuracy of corrected GCV
on several problem parameters, such as M , τ , c, and γ. The key message of Theorem 2 is that the
corrected GCV estimators (both R̃cgcv,ovlp

M and R̃cgcv,full
M ) enjoy the rate of convergence n1/2. As

expected, numerical comparisons show that full-CGCV outperforms ovlp-CGCV, see Figures 11–13.
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Remark 7 (GCV is consistent for infinite ensembles). Note that forM → ∞, it is easy to show that

the correction term becomes 0 if 1− d̃fM/n ≥ δ for some positive constant δ and M−1
∑M

m=1 R̂
#
m,m

is bounded from above. A special case of this result for ridge ensemble is proved in Du et al. (2023).
While this literature showed that GCV is not consistent for ridge ensemble withM = 2, our results
imply more than inconsistency by providing the correction term to make GCV consistent, and our
results are applicable not only to ensemble ridge estimates but also to ensembles of any strongly-
convex regularized least-squares, including elastic net estimates. In the next theorem, we show that
GCV is inconsistent by providing a lower bound of the relative error of the GCV estimator.

Theorem 3 (Inconsistency of GCV for finite ensembles). Suppose Assumptions A–D hold,
and assume that the same penalty gm is used for each m ∈ [M ] in (2). Let c = k/n, γ =
max(1, p/n), τ = min(1, µ). Then, there exists an absolute constant C > 0 such that the
following holds: The probability that R̃gcv

M in (9) over-estimates the risk RM is lower bounded
as:

for all δ ∈ (0, 1), P
(
R̃gcv
M

RM
≥ 1 + δ2

c(1− c)

2M

)
≥ P

(
d̃fM
k

≥ δ

)
− C

M5γ15/2√
nτ5c5(1− c)δ2

.

Therefore, if there exists a positive constant δ0 independent of n such that P(d̃fM/k ≥ δ0) ≥
δ0, and {M,µ−1, p/n, c−1, (1 − c)−1} are bounded by a constant independent of n, R̃gcv

M is
inconsistent and over-estimates the risk RM with positive probability, in the sense that

lim inf
n→∞

P
(
R̃gcv
M

RM
≥ 1 +

δ20c(1− c)

2M

)
≥ δ0.

In the context of ridge ensembles, Du et al. (2023) show that the GCV variant (8) is not consistent
when ensemble size isM = 2. It is possible to extend the inconsistency results for the variant (8) for
finite ensemble sizes greater than 1. We provide numerical experiments showing the inconsistency
of this variant in Appendix C.7. As discussed in Section 2.2, for a moderate ensemble size M
and subsample size k, we expect the GCV variant (8) to behave similarly to (9). Furthermore, the
inconsistency of GCV implied by Theorem 3 applies even for other penalized least-squares estimator
(2), extending the previous result to more generality.

Remark 8 (On the assumption of non-negligibility of degrees of freedom). We argue here that
assumption P(d̃fM/k > δ0) > δ0 in Theorem 3 is unavoidable. If no such constant δ0 exists as

n, p, k → ∞, by extracting a subsequence if necessary, we may assume d̃fM/k
p−→ 0. Herein, let

m ∈ [M ] be fixed (e.g., take m = 1 throughout this remark). Then the positiveness of (d̂fm)
M
m=1

(see (30) in Lemma 7) implies d̂fm/k ≤ M · d̃fM/k = op(1). The fact that GCV is consistent

for β̂m, combined with d̂fm/k
p−→ 0, gives k−1

∑
i∈Im(yi − x⊤

i β̂m)
2/Rm,m

p−→ 1. Now consider the

deterministic β̄ defined as β̄ = argminb∈Rp(σ2 + ∥Σ1/2(β0 − b)∥22)/2 + gm(b), where we replaced
the objective function in (2) inside the minimum by its expectation. The strong convexity of the
objective function of β̄ and the optimality condition of β̂m give

µ∥Σ1/2(β̂m − β̄)∥22 ≤
[
∥Σ1/2(β̂m − β0)∥22 + σ2

]
−
[
∥Σ1/2(β̄ − β0)∥22 + σ2

]
+ 2(gm(β̂m)− gm(β̄)),

0 ≤ −∥LIm(y −Xβ̂m)∥22/k + ∥LIm(y −Xβ̄)∥22/k + 2(gm(β̄)− gm(β̂m)).

Summing these two inequalities, the penalty terms cancel out, and using the law of large numbers
for ∥Lm(y−Xβ̄)∥22/k, we get ∥Σ1/2(β̂m−β̄)∥22 ≤ oP(1)[σ

2∥Σ1/2(β̂m−β0)∥22+σ2∥Σ1/2(β̄−β0)∥22] so
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that ∥Σ1/2(β̂m − β̄)∥22/[σ2 + ∥Σ1/2(β̄−β0)∥22]
p−→ 0. This means according to the norm ∥Σ1/2(·)∥2,

β̂m behaves like the point mass β̄ up to a negligible multiplicative factor. This contradicts the
typical asymptotics seen in the proportional regime with p ≍ n (Bayati and Montanari, 2011;
Thrampoulidis et al., 2018; Miolane and Montanari, 2021; Loureiro et al., 2022; Celentano et al.,
2023; Wang et al., 2020, among others), so that the assumption P(d̃fM/k > δ0) > δ0 is intrinsic to
the proportional regime assumed throughout the paper.

4.3 Proof outlines

In this section, we provide the proof outlines and the ideas that lead to the definition of the ovlp
and full estimators. Then we provide a heuristic derivation of the corrected GCV estimator from
the full estimator.

By the risk decomposition (10), it is sufficient to study a single term in the double sum over [M ]2

and to focus on two estimators β̂ and β̃, trained respectively on subsampled datasets (xi, yi)i∈I
and (xi, yi)i∈Ĩ for two subsets I ⊂ [n] and Ĩ ⊂ [n] independent of (X,y), that is,

β̂ := argmin
β∈Rp

1

k

∑
i∈I

(yi − x⊤
i β)

2 + g(β), and β̃ := argmin
β∈Rp

1

k

∑
i∈Ĩ

(yi − x⊤
i β)

2 + g̃(β).

To study the success or failure of GCV in (7) or (8), it is natural to study the inner products
between the residuals of β̂ and β̃, of the form∑

i∈J

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)

(23)

for some subset J ⊂ [n], as such inner products naturally appear by expanding the square in the
numerators of the GCV estimates in (7) or (8). There are several natural candidates for the set J
of observations to use in the inner product above, including J = [n] or J = ∪m∈[M ]Im, or, as we

study specific estimators trained over I and Ĩ, the intersection I ∩ Ĩ as well as I or Ĩ themselves.
The following proof sketch explains why the intermediate estimators (11)-(12) were defined in this
manner, including the choice of set J in residual inner products of the form (23) and the various
degrees of freedom adjustments visible in the denominators of (11)-(12).

The ovlp estimator. Define Vii = 1 − ∂x⊤
i β̂
∂yi

as well as Ṽii = 1 − ∂x⊤
i β̃
∂yi

for all i ∈ [n]. The

degrees of freedom for the individual estimators β̂ and β̃ are given by d̂f = |I| −
∑

i∈I Vii and

d̃f = |Ĩ| −
∑

i∈Ĩ Ṽii, respectively. By variants of Stein’s formula with respect to (X, ϵ) formally
stated in Lemmas 8 and 9, the inner product (23) is well approximated as follows,∑

i∈J

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)

≈ −
( d̃f

|Ĩ| − d̃f

) ∑
i∈J∩Ĩ

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
+
(∑
i∈J

Vii

)(
σ2 + (β̂ − β0)

⊤Σ(β̃ − β0)
)
.

(24)
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The right-most term is the unknown quantity of interest, (σ2+(β̂−β0)
⊤Σ(β̃−β0)), that appears

in the risk decomposition (10). This motivates rearranging (24) as(∑
i∈J

Vii

)(
σ2 + (β̂ − β0)

⊤Σ(β̃ − β0)
)

≈
∑
i∈J

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
+
( d̃f

|Ĩ| − d̃f

) ∑
i∈J∩Ĩ

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
.

(25)

Now, to simplify the second line in (25), we consider J ⊂ [n] such that J = J ∩ Ĩ (e.g., J = I ∩ Ĩ
or J = Ĩ), so that the second line simplifies to

( |Ĩ|
|Ĩ|−d̃f

)∑
i∈J
(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
. Dividing both

sides by (
∑

i∈J Vii) then gives an estimator of the prediction risk. Specifically, we first consider

J = I ∩ Ĩ. If given (|Ĩ ∩ I|, I) the intersection Ĩ ∩ I is uniformly distributed over subsets of I with
cardinality |Ĩ ∩ I|, then Lemma 21 (on the concentration of sampling without replacement) gives

1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

Vii ≈
1

|I|
∑
i∈I

Vii = 1− d̂f

|I|

to approximate the factor in front of (σ2+(β̂−β0)
⊤Σ(β̃−β0)). Combining these approximations

with J = I ∩ Ĩ yields

|I ∩ Ĩ|
(
1− d̂f/|I|

)(
σ2 + (β̂ − β0)

⊤Σ(β̃ − β0)
)
≈ 1

1− d̃f/|Ĩ|

∑
I∩Ĩ

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
,

which gives rise to the definition of overlapping estimator (11). The superscript “ovlp” in (11)
indicates that only overlapping observations are used in the residual inner product. These successive
approximations motivate the definition of Rem1,Rem2,Rem3 in (32) of the formal proof of Theorem 1
for the “ovlp” estimator.

The full estimator. When the subsample size is small, the choice of J = I∩Ĩ may not be desirable
because it only uses residuals of the overlapping data, and J can be an empty set when I and Ĩ
are disjoint. Observations that are neither in I nor in Ĩ, i.e., i ∈ [n] \ (I ∩ Ĩ) would be particularity
useful since they produce exactly unbiased estimates, with E[(yi − x⊤

i β̂)(yi − x⊤
i β̃) | (β̂, β̃)] =

σ2 + (β̂ − β0)
⊤Σ(β̃ − β0) for i /∈ I ∩ Ĩ by independence. Ideally, in order to reduce variance, we

would leverage a residual inner product over all [n] samples. This motivates us to consider the
approximation (24) with J = [n] and J = Ĩ. By choosing a specific weighted combination of these
two approximations that make all residual inner product over Ĩ cancel out, we are left with an
approximation between the residual inner product over [n] and the target of interest, namely,

∑
i∈[n]

(
yi − x⊤

i β̂
)(
yi − x⊤

i β̃
)
≈
[
− d̃f

|Ĩ|

(∑
i∈Ĩ

Vii

)
+
(∑
i∈[n]

Vii

)](
σ2 + (β̂ − β0)

⊤Σ(β̃ − β0)
)
.

If I and Ĩ are two different independent subsets Im, Iℓ (corresponding to an off-diagonal term
m ≤ ℓ in (10)), then by the independence of Ĩ and (Vii)i∈[n] the concentration of sampling without

replacement in Lemma 21 further gives 1

|Ĩ|

∑
i∈Ĩ Vii ≈

1
n

∑n
i=1 Vii = 1 − d̂f/n so that the square

bracket factor on the right-hand side simplifies to n(−d̃f/n(1− d̂f/n)+1− d̂f/n) = n(1− d̃f/n)(1−

20



d̂f/n). This is only valid if I and Ĩ are independent. On the other hand, if I = Ĩ, (corresponding
to a diagonal term m = ℓ in (10)), then 1

|Ĩ|

∑
i∈Ĩ Vii = 1 − d̂f/|I| and the square bracket above

equals n−2d̂f+ d̂f2/k. This means that a different correction needs to be used for the diagonal and
off-diagonal terms. These approximations motivate the definition of the “full” estimator in (12).

The CGCV estimator. Next, we provide some heuristics behind the derivation of the corrected
GCV from the full estimator. The key ingredients are the concentration of |Im ∩ Iℓ| and d̂fm below
(formally stated in Lemma 22 and Lemma 13, respectively):

|Im ∩ Iℓ| ≈
|Im||Iℓ|
n

for all m ̸= ℓ, d̂fm ≈ d̃fM =
1

M

∑
m′∈[M ]

d̂fm′ for all m.

By those concentration properties, we observe that dfullm,ℓ, the denominator in the full-estimator
defined in (19), has the following approximation depending on whether m = ℓ or not:

dfullm,ℓ

n
≈


1− 2

d̃fM
n

+

(
d̃fM
n

)2

if m ̸= ℓ

1− 2
d̃fM
n

+

(
d̃fM
n

)2 n

|Im|
if m = ℓ

=

(
1− d̃fM

n

)2

+ 1{m=ℓ}

(
n

|Im|
− 1

)(
d̃fM
n

)2

.

Combining the above display and R̂full
m,ℓ ≈ Rm,ℓ by (20), we have

∥y −Xβ̃M∥22
n

=
1

M2

∑
m,ℓ

(y −Xβ̂m)
⊤(y −Xβ̂ℓ)

n
=

1

M2

∑
m,ℓ

dfullm,ℓ

n
· R̂full

m,ℓ

≈
(
1− d̃fM

n

)2

RM +

(
d̃fM
n

)2 1

M2

M∑
m=1

(
n

|Im|
− 1

)
Rm,m.

Dividing by (1 − d̃fM/n)
2 and plugging in R̂ovlp

m,m or R̂full
m,m to estimate Rm,m inside the rightmost

sum, we obtain the corrected GCV estimators given in Definition 1.

4.4 Numerical illustrations

In this section, we corroborate our theoretical results with numerical experiments on synthetic
data, showing the validity of our proposed corrected GCV (R̃cgcv,full

M in (18)). The purpose is
to empirically show our proposal, the corrected GCV estimator (shown as CGCV), accurately
estimates the true risk RM (shown as Risk), while the ordinary GCV in (9) (shown as GCV) is a
poor estimator of the true risk RM .

Linear models with Gaussian designs. We first describe the simulation setting. We set (n, p) =
(2000, 500) and consider different combinations of (k,M) and tuning parameters (λ, λ1, λ2) for the
three penalty functions in Table 1. We consider a linear model satisfying Assumptions B and C
with noise variance σ2 = 1. To be specific, we consider a non-isotropic covariance matrix Σ,
whose diagonal entries are evenly spaced in [0.1, 10] and other entries are 0. We generate the true
regression coefficient β0 as follows: generate b0 ∈ Rp with its first p − 100 rows sampled from
i.i.d. N (0, 1), and set the remaining rows to 0. We then scale b0 to obtain the coefficient β0 by
β0 = b0(σ

2/b⊤0 Σb0)
1/2 so that the signal-to-noise ratio β⊤

0 Σβ0/σ
2 is 1. For the ridge and lasso
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Figure 4: CGCV is consistent for finite ensembles across different subsample sizes. Plot of risks
versus the subsample size k for Elastic Net ensemble with different λ and M and fixed λ2 = 0.01.

ensembles, the tuning parameter λ of the corresponding penalty in Table 1 is fixed across all the
subsample estimates β̂m. For the elastic net ensemble, the tuning parameter λ2 is fixed as 0.01 and
the same sequence of λ1 is used across all subsample estimates β̂m. For each simulation setting,
we perform 1000 dataset repetitions and report the average of relevant risks.

We present the simulation results of the elastic net ensemble in Figures 4 and 5, and leave the
results of the ridge and lasso ensembles to the Appendix C of the supplement. Figure 4 shows the
risk curve and its estimators as a function of the ensemble size M . We observe a clear gap between
the curves of the GCV estimator and the true risk for different settings of (M,k, λ1), especially for
small subsample size k or small ensemble size M . In stark contrast, our proposed corrected GCV
aligns closely with the true risk curve. Figure 5 again confirms that our proposal outperforms the
GCV in estimating the true risk across different values of M and different combinations of k and
λ1. We provide more simulation results for the ridge and lasso ensembles in Appendix C.
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Figure 5: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the Elastic Net ensemble size M for ridge ensemble with different λ and k and
fixed λ2 = 0.01.

Linear models with non-Gaussian designs. To demonstrate the robustness of our results
beyond Gaussian distribution, we also consider scenarios where X is not Gaussian distributed but
is sub-Gaussian, for example, the Rademacher and uniform distributions. The simulation results for
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these non-Gaussian features closely resemble those for Gaussian features presented in the current
section, confirming that the proposed CGCV accurately estimates the actual risk, whereas GCV
exhibits a non-ignorable bias. We provide the simulation results for non-Gaussian features in
Appendix D.

5 Asymptotic analysis for ridge ensembles

For ridge ensembles, the GCV estimator (8) for ridge ensembles can be inconsistent when the
ensemble size is greater than 1, as mentioned in Section 2.2. This inconsistency still exists when
features are sampled from non-Gaussian distributions (Du et al., 2023). In this section, we will
show that the result of the previous section can be generalized to a wide class of data distributions
when focusing on ridge predictors and using standard results from random matrix theory.

Recall the base estimator β̂m defined in (2) for m = 1, . . . ,M . If we use the ridge penalty with
regularization parameter λ > 0, then the base estimator reduces to the ridge estimator fitted on
DIm :

β̂m,λ = argmin
β∈Rp

∑
i∈Im

(yi − x⊤
i β)

2/k + λ∥β∥22 = (X⊤LImX/k + λIp)
−1X⊤LImy/k. (26)

Taking λ → 0+, β̂m,0 := (X⊤LImX/|Im|)+X⊤LImy/|Im| becomes the so-called ridgeless esti-
mator, or minimum-norm interpolator, where A+ denotes the Moore-Penrose inverse of matrix
A.

To prepare for our upcoming results, we impose the following assumptions on the responses, fea-
tures, and subsample aspect ratios.

Assumption E (Response structure). The response y satisfies E[y] = 0 and E[y4+δ] ≤ C0 for
some δ > 0 and C0 > 0.

Assumption F (Feature structure). The feature vector decomposes as x = Σ1/2z, where
z ∈ Rp contains i.i.d. entries with mean 0, variance 1, bounded moments of order 4 + δ for
some δ > 0, and Σ ∈ Rp×p is deterministic and symmetric with eigenvalues uniformly bounded
between rmin > 0 and rmax <∞.

We make several remarks about the data assumptions in our analysis. First, we do not impose any
specific model assumptions between the response variable y and the feature vector x. Thus, our
results are model-free, relying solely on the bounded moment assumption stated in Assumption E,
which ensures the generality of our subsequent findings. Although we assume zero mean for y,
this is purely for simplicity, as centering can always be achieved by subtracting the sample mean
in practice. Furthermore, the condition of bounded moments can also be satisfied by imposing a
stronger distributional assumption, such as sub-Gaussianity.

Assumption G (Proportional asymptotics). The sample size n, subsample size k, and feature
dimension p tend to infinity such that p/n→ ϕ ∈ (0,∞) and p/k → ψ ∈ [ϕ,∞].
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Even though we assume that both the data aspect ratio p/n and the subsample aspect ratio p/k
converge to fixed constants, this is for simplicity of exposition and proofs, and is not essential. It
suffices only to require that they scale proportionally such that 0 < lim inf p/n ≤ lim inf p/n ≤
lim inf p/k < ∞ as, by compactness, we can always extract a subsequence of regression problems
in which p/n and p/k have a finite limit.

Both Assumption F, concerning the feature vector, and Assumption G, clarifying the proportional
asymptotics regime, are assumptions commonly employed in the study of random matrix theory
(Bai and Silverstein, 2010; El Karoui, 2010) and the analysis of ridge and ridgeless regression
(Karoui and Kösters, 2011; El Karoui, 2013; Dobriban and Wager, 2018; Hastie et al., 2022).

Remark 9 (Extreme points in proportional asymptotics). In Assumption G, we allow the limiting
data aspect ratio p/n and subsample aspect ratio p/k to be in (0,∞) and [ϕ,∞], respectively. In the
extreme case where p/k → ∞, the prediction risks of the ridge ensembles admit simple asymptotic
formulas. More specifically, both the prediction risk and the estimates converge to the null risk
E[y2], the risk of a full predictor that always outputs zero.

5.1 Guarantees for intermediate risk estimators

Since the ridge predictor is a linear smoother, its degrees of freedom d̂fm defined in (3) is equivalent
to the trace of its smoothing matrix Sm = XIm(X

⊤
Im

XIm/k+λIp)
−1X⊤

Im
/k; namely, d̂fm = tr[Sm].

For ridge regression, the ovlp-estimator R̂ovlp
m,ℓ,λ and the full-estimator R̂full

m,ℓ,λ as defined in (11) and
(12) are respectively given explicitly as follows:

R̂ovlp
m,ℓ,λ =

(y −Xβ̂m,λ)
⊤LmLℓ(y −Xβ̂ℓ,λ)/|Im ∩ Iℓ|

1− tr[Sm]

|Im|
− tr[Sℓ]

|Iℓ|
+

tr[Sm]

|Im|
tr[Sℓ]

|Iℓ|

,

R̂full
m,ℓ,λ =

(y −Xβ̂m,λ)
⊤(y −Xβ̂ℓ,λ)/n

1− tr[Sm]

n
− tr[Sℓ]

n
+

tr[Sm]

|Im|
tr[Sℓ]

|Iℓ|
· |Im ∩ Iℓ|

n

.

Here, we use the subscript λ to indicate the dependence of the estimators for the risk component
on the ridge penalty parameter λ. Similarly, we write R̃ovlp

M,λ, R̃
full
M,λ, and RM,λ for the two risk

estimators and the risk, respectively. The following theorem shows that both the two estimators
are pointwise consistent for the risk component Rm,ℓ,λ.

Theorem 4 (Pointwise consistency of intermediate estimators in λ). Under Assumptions A
and E–G with

√
n/k = O(1) for the ovlp-estimator, for λ ≥ 0, for any M ∈ N and m, l ∈ [M ],

it holds that |R̂ovlp
m,ℓ,λ − Rm,ℓ,λ|

a.s.−−→ 0 and |R̂full
m,ℓ,λ − Rm,ℓ,λ|

a.s.−−→ 0. Consequently, it holds that

|R̃ovlp
M,λ −RM,λ|

a.s.−−→ 0 and |R̃full
M,λ −RM,λ|

a.s.−−→ 0.

For the first estimator to work in the extreme case when ψ = ∞, we also need
√
n/k = O(1). We

note that this is not required for the full-estimator precisely because the full-estimator uses both
subsample observations and out-of-subsample observations. So, even if the number of overlapping
subsample observations is small, the out-of-subsample observations are large, and the estimator
is able to track the risk. The regime when k is small is the regime where the full-estimator is
substantially better than the ovlp-estimator, as we have seen in Figure 3.
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One natural question that remains for ridge predictors is how to select the ridge penalty λ. Build-
ing on the previous results, we are able to show a stronger notion of the consistency of the two
proposed estimators over λ ∈ Λ := [0,∞]. When λ = ∞, the ensemble ridge predictor reduces to
a null predictor that always outputs zero. Under the above assumptions, uniform consistency is
established through the following theorem.

Theorem 5 (Uniform consistency of intermediate estimators in λ). Under same conditions

in Theorem 4, when ψ ̸= 1, it holds that supλ∈Λ |R̃ovlp
M,λ − RM,λ|

a.s.−−→ 0 and supλ∈Λ |R̃full
M,λ −

RM,λ|
a.s.−−→ 0.

The restriction on ψ is because both the risk and the risk estimate diverge when ψ = 1 for the
ridgeless predictor when λ = 0. This divergence phenomenon has been studied in several recent
works; see, e.g., Hastie et al. (2022).

5.2 Guarantees for corrected GCV

The average degrees of freedom (5) reduces to d̃fM =M−1
∑M

m=1 tr(Sm). The corrected GCV from
(18) and (17) for ridge regression are given for # ∈ {ovlp, full} by:

R̂cgcv,#
M,λ := R̃gcv

M,λ −
1

M

{
(M−1

∑M
m=1 tr(Sm)/n)

2

(1−M−1
∑M

m=1 tr(Sm)/n)
2

(
n

k
− 1

)
1

M

M∑
m=1

R̂#
m,m

}
, (27)

where R̃gcv
M,λ = (1−M−1

∑M
m=1 tr(Sm)/n)

−2∥y−Xβ̃M∥22/n is the GCV estimator and the correction

term R̂#
m,m,λ is given, for # ∈ {ovlp, full}, by:

R̂ovlp
m,m,λ =

∥yIm −XImβ̂m,λ∥22/k
(1−M−1

∑M
m=1 tr(Sm)/k)

2
,

R̂full
m,m,λ =

∥y −Xβ̂m,λ∥22/n
(1−M−1

∑M
m=1 tr(Sm)/n)

2 + (M−1
∑M

m=1 tr(Sm)/n)
2 · (n/k − 1)

.

Theorem 6 (Uniform consistency of corrected GCV in λ). Under the same conditions in

Theorem 4, it holds that |R̂cgcv,ovlp
M,λ − RM,λ|

a.s.−−→ 0 and |R̂cgcv,full
M,λ − RM,λ|

a.s.−−→ 0. Moreover,

when ψ ̸= 1, it holds that supλ∈Λ |R̂cgcv,ovlp
M,λ −RM,λ|

a.s.−−→ 0 and supλ∈Λ |R̂cgcv,full
M,λ −RM,λ|

a.s.−−→ 0.

Theorem 6 specializes the results of Theorem 2 for a general convex penalty to the ridge predictor.
In particular, the correction term decreases as 1/M . On the other hand, compared to Theorem 2,
it also extends the corrected GCV to ridgeless predictors. Some remarks are as follows.

Remark 10 (Consistency of GCV under general models). The GCV estimator R̃gcv
M,λ is shown to

be consistent for estimating the prediction risk RM of the ridge predictors (Patil et al., 2021) (when
M = 1 or k = n) and in the infinite ensemble (Du et al., 2023). Therein, the infinite ensemble is
defined by letting the ensemble size M tend to infinity for any given sample size n and the feature
dimension p. Since the correction term (27) vanishes as M tends to infinity, Theorem 6 above
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also indirectly shows that the corrected GCV estimator is consistent in the infinite ensemble under
more general data models. On the other hand, the correction term in (27) implies that the GCV
estimator R̃gcv

M,λ is generally inconsistent for finite ensemble sizes when n > k and d̃fM > 0. In the
case of ridge regression, the latter condition is generally satisfied because for λ ∈ [0,∞) because

d̃fM =M−1
M∑
m=1

tr(Sm) =M−1
M∑
m=1

tr[X⊤
ImXIm/k(X

⊤
ImXIm/k + λIp)

−1] > 0,

unless all the singular values of XIm are zero for all m ∈ [M ]. Compared to Du et al. (2023,
Proposition 3), which shows the inconsistency of R̃gcv

M,λ for M = 2 and λ = 0 under a well-specified
linear model, our result is more general because it allows for any ridge parameter λ ≥ 0, any
ensemble size M ≥ 2, and an arbitrary response model.

Remark 11 (Model selection). The ensemble ridge predictors involve three key parameters: the
ridge penalty parameter λ, the subsample size k, and the ensemble sizeM . Questions related to the
selection of the model of ridge ensembles over the subsample size k and the ensemble size M have
already been discussed by Patil et al. (2023); Du et al. (2024). Tuning over M is relatively easy
because the risk is decreasing in M (Patil et al., 2023). For tuning over λ, Theorem 6 implies that
the tuned risk using the corrected GCV estimator converges to the optimal risk in a grid of ridge
penalties used to fit the ensemble. In other words, the optimality of the data-dependent model
selection can be guaranteed by the corrected GCV estimators.

Remark 12 (Non-asymptotic versus asymptotic analyses). When restricted to ridge estimators,
the asymptotic analysis presented in the current section reveals some benefits compared to the
finite-sample analysis in Section 4. First, the asymptotic analysis in the current section relaxes
the assumptions on the data-generating process. More specifically, no explicit response-feature
model is needed, except for the bounded moment assumptions and the feature structure assumed
in Assumptions E and F. Second, the consistency provided in the current section does not require
strong convexity as in Assumption D. It also applies to the ridgeless ensembles when λ = 0, in
which case the base predictor reduces to the minimum ℓ2-norm least squares. Last but not least,
the asymptotic analysis enables the uniformity over λ ∈ [0,∞].

5.3 Proof outlines

There are three key steps involved in proving the uniform consistency (in λ) of the intermediate
and corrected GCV estimator in Theorems 5 and 6, respectively, for ridge ensembles.

1. Deriving the asymptotic limit of the prediction risk: The first step involves deriving asymptotic
equivalents for the risk of the ridge ensemble predictor. We build upon prior results on the risk
analysis of ridge ensembles in Du et al. (2023); Patil and Du (2023) and derive these asymptotic
risk equivalences, as done in Lemma 24.

2. Deriving the asymptotic limit of the intermediate and CGCV estimates: The second step
involves deriving asymptotic equivalents for each of the proposed intermediate and corrected
GCV estimators. Since each of these estimators is a ratio of terms that involve a version of
training error and a denominator correction, we obtain each of these asymptotics separately.
This is done in Lemmas 25–28.

3. Establishing the pointwise consistency in λ by matching the two limits and then lifting to
uniform convergence in λ: In the last step, we show that the asymptotic limits obtained
in the first two steps match with each other, which shows the pointwise consistency in λ
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(Theorem 4). The matching uses the analytic properties of parameters related to certain fixed-
point equations. To establish uniform convergence, we lift the pointwise consistency by showing
that the family of functions under consideration forms an equicontinuous family and appeals
to a stochastic version of the Arzela-Ascoli theorem. This is done in Lemma 29.

Throughout the proofs, the notion of asymptotic equivalence plays a crucial role (see Appendix B.1
for more details). We refer the reader to Patil et al. (2023); Patil and Du (2023) for background
and further calculus of asymptotic equivalents. In our proofs, we build on these equivalents to
obtain equivalents of various bias and variance components of the intermediate and corrected GCV
estimators (see Appendix B.4 for more details). Finally, all our results are model-free. A component
of this analysis involves an intermediate step showing quadratic concentration with uncorrelated
components in Lemma 32 that extends the previous results of Bartlett et al. (2021, Lemma A.16)
and Patil and Du (2023, Lemma D.3), which may be of independent interest.

5.4 Numerical illustrations: Non-linear models with non-Gaussian designs

To numerically evaluate our proposed corrected GCV estimator, we generate data from a nonlinear

model y = x⊤β0+(∥x∥22/p−1)+ϵ, where x = Σ−1/2z with z1, . . . , zp
i.i.d.∼ t5 follows a t-distribution

with degrees of freedom 5 and Σ = Σar1,ρ=0.25 = (ρ|i−j|)i,j∈[p] is the covariance matrix of the AR(1)
process, β0 is the average of the top-5 eigenvectors ofΣ, and ϵ ∼ N (0, 1). This setup has a linearized
signal-to-noise ratio of 1.67. We set the sample size n = 6000 and the feature dimension p = 1200.

Our first experiment is to compare the naive GCV estimator R̃gcv
M and the corrected GCV estimator

R̃cgcv,full
M as a function of the subsample size k, or equivalently, the subsample aspect ratio p/k. In

Figure 6, we visualize the results for both the ridge and lasso predictors with different ensemble
sizes M . For ridge predictors, we see that the naive GCV estimator is consistent when M = 1.
However, it is extremely unstable when the subsample aspect ratio p/k is close to 1, which is
also the interpolation threshold for the ridgeless predictor. For the lasso predictors, the naive
GCV estimates are not even close to the prediction risks when the subsample size is small, even for
ensemble sizeM = 1. Nevertheless, the corrected GCV estimates are in line with the true prediction
risks for different ensemble sizes M . Although our theoretical results do not cover the lasso, the
numerical results in the current subsection indicate the generality and robustness of our proposed
corrected GCV estimator beyond ridge ensembles. On the other hand, as shown in Figure 7, the
inconsistency of the naive GCV vanishes as the ensemble size M tends to infinity.

Finally, we compare the two estimators as a function of the ridge penalty λ in Figure 8. As
we can see, for ensemble size M = 1, both estimators can track the true prediction risk well in
either underparameterized or overparameterized regimes. However, when M > 1, the naive GCV
estimator does not provide a valid estimate for the true risk. The inconsistency becomes more
significant when either the subsample size k is small relative to the feature dimension p or the ridge
penalty is close to zero. Similar observations are also present for the lasso estimators; see Figure 34.
On the other hand, our corrected GCV estimator is uniformly consistent in various values of λ for
all ensemble sizes M , as proved in Theorem 6.

6 Discussion

The primary goal of this paper has been to examine GCV for the risk estimation of ensembles of
penalized estimators. Our main contribution is to show that ordinary GCV fails to be consistent
for finite ensembles and to formulate a corrected GCV that is consistent for any finite ensemble.
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Figure 6: CGCV is consistent for finite ensembles across different subsample aspect ratios. The
GCV estimates for the ridge and lasso ensembles with penalty λ = 10−2 and varying subsample size in a
problem setup of Section 5.4, over 50 repetitions of the datasets. The left panel shows the results for ridge
predictors. The right panel shows the results for the lasso predictors.
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Figure 7: GCV gets closer to the risk as ensemble size increases. The GCV estimates for ridge
ensemble with varying ensemble size in a problem setup of Section 5.4 over 50 repetitions of the datasets.
Here, the feature dimension is p = 1200. The left panel shows the case when the subsample sizes are k = 2400
(an underparameterized regime). The right panel shows the case when the subsample sizes are k = 800 (an
overparameterized regime).

The main high-level idea in constructing the correction is deriving term-by-term corrections for
the ordinary GCV estimator, which subsequently leads to the form of corrected GCV. Assuming
Gaussianity and linear model, we derived non-asymptotic bounds for our corrected GCV estimator
that enjoys

√
n-consistency and provides explicit dependence on the subsample size k, ensemble

size M , and the form and level of regularization penalty λ. These assumptions, although seemingly
stringent, are amenable to a wide range of general convex penalized estimators. Moreover, for
ensembles of ridge regression, we prove the asymptotic consistency of our estimator under very
mild assumptions and, in particular, without assuming Gaussianity and linear response model.

As alluded to earlier, our intermediate risk estimators can incorporate several extensions and mod-

28



0 10 2 10 1 100 101

Ridge penalty 

2

3

4

5

6
Va

lu
e

Underparameterized regime (p < k)

0 10 2 10 1 100 101

Ridge penalty 

Overparameterized regime (p > k)
Ensemble size M 1 2 5 Type Risk CGCV GCV

Figure 8: CGCV is consistent for finite ensembles across different regularization levels. The
GCV estimates for ridge ensemble with varying ridge penalty λ in a problem setup of Section 5.4 over 50
repetitions of the datasets. Here, the feature dimension is p = 1200. The left panel shows the case when
the subsample sizes are k = 2400 (an underparameterized regime). The right panel shows the case when the
subsample sizes are k = 800 (an overparameterized regime).

ifications, thereby further broadening their applicability. First, we can use different subsample
sizes for different ensemble estimators. Second, we can use different types of penalties or differ-
ent regularization parameters for different base estimators. In such cases, the components of the
ovlp-estimator (11) and the full-estimator (12) are still consistent. Note that additive bounds, as
indicated in Theorems 1 and 2, already accommodate this flexibility. It is also possible to establish
the multiplicative bounds assuming certain restrictions on the component risks. Finally, provided
that the average cardinality concentrates and the cardinality of the intersection is lower-bounded
with high probability, a slightly general form of CGCV is expected to work.

Although the techniques of the present paper can be applied to estimate the risk of hybrid en-
sembles (with the Im having different cardinalities and the β̂m having different penalty functions),
it poses challenges when it comes to tuning the hyperparameters. Tuning an ensemble model,
especially when equipped with a plethora of hyperparameters, is computationally challenging. In
such cases, a greedy strategy often employed is to minimize the risk for each subsample estimator
separately. However, it is important to note that the optimal regularization parameter λ for an
individual ensemble component (i.e., for a fixed m ∈ [M ]) may not be the best choice for the entire
ensemble (i.e., after averaging over m ∈ [M ]). This computational complexity of tuning ensembles
becomes especially challenging, as ensemble components employ different penalties or regulariza-
tion amounts. For this reason, we recommend training each individual estimate β̂m with the same
penalty and tuning parameter (say, λ) and selecting the tuning parameter λ for the ensemble av-
erage β̃M =M−1

∑M
m=1 β̂m in (4) that yields the smallest corrected GCV criterion. Furthermore,

one can also combine CGCV with the extrapolated CV method of Du et al. (2024) to tune over k
and M .

Our work opens up several avenues for future investigation. We discuss three of them below.

Beyond squared loss for training. We have considered penalized estimators trained using
squared loss in (2). One may consider penalized estimators trained on different loss functions,
such as the Huber loss or other robust loss functions, especially if the noise random variables ϵi
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are heavy-tailed and/or have infinite variance. Estimators of the squared risk in this context are
obtained in Rad and Maleki (2020); Wang et al. (2018); Bellec (2023); Bellec and Shen (2022) for
the non-ensemble setting, with the method in (Rad and Maleki, 2020; Wang et al., 2018) being
applicable beyond the squared risk. It would be of interest to extend (with necessary modifica-
tions) our corrected GCV criterion to enable ensembles of base estimators β̂m trained on robust
loss functions. We leave this research direction for future work.

Beyond squared loss for testing. Our primary focus in this paper has been centered on evaluat-
ing the squared prediction risk. The special form of the squared risk allows the useful decomposition
in (10), which subsequently leads to the estimators (11), (12) and corrected GCV. In practice, one
may be interested in error metrics other than squared error. More broadly, one may be interested
in functionals of the out-of-sample error distribution, such as quantiles of the error distribution.
For regular penalized estimators, one can construct estimators for such functionals by constructing
estimators for the out-of-sample distribution first and then subsequently using the plug-in function-
als of these distributions. See Patil et al. (2022) for an example that uses GCV-based correction
of the in-sample residuals. Another avenue for loss estimation beyond the square risk is (Rad and
Maleki, 2020; Wang et al., 2018), wherein the proposed Approximate Leave-One-Out handles the
non-ensemble setting. Whether one can further additively correct these residuals and construct
consistent estimators of the out-of-sample distribution for the ensemble of penalized estimators is
an interesting direction of future work.

Risk estimation for generic ensembles. The subsamples I1, . . . , IM are assumed to be sampled
without replacement throughout this paper. It is of interest to investigate risk estimators for other
ensemble techniques like bagging (where we sample with replacement) or other random weighting
schemes, i.e., where the data-fitting loss in (2) is replaced by the loss

∑n
i=1wm,i(yi − x⊤

i β)
2 for

weights (wm,i)i∈[n] sampled independently of the data (X,y). This includes weights wm,i
i.i.d.∼

Poisson(1) or (wm,1, . . . , wm,n) ∼ Multinomial(n, n, n−1) typically used in the pair bootstrap; see
El Karoui and Purdom (2018) for a study of such weights in unregularized estimation in the
proportional regime.
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Supplement

This document serves as a supplement to the paper “Correcting generalized cross-validation for arbitrary
ensembles of penalized estimators.” The initial (unnumbered) section outlines the supplement’s structure
and summarizes the general notation used in the main paper and supplement in Table 2.

Organization

The content of this appendix is organized as follows.

• In Appendix A, we provide proofs of results in Section 4.

Section Content Purpose

Appendix A.1 Lemma 7 Preparatory derivative formulae

Appendix A.2 Lemmas 8–11 Proof of Theorem 1

Appendix A.3 Lemmas 12–13 Proof of Theorem 2

Appendix A.4 Proof of Theorem 3

Appendix A.5 Lemmas 14–19 Helper lemmas (and their proofs) used in the proofs of Theorems 1–3

Appendix A.6 Lemmas 20–22 Miscellaneous useful facts used in the proofs of Theorems 1–3

Appendix A.7 Theorem 23 Relaxing Assumption D in the underparameterized regime

• In Appendix B, we provide proofs of results in Section 5.

Section Content Purpose

Appendix B.1 Preparatory definitions

Appendix B.2 Lemmas 24–29 Proofs of Theorems 4 and 5 (and proofs of Lemmas 24–29)

Appendix B.3 Proof of Theorem 6

Appendix B.4 Lemmas 30–32 Helper lemmas (and their proofs) used in the proofs of Theorems 4–6

• In Appendix C, we provide additional illustrations for Section 4 with Gaussian data.

Section Content Purpose

Appendix C.1 Figures 9–10 Intermediate ovlp- vs. full-estimators in k and λ for elastic net and lasso

Appendix C.2 Figures 11–13 CGCV ovlp- vs. full-estimators in k and λ for ridge, elastic net, and lasso

Appendix C.3 Figures 14–16 CGCV vs. GCV in k for ridge, elastic net, and lasso

Appendix C.4 Figures 17–19 CGCV vs. GCV in M for ridge, elastic net, and lasso

Appendix C.5 Figures 20–22 CGCV vs. GCV in λ for ridge, elastic net, and lasso

Appendix C.6 Figure 23 CGCV vs. GCV with a large ensemble size M for ridge, elastic net, and lasso

Appendix C.7 Figure 24 Inconsistency for the GCV variant (8)
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• In Appendix D, we provide additional illustrations for Section 4 with non-Gaussian data.

Section Content Purpose

Appendix D.1 Figures 25–28 Experiments with Rademacher distribution

Appendix D.2 Figures 29–32 Experiments with uniform distribution

• In Appendix E, we provide additional numerical illustrations for Section 5 with non-Gaussian data.

Section Content Purpose

Appendix E.1 Figures 33 and 34 CGCV vs. GCV in λ for ridge, elastic net, and lasso
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Notation

The notational conventions used in this paper are as follows. Any section-specific notation is introduced
in-line as needed.

Table 2: Summary of general notation used in the paper and the supplement.

Notation Description

Non-bold lower or
upper case

Denotes scalars (e.g., k, λ, M)

Bold lower case Denotes vectors (e.g., x, y, β0)
Bold upper case Denotes matrices (e.g., X, Σ, L)
Script font Denotes certain limiting functions (e.g., R).

R, R≥0 Set of real and non-negative real numbers
[n] Set {1, . . . , n} for a natural number n

|I| Cardinality of a set I
(x)+ Positive part of a real number x
∇f , ∇2f Gradient and Hessian of a function f
1A, P(A) Indicator random variable associated with an event A and probability of A
E[X],Var(X) Expectation and variance of a random variable X

V⊥ Orthogonal complement of a vector space V
tr[A], A−1 Trace and inverse (if invertible) of a square matrix A ∈ Rp×p
rank(B), B⊤, B+ Rank, transpose and Moore-Penrose inverse of matrix B ∈ Rn×p
C1/2 Principal square root of a positive semidefinite matrix C

Ip or I The p× p identity matrix

⟨u,v⟩ Inner product of vectors u and v
∥u∥p The ℓp norm of a vector u for p ≥ 1
∥f∥Lp The Lp norm of a function f for p ≥ 1

∥A∥op Operator (or spectral) norm of a real matrix A
∥A∥tr Trace (or nuclear) norm of a real matrix A
∥A∥F Frobenius norm of a real matrix A

X ≲ Y X ≤ CY for some absolute constant C
X ≲α Y X ≤ CαY for some constant Cα that may depend on ambient parameter α
X = Oα(Y ) |X| ≤ CαY for some constant Cα that may depend on ambient parameter α
u ≤ v Lexicographic ordering for vectors u and v
A ⪯ B Loewner ordering for symmetric matrices A and B

OP Probabilistic big-O notation
oP Probabilistic little-o notation
C ≃ D Asymptotic equivalence of matrices C and D (see Appendix B for more details)
d
= Equality in distribution

d−→ Denotes convergence in distribution
p−→ Denotes convergence in probability
a.s.−−→ Denotes almost sure convergence

Note: Throughout, C, C ′ denote positive absolute constants. If no subscript is present for norm ∥u∥
of a vector u, then it is assumed to be the ℓ2 norm of u. If a proof of a statement is separated from
the statement, the statement is restated (while keeping the original numbering) along with the proof for
convenience.
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A Proofs in Section 4

A.1 Preparatory derivative formulae

For a pair of possibly overlapping subsamples (Im, Iℓ) (written as (I, Ĩ) in this proof for easy of
writing) of {1, 2, . . . , n} with |Im| = |Iℓ| = k ≤ n, we define β̂ and β̃ as the estimators using
subsamples (xi, yi)i∈I and (xi, yi)i∈Ĩ respectively, i.e.,

β̂ := argmin
β∈Rp

1

k

∑
i∈I

(yi − x⊤
i β)

2 + g(β), and β̃ := argmin
β∈Rp

1

k

∑
i∈Ĩ

(yi − x⊤
i β)

2 + g̃(β),

and we denote the corresponding residual and the degree of freedom by

r := y −Xβ̂, r̃ := y −Xβ̃, d̂f := tr[
∂

∂y
Xβ̂], d̃f := tr[

∂

∂y
Xβ̃].

For clarity, we use the notation below throughout Appendix A:

Z :=

[
XΣ−1/2

∣∣∣ σ−1ϵ

]
∈ Rn×(p+1), h :=

(
Σ1/2(β̂ − β0)

−σ

)
∈ Rp+1, h̃ :=

(
Σ1/2(β̃ − β0)

−σ

)
∈ Rp+1

Under Assumptions B and C, the matrix Z has i.i.d. N (0, 1) entries. The individual risk component
Rm,ℓ in (6) and the residuals (r, r̃) can be written as functions of (Z,h, h̃) as follows:

(β̂ − β0)
⊤Σ(β̃ − β0) + σ2 = h⊤h̃, r = −Zh, r̃ = −Zh̃.

Our first lemma below provides the derivative formula of h with respect to Z, which is an important
component of our proof. Similar derivative formulas have been studied in M-estimation (Bellec and
Shen, 2022), multi-task linear model (Bellec and Romon, 2021; Tan et al., 2022), and multinomial
logistic model (Tan and Bellec, 2023).

Lemma 7. [Variant of Bellec and Shen (2022, Theorem 1)] Suppose the penalty g satisfies
Assumption D with a constant µ > 0. Then there exists a matrix B ∈ R(p+1)×(p+1) depending
on (zi)i∈I such that

∥B∥op ≤ (kµ)−1, rank(B) ≤ p, tr[B] ≥ 0 (28)

and the derivative of h with respect to Z = (zij)i∈[n],j∈[p+1] is given by

for all i ∈ [n] and j ∈ [p+ 1],
∂h

∂zij
= Beje

⊤
i Lr −BZ⊤Leie

⊤
j h with L = LI =

∑
i∈I

eie
⊤
i .

(29)
Furthermore, V := In −ZBZ⊤L satisfies the following:

d̂f = k − tr[LV ], 0 < k

(
1 +

∥LG∥2op
kµ

)−1

≤ tr[LV ] ≤ k and ∥LV ∥op ≤ 1, (30)

where G = XΣ−1/2 ∈ Rn×p is a standard Gaussian matrix.

Lemma 7 is proved in Appendix A.5.1. Note that Lemma 7 holds for the derivatives of h̃, using
B̃, L̃ = L

Ĩ
, and Ṽ instead.
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A.2 Proof of Theorem 1 (restated here for convenience)

Theorem 1 (Finite-sample bounds for intermediate estimators). Suppose Assumptions A–D
hold. Let c = k/n, γ = max(1, p/n), and τ = min(1, µ). Then there exists an absolute constant
C > 0 such that the following holds:

E
[∣∣∣dovlpm,ℓ

n
·
R̂ovlp
m,ℓ −Rm,ℓ√
Rm,mRℓ,ℓ

∣∣∣] ≤ C
γ7/2

τ2c3
√
n
, E

[∣∣∣dfullm,ℓ

n
·
R̂full
m,ℓ −Rm,ℓ√
Rm,mRℓ,ℓ

∣∣∣] ≤ C
γ5/2

τ2c2
√
n
. (20)

Furthermore, if the same penalty gm is used for subsample estimate (2) across all m ∈ [M ],
for any ϵ ∈ (0, 1), we have

P
(∣∣∣1− R̃ovlp

M

RM

∣∣∣ > ϵ

)
≤ C

M3γ11/2

ϵτ4c7
√
n
, P

(∣∣∣1− R̃full
M

RM

∣∣∣ > ϵ

)
≤ C

M3γ9/2

ϵτ4c2
√
n
. (21)

Thus, if (M,µ−1, p/n, n/k) are bounded from above by a constant independent of n, we have

R̃ovlp
M /RM = 1 +OP(n

−1/2), R̃full
M /RM = 1 +OP(n

−1/2).

A.2.1 Part 1: Proof of Equation (20)

Proof for the ovlp-estimator. Using the notation in Appendix A.1 with I and Ĩ meaning Im and
Iℓ, the inequality we want to show can be written as

E
[∣∣∣r⊤LL̃r̃ − |I ∩ Ĩ|(1− d̂f/k)(1− d̃f/k)h⊤h̃

∥h∥∥h̃∥

∣∣∣] ≲ √
nτ−2c−3γ7/2, (31)

where c = k/n, τ = min(1, µ), γ = max(1, p/n). Using tr[LV ] = k − d̂f and tr[L̃Ṽ ] = k − d̃f by
(30), we can rewrite the error inside the expectation in the left-hand side as the sum of three terms

r⊤LL̃r̃ − |I ∩ Ĩ|(1− d̂f/k)(1− d̃f/k)h⊤h̃

∥h∥∥h̃∥
= Rem1 + Rem2 + Rem3, (32)

where Rem1,Rem2,Rem3 are defined as

Rem1 =
h⊤h̃

∥h∥∥h̃∥
tr[L̃Ṽ ]

k
(tr[L̃LV ]− |I ∩ Ĩ| tr[LV ]

k
),Rem2 =

tr[L̃Ṽ ]

k

r⊤L̃Lr(1 + tr[B̃])− tr[L̃LV ]h⊤h̃

∥h∥∥h̃∥
,

Rem3 =
r⊤L̃Lr̃

∥h∥∥h̃∥
k − tr[L̃Ṽ ](1 + tr[B̃])

k
.

Next, we bound the moment of |Rem1|, |Rem2|, |Rem3| one by one.

Control of Rem1. Since tr[L̃Ṽ ] ∈ (0, k] by (30) and |h̃⊤h| ≤ ∥h∥∥h̃∥ by the Cauchy–Schwarz
inequality, we have

|Rem1| ≤ | tr[L̃LV ]− k−1|I ∩ Ĩ| tr[LV ]| = RHS.

Below we bound the second moment of RHS. Here, the key fact is that conditionally on (|I ∩ Ĩ|, I),
I ∩ Ĩ is uniformly distributed over all subsets of I of size |I ∩ Ĩ|. Then, the variance formula of the
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sampling without replacement (see Lemma 21 with xi = Vii, M = |I| = k, and m = |I ∩ Ĩ|) implies
that the conditional expectation of (RHS)2 given (|I ∩ Ĩ|, I,V ) is bounded from above as

E
[(

tr[L̃LV ]− |I ∩ Ĩ|
k

tr[LV ]
)2 ∣∣∣ |I ∩ Ĩ|, I,V ] = |I ∩ Ĩ|2E

[(∑
i∈I∩Ĩ Vii

|I ∩ Ĩ|
−
∑

i∈I Vii

|I|

)2 ∣∣∣ |I ∩ Ĩ|, I,V ]
= |I ∩ Ĩ|2Var

[∑
i∈I∩Ĩ Vii

|I ∩ Ĩ|

∣∣∣ |I ∩ Ĩ|, I,V ] ≤ |I ∩ Ĩ|2
∑

i∈I V
2
ii

|I||I ∩ Ĩ|
= |I ∩ Ĩ|

∑
i∈I V

2
ii

|I|
.

Note that the above inequality holds even when |I ∩ Ĩ| = 0, since the both sides are then 0. Note
in passing that

∑
i∈I V

2
ii/|I| ≤ ∥LV ∥2F /|I| ≤ ∥LV ∥2op ≤ 1 by (30). Then, we obtain

E
[∣∣∣tr[L̃LV ]− |I ∩ Ĩ| tr[LV ]

k

∣∣∣2] ≤ E
[
|I ∩ Ĩ|

∑
i∈I V

2
ii

|I|

]
≤ E[|I ∩ Ĩ|] ≤ k. (33)

Thus, (33) and the Cauchy–Schwarz inequality E[·]2 ≤ E[(·)2] yield

E|Rem1| ≤
√
E[|Rem1|2] ≤

√
E[(tr[L̃LV ]− k−1|I ∩ Ĩ| tr[LV ])2] ≤

√
k. (34)

Control of Rem2. Since tr[L̃Ṽ ] ∈ (0, k] by (30), we have

|Rem2| ≤ |r⊤L̃Lr(1 + tr[B̃])− tr[L̃LV ]h⊤h̃|/(∥h∥∥h̃∥).

The lemma below gives the bound of the second moment of the right-hand side.

Lemma 8. For any subset J ⊂ [n] that is independent of Z, we have

E
[(−r⊤LJ r̃ − r̃⊤L̃LJr tr[B̃] + tr[LJV ]h⊤h̃

∥h∥∥h̃∥

)2 ∣∣∣ J ] ≲ τ−2(|J |+ p(|J |+ p)2

k2
)

where τ = min(1, µ) and LJ =
∑

i∈J eie
⊤
i .

Lemma 8 is proved in Appendix A.5.2. A sketch is as follows: Lemma 8 follows from the derivative
formula (29) and the second order Stein’s formula, where −r⊤LJ r̃ = r⊤LJZh̃ is regarded as a
component-wise inner product of the Gaussian matrix LJZ ∈ Rn×(p+1) and LJrh̃

⊤ ∈ Rn×(p+1).

Lemma 8 with J = I ∩ Ĩ and E|Rem2| ≤
√

E[|Rem2|2] lead to

E|Rem2| ≲ τ−1
√
E[|I ∩ Ĩ|+ p(|I ∩ Ĩ|+ p)2k−2] ≤ τ−1

√
k + p(k + p)2k−2 ≲

√
kτ−1(1 + p/k)3/2

(35)
thanks to τ = min(1, µ).

Control of Rem3. Note

|Rem3| =
|r⊤L̃Lr̃|
∥h∥∥h̃∥

· |k − tr[L̃Ṽ ](1 + tr[B̃])|
k

≤ ∥L̃Z∥2op
|k − tr[L̃Ṽ ](1 + tr[B̃])|

k
,

thanks to |r⊤L̃Lr̃| = |h⊤Z⊤L̃LZh̃| ≤ ∥h∥∥h̃∥∥L̃LZ∥2op ≤ ∥h∥∥h̃∥∥L̃Z∥2op. Let us define the
random variable Y and the event Ω as

Y = k−1(k − tr[L̃Ṽ ](1 + tr[B̃])), Ω = {∥L̃Z∥op ≤ 2(
√
k +

√
p+ 1)}.
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Then, E[|Rem3|] is bounded from above as

E|Rem3| ≤ E[∥L̃Z∥2op|Y |] ≤ ∥Y ∥∞E[1Ωc ∥L̃Z∥2op] + [2(
√
k +

√
p+ 1)]2E|Y |

≲ ∥Y ∥∞ · P(Ωc) · E[∥L̃Z∥4op]1/2 + (k + p)E|Y | := Rem1
3 + Rem2

3

thanks to Hölder’s inequality. Below we bound Rem1
3 and Rem2

3.

1. Bound of Rem1
3: Since ∥L̃Z∥op =d ∥G∥op with G ∈ Rk×(p+1) being the standard Gaussian

matrix, the concentration of the operator norm (see Lemma 20) implies

P(Ωc) ≤ e−(
√
k+

√
p+1)2/2 ≤ e−(k+p)/2 and E∥L̃Z∥4op ≲ (k + p)2.

By contrast, ∥B̃∥op ≤ (kµ)−1 and rank(B̃) ≤ p by (28) and tr[L̃Ṽ ] ∈ (0, k] by (30) lead to

∥Y ∥∞ = |1−k−1 tr[L̃Ṽ ](1+tr[B̃])]| ≤ 1+|k−1 tr[L̃Ṽ ]|(1+| tr[B̃]|) ≤ 2+p(kµ)−1 ≤ τ−1(1+p/k)

with τ = min(1, µ). Therefore, we have

Rem1
3 = ∥Y ∥∞P(Ωc)E[∥L̃Z∥4op]1/2 ≲ τ−1(1 + p/k)e−(k+p)/2(k + p) ≲

√
kτ−1(1 + p/k)3/2,

thanks to ex ≥
√
x/2 for all x > 0.

2. Bound of Rem2
3: The following lemma bounds Rem2

3 = (k + p)E[|Y |].

Lemma 9. Let ξ1 = (1+tr[B])∥Lr∥2/∥h∥2−tr[LV ] and ξ2 = k−(1+tr[B])2∥Lr∥2/∥h∥2.
Then

E|k − tr[LV ](1 + tr[B])| = E|(1 + tr[B])ξ1 + ξ2| ≲
√
kτ−2(1 + p/k)5/2.

Lemma 9 is proved in Appendix A.5.3. A sketch is as follows: The quantity ξ1 is bounded
using Lemma 8 with J = Ĩ = I. For ξ2, we use a chi-square type moment inequality (Bellec,
2023, Theorem 7.1).

Recall Rem2
3 = (k + p)E|Y | with Y := k−1(k − tr[L̃Ṽ ](1 + tr[B̃])). Then, Lemma 9 implies

Rem2
3 = (1 + p/k)E[|k − tr[L̃Ṽ ](1 + tr[B̃])|] ≲

√
kτ−2(1 + p/k)7/2.

Combining the bounds of Rem1
3 and Rem2

3, we have

E|Rem3| ≲ Rem1
3 + Rem2

3 ≲
√
kτ−2(1 + p/k)7/2 +

√
kτ−1(1 + p/k)3/2 ≲

√
kτ−2(1 + p/k)7/2, (36)

thanks to τ = min(1, µ) ≤ 1.

We have now controlled each of E|Rem1|,E|Rem2|,E|Rem3|. (34), (35) and (36) result in

E[|Rem1|] + E[|Rem2|] + E[|Rem3|] ≲
√
kτ−1(1 + p/k)3/2 +

√
kτ−2(1 + p/k)7/2 +

√
k

≲
√
kτ−2(1 + p/k)7/2 ≲

√
nτ−2c−3γ7/2

thanks to γ = max(1, p/n) ≥ 1, c = k/n ≤ 1 and τ = min(1, µ) ≤ 1. This finishes the proof of (20)
for the ovlp-estimator.
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Proof for the full-estimator. Using the notation in Appendix A.1, our goal here is to show

E
[∣∣∣(n− d̂f − d̃f + |I∩Ĩ|

k2
d̂fd̃f)h⊤h̃− r⊤r̃

∥h∥∥h̃∥

∣∣∣] ≲ √
nτ−2c−2γ5/2.

Here, tr[V ] = n− d̂f, tr[LV ] = k − d̂f and tr[L̃V ]− tr[L̃LV ] = k − |I ∩ Ĩ| implies

(
n− d̂f − d̃f +

|I ∩ Ĩ|
k2

d̂fd̃f
)
h⊤h̃ =

(
tr[V ]− d̃f

k

{
tr[L̃V ]− tr[L̃LV ] +

|I ∩ Ĩ|
k

tr[LV ]
})

h⊤h̃,

so that, by simple algebra, the error can be decomposed as(
n− d̂f − d̃f +

|I ∩ Ĩ|
k2

d̂fd̃f
)
h⊤h̃− r⊤r̃ = ∥h∥∥h̃∥(Rem1 + Rem2 + Rem3 + Rem4),

where the four following remainders will be bounded separately:

Rem1 =
−r⊤r̃ − r̃⊤L̃r tr[B̃] + tr[V ]h⊤h̃

∥h∥∥h̃∥
, Rem2 =

tr[B̃]

1 + tr[B̃]

(1 + tr[B̃])r̃⊤L̃r − tr[L̃V ]h⊤h̃

∥h∥∥h̃∥
,

Rem3 =
(1 + tr[B̃]) tr[L̃Ṽ ]− k

(1 + tr[B̃])

tr[L̃V ]

k

h⊤h̃

∥h∥∥h̃∥
, Rem4 =

d̃f

k
(tr[L̃LV ]− |I ∩ Ĩ|

k
tr(LV ))

h⊤h̃

∥h∥∥h̃∥
.

Control of Rem1 and Rem2. Lemma 8 with K = [n] implies

E[|Rem1|] ≤
√

E[|Rem1|2] ≲
√
τ−2(n+ p(n+ p)2/k2) ≤ τ−1c−1

√
n+ p(1 + p/n)2 ≲

√
nτ−1c−1(1+p/n)3/2,

thanks to k/n = c ∈ (0, 1], while tr[B̃] ≥ 0 by (28) and Lemma 8 with J = Ĩ lead to

E[|Rem2| ≤
√
E[|Rem2|2] ≲

√
τ−2(k + p(k + p)2/k2) ≲ τ−1

√
k(1+p/k)3/2 ≲

√
nτ−1c−1(1+p/n)3/2.

Control of Rem3. According to (30), it holds that tr[L̃V ] = tr[L̃LV ]+k−|I∩ Ĩ| and ∥LV ∥op ≤ 1.
Thus,

k−1| tr[L̃V ]| = k−1| tr[L̃LV ]|+ k−1|k − |I ∩ Ĩ|| ≤ ∥LV ∥op + 1 ≤ 2.

Combining the above display and tr[B̃] ≥ 0 by (28), as well as Lemma 9, we obtain

E[|Rem3|] ≤ 2E[|(1 + tr[B̃]) tr[L̃Ṽ ]− k|] ≲ τ−2k1/2(1 + p/k)5/2 ≲
√
nτ−2c−2(1 + p/n)5/2.

Control of Rem4. Equation (33) implies

E[|Rem4|] ≤ E| tr[L̃LV ]− k−1|I ∩ Ĩ| tr[LV ]| ≤
√
k ≤

√
n.

From the above displays, we observe that the dominating upper bound is that of E[|Rem3|]. Thus,
we obtain

E[|Rem1|] + E[|Rem2|] + E[|Rem3|] + E[|Rem4|] ≲
√
nτ−2c−2(1 + p/n)5/2 ≲

√
nτ−2c−2γ5/2

thanks to γ = max(1, p/n). This finishes the proof of (20) for the full-estimator.
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A.2.2 Part 2: Proof of Equation (21)

For # = ovlp and full, by algebra, the relative error is bounded from above as

∣∣∣R̃#
M

RM
− 1
∣∣∣ = |

∑
m,ℓ(R̂

#
m,ℓ − h⊤

mhℓ)|
∥
∑

m′ hm′∥2
≤

(
∑

m′ ∥hm′∥)2

∥
∑

m′ hm′∥2
·
∑
m,ℓ

∥hm∥∥hℓ∥
(
∑

m′ ∥hm′∥)2
·
|R̂#

m,ℓ − h⊤
mhℓ|

∥hm∥∥hℓ∥

≤
(
∑

m′ ∥hm′∥)2

∥
∑

m′ hm′∥2
·max
m,ℓ

|R̂#
m,ℓ − h⊤

mhℓ|
∥hm∥∥hℓ∥

≤M ·
∑

m′ ∥hm′∥2

∥
∑

m′ hm′∥2
·max
m,ℓ

|R̂#
m,ℓ − h⊤

mhℓ|
∥hm∥∥hℓ∥

=M · Ratio ·max
m,ℓ

n

|d#m,ℓ|
|E#

m,ℓ|. (37)

Here, we have defined Ratio and E#
m,ℓ by

Ratio :=

∑
m′ ∥hm′∥2

∥
∑

m′ hm′∥2
, E#

m,ℓ :=
d#m,ℓ(R̂

#
m,ℓ − h⊤

mhℓ)

n∥hm∥∥hℓ∥
, (38)

where d#m,ℓ is the denominator of the corresponding estimator for # ∈ {ovlp, full} defined in (19).
We restate their expressions for convenience:

dovlpm,ℓ = |Im ∩ Iℓ|(1− d̂fm/k)(1− d̂fℓ/k), dfullm,ℓ = n− d̂fm − d̂fℓ + k−2|Im ∩ Iℓ|d̂fmd̂fℓ (39)

Below we bound |E#
m,ℓ|, |d

#
m,ℓ|

−1, and Ratio.

Control of E#
m,ℓ. Markov’s inequality applied with the moment bound (20) yields

for all ϵ > 0, P(|E#
m,ℓ| > ϵ) ≤ ϵ−1E[|E#

m,ℓ|] ≲
1

ϵ
√
nτ2

×

{
c−3γ7/2 # = ovlp

c−2γ5/2 # = full
(40)

Control of Ratio. Here the key lemma to bound Ratio :=
∑

m′ ∥hm′∥2/∥
∑

m′ hm′∥2 is the
concentration of the correlation h⊤

mhℓ/∥hm∥∥hℓ∥:

Lemma 10. If the same penalty is used for all m ∈ [M ], i.e., gm = g in (2), then

ηm,ℓ := E
[

h⊤
mhℓ

∥hm∥∥hℓ∥
| (zi)i∈Im∩Iℓ

]
≥ 0, and E

[( h⊤
mhℓ

∥hm∥∥hℓ∥
− ηm,ℓ

)2]
≲

γ

nc2τ2
.

Lemma 10 is proved in Appendix A.5.4. The proof is based on a symmetry argument for the
non-negativity of ηm,ℓ and the Gaussian Poincaré inequality for the upper bound.

Now we provide a high-probability bound for the Ratio. Let Um,ℓ := −h⊤
mhℓ/∥hm∥∥hℓ∥ + ηm,ℓ.

Then, using the positiveness of ηm,ℓ by Lemma 10, we find∑
m

∥hm∥2 − ∥
∑
m

hm∥2 =
∑
m̸=ℓ

(−h⊤
mhℓ + ηm,ℓ∥hm∥∥hℓ∥ − ηm,ℓ∥hm∥∥hℓ∥) ≤

∑
m ̸=ℓ

Um,ℓ∥hm∥∥hℓ∥

≤
(∑
m̸=ℓ

U2
mℓ

)1/2(∑
m̸=ℓ

∥hm∥2∥hℓ∥2
)1/2

≤
(∑
m,ℓ

U2
mℓ

)1/2∑
m

∥hm∥2.
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Dividing both sides by
∑

m ∥hm∥2, we have

∥
∑

m hm∥2∑
m ∥hm∥2

≥ 1−
(∑
m,ℓ

U2
m,ℓ

)1/2
.

Then, Markov’s inequality applied with E[U2
m,ℓ] ≲ γ/(nc2τ2) by Lemma 10 yields

P
(∑

m ∥hm∥2

∥
∑

m hm∥2
≥ 2

)
≤ P

(
1−
(∑
m,ℓ

U2
m,ℓ

)1/2
≤ 1

2

)
≤ P

(∑
m,ℓ

U2
m,ℓ ≥ 1/4

)
≤ 4E

[∑
m,ℓ

U2
m,ℓ

]
≲

M2γ

nc2τ2
,

(41)
which gives the upper bound of Ratio =

∑
m ∥hm∥2/∥

∑
m hm∥2.

Control of |d#m,ℓ|
−1. The lemma below gives an lower bound of d#m,ℓ for # ∈ {ovlp, full}.

Lemma 11. Let dovlpm,ℓ and dfullm,ℓ be the random variables defined in (39). Then, there exists a
positive absolute constant C > 0 such that for # ∈ {ovlp, full},

P
(d#m,ℓ
n

< Cd#(τ, c, γ)
)
≲

γ4

nc2τ4
where dovlp(τ, c, γ) = τ2c4γ−2, and dfull(τ, c, γ) = τ2γ−2.

Lemma 11 is proved in Appendix A.5.5. The proof uses (30) and some property of the hypergeo-
metric distribution (Lemma 22).

Combining (37), (40), (41), and Lemma 11 yield the following for all ϵ > 0:

P
(∣∣∣R̃#

M

RM
− 1
∣∣∣ > ϵ

)
≤ P

(
Ratio ·max

m,ℓ

n

|d#m,ℓ|
|E#

m,ℓ| >
ϵ

M

)
≲

M2γ

nτ2c2
+ P

(
2max
m,ℓ

n

|d#m,ℓ|
|E#

m,ℓ| >
ϵ

M

)
≤ M2γ

nτ2c2
+
∑
m,ℓ

P
( n

|d#m,ℓ|
|E#

m,ℓ| >
ϵ

2M

)

≤ M2γ

nτ2c2
+
∑
m,ℓ

{
P
(d#m,ℓ
n

< Cd#(τ, c, γ)
)
+ P

(
|E#

m,ℓ| >
ϵCd#(τ, c, γ)

2M

)}

≲
M2γ

nτ2c2
+M2

[ γ4

nc2τ4
+

2M

ϵCd#(τ, c, γ)

1√
nτ2

·

{
c−3γ7/2 # = ovlp

c−2γ5/2 # = full,

]
where C > 0 is an absolute constant, and d#(c, τ, γ) is given by dovlp(τ, c, γ) = τ2c4γ−2 and
dfull(τ, c, γ) = τ2γ−2. Substituting this expression to the last bound, we obtain

for all ϵ > 0, P
(∣∣∣R̃#

M

RM
− 1
∣∣∣ > ϵ

)
≲

M2γ

nτ2c2
+
M2γ4

nc2τ4
+

M3

ϵ
√
nτ2+2

·

{
c−3−4γ7/2+2 # = ovlp

c−2γ5/2+2 # = full

≲
M2γ4

nc2τ4
+

M3

ϵ
√
nτ4

×

{
c−7γ11/2 # = ovlp

c−2γ9/2 # = full
, (42)

thereby when ϵ ∈ (0, 1), the second term dominates the first term. This concludes the proof of
(21).
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A.3 Proof of Theorem 2 (restated here for convenience)

Theorem 2 (Finite-sample bounds for corrected GCV). Suppose Assumptions A–D hold. Let
c = k/n, γ = max(1, p/n), and τ = min(1, µ). Assume that the same penalty gm is used for
each m ∈ [M ] in (2). Then, for any ϵ ∈ (0, 1), there exists an absolute constant C > 0 such
that the following holds:

P
(∣∣∣1− R̃cgcv,ovlp

M

RM

∣∣∣ > ϵ
)
≤ C

M4γ15/2

ϵτ6c6
√
n
, P

(∣∣∣1− R̃cgcv,full
M

RM

∣∣∣ > ϵ
)
≤ C

M4γ13/2

ϵτ6c4
√
n
. (22)

Thus, if (M,µ−1, p/n, n/k) are bounded by constants independent of n, we have

R̃cgcv,ovlp
M /RM = 1 +OP(n

−1/2), R̃cgcv,full
M /RM = 1 +OP(n

−1/2).

The goal in this section is to show R̃cgcv,#
M /RM ≈ 1 for # ∈ {ovlp, full}. The definition of R̃cgcv,#

M

is recalled for convenience:

R̃cgcv,#
M =

∥M−1
∑

m rm∥2

n(1− d̃fM/n)2
− (c−1 − 1)

(d̃fM/n)
2

(1− d̃fM/n)2

1

M2

∑
m

R̂#
m,m. (43)

Now, we define R̃cgcv
M by

R̃cgcv
M :=

∥M−1
∑

m rm∥2

n(1− d̃fM/n)2
− (c−1 − 1)

(d̃fM/n)
2

(1− d̃fM/n)2

1

M2

∑
m

∥hm∥2. (44)

The difference between R̃cgcv
M and R̃cgcv,#

M is whether it uses ∥hm∥2 or its estimate R̂#
m,m in the

rightmost sum. Considering R̂#
m,m ≈ ∥hm∥2 from (20), R̃cgcv

M is naturally expected to be close to

R̃cgcv,#
M . We state this approximation more precisely as follows:

for all ϵ ∈ (0, 1), P
(∣∣∣R̃cgcv

M − R̃cgcv,#
M

RM

∣∣∣ > ϵ

)
≲

M2

√
nϵτ6

×

{
c−6γ15/2 # = ovlp

c−2γ13/2 # = full
. (45)

Equation (45) is proved in Appendix A.3.1. The second task is to show R̃cgcv
M ≈ RM .

Lemma 12. For R̃cgcv
M defined in (44), we have

for all ϵ ∈ (0, 1), P
(∣∣∣R̃cgcv

M −RM
RM

∣∣∣ > ϵ

)
≲

M4

√
nϵτ5

· c−4γ13/2.

Lemma 12 is proved in Appendix A.3.2, where we use some concentration of d̂fm around its average
d̃fM =M−1

∑M
m=1 d̂fm. Now we assume Lemma 12. Then, Equation (45) and Lemma 12 together

yield

P
(
|R̃cgcv,#

M /RM − 1| > ϵ
)
≤ P

(
|(R̃cgcv,#

M − R̃cgcv
M )/RM | > ϵ/2

)
+ P

(
|R̃cgcv

M /RM − 1| > ϵ/2
)
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≲
M4

√
nϵτ5

· c−4γ13/2 +
M√
nϵτ6

·

{
c−6γ15/2 # = ovlp

c−2γ13/2 # = full
≲

M4

√
nϵτ6

·

{
c−6γ15/2 # = ovlp

c−4γ13/2 # = full
,

for all ϵ ∈ (0, 1). This completes the proof of Theorem 2. In the following sections, we prove
Equation (45) and Lemma 12.

A.3.1 Proof of Equation (45)

By the definition of R̃cgcv,# in (43) and R̃cgcv in (44),

R̃cgcv
M − R̃cgcv,#

M

RM
= (c−1 − 1)

(
d̃fM/n

1− d̃fM/n

)2∑
m(R̂

#
mm − ∥hm∥2)

∥
∑

m hm∥2
.

Here, thanks to (c−1 − 1)(d̃fM/n)
2 ≤ (c−1 − 1)(k/n)2 = (c−1 − 1)c2 ≤ c by (30), we have∣∣∣∣R̃cgcv

M − R̃cgcv,#
M

RM

∣∣∣∣ ≤ c

(1− d̃fM/n)2

∑
m ∥hm∥2

∥
∑

m hm∥2
max
m

| R̂
#
mm

∥hm∥2
− 1| = c · U ·max

m
V #
m ,

where U and V #
m are defined as

U :=
1

(1− d̃fM/n)2

∑
m ∥hm∥2

∥
∑

m hm∥2
, V #

m :=

∣∣∣∣ R̂#
mm

∥hm∥2
− 1

∣∣∣∣. (46)

Control of U . By Lemma 18 (introduced later), there exists an absolute constant C ∈ (0, 1) such
that

P(1− d̂fm/n ≤ Cτγ−1) ≤ e−nc/2,

Applying the above display to 1− d̃fM/n =M−1
∑M

m=1(1− d̂fm/n) with the union bound, we have

P
( 1

(1− d̃fM/n)2
≥ γ2

C2τ2

)
= P(1− d̃fM/n ≤ Cτγ−1) ≤

M∑
m=1

P(1− d̂fm/n ≤ Cτγ−1) ≲Me−nc/2.

Combining the above display and the upper bound of
∑

m ∥hm∥2/∥
∑

m hm∥2 given by (41), we
have

P
(
U >

2γ2

C2τ2

)
≤ P

(∑
m ∥hm∥2

∥
∑

m hm∥2
> 2
)
+P
( 1

(1− d̃fM/n)2
≥ γ2

C2τ2

)
≲
M2γ2

nτ2c2
+

M

enc/2
≲
M2γ2

nτ2c2
(47)

Control of V #
m . Equation (42) with M = 1 implies

for all ϵ > 0, P(V #
m > ϵ) ≲

γ4

nc2τ4
+

1

ϵ
√
nτ4

·

{
c−7γ11/2 # = ovlp

c−2γ9/2 # = full
(48)

Now we have controlled U and V #
m . (47) and (48) together yield, for all ϵ ∈ (0, 1),

P
(∣∣∣R̃cgcv

M − R̃cgcv,#
M

RM

∣∣∣ > ϵ

)
≤ P(cU max

m
V #
m > ϵ) ≤ P

(
U >

2γ2

C2τ2

)
+ P

(
c
2γ2

C2τ2
max
m

V #
M > ϵ

)
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≲
M2γ2

nτ2c2
+
∑
m

P
(
V #
m >

ϵC2τ2

2cγ2

)
(by (47))

≲
M2γ2

nτ2c2
+
Mγ4

nτ4c2
+

M√
nτ4

(
ϵC2τ2

2cγ2

)−1

·

{
c−7γ11/2 # = ovlp

c−2γ9/2 # = full
(by (48))

≲
M2γ4

nτ4c2
+

M√
nϵτ6

×

{
c−6γ15/2 # = ovlp

c−1γ13/2 # = full
(thanks to τ ∈ (0, 1] and γ ≥ 1)

≲
M2

√
nϵτ6

×

{
c−6γ15/2 # = ovlp

c−2γ13/2 # = full
(thanks to ϵ ∈ (0, 1))

This concludes the proof.

A.3.2 Proof of Lemma 12 (restated here for convenience)

Lemma 12. For R̃cgcv
M defined in (44), we have

for all ϵ ∈ (0, 1), P
(∣∣∣R̃cgcv

M −RM
RM

∣∣∣ > ϵ

)
≲

M4

√
nϵτ5

· c−4γ13/2.

Proof. If we define dcgcvm,ℓ by

dcgcvm,ℓ := n
{(

1− d̃fM
n

)2
+ (c−1 − 1)1{m=ℓ}

( d̃fM
n

)2}
the relative error can be written as

R̃cgcv
M

RM
− 1 =

∥
∑

m rm∥2 − n(c−1 − 1)(d̃fM/n)
2
∑

m ∥hm∥2

n(1− d̃fM/n)2∥
∑

m hm∥2
− 1 =

∑
m,ℓ(r

⊤
mrℓ − dcgcvm,ℓ h

⊤
mhℓ)

n(1− d̃fM/n)2∥
∑

m hm∥2
.

By the same argument in (37), the relative error is bounded from above as∣∣∣R̃cgcv
M

RM
− 1
∣∣∣ ≤ 1

(1− d̃fM/n)2

(
∑M

m=1 ∥hm∥)2

∥
∑M

m=1 hm∥2
·max
m,ℓ

|r⊤mrℓ − dcgcvm,ℓ h
⊤
mhℓ|

n∥hm∥∥hℓ|

≤M · 1

(1− d̃fM/n)2

∑
m ∥hm∥2

∥
∑

m hm∥2
·max
m,ℓ

(
|r⊤mrℓ − dfullm,ℓh

⊤
mhℓ|

n∥hm∥∥hℓ∥
+

|dcgcvm,ℓ − dfullm,ℓ|
n

)

=M · U ·max
m,ℓ

(
|Efull

m,ℓ|+ |dcgcvm,ℓ − dfullm,ℓ|/n
)
,

where Efull
m,ℓ and U were defined before by (38) and (46). Their expressions are recalled here for

convenience:

U :=
1

(1− d̃fM/n)2

∑
m ∥hm∥2

∥
∑

m hm∥2
, Efull

m,ℓ :=
r⊤mrℓ − dfullm,ℓh

⊤
mhℓ

n∥hm∥hℓ∥
=
dfullm,ℓ(R̂

full
m,ℓ − h⊤

mhℓ)

n∥hm∥hℓ|
,

where dfullm,ℓ = n− d̂fm − d̂fℓ + k−2|Im ∩ Iℓ|d̂fmd̂fℓ is the denominator in the full-estimator. Note in

passing that U and Efull
m,ℓ have been already bounded by (40) with # = full and (47): there exists

a absolute constant C such that

P(U > Cτ−2γ2) ≲
M2γ2

nτ2c2
, P(|Efull

m,ℓ| > ϵ) ≲
τ5/2

ϵ
√
nτ2c2

for all ϵ > 0. (49)
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It remains to bound |dcgcvm,ℓ − dfullm,ℓ|/n. Here, we will argue that

for all m, ℓ ∈ [M ], for all ϵ > 0, P
( |dfullm,ℓ − dcgcvm,ℓ |

n
> ϵ
)
≲M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
. (50)

The proof of (50) is given at the end of this section. Now we assume it. Then (49) and (50) together
yield, for all ϵ ∈ (0, 1),

P
(
|
R̃cgcv
M

RM
− 1| > ϵ

)
≤ P

(
U ·max

m,ℓ
(|Efull

m,ℓ|+
|dcgcvm,ℓ − dfullm,ℓ|

n
) >

ϵ

M

)
≤ P

(
U >

Cγ2

τ2

)
+ P

(
max
m,ℓ

(|Efull
m,ℓ|+

|dcgcvm,ℓ − dfullm,ℓ|
n

) >
ϵ

M

τ2

Cγ2

)
≲
M2γ2

nτ2c2
+
∑
m,ℓ

P
(
|Efull

m,ℓ| >
ϵτ2

2CMγ2

)
+ P(

|dcgcvm,ℓ − dfullm,ℓ|
n

>
ϵτ2

2CMγ2
)

≲
M2γ2

nτ2c2
+M2

{
2CMγ2

ϵτ2
· γ5/2√

nτ2c2
+Me−nc/2 +

2CMγ2

ϵτ2
· Mγ9/2√

nτ3c4

}
≲
M4γ13/2√
nϵτ5c4

(thanks to ϵ, c, τ ∈ (0, 1] and γ ≥ 1),

which concludes the proof of Lemma 12.

Proof of Equation (50). The expressions of dfullm,ℓ and d
cgcv
m,ℓ are recalled here for convenience:

dfullm,ℓ

n
= 1− d̂fm

n
− d̂fℓ

n
+

|Im ∩ Iℓ|
nk2

d̂fmd̂fℓ,
dcgcvm,ℓ

n
=
(
1− d̃fM

n

)2
+ (c−1 − 1)1{m=ℓ}

( d̃fM
n

)2
.

Below we prove dfullm,ℓ/n ≈ dcgcvm,ℓ /n. The key lemma is the concentration of d̂fm around its average

d̃fM =
∑

m d̂fm/M .

Lemma 13. Suppose the same penalty is used for (hm)
M
m=1. Then, we have

for all m ∈ [M ], for all ϵ > 0, P
( |d̂fm − d̃fM |

n
> ϵ
)
≲M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
.

The proof of Lemma 13 is given in Appendix A.5.6. From Lemma 13, it suffices to bound |dfullm,ℓ −
dcgcvm,ℓ |/n from above by |d̂fm − d̃fM |/n and |d̂fℓ − d̃fM |/n up to an absolute constant. Below, we
prove (50) for m = ℓ and m ̸= ℓ separately.

When m = ℓ. Letting f be the function f(x) = 1− 2x+ c−1x2 = (1− x)2 +(c−1 − 1)x2, we have

dfullm,m

n
= 1− 2

d̂fm
n

+
d̂f2m
nk

= f(
d̂fm
n

),
dcgcvm,m

n
= (1− d̃fM

n
)2 + (c−1 − 1)(

d̃fM
n

)2 = f(
d̃fM
n

).

Here, d̂fm/n, d̃fM/n ∈ [0, c) by (30), while f is 2-Lipschitz on [0, c] since supx∈[0,c] |f ′(x)| =
supx∈[0,c] 2(1− x/c) = 2. Thus, we obtain that, for all ϵ > 0,

P
( |dfullm,m − dcgcvm,m|

n
> ϵ
)
= P

(∣∣∣f( d̂fm
n

)
−f
( d̃fM
n

)∣∣∣ > ϵ
)
≤ P

(
2
∣∣∣ d̂fm
n

− d̃fM
n

∣∣∣ > ϵ
)
≲M

(
e−nc/2+

γ9/2

ϵ
√
nτ3c4

)
,

48



thanks to the Lipschitz property of f and Lemma 13. This completes the proof of (50) for m = ℓ.

When m ̸= ℓ. Letting g be the function g(x, y) = (1− x)(1− y), we have

dfullm,ℓ

n
= g
( d̂fm
n
,
d̂fℓ
n

)
+

d̂fm
n

d̂fℓ
n

( |Im ∩ Iℓ| · n
k2

− 1
)
,

dcgcvm,ℓ

n
= g
( d̃fM
n
,
d̃fM
n

)
.

Here, g(x, y) = (1− x)(1− y) satisfies the following inequality: for all x, x′, y, y′ ∈ [0, 1],

|g(x, y)− g(x′, y′)| ≤ |g(x, y)− g(x′, y)|+ |g(x′, y)− g(x′, y′)| ≤ |x− x′|+ |y − y′|.

From this property of g and d̂fm/n, d̂fℓ/n, d̃fM/n ∈ [0, c) ⊂ [0, 1] by (30), we find

|dfullm,ℓ − dcgcvm,ℓ |
n

≤ d̂fm
n

d̂fℓ
n

∣∣∣ |Im ∩ Iℓ| · n
k2

− 1
∣∣∣+ ∣∣∣g( d̂fm

n
,
d̂fℓ
n

)
− g
( d̃fM
n
,
d̃fM
n

)∣∣∣
≤ c2

∣∣∣ |Im ∩ Iℓ| · n
k2

− 1
∣∣∣+ |d̂fm − d̃fM |

n
+

|d̂fℓ − d̃fM |
n

.

Here, thanks to the bound of of Var[|Im ∩ Iℓ|] (see Lemma 22), the moment of the first term on the
right-hand side is bounded from above as

E
[
c2
∣∣∣ |Im ∩ Iℓ| · n

k2
− 1
∣∣∣] = c2

n

k2
E
[∣∣∣|Im ∩ Iℓ| −

k2

n

∣∣∣] ≤ 1

n

√
E
[∣∣∣|Im ∩ Iℓ| −

k2

n

∣∣∣2] ≤ 1

n

√
k2

n
=

c√
n
.

Therefore, Markov’s inequality applied with the above moment bound Lemma 13 results in

P
( |dfullm,ℓ − dcgcvm,ℓ |

n
> ϵ
)
≤ P

(
c2
∣∣∣ |Im ∩ Iℓ| · n

k2
− 1
∣∣∣ > ϵ

3

)
+ P

( |d̂fm − d̃fM |
n

>
ϵ

3

)
+ P

( |d̂fℓ − d̃fM |
n

>
ϵ

3

)
≲

c

ϵ
√
n
+M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
≲M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
,

for all ϵ > 0. This completes the proof of Equation (50) for m ̸= ℓ.

A.4 Proof of Theorem 3

Define Correction as

Correction := (c−1 − 1)
(d̃fM/n)

2

(1− d̃fM/n)2

∑
m ∥hm∥2

∥
∑

m hm∥2
,

so that Lemma 12 can be written as

P
(∣∣∣R̃gcv

M

RM
− Correction− 1

∣∣∣ > ϵ

)
≲
M4γ13/2

ϵ
√
nτ5c4

for all ϵ ∈ (0, 1). (51)

Since ∥
∑

m hm∥2 ≤ (
∑

m ∥hm∥)2 ≤M
∑

m ∥hm∥2 by the triangle inequality, it holds that

∀δ ∈ (0, 1),
{
d̃fM/k ≥ δ

}
=
{
d̃fM/n ≥ cδ

}
⊂
{
Correction ≥ (c−1−1)

(
cδ

1− cδ

)2 1

M
≥ δ2c(1− c)

M

}
.

Therefore, we obtain that, for all δ ∈ (0, 1),

P
(
d̃fM
k

≥ δ

)
≤ P

(
Correction ≥ δ2c(1− c)

M

)
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≤ P
(
R̃gcv
M

RM
− Correction− 1 ≤ −δ

2c(1− c)

2M

)
+ P

(
R̃gcv
M

RM
− 1 >

δ2c(1− c)

2M

)
≤ C

(
δ2c(1− c)

2M

)−1M4γ13/2√
nτ5c4

+ P
(
R̃gcv
M

RM
> 1 +

c(1− c)δ2

2M

)
(by (51) with ϵ =

δ2c(1− c)

2M
)

≤ C ′ M5

√
nτ5δ2

γ13/2

c5(1− c)
+ P

(
R̃gcv
M

RM
> 1 +

c(1− c)δ2

2M

)
,

where C,C ′ > 0 are absolute constants. This finishes the proof.

A.5 Technical lemmas and their proofs

A.5.1 Proof of Lemma 7 (restated here for convenience)

Lemma 7. [Variant of Bellec and Shen (2022, Theorem 1)] Suppose the penalty g satisfies
Assumption D with a constant µ > 0. Then there exists a matrix B ∈ R(p+1)×(p+1) depending
on (zi)i∈I such that

∥B∥op ≤ (kµ)−1, rank(B) ≤ p, tr[B] ≥ 0 (28)

and the derivative of h with respect to Z = (zij)i∈[n],j∈[p+1] is given by

for all i ∈ [n] and j ∈ [p+ 1],
∂h

∂zij
= Beje

⊤
i Lr −BZ⊤Leie

⊤
j h with L = LI =

∑
i∈I

eie
⊤
i .

(29)
Furthermore, V := In −ZBZ⊤L satisfies the following:

d̂f = k − tr[LV ], 0 < k

(
1 +

∥LG∥2op
kµ

)−1

≤ tr[LV ] ≤ k and ∥LV ∥op ≤ 1, (30)

where G = XΣ−1/2 ∈ Rn×p is a standard Gaussian matrix.

Proof. By the change of variable β 7→ u = Σ1/2(β − β0) and G = XΣ−1/2, we have

Σ1/2(β̂ − β0) = û, r = y −Xβ̂ = ϵ−Gû, d̂f = tr[X(∂/∂y)β̂] = tr[G(∂/∂ϵ)û],

where û is a penalized estimator with an isotropic design G = XΣ−1/2:

û = û(ϵ,G) := argmin
u∈Rp

1

k

∑
i∈I

(ϵi − g⊤
i u)

2 + f(u) with f(u) := g(Σ−1/2u+ β0).

Note in passing that the map u ∈ Rp 7→ f(u)−µ∥u∥2/2 is convex thanks to Assumption D. Then,
Bellec and Shen (2022, Theorem 1) with Σ = Ip implies the followings: there exists a matrix
A ∈ Rp×p depending on (ϵi, gi)i∈I such that

∥A∥op ≤ (|I|µ)−1 = (kµ)−1,

and the derivative of û with respect to G = (gij)ij ∈ Rn×p and ϵ = (ϵi) ∈ Rn are given by

for all i ∈ [n], j ∈ [p],
∂û

∂gij
(ϵ,G) =

{
A[eje

⊤
i r −G⊤eiejû] (i ∈ I)

0p (i /∈ I)
= A[ej(Lr)i −G⊤Leiûj ],
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for all i ∈ [n],
∂û

∂ϵi
(u,G) =

{
AG⊤ei (i ∈ I)

0p (i /∈ I)
= AG⊤Lei,

where L =
∑

i∈I eie
⊤
i . Furthermore, equation (D.8) (and the following argument) in Bellec and

Shen (2022) imply that V := In −GAG⊤L satisfies

0 < k(1 + ∥G∥2op/(kµ))−1 ≤ tr[LV ] = k − d̂f ≤ k, ∥LV ∥op ≤ 1.

Thus, if we define the matrix B ∈ R(p+1)×(p+1) as B :=

(
A 0p
0⊤p 0

)
, the derivative of h =

(û⊤,−σ)⊤ ∈ Rp+1 with respect to Z = [G|σ−1ϵ] = (zij)ij ∈ Rn×(p+1) can be written as

i ∈ [n], 1 ≤ j ≤ p,
∂h

∂zij
=

∂

∂gij

(
û
−σ

)
=

(
A[ej(Lr)i −G⊤Leiĥj ]

0

)
= B

[(ej
0

)
(Lr)i −Z⊤Leiĥj

]
,

i ∈ [n],
∂h

∂zi,p+1
= σ

∂

∂ϵi

(
û
−σ

)
=

(
σAG⊤Lei

0

)
= B

[(0p
1

)
(Lr)i −Z⊤Leiĥp+1

]
.

This finishes the proof of the derivative formula (29). It remains to prove tr[B] ≥ 0 in (28). By the
definition of B, it suffices to show tr[A] ≥ 0. Equation (7.4) in Bellec (2022) implies v⊤Av ≥ 0
for all v ∈ ker(A)⊥. Then, letting V = (v1,v2, . . . ,vp) ∈ Rp×p be an orthogonal matrix with
its columns including an orthogonal basis of ker(A)⊥, we have 0 ≤

∑p
i=1 v

⊤
i Avi = tr[V ⊤AV ] =

tr[AV V ⊤] = tr[A]. This completes the proof.

A.5.2 Proof of Lemma 8 (restated here for convenience)

Lemma 8. For any subset J ⊂ [n] that is independent of Z, we have

E
[(−r⊤LJ r̃ − r̃⊤L̃LJr tr[B̃] + tr[LJV ]h⊤h̃

∥h∥∥h̃∥

)2 ∣∣∣ J ] ≲ τ−2(|J |+ p(|J |+ p)2

k2
)

where τ = min(1, µ) and LJ =
∑

i∈J eie
⊤
i .

Proof. The proof is based on the moment inequality in Lemma 14 ahead. We will bound ΞJ in
Lemma 14 using the derivative formula (29) and the bound of the operator norm ∥B∥op ≤ (kµ)−1

by (28). Note in passing that the derivative formula (29) implies

∑
i∈J

p+1∑
j=1

∥∥∥ ∂h
∂zij

∥∥∥2 =∑
i∈J

p+1∑
j=1

∥Bej(Lr)i −BZ⊤Leihj∥2 ≲ ∥B∥2F ∥LJr∥2 + ∥LJZB⊤∥2F ∥h∥2,

so that r = −Zh and ∥B∥2F ≤ rank(B)∥B∥2op ≤ p(kµ)−2 lead to

ΞJ =
∑
i∈J

∥h∥−2
p+1∑
j=1

∥∥∥ ∂h
∂zij

∥∥∥2 ≲ ∥B∥2F ∥LJZ∥2op ≲ p(kµ)−2∥LJZ∥2op. (52)

Thus, Lemma 14 and E[∥LJZ∥4op] ≲ (|J |+ p)2 by (20) yield

E
[

1

∥h∥2∥h̃∥2
(
rLJ r̃ +

∑
i∈J

q∑
j=1

∂rih̃j
∂zij

)2 ∣∣∣ J] ≲ |J |+ p(|J |+ p)2(kµ)−2 ≲ τ−2(|J |+ p(|J |+ p)2/k2),
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thanks to τ = min(1, µ). It remains to bound the error inside the square in the LHS; the derivative
formula (29) leads to

1

∥h∥∥h̃∥

∑
i∈K

p+1∑
j=1

(∂(h̃jri)
∂zij

− r̃⊤L̃LJr tr[B̃] + tr[LJV ]h̃⊤h
)
=

−h̃⊤B̃Z⊤L̃LJr − r⊤LLJZBh̃

∥h∥∥h̃∥
.

Here, the square of the RHS can be bounded from above by 4µ−2k−2∥LJZ∥4op. From this and
E[∥LJZ∥4op] ≲ (|J |+ p)2 by (20), we find that the expectation of the RHS is bounded from above
by (|J |+ p)2/(kµ)−2 up to some absolute constant. This finishes the proof.

Lemma 14 (Variant of Bellec (2023, Proposition 6.1)). Assume that h and h̃ are locally
Lipschitz function from Rn×q → Rq such that ∥h∥2, ∥h̃∥2 ̸= 0, and let r = −Zh and r̃ = −Zh̃,
where Z ∈ Rn×q has i.i.d. N (0, 1) entries. If J ⊂ [n] is independent of Z, we have

E
[

1

∥h∥2∥h̃∥2
(
rLJ r̃ +

∑
i∈J

q∑
j=1

∂rih̃j
∂zij

)2 ∣∣∣ J] ≲ |J |+ E[∥LJZ∥2op(1 + ΞJ + Ξ̃J)],

where LJ =
∑

i∈J eie
⊤
i , ΞJ =

∑
i∈J
∑q

j=1 ∥h∥−2
∥∥∥ ∂h
∂zij

∥∥∥2, and Ξ̃J =
∑

i∈J
∑q

j=1 ∥h̃∥−2
∥∥∥ ∂h̃
∂zij

∥∥∥2.
Proof. Let ϱ = LJr/∥h∥ = −LJZh/∥h∥ ∈ Rn and η̃ := h̃/∥h̃∥ ∈ Rq. Then, Proposition 6.1. in
Bellec (2023) implies

E
[(

− ϱ⊤Zη̃ +
∑
i,j

∂(ρiη̃j)

∂zij

)2]
≤ E[∥ϱ∥2∥η̃∥2] +

∑
ij

E
[
∥ϱ∥2

∥∥∥ ∂η̃
∂zij

∥∥∥+ ∥η̃∥2
∥∥∥ ∂ϱ
∂zij

∥∥∥2], (53)

where E[∥ϱ∥2∥η̃∥2] ≤ E[∥LJZ∥2op] thanks to ∥η̃∥2 = 1 and ∥ϱ∥2 ≤ ∥LJZ∥2op. It remains to bound
the second term. Here, we use the following identity: if h : Rn×q → Rq is locally Lipschitz with
∥h∥2 ̸= 0, we have

∂

∂zij

( h

∥h∥

)
=

P⊥

∥h∥
∂h

∂zij
with P⊥ = Ip+1 −

hh⊤

∥h∥2
so that

∥∥∥ ∂

∂zij

( h

∥h∥

)∥∥∥2 ≤ 1

∥h∥2
∥∥∥ ∂h
∂zij

∥∥∥2, (54)

where the inequality follows from ∥P⊥∥op ≤ 1. Then, (54) and ∥ϱ∥2 ≤ ∥LJZ∥2op yield∑
i∈J

q∑
j=1

∥ϱ∥2
∥∥∥ ∂η̃
∂zij

∥∥∥ ≤ ∥LJZ∥2op
∑
i∈J

∑
j

1

∥h∥2
∥∥∥ ∂h̃
∂zij

∥∥∥2 = ∥LJZ∥2opΞJ .

In the same way, ϱ = −LJZh/∥h∥, ∥η̃∥2 = 1, and (54) lead to∑
i∈J

q∑
j=1

∥η̃∥2
∥∥∥ ∂ϱ
∂zij

∥∥∥2 =∑
i∈J

q∑
j=1

∥∥∥LJ(ei hj∥h∥
+Z

∂

∂zij

( h

∥h∥

))∥∥∥2 ≤ 2|J |+ 2∥LJZ∥2opΞJ .

Therefore, the RHS of (53) is bounded from above by |J |+ E[∥LJZ∥2op(1 + ΞJ + Ξ̃J)] up to some
absolute constant. It remains to control the error inside the square:

1

∥h∥∥h̃∥

∑
i∈J

∑
j∈[q]

∂rih̃j
∂zij

−
∑
i∈J

∑
j∈[q]

∂ρiη̃j
∂zij

=
∑
i∈J

q∑
j=1

rih̃j

∥h∥∥h̃∥

(
h⊤

∥h∥2
∂h

∂zij
+

h̃⊤

∥h̃∥2
∂h̃

∂zij

)
By multiple applications of the Cauchy-Schwartz inequality, the square of the RHS is bounded from
above by 2∥LJZ∥2op(ΞJ + Ξ̃J). This finishes the proof.
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A.5.3 Proof of Lemma 9 (restated here for convenience)

Lemma 9. Let ξ1 = (1 + tr[B])∥Lr∥2/∥h∥2 − tr[LV ] and ξ2 = k − (1 + tr[B])2∥Lr∥2/∥h∥2.
Then

E|k − tr[LV ](1 + tr[B])| = E|(1 + tr[B])ξ1 + ξ2| ≲
√
kτ−2(1 + p/k)5/2.

Proof. Lemma 8 with J = I = Ĩ and 0 ≤ tr[B] ≤ p∥B∥op ≤ p/(kµ) by (28) yield

E|(1 + tr[B])ξ1| ≲ µ−1(p/k)E|ξ1| ≲ τ−1(p/k)
√
kτ−1(1 + p/k)3/2 ≲

√
kτ−2(1 + p/k)5/2,

while E|ξ2| ≲
√
kτ−2(1 + p/k)2 by Lemma 15 below. Thus, we obtain

E[|k − tr[LV ](1 + tr[B])|] ≲
√
kτ−2(1 + p/k)5/2 +

√
kτ−2(1 + p/k)2 ≲

√
kτ−2(1 + p/k)5/2.

This finishes the proof.

Lemma 15. We have E[|k − (1 + tr[B])2∥Lr∥2/∥h∥2|] ≲ k1/2τ−2(1 + p/k)2.

Proof. Define a ∈ Rn and b ∈ Rn as

for all i ∈ [n], ai =
1

∥h∥
(1 + tr[B])(Lr)i and bi =

1

∥h∥
(Lr)i +

1

∥h∥

p+1∑
j=1

∂hj
∂zij

so that (1 + tr[B])2∥Lr∥2/∥h∥2 = ∥a∥2. Lemma 17 ahead and the Cauchy–Schwarz inequality
yield

E[|k − ∥a∥2|] ≤ E[2(
√
k∥a− b∥+ |k − ∥b∥2|+ ∥a− b∥2]

≲
√
kE[∥a− b∥2] + E[∥a− b∥2] + E[|k − ∥b∥2|]. (55)

Thus, it suffices to bound E[∥a− b∥2] and E[|k − ∥b∥2]. For E∥a− b∥2, (28), (29), and Lemma 20
yield

E∥a− b∥2 = E[∥h∥−2∥LZB⊤h∥2] ≤ E[∥B∥2op∥LZ∥2op] ≲ (kµ)−2(k + p) ≲ k−1τ−2(1 + p/k),

where τ = min(1, µ). If we denote ∥h∥−2
∑

i∈I
∑p+1

j=1 ∥(∂/∂zij)h∥2 by ΞI , Lemma 16 below leads
to

E[|k − ∥b∥2|] ≲
√
k(1 + E[ΞI ]) + E[ΞI ] (by Lemma 16)

≲
√
k(1 + µ−2(1 + p/k)2) + µ−2(1 + p/k)2 (thanks to (52) with J = I)

≲
√
kτ−2(1 + p/k)2 (thanks to τ = min(1, µ)).

This concludes the proof.
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Lemma 16 (Variant of Bellec (2023, Theorem 7.1)). Let h : Rk×q → Rq be a locally Lipschitz
functions. If Z ∈ Rk×q has i.i.d. N (0, 1) entries, we have

E
[∣∣∣∣k − 1

∥h∥2
k∑
i=1

(
e⊤i Zh−

q∑
j=1

∂hj
∂zij

)2∣∣∣∣] ≲√k(1 + EΞ) + EΞ with Ξ =
1

∥h∥2
k∑
i=1

q∑
j=1

∥∥∥ ∂h
∂zij

∥∥∥2.
Proof. Define vectors a, b ∈ Rk by

for all i ∈ [k], ai =
1

∥h∥

(
e⊤i Zh−

∑
j

∂hj
∂zij

)
and bi = e⊤i Z

h

∥h∥
−
∑
j

∂

∂zij

( hj
∥h∥

)
,

so that the LHS of the assertion is E|k − ∥a∥2|. The same argument in (55) leads to

E[|k − ∥a∥2|] ≲
√
kE[∥a− b∥2] + E[∥a− b∥2] + E[|k − ∥b∥2|].

Below we bound E[∥a− b∥2] and E[|k − ∥b∥2]. For ∥a− b∥2, multiple applications of the Cauchy–
Schwarz inequality lead to

∥a−b∥2 =
k∑
i=1

{
− 1

∥h∥
∑
j

∂hj
∂zij

+
∑
j

∂

∂zij

( hj
∥h∥

)}2
=

k∑
i=1

(
−
∑
j

h⊤

∥h∥3
∂h

∂zij
hj

)2
≤
∑
i,j

1

∥h∥2
∥∥∥ ∂h
∂zij

∥∥∥2 = Ξ.

For E[|k − ∥b∥2], Theorem 7.1 in Bellec (2023) applied to the unit vector h/∥h∥ ∈ Rq implies

E|k − ∥b∥2| ≲
√
k(1 + EΞ′) + EΞ′ with Ξ′ := E

k∑
i=1

q∑
j=1

∥ ∂

∂zij

( h

∥h∥

)
∥2.

Since Ξ′ ≤ Ξ by (54), we have E[|k − ∥b∥2|] ≲
√
k(1 + E[Ξ]) + E[Ξ]. This finishes the proof.

Lemma 17. We have |k − ∥a∥2| ≤ 2(
√
k∥a− b∥+ |k − ∥b∥2|+ ∥a− b∥2) for all vector a, b in

the same Euclidean space.

Proof. By multiple applications of the triangle inequality and 2ab ≤ a2 + b2, we have∣∣|k − ∥a∥2| − |k − ∥b∥2|
∣∣ ≤ ∥a− b∥∥a+ b∥ ≤ ∥a− b∥2 + 2∥a− b∥∥b∥

≤ ∥a− b∥2 + 2∥a− b∥(
√
|∥b∥2 − k|+

√
k)

≤ 2∥a− b∥2 + |∥b∥2 − k|+ 2∥a− b∥
√
k.

Adding |∥b∥2 − k| to both sides and using the triangle inequality, we conclude the proof.

A.5.4 Proof of Lemma 10 (restated here for convenience)
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Lemma 10. If the same penalty is used for all m ∈ [M ], i.e., gm = g in (2), then

ηm,ℓ := E
[

h⊤
mhℓ

∥hm∥∥hℓ∥
| (zi)i∈Im∩Iℓ

]
≥ 0, and E

[( h⊤
mhℓ

∥hm∥∥hℓ∥
− ηm,ℓ

)2]
≲

γ

nc2τ2
.

Proof. Letting v = h/∥h∥ and ṽ = h̃/∥h̃∥, the statement of Lemma 10 can be written as follows;
if the same penalty is used for h and h̃, we have

E
[
v⊤ṽ

∣∣ (zi)i∈I∩Ĩ] ≥ 0, and E
[
Var
[
v⊤ṽ

∣∣ (zi)i∈I∩Ĩ]] ≲ γ

nc2τ2
,

Below we prove this claim. Here, the key fact is that conditionally on (zi)i∈I∩Ĩ , the random vectors
v and ṽ are independent and identically distributed. Then, it immediately follows from this fact
that

E
[
v⊤ṽ

∣∣ (zi)i∈I∩Ĩ] = ∥∥∥E[v ∣∣ (zi)i∈I∩Ĩ]∥∥∥2 ≥ 0.

Next, we derive the bound of the variance: first using the Gaussian Poincaré inequality for the
inequality below, second using that v does not depend on (zi)i∈Ĩ\I and ṽ does not depend on

(zi)i∈I\Ĩ for the equality below,

Var
[
v⊤ṽ | (zi)i∈I∩Ĩ

]
≤ Ē

∑
j∈[p+1]

∑
i∈(I\Ĩ)∪(Ĩ\I)

( ∂

∂zij
v⊤ṽ

)2
= Ē

∑
j∈[p+1]

[ ∑
i∈I\Ĩ

(
ṽ⊤ ∂v

∂zij

)2
+
∑
i∈Ĩ\I

(
v⊤ ∂ṽ

∂zij

)2]
,

where Ē is conditional expectation given (zi)i∈I∩Ĩ . By the symmetry of (h, h̃), it suffices to bound

the first term. Letting P⊥ = Ip+1 − vv⊤, we obtain the following from the identity (54):∑
j∈[p+1]

∑
i∈I\Ĩ

(
ṽ⊤ ∂v

∂zij

)2
=

1

∥h∥2
∑

j∈[p+1]

∑
i∈I

(ṽ⊤P⊥Bej(Lr)i − ṽ⊤P⊥BZ⊤Leihj)
2

≲ ∥B∥2op∥LZ∥2op + ∥LZB⊤∥2op ≲ (kµ)−2∥LZ∥2op.

Thus, the moment bound E[∥LZ∥2op] ≲ (k + p) by Lemma 20 leads to

E
[
Var
[
v⊤ṽ | (zi)i∈I∩Ĩ

]]
≲ (kµ)−2E

[
∥LZ∥2op + ∥L̃Z∥2op

]
≲ (kµ)−2(k + p) ≲ n−1τ−2c−2γ,

thanks to τ = min(1, µ), c = k/n ∈ (0, 1), and γ = max(1, p/n). This completes the proof.

A.5.5 Proof of Lemma 11 (restated here for convenience)

Lemma 11. Let dovlpm,ℓ and dfullm,ℓ be the random variables defined in (39). Then, there exists a
positive absolute constant C > 0 such that for # ∈ {ovlp, full},

P
(d#m,ℓ
n

< Cd#(τ, c, γ)
)
≲

γ4

nc2τ4
where dovlp(τ, c, γ) = τ2c4γ−2, and dfull(τ, c, γ) = τ2γ−2.
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Proof. Below, we prove this assertion for # = ovlp and # = full, separately.

Proof for # = ovlp. Recall that dovlpm,ℓ = |Im ∩ Iℓ|(1− d̂fm/k)(1− d̂fℓ/k). Lemma 18 with I = Im
and Iℓ implies that there exists an absolute constant C ∈ (0, 1) such that

for all m, ℓ, P((1− d̂fm/k)(1− d̂fℓ/k) ≤ C2τ2c2γ−2) ≤ 2e−nc/2. (56)

Lemma 22 (introduced later) and Markov’s inequality lead to the following:

for all m ̸= ℓ, P(|Im ∩ Iℓ|n/k2 − 1| > 1/2) ≤ 4E[(Im ∩ Iℓ|n/k2 − 1)2] ≤ 4n2k−4k2n−1 = 4n−1c−2,

which implies
P(|Im ∩ Iℓ| ≤ k2/(2n) = 2−1nc2) ≤ 4n−1c−2.

Note in passing that the above inequality also holds for m = ℓ since |Im ∩ Iℓ| = k ≥ k2/2n with
probability 1. Therefore, we have, for all m, ℓ,

P(dovlpm,ℓ ≤ 2−1C2nc4τ2γ−2) ≤ P(|Im ∩ Iℓ| ≤ 2−1nc2) + P((1− d̂fm/k)(1− d̂fℓ/k) ≤ C2τ2c2γ−2)

≤ 4n−1c−2 + 2e−nc/2 ≲ n−1c−2.

Proof for # = full. Recall that dfullm,ℓ = n − d̂fm − d̂fℓ + k−2|Im ∩ Iℓ|d̂fmd̂fℓ. We consider m = ℓ
and m ̸= ℓ separately.

When m = ℓ, (56) with m = ℓ implies that the following holds with probability at least 1−2e−nc/2:

n−1dfullm,m = c(1− d̂fm/k)
2 + 1− c ≥ cC2τ2c2γ−2 + 1− c ≥ C2τ2γ−2(c3 + 1− c) ≥ C ′τ2γ−2,

where C ′ = C2minc∈[0,1](c
3 + 1− c) = C2(1− 2

√
3/9) is a positive absolute constant.

When m ̸= ℓ, we decompose

dfullm,ℓ

n
=
(
1− d̂fm

n

)(
1− d̂fℓ

n

)
+

d̂fm
n

d̂fℓ
n

( |Im ∩ Iℓ| · n
k2

− 1
)
=: Am,ℓ +Bm,ℓ.

Lemma 18 implies that there exists an absolute constant C ∈ (0, 1) such that

P(Am,ℓ ≤ C2τ2γ−2) ≤ 2e−nc/2.

For Bm,ℓ, 0 < d̂fm < k = nc and Lemma 22 imply

E[|Bm,ℓ|2] ≤ (
k2

n2
n

k2
)2E[||Im ∩ Iℓ| −

k2

n
|2] ≤ 1

n2
k2

n
=
c2

n
.

Thus, Markov’s inequality leads to

P(dfullm,ℓ > n2C2τ2γ−2) ≤ P(Am,ℓ > C2τ2γ−2) + P(Bm,ℓ > C2τ2γ−2)

≤ 2e−nc/2 + (C2τ2γ−2)−2E[|Bm,ℓ|2] ≲ (nc)−1 + τ−4γ4c2n−1

≲ n−1c−1τ−4γ4.

This concludes the proof.
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Lemma 18. There exists an absolute constant C ∈ (0, 1) such that

P(1− d̂f/k ≥ Cτcγ−1) ≥ 1− e−nc/2, P(1− d̂f/n ≥ Cτγ−1) ≥ 1− e−nc/2

Proof. Equation (30) implies

(1− d̂f/k)−1 ≤ 1 + µ−1∥LG∥2op/k ≤ τ−1(1 + ∥LG∥2op/k),

thanks to τ = min(1, µ), where G ∈ Rn×p has i.i.d. Gaussian entries. Since ∥LG∥op
d
= ∥G′∥op with

G′ ∈ Rk×p having i.i.d. N (0, 1) entries, Lemma 20 with t =
√
k +

√
p implies

P(∥LZ∥2op > {2(
√
k +

√
p)}2) ≤ e−(

√
k+

√
p)2/2 ≤ e−(k+p)/2 ≤ e−k/2.

Since {2(
√
k +

√
p)}2 ≤ 8(k + p). the following holds with probability at least 1− e−k/2:

(1− d̂f/k)−1 ≤ τ−1(1 + 8(1 + p/k)) ≤ 9τ−1(1 + p/k) ≤ 9τ−1(1 + c−1p/n) ≤ 18τ−1c−1γ,

thanks to γ = max(1, p/n). This completes the proof for 1− d̂f/k. For 1− d̂f/n, 0 < d̂fm < k = nc
and the above display lead to

P(1− d̂fm/n ≥ (1− c) ∨ {(18)−1τcγ−1}) ≥ 1− e−nc/2,

where (1 − c) ∨ {(18)−1τcγ−1} ≥ (18)−1τγ−1((1 − c) ∨ c) ≥ (18)−1τγ−12−1 thanks to c, τ ∈ (0, 1]
and γ > 1. Therefore taking C = (36)−1 concludes the proof.

A.5.6 Proof of Lemma 13 (restated here for convenience)

Lemma 13. Suppose the same penalty is used for (hm)
M
m=1. Then, we have

for all m ∈ [M ], for all ϵ > 0, P
( |d̂fm − d̃fM |

n
> ϵ
)
≲M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
.

Proof. Now we suppose that exists a deterministic scalar dn that does not depend on m such that

P(|d̂fm/n− dn| > ϵ) ≲ e−nc/2 +
γ9/2

ϵ
√
nτ3c4

. (57)

Then, multiple applications of the triangle inequality lead to

P(|d̂fm − d̃fM | > nϵ) ≤ P
(∣∣∣ d̂fm

n
− dn

∣∣∣ > ϵ

2

)
+ P

(∣∣∣M−1
∑

m d̂fm
n

− dn

∣∣∣ > ϵ

2

)
≤ P

(∣∣∣ d̂fm
n

− dn

∣∣∣ > ϵ

2

)
+

M∑
m=1

P
(∣∣∣ d̂fm

n
− dn

∣∣∣ > ϵ

2

)
≲M

(
e−nc/2 +

γ9/2

ϵ
√
nτ3c4

)
,

which completes the proof. Below we prove (57). Let Lm = LIm for brevity. Define (Wm, dn) by

Wm :=
k∥Lmrm∥2

n2∥hm∥2
=
c∥Lmrm∥2

n∥hm∥2
, dn =

k

n
−
√

E[Wm].
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Note that dn does not depend on m by symmetry. Since d̂fm = k− tr[LmVm], our goal is to bound

d̂fm/n− dn = tr[LmVm]/n−
√
E[Wm].

Equation (31) with I = Ĩ = Im implies

E
[∣∣∣Wm − tr[LmVm]

2

n2

∣∣∣] = k

n2
E
[∣∣∣∥Lmrm∥2∥hm∥2

− k tr[LmVm]
2
∣∣∣] ≲ k

n2
·
√
nτ−2c−3γ7/2 =

γ7/2√
nτ2c2

,

while the Gaussian Poincaré inequality leads to (see Lemma 19 below)

Var[Wm] = Var

[
c

n

∥Lmrm∥2

∥hm∥2

]
=
c2

n2
Var

[
∥Lmrm∥2

∥hm∥2

]
≲
c2

n2
· nγ

3

c2τ2
=

γ3

nτ2
.

By the above displays, we obtain

E
[∣∣∣tr[LmVm]2

n2
− E[Wm]

∣∣∣] ≤ E
[∣∣∣tr[LmVm]2

n2
−Wm

∣∣∣]+ E
[∣∣Wm − E[Wm]

∣∣]
≤ E

[∣∣∣tr[LmVm]2
n2

−Wm

∣∣∣]+√Var[Wm]

≲
γ7/2√
nτ2c2

+

√
γ3

nτ2
≲

γ7/2√
nτ2c2

.

Now, Lemma 18 implies that there exists an absolute constant C > 0 such that

P(Ωc) ≤ e−(k+p)/2 ≤ e−nc/2 with Ω = {tr[LmVm]/n ≥ Cγ−1cτ}

Notice that under Ω,∣∣∣tr[LmVm]2
n2

− E[Wm]
∣∣∣ = ∣∣∣tr[LmVm]

n
−
√
E[Wm]

∣∣∣ · ∣∣∣tr[LmVm]
n

+
√

E[Wm]
∣∣∣

=
∣∣∣ d̂fm
n

− dn

∣∣∣ · ∣∣∣tr[LmVm]
n

+
√
E[Wm]

∣∣∣ ≥ ∣∣∣ d̂fm
n

− dn

∣∣∣Cγ−1c2τ.

Combining the above displays together, we obtain

P
(∣∣∣ d̂fm

n
− dn

∣∣∣ > ϵ

)
≤ P(Ωc) + P

(∣∣∣tr[LmVm]2
n2

− E[Wm]
∣∣∣ > ϵCγ−1c2τ

)
≤ e−nc/2 +

γ

ϵCc2τ
E
[∣∣∣tr[LmVm]2

n2
− E[Wm]

∣∣∣]
≲ e−nc/2 +

γ

ϵc2τ
· γ7/2√

nτ2c2
= e−nc/2 +

γ9/2

ϵ
√
nτ3c4

.

This finishes the proof.

Lemma 19. We have Var(∥Lr∥2/∥h∥) ≲ nc−2τ−2γ3.
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Proof. Let u = Lr/∥h∥ = −LZh/∥h∥ = −LZv with v = h/∥h∥. The Gaussian Poincaré
inequality yields

Var(∥u∥2) ≤ E
[∑

ij

(
∂∥u∥2

∂zij

)2]
= 4

∑
ij

E
(
u⊤ ∂u

∂zij

)2

,

where

u⊤ ∂u

∂zij
= v⊤Z⊤L(eivj +Z(

∂

∂zij

h

∥h∥
)) = v⊤Z⊤Leivj + v⊤Z⊤LZP⊥ 1

∥h∥
∂h

∂zij
= Rem1

ij + Rem2
i,j .

Note that
∑

ij(Rem
1
ij)

2 ≤ ∥LZ∥2op. For Rem2
ij , the derivative formula (29) leads to

∑
ij

(Rem2
ij)

2 =
1

∥h∥2
∑
ij

(v⊤Z⊤LZP⊥(Bej(Lr)i −BZ⊤Leihj))
2

≲
1

∥h∥2
(∥B⊤P⊥Z⊤LZv∥2∥Lr∥2 + ∥LZB⊤P⊥Z⊤LZv∥2∥h∥2)

≲ ∥B∥2op∥LZ∥6op ≲ (kµ)−2∥LZ∥6op.

Thus, using Lemma 20, we obtain Var(∥u∥2) ≲ (k+ p) + k−2µ−2(k3 + p3) ≲ nc−2τ−2γ3, thanks to
τ = min(1, µ), c = k/n ∈ (0, 1] and γ = max(1, p/n).

A.6 Miscellaneous useful facts

Lemma 20. If G ∈ Rk×q has i.i.d. N0, 1) entries, the tail P(∥G∥op >
√
k+

√
q+ t) ≤ Φ(−t) ≤

e−t
2/2 holds for all t ∈ R, where Φ(·) is the CDF of the standard normal. Therefore, we have

E[∥G∥mop] ≤ C(m)(
√
k +

√
q)r for all m ≥ 1, where C(m) > 0 is a constant depending only on

m.

Proof. See Theorem 2.13 of Davidson and Szarek (2001) for the tail bound. The moment bound is
obtained by integrating the tail bound.

Lemma 21 (Simple random sampling properties; see, e.g., page 13 of Chaudhuri (2014)). Fix
an array (xi)

M
i=1 of length M ≥ 1 and let µM be the mean M−1

∑
i∈[M ] xi and σ2M be the

variance M−1
∑

i∈M x2i − µ2M . Suppose J is uniformly distributed on {J ⊂ [M ] : |J | = m} for
a fixed integer m ≤ M . Then, the mean and variance of the sample mean µ̂J =

∑
i∈J xi are

given by

E[µ̂J ] = µM , and Var[µ̂J ] =
σ2M
m

(
1− m− 1

M − 1

)
≤
∑

i∈M x2i
mM

.

Lemma 22. If I and Ĩ are independent and uniformly distributed over [n] with cardinality
k ≤ n, we have E[(|I ∩ Ĩ| − n−1k2)2] ≤ n−1k2.
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Proof. A random variable X is said to follow a hypergeometric distribution, denoted as X ∼
Hypergeometric(n,K,N), if its probability mass function can be expressed as:

P(X = k) =

(
K
k

)(
N−K
n−k

)(
N
n

) , where max{0, n+K −N} ≤ k ≤ min{n,K}.

The mean and variance of X are respectively given by (e.g., Greene and Wellner (2017)):

E[X] =
nK

N
, and Var(X) =

nK(N −K)(N − n)

N2(N − 1)
≤ nK

N
.

Since |I ∩ Ĩ| ∼ Hypergeometric(k, k, n), we have E[(|I ∩ Ĩ| − n−1k2)2] = Var(|I ∩ Ĩ|) ≤ k2/n.

A.7 Relaxing Assumption D in the underparameterized regime

In the underparameterized regime when p/n < 1, the strongly convex assumption on the penalty
function in Assumption D is not needed; we only need the penalty to be convex. We make this
precise in this section.

Theorem 23. Let Assumptions A–C be fulfilled and assume p/k ≤ γ < 1 for a constant γ
independent of k, n, p. For any convex function gm, define

b̌m = argmin
b∈Rp

1

2|Im|
∥LIm(y −Xb)∥22 + gm(b) + µn∥Σ1/2(b− β0)∥2

for some deterministic µn ≥ 0; which is the same as β̂m in (2) with an additional quadratic
penalty term µn∥Σ1/2(b− β0)∥2. Let also ďfm be the degrees of freedom of b̌m. Then as long
as µn → 0 as n, k, p→ +∞ we have

σ2 + ∥Σ1/2(b̌m − β0)∥2

σ2 + ∥Σ1/2(β̂m − β̂0)∥2
p−→ 1,

1− ďfm/k

1− d̂fm/k

p−→ 1,
∥y −Xb̌m∥
∥y −Xβ̂m∥

p−→ 1,
∥LIm(y −Xb̌m)∥
∥LIm(y −Xβ̂m)∥

p−→ 1

as well as
∥Σ1/2(β̂m − b̌m)∥

min{∥Σ1/2(β̂m − β0)∥, ∥Σ1/2(b̌m − β0)∥}
p−→ 0.

If gm is convex and the same for all m ∈ [M ], taking τ = µn → 0 sufficiently slowly so that
the right-hand sides of (22) converge to 0 (for instance, µn = 1/ log n works), then

R̃cgcv,ovlp
M

RM

p−→ 1,
R̃cgcv,full
M

RM

p−→ 1,

i.e., the proposed estimates are consistent without requiring strong convexity assumption on
gm.

Proof. By the optimality condition of b̌m, its objective value is smaller than that of β̂m, so that
leaving aside µn∥Σ1/2(b̌m − β0)∥2 which is non-negative,

∥LIm(y −Xb̌n)∥22
2|Im|

+ gm(b̌m) ≤
∥LIm(y −Xβ̂m)∥22

2|Im|
+ gm(β̂m) + µn∥Σ1/2(β̂m − β0)∥2.

60



Similarly by optimality of β̂m, noting that β̂m still minimizes the convex function

β 7→ ∥LIm(y −Xβ)∥22
2|Im|

− ∥LImX(β − β̂m)∥2

2|Im|
+ gm(β),

thanks to the KKT (Karush-Kuhn-Tucker) condition for the original minimization problem, we
have

∥LImX(b̌m − β̂m)∥22
2|Im|

+
∥LIm(y −Xβ̂m)∥22

2|Im|
+ gm(β̂m) ≤

∥LIm(y −Xb̌n)∥22
2|Im|

+ gm(b̌m).

Summing the above two displays, most terms cancel, and we find

∥LImX(b̌m − β̂m)∥22
2|Im|

≤ µn∥Σ1/2(β̂m − β0)∥2.

Since p/k ≤ γ < 1, the left-hand side is bounded from below by 1
2C(γ)∥Σ

1/2(b̌m − β̂m)∥2 for
C(γ) = ((1−√

γ)/2)2 with exponentially large probability. In this event, by the triangle inequality,

|(|∥Σ1/2(b̌m − β0)∥2 + σ2)1/2 − (|∥Σ1/2(β0 − β̂m)∥2 + σ2)1/2|

≤
∣∣∥Σ1/2(b̌m − β0)∥ − |∥Σ1/2(β0 − β̂m)∥

∣∣
≤ ∥Σ1/2(b̌m − β̂m)∥

≤
√
2µn/C(γ)∥Σ1/2(β̂m − β0)∥.

(58)

Dividing by (∥Σ1/2(β̂m − β0)∥2 + σ2)1/2, we obtain the desired convergence

σ2 + ∥Σ1/2(b̌m − β0)∥2

σ2 + ∥Σ1/2(β̂m − β̂0)∥2
p−→ 1,

thanks to µn → 0. For the convergence of the ratio of norms of residuals, we may bound from
below the denominators by

∥y −Xβ̂m∥ ≥ ∥LIm(y −Xβ̂m)∥ ≥
√

|Im|C(γ)(∥Σ1/2(β̂m − β0)∥2 + σ2)1/2

with probability approaching one, since the eigenvalues of |Im|−1/2LIm [X | ϵ/σ] are bounded away
from 0. In the numerators, ∥y−Xβ̂m∥−∥y−Xb̌m∥ is bounded from above by C ′(γ)∥Σ1/2(b̌m−β̂m)∥
and the ratio ∥Σ1/2(b̌m−β̂m)∥/∥Σ1/2(β̂m−β0)∥ converges to 0 by (58). This proves that the ratios

of norms of residuals converge to 1 in probability. The ratio 1−d̂fm/k

1−ďfm/k
converges to 1 in probability

because GCV is consistent (Bellec, 2023, Section 3) for both b̌m and β̂m, which gives

(1− d̂fm/k) ·
∥LIm(y −Xβ̂m)∥√

|Im|(σ2 + ∥Σ1/2(β̂m − β0)∥2)

p−→ 1,

and similarly for b̌m. Finally, (58) provides

∥Σ1/2(β̂m − b̌m)∥/min{∥Σ1/2(β̂m − β0)∥, ∥Σ1/2(b̌m − β0)∥}
p−→ 0.

By (41), we further have, for b̌1, . . . b̌M thanks to the strongly convex penalty, that

P
(∑
m

(σ2 + ∥Σ1/2(b̌m − β0)∥2) ≤ 2(σ2 + ∥
∑
m

Σ1/2(b̌m − β0)∥2)
)
→ 1.
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Combining these inequalities, we get that all quantities involved in the definition of (17)-(18)
and their targets are close to the corresponding quantities with (β̂m, d̂fm) replaced by (b̌m, ďfm).
Thus the consistency of the estimates for (b̌m, ďfm) implies the consistency of the estimates for
(β̂m, d̂fm).

B Proofs in Section 5

B.1 Preparatory definitions

Fixed-point parameters. In the study of ridge ensembles under proportional asymptotics, a key
quantity that appears is the solution of a fixed-point equation. For any λ > 0 and θ > 0, define
vp(−λ; θ) as the unique nonnegative solution to the fixed-point equation

vp(−λ; θ)−1 = λ+ θ

∫
r(1 + vp(−λ; θ)r)−1 dHp(r), (59)

where Hp(r) = p−1
∑p

i=1 1{ri≤r} is the empirical spectral distribution of Σ and ri’s are the eigen-
values of Σ. For λ = 0, define vp(0; θ) := limλ→0+ vp(−λ; θ) for θ > 1 and ∞ otherwise.

Best linear projection. Since the ensemble ridge estimators are linear estimators, we evaluate
their performance relative to the oracle parameter:

β0 = E[xx⊤]−1E[xy],

which is the best (population) linear projection of y onto x and minimizes the linear regression
error. Note that we can decompose any response y into:

y = fli(x) + fnl(x),

where fli(x) = β⊤
0 x is the oracle linear predictor, and fnl(x) = y− fli(x) is the nonlinear compo-

nent that is not explained by fli(x). The best linear projection has the useful property that fli(x)
is (linearly) uncorrelated with fnl(x), although they are generally dependent. It is worth mention-
ing that this does not imply that y and x follow a linear regression model. Indeed, our framework
allows any nonlinear dependence structure between them and is model-free for the joint distribution
of (x, y). For n i.i.d. samples from the same distribution as (x, y), we define analogously the vector
decomposition:

y = fli + fnl, (60)

where fli = Xβ0 and fnl = [fnl(xi)]i∈[n].

Covariance and resolvents. For j ∈ [M ], let Lj be a diagonal matrix with i-th diagonal entry

being 1 if i ∈ Im and 0 otherwise. Let Σ̂j = X⊤LjX/k and Mj = (Σ̂j + λIp)
−1.

Risk and risk estimator. Recall that for m, ℓ ∈ [M ], the risk component is defined as

Rm,ℓ = ∥fnl∥2L2
+ (β̂m − β0)

⊤Σ(β̂ℓ − β0), (61)

while its two estimators are defined as

R̂ovlp
m,ℓ =

Novlp
m,ℓ

Dovlp
m,ℓ

, and R̂full
m,ℓ =

N full
m,ℓ

Dfull
m,ℓ

, (62)
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where

Novlp
m,ℓ = |Im ∩ Iℓ|−1(y −Xβ̂m)

⊤Lm∩ℓ(y −Xβ̂ℓ

Dovlp
m,ℓ = 1− tr(Sm)

|Im|
− tr(Sℓ)

|Iℓ|
+

tr(Sm) tr(Sℓ)

|Im||Iℓ|
N full
m,ℓ = n−1(y −Xβ̂m)

⊤(y −Xβ̂ℓ)

Dfull
m,ℓ = 1− tr(Sm)

n
− tr(Sℓ)

n
+

tr(Sm) tr(Sℓ)|Im ∩ Iℓ|
n|Im||Iℓ|

,

and Lm∩ℓ = LIm∩Iℓ .

Asymptotic equivalence. Let Ap and Bp be sequences of additively conformable random ma-
trices with arbitrary dimensions (including vectors and scalars as special cases). We define Ap and
Bp to be asymptotically equivalent, denoted as Ap ≃ Bp, if limp→∞ |tr[Cp(Ap −Bp)]| = 0 almost
surely for any sequence of random matrices Cp with bounded trace norm that are multiplicatively
conformable to Ap and Bp and are independent of Ap and Bp. Observe that when dealing with
sequences of scalar random variables, this definition simplifies the standard notion of almost sure
convergence for the involved sequences.

B.2 Proofs of Theorems 4 and 5 (restated here for convenience)

Theorem 4 (Pointwise consistency of intermediate estimators in λ). Under Assumptions A
and E–G with

√
n/k = O(1) for the ovlp-estimator, for λ ≥ 0, for any M ∈ N and m, l ∈ [M ],

it holds that |R̂ovlp
m,ℓ,λ − Rm,ℓ,λ|

a.s.−−→ 0 and |R̂full
m,ℓ,λ − Rm,ℓ,λ|

a.s.−−→ 0. Consequently, it holds that

|R̃ovlp
M,λ −RM,λ|

a.s.−−→ 0 and |R̃full
M,λ −RM,λ|

a.s.−−→ 0.

Theorem 5 (Uniform consistency of intermediate estimators in λ). Under same conditions

in Theorem 4, when ψ ̸= 1, it holds that supλ∈Λ |R̃ovlp
M,λ − RM,λ|

a.s.−−→ 0 and supλ∈Λ |R̃full
M,λ −

RM,λ|
a.s.−−→ 0.

Theorem 4 is a direct consequence of Theorem 5. Thus, below, we focus on proving Theorem 5.
The proof of Theorem 5 builds on the following lemmas.

1. Risk. Lemma 24 establishes the asymptotics Rm,ℓ of the prediction risk Rm,ℓ.

2. Ovlp-estimator. Lemma 25 and Lemma 26 establishes the asymptotics N ovlp
m,ℓ and Dovlp

m,ℓ of

the numerator Novlp
m,ℓ and the denominator Dovlp

m,ℓ , respectively, for the ovlp-estimator.

3. Full-estimator. Lemma 27 and Lemma 28 establishes the asymptotics N full
m,ℓ and D full

m,ℓ of the

numerator N full
m,ℓ and the denominator Dfull

m,ℓ, respectively, for the full-estimator.

For λ > 0 and k ∈ Kn such that p/k → [ϕ,∞), the consistency of the two estimators follows by
showing that the ratio of the numerator asymptotics and the denominator asymptotics in (1) and
(2) matches with the risk asymptotics in Lemma 24, respectively:

Rm,ℓ ≃ Rm,ℓ =
N ovlp
m,ℓ

Dovlp
m,ℓ

≃
Novlp
m,ℓ

Dovlp
m,ℓ

= R̂ovlp
m,ℓ ,
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and

Rm,ℓ ≃ Rm,ℓ =
N full
m,ℓ

D full
m,ℓ

≃
N full
m,ℓ

Dfull
m,ℓ

= R̂full
m,ℓ.

Next, Lemma 29 takes care of the boundary cases when ψ = ∞ and λ = 0.

Finally, from Lemma 29, we also have that the sequences of functions {Rm,ℓ − Rm,ℓ}p∈N, {R̂ovlp
m,ℓ −

Rm,ℓ}p∈N, and {R̂full
m,ℓ−Rm,ℓ}p∈N are uniformly equicontinuous on λ ∈ Λ = [0,∞] when ψ ̸= 1. This

implies that the sequences of functions {Rm,ℓ− R̂ovlp
m,ℓ }p∈N and {Rm,ℓ− R̂full

m,ℓ}p∈N are also uniformly
equicontinuous on λ ∈ Λ = [0,∞] almost surely. From Theorem 21.8 of Davidson (1994), it further
follows that the sequences converge to zero uniformly over Λ almost surely.

The rest of the current subsection is committed to presenting and proving the important lemmas
Lemmas 24–29.

Lemma 24 (Asymptotic equivalence for prediction risk). Under Assumptions E–G, for ψ ∈
[ϕ,∞) and λ > 0, it holds that

Rm,ℓ ≃ Rm,ℓ := (∥fnl∥2L2
+ c̃p(−λ;ψ))(1 + ṽp(−λ;φmℓ, ψ)),

where φmℓ = ψ 1{m=ℓ}+ϕ1{m ̸=ℓ} and ṽp(−λ;ϕ, ψ), c̃p(−λ;ψ) are defined in Lemma 30.

Proof. From the definition of the ridge estimator (26) and the decomposition of the response (60),
we have

β̂m − β0 = Mm
X⊤Lm

k
(Xβ0 + fnl)− β0

= −λMmβ0 +Mm
X⊤Lm

k
fnl.

Then it follows that

∥fnl∥2L2
+ (β̂m − β0)

⊤Σ(β̂ℓ − β0)

= λ2β⊤
0 MmΣMℓβ0

+ (∥fnl∥2L2
+ fnl

⊤LmX

k
MmΣMℓ

X⊤Lℓ
k

fnl)

+ (λβ⊤
0 MℓΣMℓ

X⊤Lm
k

fnl + λβ⊤
0 MℓΣMm

X⊤Lm
k

fnl)

= TB + TV + TC .

Bias term. From Lemma 30, we have

TB ≃ c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)),

where φmℓ = ψ 1{m=ℓ}+ϕ1{m ̸=ℓ} and ṽp(−λ;ϕ, ψ), c̃p(−λ;ψ) are defined in Lemma 30.

Variance term. By conditional independence and Lemma D.2 of Patil and Du (2023), the variance
term converges to the the quadratic term of f0 = Lm∩ℓfnl:

TV ≃ ∥fnl∥2L2
+

1

k2
f⊤
0 XMmΣMℓX

⊤f0 ≃ ∥fnl∥2L2
(1 + ṽp(−λ;φmℓ, ψ)),
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where the last equivalence is from Lemma 31.

Cross term. From Patil and Du (2023, Lemma A.3), the cross term vanishes, i.e., TC
a.s.−−→ 0.

This completes the proof.

Lemma 25 (Asymptotic equivalence for numerator of the ovlp-estimator). Under Assump-

tions E–G, for ψ ∈ [ϕ,∞) and λ > 0, and index sets Im, Iℓ
SRS∼ Ik, it holds that

Novlp
m,ℓ ≃ N ovlp

m,ℓ := λ2vp(−λ;ψ)2(∥fnl∥2L2
+ c̃p(−λ;ψ))(1 + ṽp(−λ;φmℓ, ψ)),

where φmℓ = ψ 1{m=ℓ}+ϕ1{m̸=ℓ} and vp(−λ;ψ), ṽp(−λ;ϕ, ψ) and c̃p(−λ;ψ) are defined in
Lemma 30.

Proof. From the definition of the ridge estimator (26) and the decomposition of the response (60),
we have

Lm∩ℓ(y −Xβ̂m) = Lm∩ℓ

(
Ip −XMm

X⊤Lm
k

)
y

= λLm∩ℓXMmβ0 +Lm∩ℓ

(
Ip −XMm

X⊤Lm
k

)
fnl.

Then it follows that

1

|Im ∩ Iℓ|
(y −Xβ̂m)

⊤Lm∩ℓ(y −Xβ̂ℓ)

= λ2β⊤
0 MmΣ̂m∩ℓMℓβ0

+
1

|Im ∩ Iℓ|
(Lmfnl)

⊤
(
Ip −

XMmX
⊤

k

)
Lm∩ℓ

(
Ip −

XMℓX
⊤

k

)
(Lℓfnl)

+
λ

|Im ∩ Iℓ|

(
β⊤
0 MℓX

⊤Lm∩ℓ

(
Ip −XMm

X⊤Lm
k

)
fnl + β⊤

0 MℓX
⊤Lm∩ℓ

(
Ip −XMℓ

X⊤Lℓ
k

)
fnl

)
= TB + TV + TC .

Next, we analyze the three terms separately.

Bias term. From Lemma 30,

TB ≃ λ2vp(−λ;ψ)2c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)),

where φmℓ = ψ 1{m=ℓ}+ϕ1{m ̸=ℓ} and vp(−λ;ψ), ṽp(−λ;ϕ, ψ) and c̃p(−λ;ψ) are defined in Lemma 30.

Variance term. By conditional independence and Lemma D.2 of (Patil and Du, 2023), the
variance term converges to the the quadratic term of f0 = Lm∩ℓfnl:

TV ≃ 1

|Im ∩ Iℓ|
(Lm∩ℓfnl)

⊤
(
Ip −

XMmX
⊤

k

)
Lm∩ℓ

(
Ip −

XMℓX
⊤

k

)
(Lm∩ℓfnl)

=
1

|Im ∩ Iℓ|
∥f0∥22 −

1

k

∑
j∈{m,ℓ}

f⊤
0

XMjX
⊤

|Im ∩ Iℓ|
f0 +

|Im ∩ Iℓ|
k2

f⊤
0

XMmΣ̂m∩ℓMℓX
⊤

|Im ∩ Iℓ|
f0

≃ λ2vp(−λ;ψ)2(1 + ṽp(−λ;φmℓ, ψ)),
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where the last equivalence is from Lemma 31.

Cross term. From Patil and Du (2023, Lemma A.3), the cross term vanishes, i.e., TC
a.s.−−→ 0.

Lemma 26 (Asymptotic equivalence for denominator of the ovlp-estimator). Under Assump-

tions F and G, for ψ ∈ [ϕ,∞) and λ > 0, and index sets Im, Iℓ
SRS∼ Ik, it holds that

Dovlp
m,ℓ ≃ Dovlp

m,ℓ := λ2vp(−λ;ψ)2,

where vp(−λ;ψ) is the unique nonnegative solution to fixed-point equation (59).

Proof. Since Im, Iℓ
SRS∼ Ik, we have that |Im| = |Iℓ| = k. From Du et al. (2023, Lemma C.1), we

have that
tr(Sj)

|Ij |
=

1

k2
tr(XMjX

⊤Lj) =
1

k
tr(MjΣj) ≃ 1− λvp(−λ;ψ).

By continuous mapping theorem,

1− tr(Sm)

|Im|
− tr(Sℓ)

|Iℓ|
+

tr(Sm) tr(Sℓ)

|Im||Iℓ|
≃ 1− 2(1− λvp(−λ;ψ)) + (1− λvp(−λ;ψ)2 = λ2vp(−λ;ψ)2,

which completes the proof.

Lemma 27 (Asymptotic equivalence for the numerator of the full-estimator). Under Assump-
tions E–G, for ψ ∈ [ϕ,∞) and λ > 0, it holds that

N full
m,ℓ ≃ N full

m,ℓ := dp(−λ;φmℓ, ψ)(∥fnl∥2L2
+ c̃p(−λ;ψ))(1 + ṽp(−λ;φmℓ, ψ)),

where

dp(−λ;φmℓ, ψ) =


ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2, if φmℓ = ψ,(

ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

, if φmℓ = ϕ,

φmℓ = ψ 1{m=ℓ}+ϕ1{m̸=ℓ}, and ṽp(−λ;ϕ, ψ), c̃p(−λ;ψ) are defined in Lemma 30.

Proof. Analogous to the proof of Lemma 25, the numerator splits into

1

n
(y −Xβ̂m)

⊤(y −Xβ̂ℓ)

=
1

n
λ2β⊤

0 MmΣ̂Mℓβ0

+
1

n
fnl

⊤
(
Ip −

LmXMmX
⊤

k

)(
Ip −

XMℓX
⊤Lℓ

k

)
fnl

+
λ

n

(
β⊤
0 MℓX

⊤
(
Ip −XMm

X⊤Lm
k

)
fnl + β⊤

0 MℓX
⊤
(
Ip −XMℓ

X⊤Lℓ
k

)
fnl

)
= TB + TV + TC .
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Next, we analyze the three terms separately.

The bias and the cross term are analyzed as in the proof of Lemma 25, by involving Lemma 30 and
Patil and Du (2023, Lemma A.3), respectively:

TB ≃ dp(−λ;φmℓ, ψ)c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)),
TC ≃ 0.

For the variance term, by conditional independence and Lemma D.2 of (Patil and Du, 2023), the
variance term converges to the quadratic terms of f1 = Lm∪ℓfnl and f0 = Lm∩ℓfnl, respectively:

1

n
fnl

⊤
(
Ip −

LmXMmX
⊤

k

)(
Ip −

XMℓX
⊤Lℓ

k

)
fnl

=
|Im ∪ Iℓ|

n
fnl

⊤
(
Ip −

LmXMmX
⊤

k

)
Lm∪ℓ

(
Ip −

XMℓX
⊤Lℓ

k

)
fnl+

+
|(Im ∪ Iℓ)c|

n
fnl

⊤
(
Ip −

LmXMmX
⊤

k

)
L(m∪ℓ)c

(
Ip −

XMℓX
⊤Lℓ

k

)
fnl

=
|Im ∪ Iℓ|

n
f⊤
1

(
Ip −

XMmX
⊤

k

)
Lm∪ℓ

(
Ip −

XMℓX
⊤

k

)
f1

+
|(Im ∪ Iℓ)c|

n
∥f0∥22 +

|(Im ∪ Iℓ)c|2

nk2
f⊤
0 XMmΣ̂(m∪ℓ)cMℓX

⊤f0.

From Lemma 31, it follows that

TV ≃ dp(−λ;φmℓ, ψ)∥fnl∥2L2
(1 + ṽp(−λ;φmℓ, ψ)).

Combining the above results completes the proof.

Lemma 28 (Asymptotic equivalence for denominator of the full-estimator). Under Assump-

tions F and G, for ψ ∈ [ϕ,∞) and λ > 0, and index sets Im, Iℓ
SRS∼ Ik, it holds that

Dfull
m,ℓ ≃ D full

m,ℓ :=


ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2, m = ℓ,(

ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

, m ̸= ℓ,

where vp(−λ;ψ) is the unique nonnegative solution to fixed-point equation (59).

Proof. From the proof of Lemma 26, we have tr(Sj)/|Ij |
a.s.−−→ 1− λvp(−λ;ψ), for j ∈ {m, ℓ}. From

Du et al. (2023, Lemma G.2), we also have k/n
a.s.−−→ ϕ/ψ.

For m = ℓ, we have

1− tr(Sm)

n
− tr(Sℓ)

n
+

tr(Sm) tr(Sℓ)

nk
≃ 1− 2ϕ

ψ
(1− λvp(−λ;ψ)) +

ϕ

ψ
(1− λvp(−λ;ψ))2

=
ψ − ϕ

ψ
+
ϕ

ψ
(λvp(−λ;ψ))2
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For m ̸= ℓ, from Du et al. (2023, Lemma G.2), we also have |Im ∩ Iℓ|/k
a.s.−−→ ϕ/ψ. By continuous

mapping theorem, it follows that

1− tr(Sm)

n
− tr(Sℓ)

n
+

tr(Sm) tr(Sℓ)|Im ∩ Iℓ|
n|Im||Iℓ|

≃ 1− 2ϕ

ψ
(1− λvp(−λ;ψ)) +

ϕ2

ψ2
(1− λvp(−λ;ψ))2

=

(
ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

,

which finishes the proof.

Lemma 29 (Boundary cases: diverging subsample aspect ratio and ridgeless). Under Assump-
tions E–G, the conclusions in Theorem 4 hold for ψ = ∞ or λ = 0, if k = ω(

√
n) for the first

estimator and no restriction on k is needed for the second estimator.

Furthermore, for Rm,ℓ,N
ovlp
m,ℓ ,D

ovlp
m,ℓ ,N

full
m,ℓ ,D

full
m,ℓ defined in Lemmas 24 and 26–28, the se-

quences of functions {Rm,ℓ − Rm,ℓ}p∈N, {Novlp
m,ℓ /D

ovlp
m,ℓ − N ovlp

m,ℓ /D
ovlp
m,ℓ }p∈N, and {N full

m,ℓ/D
full
m,ℓ −

N full
m,ℓ /D

full
m,ℓ}p∈N are uniformly bounded, equicontinuous and approaching zero on λ ∈ [0,∞]

almost surely.

Proof. We split the proof into two parts.

Part (1) Diverging subsample aspect ratio for λ > 0. Recall that

1

|Im ∩ Iℓ|
(y −Xβ̂m)

⊤Lm∩ℓ(y −Xβ̂ℓ)

= (β0 − β̂m)
⊤Σ̂m∩ℓ(β0 − β̂m) +

1

|Im ∩ Iℓ|
∥Lm∩ℓfnl∥22 +

1

|Im ∩ Iℓ|
∑

j∈{m,ℓ}

fnl
⊤Lm∩ℓX(β0 − β̂m).

From law of large numbers, ∥Lm∩ℓfnl∥22/|Im∩Iℓ|
a.s.−−→ ∥fnl∥2L2

as |Im∩Iℓ| tends to infinity, which is

guaranteed when k = ω(
√
n). From Patil and Du (2023, Lemma A.3), fnl

⊤Lm∩ℓXβ0/|Im∩Iℓ|
a.s.−−→

0.

For the other term, note that,

∥β̂m∥2 ≤ ∥(X⊤LmX/k + λIp)
−1(X⊤Lmy/k)∥2

≤ ∥(X⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥ · ∥Lmy/

√
k∥2

≤ C
√
E[y21] · ∥(X

⊤LmX/k + λIp)
−1X⊤Lm/

√
k∥op,

where the last inequality holds eventually almost surely since Assumption E implies that the entries
of y have bounded 4-th moment, and thus from the strong law of large numbers, ∥Lmy/

√
k∥2 is

eventually almost surely bounded above by C
√
E[y21] for some constant C. On the other hand, the

operator norm of the matrix (X⊤LmX/k+λIp)
−1XLm/

√
k is upper bounded maxi si/(s

2
i +λ) ≤

1/smin where si’s are the singular values of X and smin is the smallest nonzero singular value. As
k, p → ∞ such that p/k → ∞, smin → ∞ almost surely (e.g., from results of Bloemendal et al.
(2016)) and therefore, ∥β̂m∥2 → 0 almost surely. Because ∥Σ̂∥op is upper bounded almost surely, we
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further have fnl
⊤Lm∩ℓXβ̂m/|Im ∩ Iℓ|

a.s.−−→ 0. Consequently we have fnl
⊤Lm∩ℓX(β0 − β̂m)/|Im ∩

Iℓ|
a.s.−−→ 0 and

1

|Im ∩ Iℓ|
(y −Xβ̂m)

⊤Lm∩ℓ(y −Xβ̂ℓ)
a.s.−−→ β⊤

0 Σβ0 + ∥fnl∥2L2
.

Since Sj = XIj β̂j for j ∈ {m, ℓ}, we have that tr(Sj)/k
a.s.−−→ 0. So the denominator converges to

1, almost surely.

On the other hand, the asymptotic formula for λ > 0 satisfies that

lim
ψ→∞

λ2vp(−λ;ψ)2(∥fnl∥2L2
+ c̃p(−λ;ψ))(1 + ṽp(−λ;φmℓ, ψ))
λ2vp(−λ;ψ)2

= ∥fnl∥2L2
+ β⊤

0 Σβ0,

where we use the property that limψ→∞ vp(−λ;ψ) = 0. Thus, the asymptotic formula is also
well-defined and right continuous at ψ = ∞.

Part (2) Ridgeless predictor when λ = 0. Below, we analyze the numerator and the denom-
inator separately for the first estimator. To indicate the dependency on p and λ, we denote the
denominator and its asymptotic equivalent by

Pp,λ := Dovlp
m,ℓ , Qp,λ := Dovlp

m,ℓ ,

where we view k and n as sequences {kp} and {np} that are indexed by p. For j ∈ {m, ℓ},
since Sj ⪰ 0n×n and ∥Sj∥op = ∥LjX(X⊤LjX/k + λIp)

+X⊤Lj/|Ij |∥op ≤ 1 is upper bounded
for λ ≥ 0, with equality holds only if λ = 0. When λ = 0 and ψ < 1, we have tr(Sj)/|Ij | =
tr(LjX(X⊤LjX/k)−1X⊤Lj/|Ij |)/|Ij | = p/|Ij | ≤ ψ almost surely. When λ = 0 and ψ > 1, we

have that tr(Sj)/|Ij | ≥ rminr
−1
maxp/|Ij |

a.s.−−→ rminr
−1
maxψ > ψ. Thus, we have that 0 < Pp,λ < (1−ψ)2

for λ > 0 and λ = 0, ψ ̸= 1.

Next we inspect the boundedness of the derivative of Pp,λ:

∂

∂λ
Pp,λ = −

tr( ∂∂λSm)

|Im|
−

tr( ∂∂λSℓ)

|Iℓ|
+

tr( ∂∂λSm) tr(Sℓ) + tr(Sm) tr(
∂
∂λSℓ)

|Im||Iℓ|
.

For j ∈ {m, ℓ}, note that

∂

∂λ
Sj = LjX

(
X⊤LjX

k
+ λI

)−2
X⊤Lj
|Ij |

.

We also have ∥∂Sj/∂λ∥op is upper bounded almost surely on Λ, and thus so does |∂Pp,λ/∂λ|. We

know that Pp,λ − Qp,λ
a.s.−−→ 0 for λ > 0. Define Qp,0 := limλ→0+ Qp,λ = (1 − ψ)2, which is well-

defined according to Du et al. (2023, Proposition E.2). The equicontinuity property, together with
the Moore-Osgood theorem, we have that almost surely,

lim
p→∞

|Pp,0 −Qp,0| = lim
λ→0+

lim
p→∞

|Pp,λ −Qp,λ| = lim
λ→0+

0 = 0,

which proves that the denominator formula Qp,0 is valid for λ = 0.

For the numerator, similarly, we define

P ′
p,λ := Novlp

m,ℓ =
1

|Im ∩ Iℓ|
y⊤Lm∩ℓy −

∑
j∈{m,ℓ}

y⊤SjLm∩ℓy + y⊤SmSℓy,
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and Q′
p,λ = N ovlp

m,ℓ . By the similar argument above, the sequence of function P ′
p,λ−Q′

p,λ is equicon-
tinuous on Λ and thus Q′

p,0 = limλ→0+ Q
′
p,λ is well-defined. Finally, since the proof for the second

estimator and the risk are similar, we omit it here for simplicity.

Part (3) Equicontinuity (in λ) of the ratio. Again, we focus on proof for the first estimator.

Define P ′′
p,λ := Novlp

m,ℓ /D
ovlp
m,ℓ and Q′′

p,λ := N ovlp
m,ℓ /D

ovlp
m,ℓ . From the proof of Part (1), we know that

Dovlp
m,ℓ is positive and upper bounded almost surely, and Novlp

m,ℓ is nonnegative and upper bounded
almost surely. Thus, we have that P ′′

p,λ is upper bounded almost surely over Λ.

On the other hand, from the monotonicity and boundedness of fixed-point quantities (Du et al.,

2023, Lemma F.12), it follows that when λ = 0 and ψ ̸= 1, Dovlp
m,ℓ = (1− ψ)2; when λ > 0, Dovlp

m,ℓ is
a continuous function, with left limit at λ = 0 bounded away from zero and infinity and right limit
limλ→∞ λ2vp(−λ;ψ) = 1, and is therefore also bounded away from zero and infinity over Λ. This
implies that Q′′

p,λ is upper bounded over Λ.

Next, we examine the derivative of P ′′
p,λ and Q′′

p,λ:

∂

∂λ
P ′′
p,λ =

∂Novlp
m,ℓ

∂λ Dovlp
m,ℓ −Novlp

m,ℓ

∂Dovlp
m,ℓ

∂λ

(Dovlp
m,ℓ )

2
, and

∂

∂λ
Q′′
p,λ =

∂N ovlp
m,ℓ

∂λ Dovlp
m,ℓ − N ovlp

m,ℓ

∂Dovlp
m,ℓ

∂λ

(Dovlp
m,ℓ )

2
.

By a similar argument as above, we can also show that |∂P ′′
p,λ/∂λ| and |∂Q′′

p,λ/∂λ| are upper
bounded over Λ. Applying the Moore-Osgood theorem, the conclusion follows.

B.3 Proof of Theorem 6 (restated here for convenience)

Theorem 6 (Uniform consistency of corrected GCV in λ). Under the same conditions in

Theorem 4, it holds that |R̂cgcv,ovlp
M,λ − RM,λ|

a.s.−−→ 0 and |R̂cgcv,full
M,λ − RM,λ|

a.s.−−→ 0. Moreover,

when ψ ̸= 1, it holds that supλ∈Λ |R̂cgcv,ovlp
M,λ −RM,λ|

a.s.−−→ 0 and supλ∈Λ |R̂cgcv,full
M,λ −RM,λ|

a.s.−−→ 0.

Pointwise consistency

From Lemma 24 and Lemma 27, we have that

RM = ∥fnl∥2L2
+

1

M2

M∑
m=1

∥β̂(DIm)− β0∥2Σ

+
1

M2

M∑
m,ℓ=1

(β̂(DIm)− β0)
⊤Σ(β̂ℓ − β0))

≃
(

1

M
(1 + ṽp(−λ;ψ,ψ))

+
M − 1

M
(1 + ṽp(−λ;ϕ, ψ))

)
(∥fnl∥2L2

+ c̃p(−λ;ψ)), (63)

1

n
∥y −Xβ̂m)∥22 ≃ dp(−λ;ψ,ψ)(1 + ṽp(−λ;ψ,ψ))(∥fnl∥2L2

+ c̃p(−λ;ψ)), (64)

and

1

n
∥y −Xβ̃M∥22
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=
1

M2

M∑
m=1

1

n
∥y −Xβ̂m)∥22 +

1

M2

M∑
m,ℓ=1

1

n
(y −Xβ̂m)

⊤(y −Xβ̂ℓ)

≃
(

1

M
dp(−λ;ψ,ψ)(1 + ṽp(−λ;ψ,ψ))

+
M − 1

M
dp(−λ;ϕ, ψ)(1 + ṽp(−λ;ϕ, ψ))

)
(∥fnl∥2L2

+ c̃p(−λ;ψ)). (65)

On the other hand, from Du et al. (2023, Lemma 3.4.), the average degrees of freedom d̃f and the
denominator (1− d̃f/n)2 of the naive GCV estimator satisfy that

1

n
d̃f ≃ ϕ

ψ
(1− λvp(−λ;ψ)), (66)

and

(1− d̃f/n)2 ≃
(
ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

= dp(−λ;ϕ, ψ). (67)

Thus, from (63), (65) and (67), the difference between the prediction risk and the naive GCV
estimator admits the following asymptotic representations:

RM − ∥y −Xβ̃M∥22/n
(1− d̃f/n)2

≃ 1

M

(
1− dp(−λ;ψ,ψ)

dp(−λ;ϕ, ψ)

)
(1 + ṽp(−λ;ψ,ψ))(∥fnl∥2L2

+ c̃p(−λ;ψ)). (68)

On the other hand, from (64), (66) and (67), we also have that for all m ∈ [M ],

1

(1− d̃f/n)2
· 1

M
· (ψ − ϕ)(d̃f/n)2

ϕ(1− d̃f/n)2 + (ψ − ϕ)(d̃f/n)2
· ∥y −Xβ̂m∥22

n

≃ 1

M

dp(−λ;ψ,ψ)
dp(−λ;ϕ, ψ)

(ψ − ϕ) ϕ
2

ψ2 (1− λvp(−λ;ψ))2

ϕdp(−λ;ϕ, ψ) + (ψ − ϕ) ϕ
2

ψ2 (1− λvp(−λ;ψ))2
(1 + ṽp(−λ;ψ,ψ))(∥fnl∥2L2

+ c̃p(−λ;ψ))

=
1

M

ϕ(ψ−ϕ)
ψ2 (1− λvp(−λ;ψ))2

dp(−λ;ϕ, ψ)
(1 + ṽp(−λ;ψ,ψ))(∥fnl∥2L2

+ c̃p(−λ;ψ))

= − 1

M

(
1− dp(−λ;ψ,ψ)

dp(−λ;ϕ, ψ)

)
(1 + ṽp(−λ;ψ,ψ))(∥fnl∥2L2

+ c̃p(−λ;ψ)), (69)

by noting that dp(−λ;ψ,ψ) − dp(−λ;ϕ, ψ) = ϕ(ψ − ϕ)ψ−2(1 − λvp(−λ;ψ))2. Matching (68) and

(69) finishes the proof when R̂m,m is the full-estimator. The proof when R̂m,m is the ovlp-estimator
follows similarly.

Uniform consistency

From the proof of Lemma 28, we have that

(1− d̃f/n)2 ≃
(
1− ϕ

ψ
(1− λvp(−λ;ψ)

)2

=: D full
m,ℓ, for all m ̸= ℓ,
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and

R̃gcv
M ≃ 1

M2

∑
m,ℓ∈[M ]

N full
m,ℓ

D full
1,2

≃ 1

M2

∑
m,ℓ∈[M ]

Rm,ℓ −
1

M2

∑
m∈[M ]

D full
m,m

D full
1,2

Rm

R̂#
m,m ≃ Rm,m.

Then we have

R̂cgcv,#
M = R̃gcv

M − 1

M

(d̃f/n)2

(1− d̃f/n)2

ψ − ϕ

ϕ

1

M

M∑
m=1

R̂#
m,m

≃ R̃gcv
M − 1

M2

M∑
m=1

D full
1,1 − D full

1,2

D full
1,2

Rm,m

≃ 1

M2

∑
m,ℓ∈[M ]

Rm,ℓ

= RM ,

which establishes the point-wise consistency.

Similar to the proof of Theorem 5, the uniform equicontinuity of R̃gcv
M and Rm,ℓ to their asymptotic

limits follows from Lemma 29. And the uniformity for |R̂cgcv,#
M −RM | follows similarly.

B.4 Technical lemmas and their proofs

Lemma 30 (Bias term of risk). Suppose the same assumptions in Theorem 4 hold and let
φmℓ = ψ 1{m=ℓ}+ϕ1{m̸=ℓ}, then it holds that:

(1) λ2β⊤
0 MmΣMℓβ0 ≃ c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)).

(2) λ2β⊤
0 MmΣ̂m∩ℓMℓβ0 ≃ λ2vp(−λ;ψ)2c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ))

(3) λ2β⊤
0 MmΣ̂Mℓβ0 ≃


(
ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2

)
c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)), m = ℓ,(

ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)), m ̸= ℓ.

Here the nonnegative constants vp(−λ;ψ), ṽp(−λ;ϕ, ψ) and c̃p(−λ;ψ) are defined through the
following equations:

1

vp(−λ;ψ)
= λ+ ψ

∫
r

1 + vp(−λ;ψ)r
dHp(r),

ṽp(−λ;ϕ, ψ) =
ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

vp(−λ;ψ)−2 − ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

,

c̃p(−λ;ψ) = β⊤
0 (vp(−λ;ψ)Σ+ Ip)

−1Σ(vp(−λ;ψ)Σ+ Ip)
−1β0.
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Proof of Lemma 30. Note that β0 is independent of MmΣMℓ, MmΣ̂m∩ℓMℓ and MmΣ̂Mℓ. We
analyze the deterministic equivalents of the latter for the three cases.

Part (1) From Patil et al. (2023, Lemma S.2.4), we have that

λ2MmΣMℓ ≃ (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 .

Since ∥β0∥2 is almost surely bounded from Patil and Du (2023, Lemma D.5.), by the trace property
of deterministic equivalents in Patil and Du (2023, Lemma E.3 (4)), we have

β⊤
0 MmΣMℓβ0

a.s.
==== β⊤

0 (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 β0

= c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)).

Part (2) From Du et al. (2023, Lemma D.6 (1) and Lemma F.8 (3)), we have that

λ2MmΣ̂m∩ℓMℓ ≃ λ2vp(−λ;ψ)2 (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 .
(70)

Then, by the trace property of deterministic equivalents in Patil and Du (2023, Lemma E.3 (4)),
we have

β⊤
0 MmΣ̂m∩ℓMℓβ0

a.s.
==== λ2vp(−λ;ψ)2β⊤

0 (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 β0

= λ2vp(−λ;ψ)2c̃p(−λ;ψ)(1 + ṽp(−λ;φmℓ, ψ)).

Part (3) Note that Σ̂ = |Im∪Iℓ|
n Σ̂m∪ℓ +

|(Im∪Iℓ)c|
n Σ̂(m∪ℓ)c , we have

MmΣ̂Mℓ =
|Im ∪ Iℓ|

n
MmΣ̂m∪ℓMℓ +

|(Im ∪ Iℓ)c|
n

MmΣ̂(m∪ℓ)cMℓ. (71)

For the first term in (71), from Du et al. (2023, Equation (54)), when m ̸= ℓ, it holds that

λ2MmΣ̂m∪ℓMℓ ≃ λ2vp(−λ;ψ)2(1 + ṽp(−λ;ϕ, ψ))
(
2(ψ − ϕ)

2ψ − ϕ

1

λvp(−λ;ψ)
+

ϕ

2ψ − ϕ

)
(vp(−λ;ψ)Σ+ Ip)

−2Σ,

From Part (2), when m = ℓ, it holds that

λ2MmΣ̂m∪ℓMℓ ≃ λ2vp(−λ;ψ)2 (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 ,

For the second term in (71), from Du et al. (2023, Lemma F.8 (1)), we have

λ2MmΣ̂(m∪ℓ)cMℓ ≃ λ2M1ΣM2 ≃ (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 ,

where the last equivalence is from Part (1).

When m = ℓ, the coefficients in (71) concentrate |Im ∪ Iℓ|/n
a.s.−−→ ϕ/ψ and |(Im ∪ Iℓ)

c|/n a.s.−−→
(ψ − ϕ)/ψ from Du et al. (2023, Lemma G.6). Then (71) implies that

λ2MmΣ̂Mℓ ≃
(
ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2

)
(vp(−λ;ψ)Σ+ Ip)

−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)
−1 .

Whenm ̸= ℓ, the coefficients in (71) concentrate |Im∪Iℓ|/n
a.s.−−→ ϕ(2ψ−ϕ)/ψ2 and |(Im∪Iℓ)c|/n

a.s.−−→
(ψ − ϕ)2/ψ2 from Du et al. (2023, Lemma G.6). Then (71) implies that

λ2MmΣ̂Mℓ ≃
(
ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

(vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1 .

Finally, applying the trace property of deterministic equivalents in Patil and Du (2023, Lemma E.3
(4)) as in the previous parts completes the proof.
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Lemma 31 (Variance term of risk). Suppose the same assumptions in Theorem 4 hold and let
φmℓ = ψ 1{m=ℓ}+ϕ1{m̸=ℓ}, then it holds that:

(1) k−2f⊤
0 XMmΣMℓX

⊤f0 ≃ ∥fnl∥2L2
ṽp(−λ;φmℓ, ψ).

(2) 1
|Im∩Iℓ|f

⊤
0

(
Ip − XMmX⊤

k

)
Lm∩ℓ

(
Ip − XMℓX

⊤

k

)
f0 ≃ ∥fnl∥2L2

λ2vp(−λ;ψ))2(1+ṽp(−λ;φmℓ, ψ)).

(3) |Im∪Iℓ|
n f⊤

1

(
Ip − XMmX⊤

k

)
Lm∪ℓ

(
Ip − XMℓX

⊤

k

)
f1

+ |(Im∪Iℓ)c|
n ∥f0∥22 +

|(Im∪Iℓ)c|2
nk2

f⊤
0 XMmΣ̂(m∪ℓ)cMℓX

⊤f0

≃


∥fnl∥2L2

(
ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2

)
(1 + ṽp(−λ;φmℓ, ψ)), m = ℓ,

∥fnl∥2L2

(
ψ − ϕ

ψ
+
ϕ

ψ
λvp(−λ;ψ)

)2

(1 + ṽp(−λ;φmℓ, ψ)), m ̸= ℓ.

Here f0 = Lm∩ℓfnl, f1 = Lm∪ℓfnl and the nonnegative constants vp(−λ;ψ) and ṽp(−λ;ϕ, ψ)
are defined in Lemma 30.

Proof. Since ∥fnl∥4+δ <∞ from Patil and Du (2023, Lemma D.5), we have that ∥f0∥22/|Im∩Iℓ|
a.s.−−→

∥fnl∥2L2
by strong law of large number. Then, from Lemma 32, we have that the quadratic term

1

|Im ∩ Iℓ|
f⊤
0 XAX⊤f0 ≃

1

|Im ∩ Iℓ|
∥fnl∥2L2

tr(Lm∩ℓXAX⊤Lm∩ℓ) = ∥fnl∥2L2
tr(AΣ̂m∩ℓ) (72)

for any symmetric matrix A with bounded operator norm. We next apply this result for different
values of A.

Part (1) Let A = MmΣMℓ. Since from (70) and the product rule (Patil et al., 2023, Lemma
S.7.4 (3)), we have that

MℓΣ̂m∩ℓMmΣ ≃ vp(−λ;ψ)2 (vp(−λ;ψ)Σ+ Ip)
−1 (1 + ṽp(−λ;φmℓ, ψ))Σ (vp(−λ;ψ)Σ+ Ip)

−1Σ.

Then by the trace property of deterministic equivalents in Patil and Du (2023, Lemma E.3 (4)),
we have

p

k 1{m=ℓ}+n1{m̸=ℓ}
· 1
p
tr(AΣ̂m∩ℓ) ≃ φmℓ(1 + ṽp(−λ;φmℓ, ψ))

∫ (
vp(−λ;ψ)r

1 + vp(−λ;ψ)r

)2

dHp(r)

= ṽp(−λ;φmℓ, ψ)).

Finally, note that |Im ∩ Iℓ|(k 1{m=ℓ}+n1{m ̸=ℓ}) ≃ k2. This implies that

k−2f⊤
0 XMmΣMℓX

⊤f0 ≃ ∥fnl∥2L2
ṽp(−λ;φmℓ, ψ).

Part (2) Note that

1

|Im ∩ Iℓ|
f⊤
0

(
Ip −

XMmX
⊤

k

)
Lm∩ℓ

(
Ip −

XMℓX
⊤

k

)
f0

=
1

|Im ∩ Iℓ|
f⊤
0 f0 −

1

|Im ∩ Iℓ|
∑

j∈{m,ℓ}

f⊤
0

XMjX
⊤

k
f0 +

1

k2
f⊤
0 XMmΣ̂m∩ℓMℓX

⊤f0.
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We next analyze the three terms separately for m ̸= ℓ. By the law of large numbers, the first term
converges as f⊤

0 f0/|Im ∩ Iℓ|
a.s.−−→ ∥fnl∥2L2

. For the second term, let A = Mm and Mℓ. From Patil
and Du (2023, Corollary F.5 and Lemma F.8 (4)), it follows that for j ∈ {m, ℓ},

MjΣ̂m∩ℓ ≃ Ip − (vp(−λ;ψ)Σ+ Ip)
−1,

and thus, we have

1

p
tr(MjΣ̂m∩ℓ) ≃

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r) = ψ−1(1− λvp(−λ;ψ)).

It then follows that

1

|Im ∩ Iℓ|
∑

j∈{m,ℓ}

f⊤
0

XMjX
⊤

k
f0 ≃ 2∥fnl∥2L2

(1− λvp(−λ;ψ)).

For the third term, let A = MmΣ̂m∩ℓMℓ. When m ̸= ℓ, from Patil and Du (2023, Lemma D.7 (1)
and Lemma F.8 (5)), we have that

MmΣ̂m∩ℓMℓΣ̂m∩ℓ ≃
ψ

ϕ

(
vp(−λ;ψ)−

ψ − ϕ

ψ
λṽv(−λ;ϕ, ψ)

)
(vp(−λ;ψ)Σ+ Ip)

−1Σ

− λṽv(−λ;ϕ, ψ)(vp(−λ;ψ)Σ+ Ip)
−2Σ,

where ṽv(−λ;ψ) = vp(−λ;ψ)2(1 + ṽp(−λ;ϕ, ψ)). Then from (72), we have

1

|Im ∩ Iℓ|
f⊤
0

(
Ip −

XMmX
⊤

k

)
Lm∩ℓ

(
Ip −

XMℓX
⊤

k

)
f0

≃ ∥fnl∥2L2

(
1− 2(1− λvp(−λ;ψ)) + ψ

(
vp(−λ;ψ)−

ψ − ϕ

ψ
λṽv(−λ;ϕ, ψ)

)∫
r

1 + vp(−λ;ψ)r
dHp(r)

−ϕλṽv(−λ;ϕ, ψ)
∫

r

(1 + vp(−λ;ψ)r)2
dHp(r)

)
= ∥fnl∥2L2

λṽv(−λ;ϕ, ψ)

(
1

vp(−λ;ψ)
+ ϕ

∫ (
r

1 + vp(−λ;ψ)r

)2

dHp(r)− (ψ − ϕ)

∫
r

1 + vp(−λ;ψ)r
dHp(r)

−ϕ
∫

r

(1 + vp(−λ;ψ)r)2
dHp(r)

)
= ∥fnl∥2L2

λṽv(−λ;ϕ, ψ)
(

1

vp(−λ;ψ)
− ψ

∫
r

1 + vp(−λ;ψ)r
dHp(r)

)
= ∥fnl∥2L2

λ2ṽv(−λ;ϕ, ψ)
= ∥fnl∥2L2

λ2vp(−λ;ψ)2(1 + ṽp(−λ;ϕ, ψ)),

when m ̸= ℓ.

When m = ℓ, from (72) and Du et al. (2023, Lemma D.7 (1)), we have

1

|Im ∩ Iℓ|
f⊤
0

(
Ip −

XMmX
⊤

k

)
Lm∩ℓ

(
Ip −

XMℓX
⊤

k

)
f0

=
1

k
f⊤
0

(
Ip −

XMmX
⊤

k

)
Lm

(
Ip −

XMmX
⊤

k

)
f0
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≃ ∥fnl∥2L2
(1− 2

k
tr(MΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m))

≃ ∥fnl∥2L2
λ2vp(−λ;ψ)2(1 + ṽp(−λ;ψ,ψ)).

Combining the above results finish the proof for Part (2).

Part (3) We analyze the three terms separately for m ̸= ℓ. From Du et al. (2023, Lemma D.7 (3)),
we have

1

|Im ∪ Iℓ|
tr

((
Ip −

XMmX
⊤

k

)
Lm∪ℓ

(
Ip −

XMℓX
⊤

k

))
≃ λ2vp(−λ;ψ)2

(
2(ψ − ϕ)

2ψ − ϕ

1

λvp(−λ;ψ)
+

ϕ

2ψ − ϕ

)
(1 + ṽp(−λ;ψ,ψ)).

From Lemma 32, it then follows that

|Im ∪ Iℓ|
n

f⊤
1

(
Ip −

XMmX
⊤

k

)
Lm∪ℓ

(
Ip −

XMℓX
⊤

k

)
f1

≃ ∥fnl∥2L2

ϕ(2ψ − ϕ)

ψ2
λ2vp(−λ;ψ)2

(
2(ψ − ϕ)

2ψ − ϕ

1

λvp(−λ;ψ)
+

ϕ

2ψ − ϕ

)
(1 + ṽp(−λ;ψ,ψ)).

From strong law of large numbers, the second term converges |(Im∪Iℓ)c|
n ∥f0∥22

a.s.−−→ ∥fnl∥2L2 . For the

third term, let A = MmΣ̂(m∪ℓ)cMℓ, then we have

1

p
tr(MmΣ̂(m∪ℓ)cMℓΣ̂m∩ℓ ≃

1

p
tr(MmΣMℓΣ̂m∩ℓ ≃ ψ−1ṽp(−λ;ϕ, ψ),

where the first equality is from the conditional independence property and the second is from Du
et al. (2023, Lemma F.8 (3)). Again, from Lemma 32, it follows that

|(Im ∪ Iℓ)c|2

nk2
f⊤
0 XMmΣ̂(m∪ℓ)cMℓX

⊤f0 ≃ ∥fnl∥2L2

(
ψ − ϕ

ψ

)2

ṽp(−λ;ϕ, ψ).

Combining the above results finishes the proof of Part (3) for m ̸= ℓ.

When m = ℓ, the formula simplifies to

1

n
f⊤
0

(
Ip −

XMmX
⊤

k

)(
Ip −

XMℓX
⊤

k

)
f0.

From (72), Part (2) and Patil et al. (2023, Lemma S.2.5 (1)), we have

1

n
f⊤
0

(
Ip −

XMmX
⊤

k

)(
Ip −

XMℓX
⊤

k

)
f0

=
1

n
f⊤
0

(
Ip −

XMmX
⊤

k

)(
Ip −

XMmX
⊤

k

)
f0

≃ ∥fnl∥2L2

k

n

(
1− 2

k
tr(MΣ̂m) +

1

k
tr(MmΣ̂mMmΣ̂m)

)
+ ∥fnl∥2L2

n− k

n

(
1 +

1

n
tr(MmΣ̂mMmΣ̂mc)

)
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≃ ∥fnl∥2L2

ϕ

ψ
λ2vp(−λ;ψ)2(1 + ṽp(−λ;φmℓ, ψ)) +

ψ − ϕ

ψ

(
1 +

1

k
tr(MmΣ̂mMmΣ)

)
≃ ∥fnl∥2L2

ϕ

ψ
λ2vp(−λ;ψ)2(1 + ṽp(−λ;φmℓ, ψ)) +

ψ − ϕ

ψ
(1 + ṽp(−λ;ψ,ψ))

≃ ∥fnl∥2L2

(
ψ − ϕ

ψ
+
ϕ

ψ
λ2vp(−λ;ψ)2

)
(1 + ṽp(−λ;φmℓ, ψ)).

Combining the above results finish the proof for Part (3).

Lemma 32 (Quadratic concentration with uncorrelated components). Let X ∈ Rn×p be the
design matrix whose rows xi’s are independent samples drawn according to Assumption F.
Let f ∈ Rp be a random vector with i.i.d. entries fi’s, where fi has bounded L2 norm and is
uncorrelated with xi. Let A ∈ Rn×n be a symmetric matrix such that lim sup ∥A∥op ≤ M0

almost surely as p → ∞ for some constant M0 < ∞. Then as n, p → ∞ such that p/n → ϕ ∈
(0,∞), it holds that

1

n
f⊤XAX⊤f ≃ 1

n
∥fnl∥2L2

tr(XAX⊤). (73)

Proof. Let Σ̂ = X⊤X/n and M = (Σ̂+ λIp)
−1 be the resolvent. Note that

1

n
f⊤XAX⊤f =

1

n
f⊤XM(M−1AM−1)MX⊤f (74)

Since X = ZΣ1/2, we have MX⊤ = Σ−1/2(Z⊤Z/n+λΣ−1)−1Z⊤ = Σ1/2Z⊤(ZΣZ⊤/n+λIp)
−1.

Let B1 = (ZΣZ⊤/n+ λIp)
−1 and B2 = ZΣ1/2M−1AM−1Σ1/2Z⊤/n, then (74) becomes

1

n
f⊤XAX⊤f = f⊤B1B2B1f . (75)

Next, we adapt the idea of Bartlett et al. (2021, Lemma A.16), to show the diagonal concentration
and trace concentration successively.

Diagonal concentration. From a matrix identity in Patil and Du (2023, Lemma D.4), we have
that, for any t > 0,

B−1
1 B2B

−1
1 =

1

t
(B−1

1 − (B1 + tB2)
−1) + tB−1

1 B2(B1 + tB2)
−1B2B

−1
1 .

Let U ∈ Rn×n with Uij = [f ]i[f ]j 1{i ̸= j}. We then have∣∣∣∣∣∣
∑

1≤i ̸=j≤n
[B−1

1 B2B
−1
1 ]ij [f ]i[f ]j

∣∣∣∣∣∣
= |⟨B−1

1 B2B
−1
1 ,U⟩|

≤ 1

t
|⟨B−1

1 ,U⟩| − 1

t
|⟨(B1 + tB2)

−1,U⟩|+ t∥B−1
1 ∥2op∥B2∥2op∥(B1 + tB2)

−1∥op∥U∥tr. (76)

For the first two terms, Patil and Du (2023, Lemma D.3) implies that

1

n
|⟨B−1

1 ,U⟩| a.s.−−→ 0, and
1

n
|⟨(B1 + tB2)

−1,U⟩| a.s.−−→ 0,
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where the second convergence is due to |⟨(B1 + tB2)
−1,U⟩| ≲ t|⟨B−1

1 ,U⟩| because of Wood-
bury matrix identity and the bounded spectrums of B1 and B2. For the last term, note that
∥B1∥op ≤ λ−1 and ∥B2∥op ≤ ∥A∥op∥Σ̂∥op, where ∥A∥op is almost surely bounded as assumed, and

∥ZΣ1/2∥2op/n = ∥Σ̂∥op ≤ rmax(1+
√
ϕ)2 almost surely as n, p→ ∞ and p/n→ ϕ ∈ (0,∞) (see, e.g.,

Bai and Silverstein (2010)). Also, ∥U∥tr/n ≤ 2∥f∥22/n
a.s.−−→ 2∥fnl∥2L2

< ∞ from the strong law of

large numbers. Thus, the last term is almost surely bounded. By choosing t =
√
|⟨B−1

1 ,U⟩|/∥U∥tr,
it then follows that n−1|⟨B−1

1 B2B
−1
1 ,U⟩| a.s.−−→ 0. Therefore,∣∣∣∣∣ 1nf⊤B−1

1 B2B
−1
1 f − 1

n

n∑
i=1

[B−1
1 B2B

−1
1 ]ii[f ]

2
i

∣∣∣∣∣ a.s.−−→ 0.

Trace concentration. From the results in Knowles and Yin (2017), it holds that

max
1≤i≤n

∣∣∣∣[B−1
1 B2B

−1
1 ]ii −

1

n
tr[B−1

1 B2B
−1
1 ]

∣∣∣∣ a.s.−−→ 0.

Further, since n−1∥f∥22
a.s.−−→ ∥fnl∥2L2 , we have

1

n
|f⊤B−1

1 B2B
−1
1 f − tr[B−1

1 B2B
−1
1 ]∥fnl∥2L2 | a.s.−−→ 0,

which finishes the proof.
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C Additional numerical illustrations in Section 4

C.1 Comparison of intermediate ovlp- and full-estimators for elastic net and
lasso

Elastic net:
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Figure 9: Full-estimator performs better than ovlp-estimator across different subsample sizes.
The relative errors of the “ovlp” and “full” estimators for ridge ensemble with ensemble size M = 10. The
left panel shows the results with ridge penalty λ = 1 and varying subsample size k. The right panel shows
the results with subsample size k = 300 and varying ridge penalty λ. The data generating process is the
same as in Figure 1.

Lasso:
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Figure 10: Full-estimator performs better than ovlp-estimator across different subsample sizes.
The relative errors of the “ovlp” and “full” estimators for ridge ensemble with ensemble size M = 10. The
left panel shows the results with ridge penalty λ = 1 and varying subsample size k. The right panel shows
the results with subsample size k = 300 and varying ridge penalty λ. The data generating process is the
same as in Figure 1.
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C.2 Comparison of ovlp- and full-CGCV for ridge, elastic net, and lasso

Ridge:
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Figure 11: The CGCV full estimator (R̃cgcv,full
M ) performs better than CGCV ovlp estimator

(R̃cgcv,ovlp
M ). Plots of relative errors of the R̃cgcv,full

M and R̃cgcv,ovlp
M for ridge ensemble with ensemble size

M = 10. The left panel shows the results with ridge penalty λ = 0.001 and varying subsample size k. The
right panel shows the results with subsample size k = 500 and varying ridge penalty λ. The data generating
process is the same as in Figure 1.
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Figure 12: The CGCV full estimator (R̃cgcv,full
M ) performs better than CGCV ovlp estimator

(R̃cgcv,ovlp
M ). Plots of relative errors of the R̃cgcv,full

M and R̃cgcv,ovlp
M for elastic net ensemble with ensemble

size M = 10 and λ2 = 0.01. The left panel shows the results with elastic net penalty λ1 = 0.002 and varying
subsample size k. The right panel shows the results with subsample size k = 200 and varying elastic net
penalty λ1. The data generating process is the same as in Figure 1.
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Lasso:
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Figure 13: The CGCV full estimator (R̃cgcv,full
M ) performs similar to CGCV ovlp estimator

(R̃cgcv,ovlp
M ). Plots of relative errors of the R̃cgcv,full

M and R̃cgcv,ovlp
M for lasso ensemble with ensemble

size M = 10. The left panel shows the results with lasso penalty λ = 0.003 and varying subsample size
k. The right panel shows the results with subsample size k = 200 and varying lasso penalty λ. The data
generating process is the same as in Figure 1.

C.3 Comparison of CGCV and GCV in k for ridge, elastic net, and lasso
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Figure 14: CGCV is consistent for finite ensembles across different subsample sizes. Plot of risks
versus the subsample size k for the ridge ensemble with different λ and M . The data generating process is
the same as in Figure 1.
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Elastic Net:
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Figure 15: CGCV is consistent for finite ensembles across different subsample sizes. Plot of risks
versus the subsample size k for elastic net ensemble with different λ and M .

Lasso:
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Figure 16: CGCV is consistent for finite ensembles across different subsample sizes. Plot of risks
versus the subsample size k for elastic net ensemble with different λ and M .
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C.4 Comparison of GCV and GCV in M for ridge, elastic net, and lasso

Ridge:
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Figure 17: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the subsample size k for the lasso ensemble with different λ and M . The data
generating process is the same as in Figure 1.
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Figure 18: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the ensemble size M for ridge ensemble with different λ and k.
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Lasso:
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Figure 19: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the ensemble size M for ridge ensemble with different λ and k.

C.5 Comparison of CGCV and GCV in λ for ridge, elastic net and lasso
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Figure 20: CGCV is consistent for finite ensembles across different regularization levels. Plot of
risks versus the ensemble size M for ridge ensemble with different λ and k.
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Elastic Net:
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Figure 21: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the ensemble size M for elastic net ensemble with different λ and k.
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Figure 22: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. Plot of risks versus the ensemble size M for lasso ensemble with different λ and k.

C.6 Numerical simulations with large ensemble size M

Recall that Section 4.4 presents simulation results whenM is at most 10. In this section, we provide
simulation results in the same setting as described in Section 4.4, but with M as large as 100. The
goal is to illustrate that our proposed CGCV estimator is efficient not only for small M but also
for large M . Since the bias of the GCV is decreasing with M , we expect the GCV works well for
large M . It is evident from Figure 23 that the CGCV accurately estimates the actual risk for all
values of M , while the bias of GCV diminishes only when M is large.
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Figure 23: CGCV efficiently estimates the actual risk for all values of M . GCV gets closer to
the actual risk as M increases. Top row: Ridge; Middle row: Elastic Net; Bottom row: Lasso. The data
generating process is the same as in Figure 1.

86



C.7 Illustration of inconsistency for GCV variant
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Figure 24: The GCV variant (8) is not consistent for finite M > 1. Plot of risks versus the regular-
ization parameter for ridge, lasso, and elastic net ensembles, under different M and fixed k = 800. The data
generating process is the same as in Figure 1.
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D Additional numerical illustrations for Section 4 with non-Gaussian
data

In this section, we conduct the same numerical experiments as in Section 4 except that here
the design matrix is not Gaussian distributed. We consider two non-Gaussian distributions: the
Rademacher distribution and the uniform distribution in [−

√
3,
√
3]. The design matrix X is then

generated by a scale transformation to ensure the covariance matrix is the same as Σ in Section 4.4.
In the following subsections, we present counterpart plots to Figures 1 and 3–5 in the same setting,
except here X is non-Gaussian distributed.

D.1 Results for Rademacher distribution
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Figure 25: CGCV is consistent for finite ensembles of penalized estimators while GCV is not.
The simulation setting is the same as Figure 1, except that here X is Rademacher distributed.
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Figure 26: Full-estimator R̃full
M performs better than ovlp-estimator R̃ovlp

M across different regu-
larization and for small subsample size k. The simulation setting is the same as Figure 3, except that
here X is Rademacher distributed.
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Figure 27: CGCV is consistent for finite ensembles across different subsample sizes. The plot of
risks versus the subsample size k for Elastic Net ensemble with different λ and M and fixed λ2 = 0.01. The
simulation setting is the same as Figure 4, except that here X is Rademacher distributed.
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Figure 28: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. The plot of risks versus the Elastic Net ensemble size M for ridge ensemble with different λ and k
and fixed λ2 = 0.01. The simulation setting is the same as Figure 5, except that here X is Rademacher
distributed.
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D.2 Results for uniform distribution
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Figure 29: CGCV is consistent for finite ensembles of penalized estimators while GCV is not.
The simulation setting is the same as Figure 1, except that here X is uniformly distributed.
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Figure 30: Full-estimator R̃full
M performs better than ovlp-estimator R̃ovlp

M across different regu-
larization and for small subsample size k. The simulation setting is the same as Figure 3, except that
here X is uniformly distributed.
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Figure 31: CGCV is consistent for finite ensembles across different subsample sizes. The plot of
risks versus the subsample size k for Elastic Net ensemble with different λ and M and fixed λ2 = 0.01. The
simulation setting is the same as Figure 4, except that here X is uniformly distributed.
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Figure 32: GCV gets closer to the risk as ensemble size increases across different subsample
sizes. The plot of risks versus the Elastic Net ensemble sizeM for ridge ensemble with different λ and k and
fixed λ2 = 0.01. The simulation setting is the same as Figure 5, except that here X is uniformly distributed.
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E Additional numerical illustrations for Section 5 with non-Gaussian
data

E.1 Comparison of CGCV and GCV in λ for elastic net and lasso
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Figure 33: CGCV is consistent for finite ensembles across different regularization levels. The
GCV estimates for the Elastic Net ensemble with varying lasso penalty λ1 and fixed λ2 = 0.01 in a problem
setup of Section 5.4 over 50 repetitions of the datasets. Here the feature dimension is p = 1200. The left
and the right panels show the cases when the subsample sizes are k = 2400 and k = 800, respectively.
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Figure 34: CGCV is consistent for finite ensembles across different regularization levels. The
GCV estimates for the lasso ensemble with varying lasso penalty λ in a problem setup of Section 5.4 over
50 repetitions of the datasets. Here the feature dimension is p = 1200. The left and the right panels show
the cases when the subsample sizes are k = 2400 and k = 800, respectively.
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