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Abstract. The steadily increasing amount of atmospheric carbon dioxide (CO2) is affecting the global climate
system and threatening the long-term sustainability of Earth’s ecosystem. In order to better un-
derstand the sources and sinks of CO2, NASA operates the Orbiting Carbon Observatory-2 and -3
satellites to monitor CO2 from space. These satellites make passive radiance measurements of the
sunlight reflected off the Earth’s surface in different spectral bands, which are then inverted in an
ill-posed inverse problem to obtain estimates of the atmospheric CO2 concentration. In this work,
we propose a new CO2 retrieval method that uses known physical constraints on the state variables
and direct inversion of the target functional of interest to construct well-calibrated frequentist confi-
dence intervals based on convex programming. We compare the method with the current operational
retrieval procedure, which uses prior knowledge in the form of probability distributions to regularize
the problem. We demonstrate that the proposed intervals consistently achieve the desired frequen-
tist coverage, while the operational uncertainties are poorly calibrated in a frequentist sense both
at individual locations and over a spatial region in a realistic simulation experiment. We also study
the influence of specific nuisance state variables on the length of the proposed intervals and identify
certain key variables that can greatly reduce the final uncertainty given additional deterministic or
probabilistic constraints. We then develop a principled framework to incorporate such additional
information into our method.

Key words. Orbiting Carbon Observatory-2 and -3, remote sensing, constrained inverse problem, frequentist
coverage, variable importance, convex programming
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1. Introduction. Global measurements of atmospheric carbon dioxide (CO2) concentra-
tion are essential for understanding Earth’s carbon cycle, a key component of our planet’s
climate system. Space-borne observing systems provide the primary way of obtaining atmo-
spheric CO2 measurements globally at spatial and temporal resolutions useful for investigating
central questions in carbon cycle science [40]. A series of satellites named Orbiting Carbon
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828 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

Observatory-2 and -3 (OCO-2 and OCO-3) [13, 14], launched by NASA in July 2014 and
May 2019, respectively, constitute the current state of the art in space-based CO2 observing
systems. These instruments use the sunlight reflected off the Earth’s surface to infer the CO2

concentration in the atmosphere below. Since the observations are indirect measurements of
the quantity of interest, the task of estimating the atmospheric state, known as retrieval in
remote sensing [41], is an ill-posed inverse problem [23, 16, 53]. The ultimate goal of these mis-
sions is to estimate the vertically averaged atmospheric CO2 concentration at high precision
in order to better understand the sources and sinks of CO2 in the Earth system [10].

Estimating atmospheric CO2 concentrations from space is a highly nontrivial task. De-
signing and building the required remote sensing instrument and developing the mathematical
forward model for relating the scientifically relevant quantities to the actual satellite observa-
tions are both extremely challenging tasks [37]. However, statistically, the main complication
arises from the fact that in order to convert the raw satellite observations into CO2 concentra-
tions, one needs to solve the associated ill-posed inverse problem [8]. A satellite on low-Earth
orbit is only able to measure CO2 indirectly through its effect on the sunlight passing through
the atmosphere. Information about CO2 at different altitudes will therefore inevitably be
confounded in the raw observations. Inverting the forward model to obtain a reconstruction
of the atmospheric CO2 profile at different altitudes will hence result in highly oscillatory and
uncertain solutions which, at first glance, may seem to have little scientific value.

The OCO-2 and OCO-3 science teams are well aware of these challenges, and the opera-
tional missions essentially employ two strategies to circumvent the forward model ill-posedness
[4]. First, the missions acknowledge that it is not feasible to retrieve the full vertical CO2

profile from space. Instead, the missions have identified the vertically averaged CO2 concentra-
tion, denoted by XCO2, as their primary quantity of interest, and the retrieval and validation
efforts are focused on the accuracy and precision of this scalar quantity. Second, in order to
estimate XCO2, the missions employ a strategy where first a regularized CO2 profile is recon-
structed (or, more precisely, a regularized state vector containing the CO2 profile and other
retrieved atmospheric quantities), which is then used to calculate the corresponding XCO2

value. The regularization is achieved using a Bayesian approach where a prior distribution
on the underlying state variables is used to promote physically plausible CO2 profiles [4, 6, 7,
9]. The prior mean of the CO2 profile is carefully designed to incorporate major large-scale
variations in CO2 over both space (latitude) and time (seasonality, long-term trends) [4, 37].
Even so, regional biases are found in the retrieved XCO2 when compared to ground-based
validation sources [59, 26, 25, 58].

In this paper, we focus on rigorous uncertainty quantification for the retrieved XCO2.
In contrast to most existing works in remote sensing, we approach the problem from the
perspective of frequentist statistics. We demonstrate that the existing retrieval procedure, if
evaluated using frequentist performance measures, may lead to miscalibrated uncertainties for
XCO2 due to the intermediate regularization step. We then show that it is possible to obtain
better-calibrated uncertainties by adopting an approach that avoids explicit regularization and
instead directly forms an implicitly regularized confidence interval for XCO2. The proposed
method is developed for linear or linearized forward operators, but extensions to nonlinear
cases are possible.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 829

To introduce some of the key ideas, it is worth considering a simplified version of the CO2

retrieval problem. The problem is typically formulated in terms of an unknown state vector x
that includes both the vertical CO2 profile of interest and other geophysical nuisance variables
that affect the satellite observations. Assume that the state vector x is related to the observa-
tions y by the linear model y = Kx+ε, where K is a known forward operator dictated by the
physics of the problem and ε represents stochastic noise in the measurement device with mean
zero and covariance Σε. The fundamental challenge here is thatK is an ill-conditioned matrix
so that its singular values decay rapidly. Assume, for now, that K has full column rank, and
therefore the least-squares estimator of x is given by x̂ = (KTK)−1KTy. The covariance
matrix of this estimator is cov(x̂) = (KTK)−1KTΣεK(KTK)−1. Due to the ill-posedness of
K, the fluctuations in the noise ε get amplified in the inversion, and the estimator x̂ exhibits
large oscillations within the CO2 profile that tend to be anticorrelated from one altitude to
the next. This is also reflected in the covariance cov(x̂), and any confidence intervals derived
for the individual CO2 elements in x based on cov(x̂) would be extremely wide, indicating, as
they should, that the observations y do not contain enough information to effectively constrain
CO2 at a given altitude. However, this should not deter us from trying to constrain other
functionals of x based on x̂. Of particular interest, in our case, is the vertically averaged CO2

concentration given by the functional XCO2 = hTx, where h is a known vector of weights.
The plug-in estimator of XCO2 is X̂CO2 = hTx̂ with variance var(X̂CO2) = hTcov(x̂)h.
Since the mapping from x to XCO2 is an averaging operation, one would expect that the
anticorrelated fluctuations in the unregularized x̂ largely cancel out as it is mapped into
X̂CO2, resulting in a well-behaved estimator of XCO2, as also suggested by the results in
[39]. When the noise ε is Gaussian, which is a good approximation here, one can then use
the variance var(X̂CO2) to construct a frequentist confidence interval around X̂CO2. Assum-
ing that the forward model is correctly specified, these intervals have guaranteed frequentist
coverage for XCO2, without requiring any additional information about x (e.g., information
about smoothness or specification of a prior distribution). Arguably, these intervals provide
an objective measure of uncertainty of XCO2 in the absence of specific prior information
about x.

The actual retrieval problem is more complex than the simplified situation described above.
First, the forward operator relating the state vector x to the observations y is a nonlinear
function of x [4]. Second, there are known physical constraints on the state vector x that
should ideally be taken into account in the retrieval. For example, those elements of x that
correspond to CO2 concentrations should be constrained to be nonnegative. Third, the forward
mapping need not be injective. This means, for example, that the matrices corresponding to a
linearization of the forward mapping may be rank deficient. In this paper, we address these last
two complications in the case of a linearized approximation to the nonlinear forward operator.
In other words, we seek to rigorously quantify the uncertainty of XCO2 = hTx under the
model y = Kx + ε, where K need not have full column rank, x ∈ C, where C is a set of
known physical constraints (i.e., constraints that hold with probability 1), and ε is noise with
a known Gaussian distribution. We focus on the case of affine constraints for the elements of
the state vector x and, in particular, on nonnegativity constraints for certain elements of the
state vector. Under this setup, we seek to construct (1 − α) frequentist confidence intervals
for XCO2 without imposing any other regularization on x. We propose a procedure that is
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830 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

demonstrated to consistently provide nearly nominal (1−α) frequentist coverage, including in
situations where the existing retrieval procedure can be severely miscalibrated. Even though
our procedure relies on much weaker assumptions, the new intervals are not excessively wide
as the problem is implicitly regularized by the choice of the functional hTx and the constraints
x ∈ C.

We also investigate the potential implications of these results on CO2 flux estimates [15]
by studying the behavior of the different methods over a small spatial domain. We find
that in the existing operational retrievals, the interaction between the regularizing prior and
the spatially dependent true state vectors can lead, at least in the specific example studied,
to a situation where the miscalibration of the XCO2 intervals varies in a spatially coherent
fashion. As a result, the reported uncertainties can be systematically too small or too large
over a given spatial region. It is possible that retrievals with such uncertainties could lead
to spurious CO2 flux estimates in downstream analyses. On the other hand, the sampling
properties of our proposed intervals do not vary spatially, which makes them potentially more
suitable for downstream scientific use.

In addition, we study the contributions of individual state vector elements to the XCO2

uncertainty, identifying surface pressure and a certain aerosol variable as the key parameters
that contribute most to the final uncertainty. This means that the XCO2 uncertainty could
potentially be further reduced if additional external information were available to constrain
these two variables. We provide a principled framework for incorporating such information
in either deterministic or probabilistic forms into our method and investigate the extent to
which such additional information on surface pressure reduces the XCO2 uncertainty.

This work relates to a wider discussion on uncertainty quantification in ill-posed inverse
problems (see, e.g., [49, 50, 54, 52]). In applied situations, uncertainty quantification in in-
verse problems tends to be dominated by Bayesian approaches that regularize the problem
using a prior distribution. This is certainly the case in atmospheric sounding [41], but also
in other domain sciences (e.g., [3, 23, 22, 32, 56, 57]). Penalized frequentist techniques, such
as penalized maximum likelihood or Tikhonov regularization (also known as ridge regression
[21]), are closely related to Bayesian approaches since one can usually interpret the penalty
term as a Bayesian log-prior (see, e.g., sections 7.5 and 7.6 in [33]). These techniques, in which
the problem is explicitly regularized, are challenging from the perspective of frequentist uncer-
tainty quantification since intervals centered around a regularized point estimator tend to be
systematically offset from the true value of the unknown quantity due to the bias in the point
estimator that regularizes the problem. This bias has been investigated in multiple remote
sensing retrieval settings [41, 34, 31] and has been shown to lead to drastic undercoverage for
the intervals in other applied situations [28, 29, 27]. There exists, however, a lesser-known line
of work (see [47, 45, 44] and the references therein) that attempts to construct truly frequen-
tist confidence intervals in ill-posed problems without relying on explicitly regularized point
estimators. One of the key ideas is to use physically known objective constraints to regularize
the problem instead of a subjective prior distribution or a penalty term. This enables deriving
intervals with guaranteed frequentist coverage [47, 48]. This paper builds upon these ideas,
but adds to the discussion by highlighting the important role of the functional of interest in
implicitly regularizing the problem. We also focus on intervals which are designed to con-
strain one functional at a time, in contrast to some previous techniques [47, 29] that provide
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FREQUENTIST UQ FOR CO2 RETRIEVALS 831

simultaneous intervals for all functionals at once, which leads to substantial overcoverage if
only one or a small subset of functionals is needed.

The rest of this paper is organized as follows. To set up the problem, we briefly de-
scribe the physics of observing CO2 from space and the corresponding statistical model in
section 2. We then describe the proposed frequentist uncertainty quantification method and
discuss its properties in section 3. Next, we outline the existing operational retrieval proce-
dure and analyze its properties in section 4. Section 5 compares the coverage performance
of the operational and proposed procedures both for an individual sounding location and
over a small spatial region using simulated data from a realistic generative model. In sec-
tion 6, we further investigate the proposed method to better understand the impact of the
individual state vector elements on the final interval length, and we provide a framework
in which additional deterministic or probabilistic constraints can be incorporated into our
method. Finally, section 7 offers concluding remarks and directions for future work. The
appendices and the supplementary material [38] contain derivations and other supplementary
results.

2. Problem background and setup.

2.1. Remote sensing of carbon dioxide. Remote sensing of atmospheric CO2 is feasible
due to the absorption of solar radiation by CO2 molecules at specific wavelengths, particularly
in the infrared (IR) portion of the electromagnetic spectrum. In this part of the spectrum,
variations in the observed top-of-the-atmosphere radiation can also be induced by other sur-
face and atmospheric properties, including albedo (surface reflectivity), absorption by other
atmospheric trace gases, and absorption and scattering in the presence of clouds and aerosol
particles. These processes are illustrated schematically in Figure 1. These additional effects
explain most of the variation in the radiance (intensity of the observed radiation) that is
seen by a downward looking satellite at the top of the atmosphere. Radiance changes due to
variation in CO2 are more subtle. CO2-focused remote sensing instruments, such as OCO-2
OCO-3, therefore require high-precision radiance observations at fine spectral resolution. The
OCO-2 and OCO-3 instruments are duplicates of the same design. Each instrument includes
three imaging grating spectrometers that each correspond to a narrow IR band. These are
the O2 A-band centered around 0.765 µm, the weak CO2 band centered around 1.61 µm, and
the strong CO2 band centered near 2.06 µm. The O2 A-band includes numerous absorption
lines for atmospheric O2, and the two CO2 bands include absorption lines for CO2 [4].

A collection of observed radiances at a particular time and location is known as a sounding .
For OCO-2 and OCO-3, a sounding includes 1016 radiances in each of the three spectral bands.
Figure S1 in the supplementary material [38] depicts an example sounding for OCO-2. The
fine wavelength spacing within each band ensures the ability to resolve individual absorption
features. Since atmospheric O2 has a nearly constant fractional abundance of 0.209, the
absorption in the O2 A-band can be used to estimate the total amount of dry air in the
atmospheric column, which is sometimes termed the radiative path length. In the retrieval,
this is formally represented by retrieving the atmospheric surface pressure. This can be
combined with the absolute absorption in the CO2 bands to estimate the relative abundance,
or dry-air mole fraction, of CO2. In addition, the A-band in particular has sensitivity to cloud
and aerosol scattering, which are also estimated in the retrieval process.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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832 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

Figure 1. Schematic of space-based CO2 sensing in the OCO-2 mission.

While the instruments themselves are nearly identical, OCO-2 and OCO-3 have different
observing patterns. OCO-2 is in a polar orbit as part of a satellite constellation known
as the A-train with observations collected exclusively in the early afternoon local time [4].
OCO-3 has recently been installed on the International Space Station (ISS) and is collecting
observations in tropical and mid-latitude regions at varying times of the day following the ISS
precessing orbit [14]. In the rest of this paper, we primarily focus on OCO-2, but we expect
our conclusions also apply to OCO-3 due to the similarity of the two instruments.

2.2. Mathematical model. The physical model for CO2 remote sensing as illustrated in
Figure 1 can be mathematically written as

y = F (x) + ε,(2.1)

where x ∈ Rp is an unknown state vector, y ∈ Rn is a vector of observed radiances, F : Rp →
Rn models the physical processes described in section 2.1 that relate the state vector to the
expected radiances, and ε represents zero-mean instrument noise. The noise is assumed to
have a Gaussian distribution, ε ∼ N (0,Σε), with a known diagonal covariance matrix Σε.
For the OCO-2 mission, we have n� p. Despite this, the problem of retrieving x based on y
is badly ill-posed due to poor conditioning of F .

The ultimate goal of the retrieval is to estimate a certain functional of the state vector
θ(x) ∈ R using the observations y. We assume that the functional of interest is linear so it
can be written in the form θ = hTx, where the weights h are assumed to be known. We
specifically focus on θ corresponding to XCO2, the column-averaged CO2 concentration at the
sounding location, which, to a good approximation, is of this form.

The state vector x contains all the physical quantities that are thought to affect the radi-
ance measurement y. This includes the vertical CO2 concentrations, but also other geophysical
quantities, as outlined in section 2.1 and described in more detail in section 5.1.1. Statistically,
these other quantities can be understood as nuisance variables since the functional of interest
does not directly depend on them (hi = 0 for these variables).

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 833

The actual full-physics forward operator F is a nonlinear map from Rp to Rn [4]. This com-
plication can detract from the fundamental challenges involved in quantifying the uncertainty
of the retrievals. In order to be able to focus on the key statistical issues, we linearize in this
work the forward operator F (x) at a particular x = x′ such that F (x) ≈Kx+F (x′)−Kx′,
where K = ∂F (x)

∂x |x=x′ is the Jacobian of F evaluated at x′. This differs from the OCO-2 op-
erational retrieval method which takes the nonlinearity of the forward operator into account.
Even so, the operational uncertainty estimate uses a linearization about the final solution [4].

Putting these elements together, we have the following Gaussian linear model:

y′ = Kx+ ε, ε ∼ N (0,Σε),(2.2)

where y′ = y − F (x′) +Kx′. To simplify the notation, we denote y′ as y in the rest of this
paper. Under this model, our goal is to obtain a (1−α) confidence interval of the form

[
θ, θ
]

for the functional θ = hTx with the frequentist coverage guarantee Pε(θ ∈
[
θ, θ
]
) ≈ 1 − α

for any x, where (1− α) is the desired confidence level and the probability statement is with
respect to the distribution of the noise ε.

3. Proposed frequentist retrieval procedure.

3.1. Motivation. The key idea of our proposed method is to let known physical con-
straints and the functional of interest regularize the problem without imposing other external
a priori beliefs about the state elements. We demonstrate using simulations that this suf-
fices for obtaining well-calibrated and reasonably sized confidence intervals, as long as the
constraints hold with probability 1 and the functional is an operation, such as averaging or
smoothing, that tends to reduce noise. The procedure is formulated in terms of convex op-
timization problems that find the upper and lower endpoints of the confidence interval [44,
45, 47]. Below, we first describe the procedure, followed by a brief analysis of its properties.
We provide two complementary perspectives on the method, one from the point of view of
optimization in the state space Rp and another from the dual perspective of optimization in
the radiance space Rn.

3.2. Method outline. Unlike the operational procedure described in detail in section 4,
our proposed method directly constructs confidence intervals for the functional of interest
θ = hTx. More specifically, the goal is to construct a (1 − α) confidence interval [θ, θ] for θ
under the model y ∼ N (Kx, I) subject to external information on x in the form of the affine
constraint Ax ≤ b and without requiring K to have full column rank. The linear forward
model in (2.2) can always be transformed into this form by taking the Cholesky factorization
Σε = LLT , calculating ỹ = L−1y and K̃ = L−1K, and then redefining y ← ỹ and K ← K̃.
We assume throughout the remainder of this section that this transformation has been applied
to the model. The matrix A and the vector b can encode various types of affine constraints on
the state vector elements: for example, nonnegativity constraints for individual elements of x,
two-sided bounds for individual elements of x, or affine constraints involving multiple elements
of x at once. The endpoints of the interval [θ, θ] are obtained as the objective function values
of two convex optimization problems. The convex programs are chosen so that the coverage
Pε(θ ∈

[
θ, θ
]
) is as close as possible to the nominal value (1 − α) for all x satisfying the

constraint Ax ≤ b.
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834 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

3.2.1. Primal point of view. The lower endpoint θ is the optimal objective function value
of the following minimization problem [44, 45]:

minimize hTx
subject to ‖y −Kx‖2 ≤ z21−α/2 + s2,

Ax ≤ b,
(3.1)

where z1−α/2 is the (1 − α/2) standard normal quantile and the slack factor s2 is defined as
the objective function value of the following program:

minimize ‖y −Kx‖2
subject to Ax ≤ b.(3.2)

The upper endpoint θ is the optimal value of a similar maximization problem:

maximize hTx
subject to ‖y −Kx‖2 ≤ z21−α/2 + s2,

Ax ≤ b,
(3.3)

where s2 is again given by program (3.2).
To explain the intuition behind this construction, we start with the approach described

in [47]. Consider the two sets D = {x ∈ Rp : ‖y −Kx‖2 ≤ χ2
n,1−α}, where χ2

n,1−α is the
(1−α) quantile of the χ2 distribution with n degrees of freedom, and C = {x ∈ Rp : Ax ≤ b}.
Here D is a (1 − α) confidence set for the entire state vector x and the set C encodes the
feasible set of x given the constraints. Therefore, the set C ∩D is also a (1 − α) confidence
set for x. We can then use this confidence set to obtain a (1− α) confidence interval for the
functional θ = hTx by simply finding the extremal values of the functional over C ∩D [47],
which corresponds to problems (3.1) and (3.3) with z21−α/2 + s2 replaced by χ2

n,1−α. However,
since this choice of D guarantees coverage for the entire vector x, this construction produces
simultaneously valid confidence intervals for any arbitrarily large collection of functionals of x.
Thus, for the one particular functional we primarily care about, it produces valid but typically
excessively wide intervals that are likely to have substantial overcoverage. The idea of the
method above therefore is to shrink the set D by calibrating the radius appropriately. It is
suggested in [44, 45] that the appropriate radius for one-at-a-time coverage, i.e., for obtaining
coverage for a single target functional, is z21−α/2 + s2, where s2 is the objective function value

of program (3.2). We will use this radius throughout the rest of this paper. One of our goals
will be to study the validity of this choice and in particular to illustrate that the intervals
defined by (3.1) and (3.3) are indeed well calibrated in the XCO2 retrieval problem.

When we calculate the intervals in practice, we improve the computing time by using a
simplification of (3.1)–(3.3) that allows us to replace these programs by equivalent optimization
problems involving p-variate norms instead of n-variate norms; see Appendix A for details.
These simplified problems are then solved using the interior-point solvers in MATLAB 2019a.

3.2.2. Dual point of view. To gain more insight into this construction, we next look at
the Lagrangian dual [5] of problems (3.1) and (3.3). When the optimal objective function
value of the dual program equals that of the primal program, the problem is said to satisfy

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 835

strong duality. Since programs (3.1) and (3.3) are convex, strong duality is guaranteed if the
norm constraint in (3.1) and (3.3) is strictly feasible (equation (5.27) in [5]). This is true if
we assume that the minimizer of the slack problem (3.2) is attained, as any such minimizer is
strictly feasible for the norm constraint.

Then the lower endpoint θ can also be obtained as the objective function value of the
following program, which is derived starting from (3.1) in Appendix B:

maximize wTy −
√
z21−α/2 + s2‖w‖ − bTc

subject to h+ATc−KTw = 0,
c ≥ 0,

(3.4)

where the optimization is over the variables w ∈ Rn and c ∈ Rq, with q the number of affine
constraints on x, and s2 is as defined above. The upper endpoint θ is given by an analogous
program which is dual to (3.3):

minimize wTy +
√
z21−α/2 + s2‖w‖+ bTc

subject to h−ATc−KTw = 0,
c ≥ 0.

(3.5)

The dual perspective provides us more insight into the proposed interval
[
θ, θ
]
. To see this,

consider the interval[
wTy − z1−α/2‖w‖ − bTc, wTy + z1−α/2‖w‖+ bTc

]
.(3.6)

As we show below and in Appendix C, if (w, c) and (w, c) are any fixed elements of Rn ×Rq
satisfying the constraints in programs (3.4) and (3.5), respectively, then the above interval has
correct coverage (1−α). This is true even when K is rank deficient and under the constraint
Ax ≤ b for x. Therefore, it makes sense to find (w, c) and (w, c) within the appropriate
constraint sets such that the lower endpoint is maximized and the upper endpoint is minimized
so that the overall interval is as short as possible. This optimized interval would have correct
coverage if the optimized variables did not depend on y, but unfortunately that is not the
case here. In order to account for this optimism, it is necessary to inflate the interval to
preserve coverage. The method proposed in [44, 45], and further considered here, does this

by replacing z1−α/2 with
√
z21−α/2 + s2, where s2 is the slack defined above.

3.3. Method properties. We can show the following properties for the proposed method:
• Coverage: The dual formulation enables us to gain some understanding of the coverage

of the proposed interval. Consider a lower endpoint of the form θ = wTy−z1−α/2‖w‖−
bTc for some fixed w and c satisfying the constraints in program (3.4). As shown in
Appendix C, we can bound the miscoverage probability to obtain Pε(θ ≥ θ) ≤ α/2.
Similarly, for an upper endpoint of the form θ = wTy + z1−α/2‖w‖ + bTc, where w

and c are fixed and satisfy the constraints in program (3.5), we have Pε(θ ≥ θ) ≤ α/2.
Combining the two, we have Pε(θ ≤ θ ≤ θ) ≥ 1 − α, giving the desired coverage
probability. Notice, however, that when we optimize over w and c, the optimized
variables will depend on the observations y and the proof in Appendix C no longer
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836 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

holds. To account for this, the method introduces the slack factor s2 to inflate the
interval. Proving that the inflated interval has correct coverage is nontrivial since the
slack s2 itself is also a function of y, but we demonstrate empirically in section 5 that
the coverage is consistently very close to the desired value (1− α).

• Length: Since the optimization problems defining the interval depend on the observed
data y, these intervals can have variable length. Our experiments in section 5 confirm
that the interval lengths indeed do vary across y realizations, but, in our experimental
setup at least, the average length does not appear to change much across different x.

• Connection with classical intervals: In the special case where K has full column rank,
i.e., rank(K) = p, and there are no constraints on x, the proposed interval reduces to
the usual Gaussian standard error interval induced by the unregularized least-squares
estimator of x. That is, in this special case, the solutions of problems (3.1) and (3.3)
yield the interval [θ̂LS − z1−α/2 se(θ̂LS), θ̂LS + z1−α/2 se(θ̂LS)], where θ̂LS = hT x̂LS is

the induced estimator of θ, x̂LS = (KTK)−1KTy is the unregularized least-squares

estimator of x, and se(θ̂LS) =
√
hT (KTK)−1h is the standard error of θ̂LS. The

proof is given in Appendix D. By standard arguments, this interval has exact (1− α)
coverage and will have reasonable length when the mapping x 7→ θ acts as an implicit
regularizer. In this special case, the interval has fixed length. When K is rank
deficient and/or there are constraints on x, the classical interval no longer applies,
but the proposed interval does. The proposed interval can therefore be seen as an
extension of the classical unregularized interval to these more complex situations.

3.4. Commentary. The proposed method takes advantage of the fact that certain func-
tionals themselves provide enough regularity so that we can retrieve them with reasonably
sized confidence intervals given only objectively known physical constraints and without hav-
ing to use additional subjective knowledge. This way the method avoids dependence on
subjective external beliefs for the coverage guarantees. In practice, these intervals tend to
be better calibrated but longer than the operational intervals which rely on such subjective
knowledge. The interval length can be improved if additional objective information about the
state variables is available to shrink the constraint set. This information could come either
in the form of additional hard constraints or in the form of soft constraints of coverage state-
ments for some of the unknown variables. Since this method is designed to satisfy a frequentist
coverage statement, it is possible to combine these different uncertainties to obtain a valid,
shorter interval in the end. These extensions are explored in section 6.

4. Existing operational retrieval procedure.

4.1. Motivation. The existing OCO-2 operational retrieval procedure is based on a
Bayesian maximum a posteriori estimator [4, 41], where the key idea is to let a prior dis-
tribution on the state vector x regularize the problem. In remote sensing literature, this
approach is called “optimal estimation” [41], although optimality here depends on the choice
of a cost function and typically assumes that the prior is correctly specified. We describe below
the operational retrieval for our simplified setup with a linearized forward model and analyze
its frequentist properties. In the actual full-physics operational retrievals with a nonlinear

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 837

forward operator, finding the maximum of the posterior is a nonlinear optimization problem
which is solved using the iterative Levenberg–Marquardt algorithm [4].

4.2. Method outline. The existing operational method for estimation and uncertainty
quantification assumes a Gaussian prior distribution on the state vector, x ∼ N (µa,Σa),
where µa and Σa are the prior mean and covariance, respectively. The posterior under this
assumption and the linear forward model (2.2) is also Gaussian and is given by

x|y ∼ N ((KTΣ−1ε K + Σ−1a )−1(KTΣ−1ε y + Σ−1a µa), (K
TΣ−1ε K + Σ−1a )−1).(4.1)

The point estimator x̂ of x is chosen to be the maximizer of the posterior distribution,

x̂ = (KTΣ−1ε K + Σ−1a )−1(KTΣ−1ε y + Σ−1a µa),

which in our simplified setup is also the posterior mean. Recalling that y = Kx + ε, this
estimator can be written as a sum of three terms, x̂ = Ax + (I −A)µa +Gε, where G =
(KTΣ−1ε K + Σ−1a )−1KTΣ−1ε and A = GK are called the retrieval gain matrix and the
averaging kernel matrix, respectively [41]. The estimator for θ = hTx is chosen to be the
plug-in estimator θ̂ = hT x̂.

To quantify the uncertainty of θ, we note that the posterior distribution on x induces a
Gaussian posterior distribution on θ given by

θ|y ∼ N (hT (KTΣ−1ε K + Σ−1a )−1(KTΣ−1ε y + Σ−1a µa),h
T (KTΣ−1ε K + Σ−1a )−1h).(4.2)

A (1− α) central credible interval for θ is then given by

[θ, θ] = [θ̂ − z1−α/2σ, θ̂ + z1−α/2σ],(4.3)

where σ2 = hT (KTΣ−1ε K+Σ−1a )−1h is the posterior variance of θ and θ̂ the plug-in estimator
of θ, or equivalently the maximizer/mean of p(θ|y). The credible interval (4.3) is used to
quantify the uncertainty of XCO2 in the operational OCO-2 retrievals [4].

4.3. Frequentist properties. We describe in this section selected frequentist properties of
the linearized operational retrieval method in order to compare its properties with those of
our proposed method. It is straightforward to derive the following properties for the point
estimator θ̂ and the credible interval [θ, θ] given in (4.3):

• Bias: The bias of the estimator θ̂, denoted by bias(θ̂), can be calculated as

bias(θ̂) = Eε[θ̂]− θ = hT (Eε[x̂]− x)(4.4)

= hT (Ax+ (I −A)µa − x) = hT (A− I)(x− µa) = mT (x− µa),

where m = (AT − I)h =
(
KTΣ−1ε K(KTΣ−1ε K + Σ−1a )−1 − I

)
h is a vector of bias

multipliers. The bias depends on x− µa, i.e., the difference between the true state x
and the prior mean µa. Notice that the bias is 0 if and only if x = µa or m = 0 or if
the vector x−µa is orthogonal to m. In other cases, depending on x−µa and how it
interacts with the forward operator K, the prior covariance Σa, the noise covariance
Σε, and the functional h, there might be a positive or a negative bias.

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.
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838 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

• Coverage: As shown in Appendix E, the frequentist coverage of the interval (4.3) can
be written down in closed form and is given by

Pε(θ ∈ [θ, θ]) = Φ

(
bias(θ̂)

se(θ̂)
+ z1−α/2

σ

se(θ̂)

)
− Φ

(
bias(θ̂)

se(θ̂)
− z1−α/2

σ

se(θ̂)

)
,(4.5)

where se(θ̂) =

√
varε(θ̂) is the standard error of θ̂ and

varε(θ̂) = varε(hTGε) = hTGΣεG
Th(4.6)

= hT (KTΣ−1ε K + Σ−1a )−1KTΣ−1ε K(KTΣ−1ε K + Σ−1a )−1h

is the variance of θ̂ computed with respect to the distribution of the noise ε. The
coverage depends on x only through bias(θ̂). It is an even function of bias(θ̂) and the
maximum is obtained with bias(θ̂) = 0. In that case,

Pε(θ ∈ [θ, θ]) = Φ

(
z1−α/2

σ

se(θ̂)

)
− Φ

(
−z1−α/2

σ

se(θ̂)

)
> Φ

(
z1−α/2

)
− Φ

(
−z1−α/2

)
= 1− α,

since σ/se(θ̂) > 1. In other words, the interval [θ, θ] has overcoverage for bias(θ̂) = 0.
It is also easy to see that the coverage is a strictly decreasing function of |bias(θ̂)|. As
|bias(θ̂)| increases, the coverage eventually crosses the nominal value (1−α), followed
by undercoverage. In the limit |bias(θ̂)| → ∞, the coverage becomes zero.

• Length: The interval [θ, θ] has constant length given by 2z1−α/2σ.
• Comparison with standard error intervals: A potential alternative for the credible

interval (4.3) is the frequentist standard error interval

[θ, θ] = [θ̂ − z1−α/2 se(θ̂), θ̂ + z1−α/2 se(θ̂)].(4.7)

It is easy to show that the credible interval (4.3) is always longer than the standard
error interval (4.7). This extra length can be understood as an attempt to inflate the
uncertainties to account for the bias (4.4); see section 6.4 in [43] and the references
therein. It follows that the coverage of the credible interval (4.3) is greater than that
of the standard error interval (4.7), which undercovers whenever bias(θ̂) 6= 0 [27].

4.4. Commentary. The operational retrieval method is based on the well-established
Bayesian framework where the observed data are combined with the prior distribution to
obtain inferences in the form of the posterior distribution. The operational inferences should
therefore be interpreted as representing a Bayesian degree of belief about θ. However, a user of
the retrieval method may also be interested in frequentist inference of θ and the above analysis
shows that the operational method can be miscalibrated if used for frequentist inference. As
is well known, the performance of Bayesian methods can depend critically on the choice of
the prior distribution, and the same is true for the frequentist properties of the operational
method. For example, the point estimator θ̂ would be unbiased if the prior mean was chosen
to be equal to the true state, i.e., µa = x, but this is unlikely in practice as it would require
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FREQUENTIST UQ FOR CO2 RETRIEVALS 839

knowing beforehand what the value of x is. (The bias is also small if x − µa is nearly or-
thogonal to m, but this is equally unlikely to hold true.) At least some amount of frequentist
bias is therefore always present, with the potential for arbitrarily large biases depending on
how much the prior mean deviates from the true state. Since the frequentist coverage of the
intervals depends on the bias, this can result in wildly varying coverage performance. For
small biases, the intervals overcover, i.e., Pε(θ ∈ [θ, θ]) > 1 − α, while for large biases the
intervals undercover, i.e., Pε(θ ∈ [θ, θ]) < 1 − α. Irrespective of which of these two cases
dominates, the intervals are bound to have some degree of frequentist miscalibration since it
is unlikely that there would always be just the right amount of bias for nominal coverage.
Since it is impossible to judge the coverage of the intervals without knowing the true x, it
is not possible to tell for real soundings if a given interval is well calibrated or not. Ideally,
roughly 100× (1− α)% of soundings from a given OCO-2 orbit would cover their true XCO2

values. However, this discussion shows that, for the current retrieval method, this fraction
can be much smaller or much larger. Furthermore, in the real atmosphere, the nearby states
x are spatially and temporally correlated. Since the bias depends on x−µa, this means that
the biases, and therefore also the coverage values, are spatially and temporally correlated,
which may lead to misleading frequentist inferences over extended spatial regions or temporal
periods. These effects are analyzed in greater detail using a simulated example scenario in
section 5. It is also worth noting that these suboptimal frequentist properties of the opera-
tional method are not unexpected as a Bayesian method is not necessarily designed to have
good frequentist properties. Indeed, the above issues are not necessarily problematic when
seen from the Bayesian perspective. It is also possible to modify a Bayesian procedure to
improve its frequentist properties [1, 2, 24]; however, in this work we focus on the operational
retrieval method as it is currently implemented in OCO-2.

5. Numerical results.

5.1. Experiment setup.

5.1.1. Forward model and weight vector specifics. The starting point for our forward
model is the OCO-2 surrogate model developed by Hobbs et al. [19]. The surrogate model is a
computationally efficient approximation to the OCO-2 full-physics forward model [4]. Similar
to the full model, it involves a nonlinear mapping from the state vector x to the radiances
y, but is much faster to evaluate. The surrogate model also makes certain simplifications to
the full OCO-2 state vector. As described in section 2.2, we make a further approximation by
linearizing the surrogate model, which leads to the linear model in (2.2). The linearization is
done around the generative process mean µx; see section 5.1.2.

The state vector x in the surrogate model has 39 elements (p = 39), of which the first 20
correspond to the vertical CO2 profile and the remaining 19 are nuisance variables related to
surface pressure (x21), surface albedo (x22, . . . , x27), and atmospheric aerosol concentrations
(x28, . . . , x39). A detailed description of these variables is given in the supplementary material
[38]; see also [19]. These variables suffice in order to capture, to a good approximation, the
relation between the atmospheric CO2 profile x1, . . . , x20 and the observed radiances y [19].

In addition to the state vector x, the forward operator depends on additional parameters,
most notably on the solar and satellite viewing geometries, which are assumed to be known
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840 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

during the retrieval. In our case, the forward model is evaluated for an OCO-2 orbit that
took place in October 2015 near the Total Carbon Column Observing Network (TCCON)
site (36.604◦N, 97.486◦W) in Lamont, OK. The satellite is in the nadir observing mode, i.e.,
pointed toward the ground directly underneath its orbit.

We can investigate the ill-posedness of the CO2 retrieval problem by studying the singular
values of the linearized forward operator represented by the 3048×39 matrix K. The singular
values, shown in Figure S2 in the supplementary material [38], decay exponentially, indicating
that the retrieval problem is severely ill-posed [18]. The smallest singular value deviates
from the exponential decay, which we take to indicate that K is rank deficient with rank 38.
Hence, there is a one-dimensional null space. The condition number (the ratio of the largest
to the smallest (numerically) nonzero singular value) is 3.62× 1012, consistent with a severely
ill-posed problem.

The ultimate quantity of interest in the retrieval problem is the column-averaged CO2

dry-air mole fraction XCO2 = hTx, where h is a weight vector derived in [36]; see also
[4]. Since XCO2 only involves the CO2 profile, the nuisance variables get weight zero, i.e.,
h21 = · · · = h39 = 0. The remaining weights are strictly positive and sum to one,

∑20
i=1 hi = 1,

so statistically XCO2 is a weighted average of the CO2 concentrations x1, . . . , x20. In the full-
physics retrievals, the weights hi have a slight dependence on the nuisance variables, but in
the surrogate model the weights do not depend on the state vector. In practice, the surrogate
model weights are almost constant for the intermediate pressure levels, while the weights for
the boundary levels are approximately half of that value.

5.1.2. Data generation. Our investigations require a realistic generative model from
which synthetic states and observations can be simulated. A suitable multivariate distribu-
tion for the state vector x, as well as a model for the spatial dependence among state vectors
in a small spatial region, was developed in [20]. Briefly, the approach uses actual retrieved
state vectors near Lamont, OK, during the month of October 2015. This collection is part
of the OCO-2 Level 2 diagnostic data products, available at the NASA Goddard Earth Sci-
ence Data and Information Services Center (GES DISC, https://disc.gsfc.nasa.gov/OCO-2).
These are combined with a simulation-based assessment of the retrieval error properties to
estimate the state vector mean µx and the single-sounding covariance Σx for this location and
time.

Synthetic data are then generated through the following steps:

1. State vector generation for a single sounding: x ∼ N (µx,Σx), where the parameters
of the multivariate normal distribution were estimated from OCO-2 data as noted
above.

2. State vector generation for grid sounding: We also simulate states x(si) on a grid
of i = 1, . . . , 64 locations within an OCO-2 orbit. Following [20], we assume that
this spatial process x(·) ∼ GP(µ(·),C(·, ·)) is a multivariate Gaussian process with
a spatially constant mean function µ(·) = µx and cross-covariance function C(·, ·)
defined as Ckl(si, sj) = cov(xk(si), xl(sj)) = Σx,klMkl (‖si − sj‖), where Mkl is a
Matérn-type correlation function [51]. The parameters of the correlation function
vary across k and l in a way that guarantees positive definiteness and were estimated
from the above collection of OCO-2 retrieved state vectors [20].
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3. Noise generation: ε ∼ N (0,Σε). The OCO-2 radiances are fundamentally photon
counts in the detectors so these measurements have Poisson-like behavior. The noise
can nevertheless be approximated well using an additive Gaussian noise term with
zero mean and variance proportional to the mean signal. Following [19] and [30], we
let Σε be diagonal with elements var(εj) = cb(j)Fj(µx), where b : {1, . . . , 3048} →
{1, 2, 3}, j 7→ b(j) indicates the spectral band (O2, weak CO2, strong CO2) of j,
ci are band-specific constants, and Fj(·) is the jth element of the forward operator
output. In the actual satellite, the noise model is somewhat more complicated, but its
properties are nevertheless well understood [11]. The ε realizations are independent
and identically distributed both across repetitions of the experiment for a fixed state
x and over the different spatial sounding locations.

4. Radiance observation: y = Kx + ε, where x and ε are given by the previous steps
and the matrix K results from linearizing the forward operator F about the true
mean µx.

In addition, the operational procedure posits a prior distribution on the state x, which is
given by x ∼ N (µa,Σa). We use the prior mean µa and prior covariance Σa derived from
the OCO-2 operational prior near Lamont, OK, in October 2015. For OCO-2, the prior mean
µa varies in space and time but is dependent in part on climatology and expert knowledge,
while Σa is the same for all retrievals.

An important point to highlight is that µa 6= µx and Σa 6= Σx. Therefore, the true
conditions, represented through µx and Σx in our simulations, will be different from the prior
mean and covariance. This misspecification is a real challenge for the operational retrievals
and a source of bias [34]. The prior model and the generative model are visualized and
compared in detail in the supplementary material [38], which also contains a visualization of
the spatial dependence structure of the state vectors.

5.1.3. Constraints. In the proposed frequentist procedure, we impose nonnegativity con-
straints on certain elements of the state vector x. Since elements x1, . . . , x20 are CO2 concen-
trations, they need to be nonnegative by definition. Thus, we impose the constraint xi ≥ 0 for
i = 1, . . . , 20. The same argument applies to surface pressure, so we also include the constraint
x21 ≥ 0. The rest of the state vector elements are left unconstrained.

Since albedo is a fraction between 0 and 1, this implies in principle linear inequality con-
straints for the albedo variables x22, . . . , x27. We experimented with adding these constraints
but found that that made little difference in the results while causing some extra computa-
tional overhead. We therefore decided to leave these variables unconstrained. The aerosol
variables x28, . . . , x39 are parameterized in the surrogate model in such a way that there are
no trivial constraints that could be imposed on those variables.

5.2. Single sounding results.

5.2.1. Distribution of bias of the operational method. Since the linearized operational
method is based on a linear estimator θ̂, we can write down bias(θ̂) = Eε[θ̂]− θ in closed form
for a given x. This is done in (4.4), which shows that the bias is given by the inner product
of the bias multiplier vector m and the prior mean misspecification x − µa. For a given x
sampled from the generative model, there will therefore always be a nonzero bias whose size
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(a) Bias multipliers

0 5 10 15 20 25 30 35 40

state variables

-4

-3

-2

-1

0

1

2

3

4

5

6

7

m
e

a
n

 m
is

s
p

e
c
if
ic

a
ti
o

n

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

b
ia

s
 c

o
m

p
o

n
e

n
ts

(b) Bias components

Figure 2. Figure (a) illustrates the bias multiplier vector m, while (b) shows the corresponding bias com-
ponents mi(µx,i − µa,i) for the misspecified means.

depends on the details of the prior misspecification for that particular x. To understand this
interaction better, we show the bias multiplier vector m in Figure 2(a) for our particular
retrieval setup. This highlights the role of the nuisance variables x21, . . . , x39 in dictating the
size of the bias. Notice that the bias multiplier m depends on the prior covariance Σa but not
on the prior mean µa. Hence this can be seen as a way of decoupling the contribution of the
prior mean on the bias from that of the prior covariance. It is also worth noting that here the
bias is entirely caused by the regularization in the prior since we generate the data using the
same linear forward model K that we use in the inversion; in real-life retrievals, there might
be an additional component in the bias from the nonlinearity of the forward operator.

Assuming that x ∼ N (µx,Σx) gives a realistic distribution of x’s for repeated satellite
overpasses, we can also derive the distribution of the bias over repeated x realizations. In
our particular case, we have bias(θ̂) ∼ N (0.5714, 0.0533). This distribution is illustrated in
Figure 3(a) showing the bias for 10 000 instances of x from the generative model. This shows
that the biases are typically positive with a fair amount of spread around the central value.
Negative biases and biases larger than 1.2 ppm are rare, at least in this particular setup for
the retrieval problem.

We have that Ex[bias(θ̂)] = mT (µx−µa), which corresponds to the bias expressions given
in [34]. Hence, the distribution of bias(θ̂) has mean zero if and only if µa = µx or if µx −µa
is orthogonal to m. Even in those cases, bias(θ̂) would still have a spread around zero, so
individual retrievals may be positively or negatively biased. In the more realistic case where
mT (µx −µa) 6= 0, the biases are either predominantly positive or negative depending on the
details of the prior misspecification. Figure 2(b) shows a breakdown of the contribution of
each state variable to the mean bias of 0.5714 in our particular setup. The figure visualizes
the mean misspecification µx − µa and the individual terms mi(µx,i − µa,i) contributing to
the mean bias. It enables us to conclude that the positive biases are primarily caused by the
misspecification of the surface pressure variable x21, the aerosol variable x32, and the upper
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FREQUENTIST UQ FOR CO2 RETRIEVALS 843

(a) Bias distribution (b) Coverage distribution

Figure 3. Figure (a) shows the coverage as a function of bias (blue line) for the operational procedure
and the corresponding histogram of operational retrieval bias. Figure (b) shows a histogram (in orange) of the
operational retrieval coverage for 95% intervals. Also shown is a histogram (in blue) of empirical coverage for
the proposed frequentist uncertainty quantification method.

portion of the CO2 profile, all of which contribute positively to the mean bias. The large
misspecification of the lower portion of the CO2 profile, on the other hand, makes a negligible
contribution to the bias due to the small bias multipliers of those variables.

5.2.2. Coverage and length of the operational and proposed intervals. The frequentist
coverage of the operational method for a particular x defined as Pε(θ ∈ [θ, θ]) can be calculated
using (4.5). The coverage depends on x only through bias(θ̂). To understand the nature of
this dependence, we plot in Figure 3(a) the coverage of 95% intervals as a function of the
bias for our particular retrieval setup. We observe that for |bias(θ̂)| < 0.84 ppm the intervals
overcover, while for |bias(θ̂)| > 0.84 ppm the intervals undercover, with the coverage dropping
sharply for biases larger than 1 ppm in absolute value. Since our biases are predominantly
positive (Figure 3(a)), we are mostly going to observe the subrange of coverages corresponding
to bias(θ̂) ∈ [−0.3 ppm, 1.4 ppm].

It is difficult to explicitly write down the distribution of the coverage corresponding to the
assumed distribution of x, but we evaluate the coverage distribution numerically in Figure 3(b)
for 10 000 state vectors and 95% intervals. We see that the operational intervals are poorly
calibrated in terms of their frequentist coverage. For most x realizations, the intervals have
overcoverage. However, we also note that the coverage distribution is heavily left-skewed
toward values below the nominal 95% coverage. In particular, for 12.03% of the x realizations,
the intervals have undercoverage. The smallest coverage is 79.0%, and this could drop even
lower depending on the x realization.

Such coverage behavior is inherent to the operational retrieval method because of the bias
induced by the regularizing prior. This leads to the somewhat paradoxical conclusion that, if
interpreted as frequentist confidence intervals, the operational intervals are too long for most
x’s, while for roughly 12% of the x’s, the intervals are too short. Unfortunately, there is

Copyright © by SIAM and ASA. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

10
/0

9/
23

 to
 2

4.
7.

70
.2

53
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



844 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

Table 1
Comparison of coverage and interval length (in ppm) between the operational and proposed uncertainty

quantification methods for 10 state vector x realizations chosen uniformly between the minimum and maximum
coverage for the operational method in Figure 3(b). The target coverage in each case is 95%. Also shown are
the bias of the operational point estimates and the standard deviation of the length of the proposed intervals
(both in ppm). The proposed method is not based on a point estimator, so we do not report a bias value for it.

x Operational Operational Operational Proposed Proposed Proposed
realization bias coverage length coverage avg. length length s.d.

1 1.4173 0.7899 3.94 0.9515 11.20 0.29
2 1.3707 0.8090 3.94 0.9511 11.20 0.28
3 1.2986 0.8363 3.94 0.9510 11.20 0.29
4 1.2357 0.8579 3.94 0.9515 11.20 0.28
5 1.1590 0.8816 3.94 0.9513 11.20 0.28
6 1.0747 0.9042 3.94 0.9512 11.21 0.27
7 0.9721 0.9272 3.94 0.9515 11.20 0.29
8 0.8420 0.9500 3.94 0.9513 11.19 0.31
9 0.6477 0.9730 3.94 0.9508 11.19 0.32
10 0.0001 0.9959 3.94 0.9502 11.18 0.35

no easy way of telling when the intervals are too long or too short, so it is not possible to
adaptively recalibrate their length.

The proposed frequentist direct retrieval method, on the other hand, has fundamentally
different behavior. For this method, it is not straightforward to write down a closed-form
expression for the coverage, but we can nevertheless evaluate it empirically. Here we evaluate
the empirical coverage of 95% intervals using 10 000 realizations of the noise ε. This is
repeated for 100 realizations of x from the generative model to study the distribution of the
coverage values. The results are shown in Figure 3(b). We find that the proposed method is
well-calibrated across all considered x instances. The coverage peaks at slightly above 95%,
with very little spread around that value. For some x, the intervals have a small amount of
overcoverage, but this is very minor in comparison to the operational method.

To further compare the two methods, we pick 10 instances of x corresponding to 10
different coverage values for the operational method ranging from the minimum operational
coverage to the maximum in Figure 3(b). Table 1 compares the 95% intervals for the two meth-
ods for each of these 10 state vectors. We observe that while the coverage of the operational
method can vary between substantial undercoverage and major overcoverage, the proposed
method consistently achieves nearly nominal coverage irrespective of the x realization.

The two approaches also have different behaviors in terms of their interval lengths. The
operational intervals have constant length 2z1−α/2σ, where σ is the posterior standard devia-
tion of θ that does not depend on the data y. In our case, σ = 1.0051 ppm, so the operational
intervals have constant length of 3.94 ppm at 95% confidence level. It is worth noting that
se(θ̂) = 0.6856 ppm. Hence, the operational intervals derived from the posterior of θ are
almost 50% longer than what standard error intervals would be. This extra length gives the
operational intervals some, but not enough, protection against undercoverage.

The proposed intervals, on the other hand, have data-dependent length. We report in
Table 1 the average lengths and length standard deviations for these intervals across different
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FREQUENTIST UQ FOR CO2 RETRIEVALS 845

ε realizations for each fixed state vector x. We observe that the interval lengths indeed vary
across noise realizations with a coefficient of variation (ratio of standard deviation to average
length) of about 3%. However, the average lengths are almost constant across different x’s.
We therefore conclude that while the proposed intervals have variable length, their average
length does not seem to depend much on the true state x.

The proposed intervals are longer than the operational ones, but in exchange seem to
provide the desired coverage irrespective of the x realization. We can gain further insight into
the behavior of the two constructions by visualizing some illustrative realizations of the state
vectors and the associated intervals produced by the two methods. This is done in section S3
in the supplementary material [38].

5.3. Coverage over a spatial region. In this section, we investigate the performance of
the operational method over a spatial grid of 8 × 8 soundings near Lamont, OK. The size
of the region is approximately 8 km in the cross-track direction and 16 km in the along-track
direction. We generate spatially correlated state vectors x(si) and expected radiances Kx(si)
over the grid as described in section 5.1.2. We then investigate the bias of the operational
point estimates and the pointwise coverage of the operational 95% intervals over the grid.
To do this, we can simply use the closed-form expressions (4.4) and (4.5) at each sounding
location. Since both the bias and the coverage of the operational method are functions of the
state vectors x(si), these properties inherit the spatial dependence between the state vectors
and will hence exhibit spatially correlated patterns.

The observed patterns depend on the specific {x(si) : i = 1, . . . , 64} realization over the
grid. Figure 4(a) shows the coverage pattern for a case in which the coverage systemati-
cally changes from overcoverage to undercoverage when moving from the northwest corner of
the grid to the southeast corner. The reason for this can be seen from the bias pattern in
Figure 4(b), which shows that the overall positive bias has a systematic gradient across the
region so that the bias is larger in the southeast corner and smaller in the northwest corner,
which then affects the coverage as described in (4.5). It is also possible to observe undercov-
erage over the entire grid. Figure S9 in the supplementary material [38] shows the coverage
and bias patterns for a case where the state vector realizations are such that all 64 intervals
across the region have coverage below the nominal value due to a systematic large positive
bias throughout the region.

These results illustrate one of the challenges of the operational retrieval method in that
there can be entire regions with undercoverage or overcoverage. For example, in the case
of Figure S9, all intervals across the region are systematically offset toward too large XCO2

values, which causes their lower bounds to miss the corresponding true XCO2 values more often
than they should. There is a risk that such patterns could be mistaken as CO2 flux signals.
As such, these observations may have important implications for carbon flux estimates; see
section 7. The coverage patterns shown here for the operational method are in contrast with
the behavior of the proposed frequentist method, which does not exhibit systematic spatially
correlated miscalibration.

6. Variable importance and effect of additional constraints on interval length. As
demonstrated in the previous section, the proposed frequentist method has good coverage
performance, but the intervals are longer than in the operational retrieval method. In this
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(a) Operational coverage
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Figure 4. Operational retrieval over a grid of 8×8 soundings for an instance where both undercoverage and
overcoverage are present. Figure (a) shows the spatial coverage pattern relative to the nominal 95% in units of
probability (i.e., -0.03, for example, corresponds to coverage 0.92, instead of the nominal 0.95). The fraction of
soundings below nominal coverage is 0.55. Figure (b) shows the corresponding bias pattern in ppm.

section, we consider different variants of the proposed method to improve the interval
length.

It is worth noting that the underlying inference problem is defined by (i) the forward
operator K, (ii) the functional of interest parameterized by the weight vector h, (iii) the
amount of noise in the problem controlled by the covariance Σε, and (iv) the constraint setC.
For a given sounding and quantity of interest, we cannot change K, Σε, or h, but we can
potentially alter C. We therefore investigate how changes in C in the form of additional
constraints affect the length of the proposed intervals.

6.1. Effect of individual nuisance variables. We have so far only used trivial positivity
constraints on certain state vector elements; see section 5.1.3. However, if additional infor-
mation were available to further constrain the state vector—for example, one could imagine
that observational data from other sources tell us that, for some i, xi ∈ [xi, xi] with high
probability—then including those constraints should result in shorter intervals for XCO2.

To investigate what impact this would have, we start by considering how each nuisance
variable x21, . . . , x39 affects the final XCO2 interval length. Figure 5(a) shows the average
interval lengths for the proposed method when one of the nuisance variables is assumed to
be known. We can incorporate this assumption by using constraints of the form xi,true ≤
xi ≤ xi,true for one xi at a time, in addition to the previously used positivity constraints.
As expected, the interval lengths are smaller than the interval length without any additional
information. In particular, variables x21 (surface pressure) and x28 (log aerosol optical depth
for the first composite aerosol type; see the supplementary material [38]) have the greatest
impact on the interval length. Therefore additional constraints on these two variables could
be particularly helpful in reducing the interval length. Since it is not immediately clear
what observational constraints might be available for x28, we will in the following focus on
constraints for the pressure variable x21.
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(a) Nuisance variable importance
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(b) Pressure importance

Figure 5. Figure (a) shows average XCO2 interval lengths at 95% confidence level when constraining one
nuisance variable at a time to its true value. Figure (b) shows average XCO2 interval lengths at 95% confidence
level for varying degrees of deterministic constraints on the surface pressure variable x21. In both figures, the
horizontal red line shows the interval length when only trivial positivity constraints are used.

6.2. Deterministic pressure constraints. We analyze the effect of various degrees of de-
terministic constraints on the pressure variable in Figure 5(b). Instead of assuming that the
pressure is known exactly, as was done in Figure 5(a), we consider symmetric constraints
about the true pressure value, i.e., constraints of the form x21,true − δ ≤ x21 ≤ x21,true + δ for
various δ. As expected, we observe that tighter constraints on pressure translate into shorter
intervals for XCO2. For example, knowing the pressure to within ±3 hPa lets us decrease the
average XCO2 interval length from 11.19 ppm to 7.55 ppm. Knowing the surface pressure
to within such, or even higher, accuracy is not implausible as there are other, complemen-
tary observing systems, such as ground-based weather stations, that are capable of providing
pressure information within such limits.

We remark that the interval lengths in Figures 5(a) and 5(b) are averages over 100 noise
realizations for the x realization corresponding to nominal operational coverage in Table 1;
see also Figure S8 in the supplementary material [38]. We have also studied other x’s from
the generative model and found qualitatively similar results.

6.3. Probabilistic constraints and interval length optimization. We analyzed above the
effect of additional deterministic constraints on pressure. However, such constraints might
not always be available with full certainty; instead, we might know that they hold with high
probability. This is the case, for example, when a frequentist confidence interval is available
from another observing system. In this section, we show how to incorporate such probabilistic
constraints within the proposed method while still maintaining finite-sample coverage.

6.3.1. Coverage calibration. To explain the key idea, imagine that instead of having
deterministic constraints such as xi,true − δ ≤ xi ≤ xi,true + δ, we have confidence intervals
for one or more of the xi’s such that xi(αi) ≤ xi ≤ xi(αi) with frequentist coverage at least
(1 − αi), i.e., P(xi ∈ [xi(αi), xi(αi)]) ≥ 1 − αi. We can then construct a (1 − α) confidence
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848 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

interval for the quantity of interest θ by running the proposed retrieval procedure with these
probabilistic constraints at an internal confidence level (1− γ) chosen so that, accounting for
the αi’s, we can still maintain the required nominal coverage. As shown in Appendix F, we
can bound the miscoverage probability for the quantity of interest as follows:

P(θ /∈
[
θ, θ
]
) ≤ γ +

∑
i
αi,(6.1)

where i ranges over those variables that have probabilistic constraints. Thus, if we choose γ
and the αi’s in such a way that γ +

∑
i αi = α, then we can keep the desired (1−α) coverage

for the interval
[
θ, θ
]
.

6.3.2. Demonstration with pressure intervals. Since deterministic constraints on the
pressure variable x21 provided a gain in the interval length, we now analyze the effect of
probabilistic constraints on that variable. This demonstrates the simplest application of (6.1)
in a case where there is a probabilistic constraint on a single variable only. We therefore need
to choose γ and α21 such that γ + α21 = α, where we set α = 0.05 to obtain a 95% final
interval for XCO2. By (6.1), any positive γ and α21 summing to 0.05 will give a valid final
interval, but an optimal choice is such that it minimizes the final interval length. To start
investigating the dependence of the XCO2 interval length on these choices, Figure 6(a) shows
how the length of the pressure interval and the confidence level (1− γ) of the XCO2 interval
jointly affect the average XCO2 interval length. Using Figure 6(a), we can set the internal
confidence level (1 − γ) to a value larger than 95% to account for the coverage probability
(1−α21) of the pressure interval. To optimize this choice, we need to relate α21 to the length
of the pressure interval. In this study, we assume that there is a pressure sensor that provides
pressure observations x̂21 following the Gaussian distribution N (x21, σ

2
21). We then assume

that the pressure intervals are (1−α21) standard error intervals of length 2z1−α21/2σ21, where
σ21 is the pressure standard error.

For a given σ21, we can then trace through Figure 6(a) for various γ and the corresponding
α21 and record the final XCO2 interval length. Figure 6(b) shows examples of this for pressure
standard errors σ21 ranging from 0.5 hPa to 4 hPa. Each curve represents the average interval
length for the proposed method as a function of γ and can be used to choose γ such that the
final interval length is optimized. Along each curve, we have indicated this optimal internal
confidence level. We observe that for moderate values of the pressure standard error, the
optimal internal confidence level is greater than 95%, but when the pressure standard error
is either very small or very large, the optimal internal confidence level approaches 95%. This
happens because when the pressure standard error is very small, it is almost as good as using
the exact pressure value, while when the standard error is very large, it is almost as good as
not using any additional constraints on pressure besides the nonnegativity constraint.

Since the proposed interval has variable, data-dependent length, there is an important sub-
tlety in that the above interval length optimization must be done without using the observed
data y so as to guarantee the coverage in (6.1). In addition, we would ideally like to optimize
the average interval length, which cannot be done based on a single y. We therefore need a
candidate state vector x that can be used to calculate average interval lengths which are then
used as the basis for the length optimization. Since we found in section 5 that the average
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(a) Joint effect of pressure and internal confidence level

0.95 0.955 0.96 0.965 0.97 0.975 0.98 0.985 0.99 0.995

internal confidence level

6

7

8

9

10

11

12

13

in
te

rv
a
l 
le

n
g
th

 (
p
p
m

)

sd = 0.5 hPa

sd = 1 hPa

sd = 2 hPa

sd = 3 hPa

sd = 4 hPa

unoptimized

(b) Interval length optimization

Figure 6. Figure (a) shows the joint effect of pressure interval length and internal confidence level on
the average XCO2 interval length. Figure (b) shows the optimization of the average XCO2 interval length for
various pressure standard errors by trading off the internal confidence level (1 − γ) for the confidence level of
the pressure interval (1 − α21). The values that optimize the interval length are marked with asterisks.

interval lengths are not very sensitive to the choice of x, it suffices to have a reasonable ansatz
for x. Luckily, we already have that in the prior mean µa of the operational method. In this
study, we therefore set the state vector x equal to µa for the interval length optimization.
The interval lengths shown in Figures 6(a) and 6(b) were obtained as averages over 100 noise
realizations for this choice of x and for pressure intervals centered at x21 = µa,21.

We now proceed to empirically verify the coverage of the final intervals constructed as de-
scribed above. The length optimization phase can be run based on µa and σ21 before seeing y.
This leads to an optimal choice of γ and α21 irrespective of y, and, fixing these values, one can
then check the coverage and length of the intervals for multiple y realizations corresponding to
a fixed x. We use the x that provides nominal coverage for the operational retrieval method
in Table 1 as the state vector for this evaluation. While the length optimization was done
without fluctuating the pressure intervals, the coverage study also accounts for the variation of
the pressure intervals by simulating intervals of the form [x̂21− z1−α21/2σ21, x̂21 + z1−α21/2σ21]
for the optimized α21 and for x̂21 ∼ N (x21, σ

2
21) independently of ε. The results are given in

Table 2, which shows the optimized confidence levels (1−γ) and (1−α21) as well as the empir-
ical coverage and average length of the final XCO2 intervals based on 10 000 realizations. We
observe that the intervals maintain the 95% coverage guarantee while significantly reducing
the final interval length. The amount of gain provided by the pressure information depends
on the level of uncertainty in the pressure intervals. In particular, for pressure standard error
of 0.5 hPa, we are able to reduce the average interval length to 6.89 ppm from the original
11.19 ppm. The final intervals are somewhat conservative due to the slack in the inequality
in (6.1). Notice also that the interval lengths predicted by the prior-based optimization in
Figure 6(b) match well with the final values in Table 2 even though this evaluation is for a
different x.
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850 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

Table 2
Optimized confidence levels, final empirical coverage and average length for the XCO2 intervals incorpo-

rating probabilistic pressure constraints at various levels of pressure standard error. The internal and pressure
confidence levels are chosen so that the final interval has at least 95% coverage.

Pressure Internal Pressure Final Interval
std. err. conf. level conf. level empirical length
(hPa) (1 − γ) (1 − α21) coverage (ppm)

0.5 0.9525 0.9975 0.9741 6.89
1 0.9550 0.9950 0.9782 7.61
2 0.9575 0.9925 0.9743 8.80
3 0.9570 0.9930 0.9684 9.71
4 0.9560 0.9940 0.9629 10.32

7. Conclusions and outlook. Our focus on the frequentist properties of the uncertainty
estimates is one of the main differences between this work and much of the other related
work on uncertainty quantification in remote sensing, which tends to predominantly focus on
Bayesian construction and evaluation of uncertainties. The frequentist and Bayesian para-
digms answer fundamentally different questions about the unknown parameter θ, and as is
well known from the extensive discussion in the literature (see [54, 3, 50, 46, 17] for refer-
ences specific to inverse problems), both approaches are valuable in their own right. The
question we set out to answer is the following: Given a fixed state of the atmosphere cor-
responding to a given satellite overpass, what are the repeated sampling properties of the
uncertainty intervals when the repetitions are over the instrument noise ε? Hence, most of
our probabilities and expectations are taken with respect to the noise ε, while some previous
works take expectations over both ε and x [19, 34]. In the case of the operational retrieval,
our studies constitute a frequentist evaluation of the underlying Bayesian procedure [1]. Ar-
guably, properties calculated with respect to ε are potentially more relevant for downstream
scientific use, where, for example, carbon flux estimates use OCO-2 data to gain information
about the instantaneous state of the atmosphere corresponding to a particular x instead of an
average x.

It is important to clarify that there is a difference between frequentist and Bayesian cri-
teria for evaluating uncertainties and frequentist and Bayesian constructions of uncertainties.
Indeed, some Bayesian constructs can have desirable frequentist properties, while some fre-
quentist constructs may have unexpectedly poor frequentist properties. The results in this
paper show that the standard operational retrieval procedure does not fall in the former cat-
egory, but alternative Bayesian constructs might have improved frequentist properties [2, 24].
Similarly, standard frequentist approaches to ill-posed inverse problems may have poor fre-
quentist coverage performance [28, 27, 29]. For example, a variant of penalized maximum
likelihood (or, equivalently, Tikhonov regularization or ridge regression) would have exactly
the same point estimator θ̂ as the operational retrieval but with uncertainty quantified us-
ing the standard error interval (4.7) instead of the credible interval (4.3). The resulting
interval has coverage always less than (1 − α) [27, section 6.4.2]. In this sense, the opera-
tional Bayesian retrieval has better frequentist performance than this alternative frequentist
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FREQUENTIST UQ FOR CO2 RETRIEVALS 851

construct (see [35, 42] for a similar observation in spline smoothing). The difference in the
frequentist performance of the two methods considered in this paper is therefore less about
the difference between frequentist and Bayesian constructs and more about the difference be-
tween explicit and implicit regularization. The proposed method achieves good frequentist
calibration because it is implicitly regularized by the functional and the constraints, while the
operational retrieval has poor calibration because of the explicit regularization from the prior,
and the same conclusion would be true for other explicitly regularized methods. Similarly, it
might be possible to obtain an implicitly regularized Bayesian construction by considering a
uniform or nearly uniform vague prior consistent with the available physical constraints.

To interpret the frequentist XCO2 intervals, it is crucial to understand that the (1 − α)
coverage property holds not only for a collection of intervals from a given sounding location,
but also for a collection of intervals arising from soundings at different locations, since the
noise ε is independent across soundings. Imagine a collection of, say, 10 000 sounding locations
within an OCO-2 orbit, each with a realization of a 95% frequentist confidence interval for
XCO2. Then we know that roughly 9 500 of these intervals cover their true XCO2 values,
and the coverage/noncoverage pattern should not have any apparent spatial structure. It is
foreseeable that such intervals could be used to produce rigorous uncertainties in downstream
scientific tasks by, for example, using techniques similar to those described here for XCO2.
Our grid sounding experiments show that the same conclusion does not necessarily hold for
the operational retrievals. Let Ik be the indicator random variable indicating whether the kth
interval covers its true XCO2 value, where k ranges over the spatial sounding locations within
the orbit. For well-calibrated frequentist intervals, the Ik’s are independent and identically
distributed across the sounding locations, while in the case of the operational retrievals, the
Ik’s are independent across the sounding locations, but no longer identically distributed.
Instead, the coverage probability Pε(Ik = 1) varies throughout the orbit in a systematic,
spatially coherent way, so that in some parts of the orbit perhaps 85% of the intervals are
expected to cover, while in other parts maybe 99% of the intervals cover. Since, in the absence
of oracle information, there is no straightforward way of telling which of these situations
applies in a given region, it is not immediately clear how to properly use such uncertainties
in downstream scientific tasks.

An important question for future work is to understand what implications these conclu-
sions have on CO2 flux estimates. A key question concerns the spatial length scales at which
the biases occur in operational XCO2 point estimates. Our results indicate that there are
spatially correlated biases at least at scales of 8× 8 soundings (roughly 8 km× 16 km), which
is likely to have implications for regional carbon flux estimates, for example, over urban areas.
This conclusion is further corroborated by OCO-2’s target mode observations taken on orbits
near TCCON sites to assess the empirical behavior of OCO-2 retrievals for individual over-
passes [59]. Indeed, the retrieval errors for a single target overpass have been found to exhibit
substantial spatial correlation [60]. However, as of now, we do not know whether these bias
patterns persist at the scale of a single pixel in global flux inversion models, where the grid
resolution is typically of the order of a few hundred kilometers. If they do, then it would be
useful to understand how to incorporate our proposed intervals, which do not exhibit spatially
correlated offsets, into these models.
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852 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

An important insight provided by this work is the identification of the surface pressure
(x21) and the aerosol optical depth of the first composite aerosol type (x28) as key variables
affecting the length of the proposed intervals (Figure 5(a)). This raises the interesting pos-
sibility of obtaining more precise XCO2 estimates by developing Level 2 retrieval methods
that combine pressure or aerosol information from other satellites or observing systems with
OCO-2 data. The surface pressure also plays an important role in explaining the performance
of the operational retrievals (see Figures S6–S8 in the supplementary material [38]), which has
also been noted in previous studies; see [25] and the references therein. A more comprehensive
analysis of the effects of the different variables, including at different spatial regions, seasons,
or observing modes, is left as a subject for future work.

In this paper, we have considered a linearized approximation of the nonlinear OCO-2
forward operator. A major topic for future work would be to extend this work to nonlinear
forward operators. The basic primal approach from [47], outlined in section 3.2.1, still applies
in that the extremal values of hTx over x ∈ C∩D would still define valid (1−α) simultaneous
confidence intervals. What is not immediately clear, however, is whether the approach from
[44, 45] for turning these into one-at-a-time intervals still applies. Another major challenge
concerns the computation of the intervals since now D can no longer be described by a
quadratic inequality and might even be nonconvex, depending on the properties of the forward
operator. Constructing and characterizing the dual problems would also be substantially more
difficult. Nevertheless, since here x has a moderate dimension, it is plausible that methods can
be developed for solving the primal optimization problems within reasonable time constraints.
One potential approach would be to successively linearize the nonlinear part of the programs
within an iterative quadratic programming algorithm.

We have shown empirically that the proposed intervals consistently have frequentist cover-
age very close to the nominal value. In future work, we hope to be able to show what conditions
are needed to rigorously guarantee this. As has been pointed out in [55], the previous proof
in [45] appears to be incorrect. The authors in [55] even provide a counterexample showing
that the intervals can undercover for h containing both positive and negative elements. This
leaves open the question of whether it is possible to guarantee the coverage when all elements
of h have the same sign, as is the case here with the XCO2 functional. If it turns out to be
difficult to provide such guarantees, it might be possible to consider alternative definitions of
the slack factor s2 so that coverage and other theoretical properties can be proved more easily.

While they have much better frequentist calibration, the proposed intervals are almost
three times as long as the current operational intervals, when only trivial constraints are
applied. Therefore, an important challenge for future work would be to understand what can
be said about the optimality of the length of these intervals within the class of methods that
provide frequentist coverage guarantees. Donoho introduced in [12] intervals that are up to a
multiplicative factor minimax optimal for this problem among the class of fixed-length intervals
with guaranteed coverage. The intervals studied here are variable length and may hence be
shorter than those of [12]. To the best of our knowledge, minimax optimality of variable-
length intervals for this setting is an open problem. Furthermore, instead of minimax, a more
appropriate notion of optimality here might be one with respect to a reasonable distribution
on x, such as the operational prior distribution.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 853

Appendices. Appendices A–D assume that the forward model has been transformed to
have identity covariance, i.e., y ∼ N (Kx, I), as described in section 3.2.

Appendix A. Computational simplification. Consider again the original problem in the
primal form to obtain the lower endpoint θ:

minimize hTx
subject to ‖y −Kx‖2 ≤ z21−α/2 + s2,

Ax ≤ b,
(A.1)

where s2 = minx :Ax≤b ‖y −Kx‖2.
Let us consider the singular value decomposition K = UDV T . We first note that ‖y −

Kx‖2 = ‖UTy−DV Tx‖2, since UTU = UUT = I. Further, as n > p, let us denote by ỹ1:p
the first p entries of ỹ = UTy and by ỹp+1:n the rest of the entries of ỹ. Then we can write

‖UTy −DV Tx‖2 = ‖ỹ1:p −D1:p,:V
Tx‖2 + ‖ỹp+1:n‖2, where D1:p,: denotes the first p rows

of D. This suggests a simplification of the primal problem where, instead of (A.1), we solve
the following equivalent problem to obtain the lower endpoint θ:

minimize hTx

subject to ‖ỹ1:p −D1:p,:V
Tx‖2 ≤ z21−α/2 + s̃2,

Ax ≤ b,
(A.2)

where now s̃2 = minx :Ax≤b ‖ỹ1:p −D1:p,:V
Tx‖2. This is equivalent to the original problem

because s2 = s̃2 + ‖ỹp+1:n‖2. When n � p, solving problem (A.2), including the associated
slack problem, is much faster than solving problem (A.1), because the norms involve p-variate
vectors instead of n-variate vectors. An analogous simplification can obviously be used with
the upper endpoint θ as well. These simplifications proved crucial for our ability to perform
the empirical coverage studies presented in this paper.

Appendix B. Dual derivation. Consider the primal optimization problem to obtain the
lower endpoint θ:

minimize hTx
subject to ‖y −Kx‖2 ≤ z21−α/2 + s2,

Ax ≤ b,
(B.1)

where s2 is the slack factor. For notational convenience, we let z21−α/2 + s2 = q2.
We first write an equivalent problem as follows:

minimize hTx
subject to y −Kx = r,

‖r‖2 ≤ q2,
Ax ≤ b,

(B.2)

where the optimization is now over both x and r.
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854 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

The Lagrangian of the above problem can be written as

L(x, r,w, λ, c) = hTx+wT (y −Kx− r) + λ(‖r‖2 − q2) + cT (Ax− b),(B.3)

where w, λ ≥ 0 and c ≥ 0 are dual variables [5].
The dual function is obtained by minimizing the Lagrangian with respect to the primal

variables x and r:

g(w, λ, c) = inf
x,r

L(x, r,w, λ, c).(B.4)

We first rewrite the Lagrangian to group the terms corresponding to x and r together:

L(x, r,w, λ, c) = (h−KTw +ATc)Tx−wTr + λ‖r‖2 +wTy − λq2 − cTb.(B.5)

Next, we note that we can restrict ourselves to the case where h −KTw +ATc = 0, since
otherwise the Lagrangian is unbounded below as a linear function in x. By minimizing with
respect to r and substituting back, we obtain the dual function

g(w, λ, c) = − 1

4λ
‖w‖2 +wTy − λq2 − cTb,(B.6)

where h −KTw +ATc = 0, λ ≥ 0, and c ≥ 0. The dual optimization problem is then the
problem of maximizing g(w, λ, c) with respect to the dual variablesw, λ, and c. Maximization
with respect to λ can be carried out in closed form. We can thus eliminate λ to obtain the
following dual problem for the remaining variables w and c:

maximize wTy −
√
z21−α/2 + s2‖w‖ − bTc

subject to h+ATc−KTw = 0,
c ≥ 0,

(B.7)

which gives us (3.4). The dual problem (3.5) corresponding to the upper endpoint θ follows
from an analogous derivation.

Appendix C. Coverage for fixed dual variables. Assume y ∼ N (Kx, I) with functional
of interest θ = hTx and state vector x satisfying Ax ≤ b. Consider a lower endpoint of the
form θ = wTy−z1−α/2‖w‖−bTc for some fixed w and c satisfying the constraints in program
(3.4). We can bound the miscoverage probability as follows:

Pε(θ ≥ θ) = Pε(wTy − z1−α/2‖w‖ − bTc ≥ θ)
= Pε(wTy −wTKx− z1−α/2‖w‖ ≥ hTx−wTKx+ bTc)

(1)

≤ Pε(wTy −wTKx− z1−α/2‖w‖ ≥ hTx−wTKx+ cTAx)

(2)
= Pε(wTy −wTKx− z1−α/2‖w‖ ≥ 0)

(3)
= α/2,

where (1) follows from the constraints Ax ≤ b and c ≥ 0; (2) uses the fact that w and c need
to satisfy the constraint h+ATc−KTw = 0; and (3) follows from wTy ∼ N (wTKx, ‖w‖2)
for any fixed w. Thus, for fixed w and c that satisfy the constraints, we have Pε(θ ≥ θ) ≤ α/2.
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FREQUENTIST UQ FOR CO2 RETRIEVALS 855

Appendix D. Simplification with full column rank and no constraints. We prove in this
section that when rank(K) = p and there are no external constraints on x, the solutions of
problems (3.1) and (3.3) yield the interval [θ̂LS − z1−α/2 se(θ̂LS), θ̂LS + z1−α/2 se(θ̂LS)], where

θ̂LS = hT x̂LS is the plug-in estimator of θ, x̂LS = (KTK)−1KTy is the unregularized least-

squares estimator of x, and se(θ̂LS) =
√
hT (KTK)−1h is the standard error of θ̂LS.

Consider the lower endpoint of the interval. In the absence of external constraints on x,
the optimization problem (3.1) reduces to

minimize hTx
subject to ‖y −Kx‖2 ≤ z21−α/2 + s2,

(D.1)

where the slack factor s2 is now defined as the objective function value of the corresponding
unconstrained least-squares problem:

s2 = min
x
‖y −Kx‖2.(D.2)

Since we assume that K has full column rank, the solution to the above problem is exactly
x̂LS = (KTK)−1KTy. Plugging in this value of x̂LS, we obtain that the squared slack is
given by the residual sum of squares

s2 = ‖y −K(KTK)−1KTy‖2.(D.3)

We can then write the constraint in problem (D.1) as follows:

‖y −Kx‖2 ≤ z21−α/2 + ‖y −K(KTK)−1KTy‖2.(D.4)

We can further manipulate the difference

‖y −Kx‖2 − ‖y −K(KTK)−1KTy‖2 = xTKTKx− 2yTKx+ yTK(KTK)−1KTy

= ‖x− x̂LS‖2KTK ,(D.5)

where we have used the weighted-norm notation ‖x‖A =
√
xTAx, to arrive at the following

program for the lower endpoint of the interval:

minimize hTx
subject to ‖x− x̂LS‖2KTK

≤ z21−α/2.
(D.6)

We proceed to show that the optimal value of this problem is given by θ̂LS − z1−α/2se (θ̂LS).
We begin by writing down the Karush–Kuhn–Tucker (KKT) conditions [5] of the problem.
The Lagrangian of the problem is given by

L(x, λ) = hTx+ λ
(
‖x− x̂LS‖2KTK − z

2
1−α/2

)
,(D.7)

where λ ≥ 0 is a dual variable. The KKT conditions for the primal and dual optimal pair
(x?, λ?) are thus

h = −2λ?KTK(x? − x̂LS),(D.8)
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856 PRATIK PATIL, MIKAEL KUUSELA, AND JONATHAN HOBBS

using first-order optimality with respect to x, along with

λ?
(
‖x? − x̂LS‖2KTK − z

2
1−α/2

)
= 0(D.9)

from the complementary slackness condition. We find that λ? = 1
2z1−α/2

‖h‖(KTK)−1 ≥ 0 and

x? = x̂LS− z1−α/2
‖h‖(KTK)−1

(KTK)−1h satisfy the KKT conditions and therefore provide a primal-

dual optimal pair. Substituting the value of x? into the objective, we arrive at the desired
lower endpoint. The upper endpoint results from a similar argument.

Appendix E. Coverage of Gaussian central credible intervals. This section provides
derivation of the frequentist coverage of the credible interval (4.3) used in the operational
retrievals. Since θ̂ is an affine transformation of y, it is Gaussian with mean Eε[θ̂] and
variance varε(θ̂). Therefore, (θ̂− θ−bias(θ̂))/se(θ̂) has standard Gaussian distribution. Then

Pε(θ ∈ [θ, θ]) = Pε(θ̂ − z1−α/2σ ≤ θ ≤ θ̂ + z1−α/2σ)

= Pε(−z1−α/2σ ≤ θ̂ − θ ≤ z1−α/2σ)

= Pε

(
−bias(θ̂)

se(θ̂)
− z1−α/2

σ

se(θ̂)
≤ θ̂ − θ − bias(θ̂)

se(θ̂)
≤ −bias(θ̂)

se(θ̂)
+ z1−α/2

σ

se(θ̂)

)

= Φ

(
−bias(θ̂)

se(θ̂)
+ z1−α/2

σ

se(θ̂)

)
− Φ

(
−bias(θ̂)

se(θ̂)
− z1−α/2

σ

se(θ̂)

)

= Φ

(
bias(θ̂)

se(θ̂)
+ z1−α/2

σ

se(θ̂)

)
− Φ

(
bias(θ̂)

se(θ̂)
− z1−α/2

σ

se(θ̂)

)
,

using Φ(x) = 1− Φ(−x) to obtain the last equality. This establishes (4.5).

Appendix F. Miscoverage probability with probabilistic constraints. Given the setup
in section 6.3.1, we can bound the error probabilities as follows:

P(θ /∈
[
θ, θ
]
) = P(θ /∈

[
θ, θ
]
, xi ∈ [xi(αi), xi(αi)] for all i)

+ P(θ /∈
[
θ, θ
]
, xi /∈ [xi(αi), xi(αi)] for some i)

= P(θ /∈
[
θ, θ
]
|xi ∈ [xi(αi), xi(αi)] for all i) · P(xi ∈ [xi(αi), xi(αi)] for all i)

+ P(θ /∈
[
θ, θ
]
, xi /∈ [xi(αi), xi(αi)] for some i)

≤ P(θ /∈
[
θ, θ
]
|xi ∈ [xi(αi), xi(αi)] for all i)

+ P(xi /∈ [xi(αi), xi(αi)] for some i)

≤ P(θ /∈
[
θ, θ
]
|xi ∈ [xi(αi), xi(αi)] for all i)

+
∑

i
P(xi /∈ [xi(αi), xi(αi)])

≤ γ +
∑

i
αi,(F.1)

where i ranges over those variables that have probabilistic constraints.
We note that when this framework is used to incorporate probabilistic constraints on

multiple variables, using the union bound to control the miscoverage probability, as is done
in (F.1), might be loose and additional structure among the probabilistic constraints, such as
independence, could provide additional gain.
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S1 Supplement to Section 2.1

Figure S1 shows an example sounding for OCO-2.
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Figure S1: Example sounding from OCO-2. A sounding includes 1016 radiances in each of the three
infrared spectral bands.

S2 Supplement to Section 5.1

S2.1 Description of state vector elements

The specific elements of the state vector x ∈ R39 are:

• Variables x1, . . . , x20 are the dry-air mole fractions of atmospheric CO2, i.e., the number
of moles of CO2 per one mole of dry air, in parts per million (ppm) at 20 fixed pressure
levels. In the sequel, we denote these as levels 1 to 20, with level 1 being highest in the
atmosphere (pressure ∼ 0.1 hPa) and level 20 being the surface.

• Variable x21 is the surface air pressure in hPa. It corresponds to the total weight of the
air molecules in the atmospheric column.

• Variables x22, . . . , x27 relate to surface albedo, i.e., the fraction of total incoming solar
radiation reflected off the Earth’s surface. Albedo varies across the three OCO-2 spectral

1



bands and also within each band. In the surrogate model, albedo is modeled as a linear
function within each spectral band; see Section B.2 in [1]. The albedo for each band
is therefore parameterized by an intercept and a slope which enter the state vector as
nuisance variables (x22, x24, and x26 are the three intercepts and x23, x25, and x27 are the
slopes).

• Variables x28, . . . , x39 parameterize the atmospheric aerosol concentrations and distribu-
tions. The surrogate model assumes that there are 4 aerosol types, which have distinct ab-
sorption and scattering properties. The first two are location-dependent composite species.
For our investigation, these are sulfate and dust. The latter two are two cloud species, one
for ice clouds and another for liquid water clouds [2, 1]. Each type is parameterized by 3
parameters corresponding to the aerosol optical depth (AOD, i.e., the opaqueness of the
aerosol species measured as the natural logarithm of the ratio of incoming to transmitted
radiation) as well as the altitude and thickness of each aerosol layer. Variables x28, x31,
x34, and x37 are the log-AOD values, variables x29, x32, x35, and x38 are the altitudes, and
variables x30, x33, x36, and x39 are the log-thicknesses.

S2.2 Forward model singular values

Figure S2 shows the singular values of the linearized forward model K.
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Figure S2: Singular value decay of the linearized forward model K near Lamont, OK, in October 2015.

S2.3 Exploratory analysis of the prior and generative models

In this section, we visualize and describe various components of the generative model and com-
pare those to the prior model. We begin by comparing the prior mean and standard deviation
to the true generative model mean and standard deviation for the CO2 part of the state vector

2



390 395 400 405 410 415

CO
2
 concentration (ppm)

2

4

6

8

10

12

14

16

18

20

C
O

2
 l
e

v
e

ls

true

prior

(a) Mean misspecification
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(b) Standard deviation misspecification

Figure S3: Visualization of the misspecifica-
tion of the mean and the standard deviation
for the CO2 profile between the true genera-
tive process and the prior. Figure (a) visualizes
the misspecification in the mean and Figure (b)
shows the misspecification in the standard de-
viation.

Table S1: Comparison of the true and prior mean
and standard deviation for the nuisance variables
xi, i = 21, . . . , 39. A detailed description of these
variables is given in Section S2.1.

i true mean (sd) prior mean (sd)

surface pressure

21 972.3235 (1.7508) 970.6240 (4.000)

albedo

22 0.1267 (0.0204) 0.1267 (1.0000)
23 0.0001 (0.0001) 0.0000 (0.0005)

24 0.2484 (0.0044) 0.2484 (1.0000)
25 -0.0001 (0.0000) 0.0000 (0.0005)

26 0.2027 (0.0026) 0.2027 (1.0000)
27 -0.0000 (0.0000) 0.0000 (0.0005)

aerosols

28 -3.8786 (0.3380) -3.7643 (2.0000)
29 0.8187 (0.0683) 0.9000 (0.2000)
30 -2.4492 (0.0409) -2.9957 (0.1823)

31 -6.1959 (0.8492) -4.7370 (2.0000)
32 0.3255 (0.0101) 0.9000 (0.2000)
33 -3.9219 (0.0201) -2.9957 (0.1823)

34 -4.3980 (0.2477) -4.3820 (1.8000)
35 -0.0087 (0.0355) 0.3000 (0.2000)
36 -3.2080 (0.0112) -3.2189 (0.2231)

37 -5.6803 (0.2517) -4.3820 (1.8000)
38 1.0917 (0.0870) 0.7500 (0.4000)
39 -2.3052 (0.0004) -2.3026 (0.0953)

in Figure S3. We observe that both the mean and the standard deviation have the largest mis-
specification near the surface. Table S1 contains the same information for the nuisance variables
x21, . . . , x39. Generally speaking, the prior standard deviation is by design larger than that of
the true process, which provides some protection against the prior mean misspecification.

We next visualize the correlation structure in the generative process and the prior. Fig-
ure S4(a) shows a heat map of the correlation matrix for the true generative process. We
observe that the state vector consists of four independent subgroups of variables corresponding
to the CO2 profile, surface pressure, albedo variables and aerosol variables. While variables
across these groups are uncorrelated, there are large within-group correlations. Figure S4(b)
shows a heat map of the correlation matrix for the prior process. Again, the CO2 variables are
independent of the nuisance variables, but in this case, there are no correlations between the
nuisance variables. Notice also the differences in the correlation structure within the CO2 profile
between the generative process and the prior.

Lastly, we visualize the spatial correlation structure for the generative process over an 8× 8
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Figure S4: Visualization of the misspecification of the correlation structure between the true generative
process and the prior. Figure (a) displays the correlation between the state vector elements in the true
generative process. Figure (b) shows the same for the prior process.

spatial grid near Lamont, OK. These 64 sounding locations are shown in Figure S5(a) and
Figure S5(b) displays the correlations across the locations along the diagonal in Figure S5(a).
Nearby state vectors are strongly spatially correlated, but there is a fair amount of decorrelation
when moving across the grid.
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Figure S5: Visualization of the correlation structure between the state vector elements for the generative
process over an 8×8 spatial grid. Figure (a) shows the coordinates of the sounding locations near Lamont,
OK, with the numbers giving an index for each location. Figure (b) visualizes the correlation structure
between the state vector elements across the marked locations along the diagonal in Figure (a). Notice
the nonlinear color scale in Figure (b).

S3 Supplement to Section 5.2: Illustrative instances

We pick some illustrative realizations to visualize the state vectors and confidence intervals pro-
duced by the two methods. We choose three representative cases corresponding to the minimum,
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nominal and maximum coverage for the operational method in Figure 3(b) which are also rows
1, 8 and 10 in Table 1, respectively.

Figure S6(a) shows the CO2 part of the x instance having the smallest operational coverage.
We observe, consistent with Section 5.2.1, that the operational interval is biased upward. It
is overoptimistic about the amount of uncertainty, leading it to miss the true XCO2 value for
this particular ε realization. From Table 1, we know that this happens for roughly 21% of ε
realizations when the noncoverage probability should ideally be only 5%. The proposed interval,
on the other hand, is wider and as a result ends up covering the true XCO2 value for the same
x and ε realizations. From Table 1, we know that the noncoverage probability for this interval
is 5%, as it should be.

It is quite insightful to investigate the source of the upward bias for this x realization.
Contrary to what one might at first imagine, it is not caused by a misspecification of the CO2

profile in the prior. In fact, as shown in Figure S6(a), the prior CO2 profile is very similar
to the true CO2 profile in x and the XCO2 value implied by the prior is almost the same as
the true XCO2 value. Instead, it turns out that the bias is primarily caused by an upward
fluctuation in the surface pressure variable x21, as shown by Figure S6(b). The large positive
difference in x21 between the true state and the prior gets multiplied by the relatively large
positive bias multiplier of this variable (Figure 2(a); see also Section 5.2.1) leading to a large
positive contribution to the overall bias. This results in a positively biased operational XCO2

point estimate and a miscalibrated confidence interval.
Next, instead of picking an adversarial x, Figure S7(a) shows the x realization corresponding

to the largest coverage for the operational method. For this x, the operational XCO2 estimate
is effectively unbiased and the operational interval covers the true XCO2 value for almost all ε
realizations, resulting in substantial overcoverage. The proposed interval, on the other hand,
again has the desired 95% coverage, as indicated by Table 1. For the ε realization shown in the
figure, the operational and proposed intervals both cover the true XCO2 value.

Interestingly, the operational XCO2 estimator in Figure S7(a) is effectively unbiased even
though the prior is badly misspecified for this CO2 profile. Figure S7(b) explains this phe-
nomenon. Due to the small bias multipliers of the low-altitude CO2 values (Figure 2(a)), prior
misspecification in the lower half of the CO2 profile creates little bias, while the misspecification
in the upper half of the profile is such that it creates both positive and negative contributions
to the bias that cancel out. At the same time, there is a consistent positive contribution to the
bias from x32, which is negated by a downward fluctuation in the pressure variable x21 and a
consistent negative bias contribution from x33.

Finally, we compare in Figure S8(a) the intervals for the x realization that gives nominal
coverage for the operational method in Table 1. For this x, both intervals cover the true XCO2

value for 95% of ε realizations. The ε realization shown in the figure has both intervals covering
the true XCO2 value. The operationally retrieved CO2 profile has fluctuated quite substantially,
but the anticorrelated fluctuations cancel out to produce a well-behaved confidence interval for
XCO2. Overall, the operational method is slightly positively biased for XCO2, as expected based
on the discussion in Section 5.2.2. Figure S8(b) reveals that the source of this bias is similar
to the situation in Figure S6 in that the bias is primarily caused by the pressure variable x21,
albeit with a smaller magnitude. As before, the prior misspecification for the CO2 profile near
the surface (levels 18, 19 and 20) causes little harm due to the small bias multipliers of those
variables (Figure 2(a)).

Overall, Figures S6–S8 show how challenging it is to understand, predict and explain the
uncertainty quantification performance of the operational retrieval method. The method can
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Figure S6: Figure (a) illustrates the operational and proposed intervals for the state realization that has
the smallest coverage in Figure 3(b). Figure (b) visualizes the corresponding state differences xi − µa,i

and bias components mi(xi − µa,i), where mi is the ith bias multiplier.
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Figure S7: Figure (a) illustrates the operational and proposed intervals for the state realization that
has the largest coverage in Figure 3(b). Figure (b) visualizes the corresponding state differences xi−µa,i

and bias components mi(xi − µa,i), where mi is the ith bias multiplier.
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Figure S8: Figure (a) illustrates the operational and proposed intervals for a state realization that has
nominal coverage in Figure 3(b). Figure (b) visualizes the corresponding state differences xi − µa,i and
bias components mi(xi − µa,i), where mi is the ith bias multiplier.

6



exhibit the very counterintuitive behavior where a relatively well-specified prior CO2 profile
(Figure S6) in fact has the worst coverage performance, while a badly misspecified prior CO2

profile (Figure S7) has the highest coverage. The key to understanding the performance of the
method, it turns out, is to understand the effect of the nuisance variables and how they interact
with the misspecification of the CO2 profile. Such analysis is obviously only possible when
the true x is known, which would make it very difficult to perform a similar study for real-life
operational retrievals. The proposed method, on the other hand, is free from these complications
and exhibits consistent 95% coverage for all x realizations we have investigated.

S4 Supplement to Section 5.3

Figure S9 shows the spatial coverage and bias patterns for a case where the state vector realiza-
tions are such that all 64 intervals across the region have coverage below the nominal value.
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Figure S9: Operational retrieval over a grid of 8× 8 soundings for an instance with undercoverage for
the entire grid. Figure (a) shows the spatial coverage pattern relative to the nominal 95% in units of
probability (i.e., -0.03, for example, corresponds to coverage 0.92, instead of the nominal 0.95). Figure (b)
shows the corresponding bias pattern in ppm.
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