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Abstract. Unfolding is an ill-posed inverse problem in particle physics aiming to infer a true particle-level
spectrum from smeared detector-level data. For computational and practical reasons, these spaces
are typically discretized using histograms, and the smearing is modeled through a response matrix
corresponding to a discretized smearing kernel of the particle detector. This response matrix depends
on the unknown shape of the true spectrum, leading to a fundamental systematic uncertainty in the
unfolding problem. To handle the ill-posed nature of the problem, common approaches regularize
the problem either directly via methods such as Tikhonov regularization, or implicitly by using
wide-bins in the true space that match the resolution of the detector. Unfortunately, both of these
methods lead to a non-trivial bias in the unfolded estimator, thereby hampering frequentist coverage
guarantees for confidence intervals constructed from these methods. We propose two new approaches
to addressing the bias in the wide-bin setting through methods called One-at-a-time Strict Bounds
(OSB) and Prior-Optimized (PO) intervals. The OSB intervals are a bin-wise modification of an
existing guaranteed-coverage procedure, while the PO intervals are based on a decision-theoretic
view of the problem. Importantly, both approaches provide well-calibrated frequentist confidence
intervals even in constrained and rank-deficient settings. These methods are built upon a more
general answer to the wide-bin bias problem, involving unfolding with fine bins first, followed by
constructing confidence intervals for linear functionals of the fine-bin counts. We test and compare
these methods to other available methodologies in a wide-bin deconvolution example and a realistic
particle physics simulation of unfolding a steeply falling particle spectrum.

Key words. Statistical Decision Theory, Ill-Posed Inverse Problems, Constrained Inference, Convex Program-
ming, Frequentist Coverage

1. Introduction. Experimental high-energy physics studies the interactions and proper-
ties of fundamental particles. This is done by observing particle collision events using massive
particle detectors, such as those at the Large Hadron Collider (LHC) at CERN. In these ex-
periments, it is often of interest to measure functions, called differential cross sections, that
represent the probability of producing particles with a certain energy, momentum, angle or
other kinematic properties. Unfortunately, a particle detector can only produce noisy mea-
surements of these kinematic properties. As a result, the function that is directly observable
in the detector is a “smeared” or “blurred” version of the physical function of interest. The
process of using observations from this smeared function and our knowledge of the detector
response to infer the actual physical function of interest is called unfolding [24, 7, 3, 35], which
is well-recognized to be an ill-posed inverse problem [18, 10].

Let f ∈ F be the unknown true particle-level function of interest among a class of possible
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particle-level functions F and g ∈ G be the smeared detector-level function where G is a class
of possible smeared functions. Then we can represent the relationship between f and g by
g = Kf , where K : F → G is a linear operator that represents the smearing in the detector.
In the simplest case, K might be a convolution operator, but it can also have more complex
structure. In most cases in high-energy physics, the functions f and g are discretized using
histograms. This leads to a discretized version of the problem that we can represent as
µ = Kλ, where λ ∈ Rn and µ ∈ Rm denote vectors of bin counts in the particle-level and
detector-level histograms, respectively, and the elements of the response matrix K ∈ Rm×n

represent the bin-to-bin smearing probabilities (see, e.g., Chapter 11 in [7]).
The most common approach to unfolding is to use a large number (n) of particle-level

histogram bins. This makes the problem severely ill-posed and one needs to use regularization
to obtain physically plausible solutions. Commonly used techniques for regularized unfolding
are two variants of Tikhonov regularization [17, 29] (that perform explicit statistical regular-
ization) and an expectation-maximization iteration with early stopping [8] (that performs a
type of algorithmic regularization). Such regularization leads to a reduction in the variance
of the unfolded estimators by introducing a bias in the estimation. This regularization bias
can be beneficial for point estimation, but it can lead to severely miscalibrated uncertainty
quantification [21, 22, 20], with no easy workarounds (Section 2.2 gives more details).

An alternative approach, which is being used in an increasing number of LHC analyses (see,
e.g., [5, 6]), is to instead discretize the problem using large particle-level bins, or equivalently, a
small number (n) of unfolded bins. This is motivated by the physical intuition that a detector
with a certain resolution should not be able to resolve features smaller than its intrinsic
resolution—thus it is futile to attempt to infer bins smaller than the detector’s resolution.
Mathematically, reducing the number of estimated parameters leads to implicit regularization
of the problem and, as a result, the model can be inverted without the need for explicit
regularization. Unfortunately, in the histogram discretization, the elements of the response
matrix K depend on the unknown shape of the particle-level function f within the particle-
level bins, and the wider the particle-level bins, the stronger the dependence. In practice, one
has to use an ansatz of f to form K and the resulting estimator will have a wide-bin bias
stemming from the misspecification of this ansatz. Again, uncertainty quantification is severely
hampered, as it is challenging to rigorously quantify the resulting systematic uncertainty.

In this work, we take a different approach to wide-bin unfolding. Instead of imposing
external regularization (either through explicitly regularized estimators or implicitly through
the structure of the response matrix as in previous wide-bin unfolding), we focus on inferring
certain structured functionals of λ and let the geometry of the functional and the operator
along with physical constraints on λ to self-regularize the ill-posed problem. The basic idea
of our approach can be summarized as follows: We first discretize the problem using nar-
row particle-level bins. When these bins are small enough, the systematic uncertainty in K
becomes negligible which eliminates the wide-bin bias. Then, we invert the forward model
without explicit regularization. Since n is large, this gives a solution λ̂ with massive bin-wise
fluctuations that tend to be anti-correlated across neighboring bins. Since the solution is
not regularized, there is no regularization bias and hence the uncertainties are well-calibrated
but difficult for humans to interpret and use due to their size. This solution can, however,
be further used to constrain functionals θ = θ(λ) = h⊤λ of the narrow-bin particle-level
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histogram λ. When the functional is an aggregation, averaging or smoothing operation, the
anti-correlated fluctuations in λ̂ will largely cancel out, leading to a well-constrained estimator
θ̂ = h⊤λ̂ for θ with well-calibrated uncertainties. This basic idea was recently demonstrated
in a remote sensing inverse problem in [23]; see also [32, 16] for a related approach where h
is a given low-pass filter. Of particular interest in unfolding are functionals θ that aggregate
several neighboring small bins into large bins whose width is comparable to the detector res-
olution. From physical intuition and due to the aforementioned cancellations, it should be
possible to infer these functionals with well-constrained uncertainties, even though the un-
certainties of the individual narrow bins are huge. This leads to a principled solution of the
unfolding problem that provides well-calibrated and well-constrained uncertainties which do
not suffer from either the regularization bias of explicitly regularized unfolding or the wide-bin
bias of previous wide-bin unfolding approaches.

In order to obtain a practically useful implementation of this approach, one needs to
address two important methodological challenges. First, there are known physical constraints
for the function f which should ideally be taken into account to help regularize the problem.
These constraints depend upon the particular unfolding problem, but one universal constraint
is the non-negativity of λ. Second, in order to diminish the wide-bin systematic uncertainty
in K, it might be desirable to use more particle-level bins than detector-level bins so that
n > m. In this situation, K cannot be inverted as it always has a non-trivial null space
leading to non-identifiability in inferring λ. The approach described in [23, 27, 26] is designed
to handle both of these complications. Briefly, the approach is based on using constrained
optimization to directly construct confidence intervals for θ in a way that allows one to handle
the null space of K and constraints on λ. We call these resulting uncertainties One-at-a-time
Strict Bounds (OSB) since they provide uncertainty calibration for one functional at a time.
In the previous work [23], this approach was demonstrated in a mildly rank-deficient situation
with m > n and a one-dimensional null space in the context of atmospheric remote sensing.
In this paper, we further demonstrate that the approach works well even when the null space
is high-dimensional with n≫ m.

The One-at-a-time Strict Bounds are empirically well-calibrated, but a rigorous proof of
their coverage has been elusive [23, 27, 33]. As a novel alternative, we introduce in this paper a
method that has provably correct coverage while addressing the aforementioned complications
with the constraints on λ and the null space of K. The method is based on taking a decision-
theoretic view of the problem. As such, it falls under the emerging area of Decision-Theoretic
Uncertainty Quantification (DTUQ; see, e.g., [1]). In this method, we regard the confidence
interval for θ as a decision rule and optimize its expected width with respect to a prior
distribution on λ among those rules that guarantee specified frequentist coverage. We call the
resulting uncertainty bounds Prior-Optimized (PO) confidence intervals. Even though this
method uses a prior distribution to optimize the interval width, it is notably distinct from
Bayesian uncertainty quantification. The decision-theoretic method guarantees frequentist
coverage as we only consider rules that guarantee specified coverage, which is not the case for
Bayesian methods [21, 23]. We demonstrate that in the wide-bin unfolding problem, these
Prior-Optimized intervals are only slightly wider than the One-at-a-time Strict Bounds, they
provide similar empirical coverage as the One-at-a-time Strict Bounds while theoretically
guaranteeing correct coverage, and they display little sensitivity to the choice of the prior.
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The utility of this approach is not limited to unfolding—indeed, the Prior-Optimized intervals
are potentially widely applicable in constrained and rank-deficient linear inverse problems and
are therefore of independent interest beyond the application presented in this paper.

The rest of this paper is structured as follows. Section 2 presents the high-energy physics
unfolding problem, providing the scientific motivation for this work. Section 3 provides a
description of both the One-at-a-time Strict Bounds and Prior-Optimized confidence intervals,
and how they are related. Additionally, this section contains descriptions of three other
intervals against which we compare our proposed intervals. Section 4 demonstrates through
a simple deconvolution problem how traditional wide-bin unfolding can produce intervals
with poor empirical coverage because of the wide-bin bias from an even slightly misspecified
ansatz. Furthermore, we show how the proposed intervals can address these challenges and
provide further simulation studies to evaluate their coverage and expected width across a
range of configurations. Section 5 applies these methods to a more realistic particle physics
application, that of unfolding a steeply falling inclusive jet differential cross-section. We show
the flexibility of the intervals and their constraints, as this application includes additional
monotonicity and convexity constraints on the underlying intensity function. Finally, Section 6
provides further discussion and conclusions regarding the results in this paper and avenues
for future work. The Python scripts used to produce the results in this paper are available at
https://github.com/mcstanle/unfolding osb po uq.

2. The High-Energy Physics Unfolding Problem.

2.1. Forward Model for Unfolding. For a detailed overview of the unfolding problem
setup, we refer readers to [20, 21, 22]. We follow the same notation here. Broadly, data
in experimental high energy physics can be modeled as an indirectly observed Poisson point
process. The unfolding problem is an inverse problem that arises in particle physics mea-
surement analyses. The aim of these types of analyses is to estimate the true (unknown)
probability distribution of some variable of interest, e.g., energy, scattering angle, particle
mass, or decay length [3]. “Folding” occurs when we observe one of these probability distri-
butions through a detector where the observations are corrupted by stochastic noise. Then,
unfolding is the process of inferring the true distribution that created the smeared or blurred
observed distribution. This inverse problem is ill-posed because large changes in the true
distribution may only result in small changes in the observed distribution [20].

Formally, this setup is described by a Poisson point process M , representing the true
particle-level spectrum of events, and a Poisson point process N , representing the detector-
level spectrum, which is related to M via a smearing kernel k. More precisely, let T ⊆ R, a
compact interval, be the state space of M , and S ⊆ R, a compact interval, be the state space
of N . Each of these Poisson point processes is uniquely characterized by an intensity function;
we denote by f : T → R+ the intensity function for processM and by g : S → R+ the intensity
function for process N . These intensity functions are the Radon–Nikodym derivatives of the
mean measures λ and µ of each point process, respectively. For instance, for some event
B ∈ σ(T ) (the Borel σ-algebra over T ), we have λ(B) =

∫
B f(t) dt. As explained in Section

3.1 of [20], letting variable X to be a true particle-level observation, X has the probability

https://github.com/mcstanle/unfolding_osb_po_uq
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density pX(t) = f(t)/λ(T ), and hence we have that

P {X ∈ B} =
∫

B
pX(t) dt =

∫

B
f(t) dt/λ(T ) = λ(B)/λ(T ).

As X passes through the detector, it is subjected to noise that produces an observation Y
in the smeared space. Note, for simplicity of exposition, we assume that the detector always
observes the true event and that no event is smeared over the boundaries of the smeared state
space. Both of these effects can be rigorously treated using thinning as described in detail in
[19, 25]. The noise is assumed to be independent and identically distributed, and hence we
obtain the following probability density for Y :

(2.1) pY (s) =

∫

T
pX,Y (t, s) dt =

∫

T
pY |X(s | t)pX(t) dt.

Analogous to the relationship between the marginal distribution pX and the intensity function
f , we have pY (s) = g(s)/µ(S). With no thinning, since Y is simply a perturbed version of X,
λ(T ) = µ(S), and hence we have λ(T )pY (s) = g(s). Combining this equality with Eq. (2.1),
we see that g(s) =

∫
T pY |X(s | t)f(t) dt. This shows that the true intensity f and smeared

intensity g are connected via the conditional distribution of Y given X. It is reasonable to
assume that the detector injects Gaussian noise to each particle event, hence this conditional
distribution can be safely assumed to be Gaussian. Furthermore, this Gaussian distribution
defines the smearing kernel, k : S × T → R+, and connects the two intensity functions in the
form of a Fredholm integral operator, g(s) =

∫
T k(s, t)f(t) dt, where k(s, t) = pY |X(s | t). As

such, observations from the process characterized by the intensity function g(·) are used in
unfolding to infer the intensity function f(·) of the particle-level spectrum.

High-energy physics data are typically binned, discretizing the Poisson point processes.
Let {Tj}nj=1 be a partition of the true space and {Si}mi=1 be a partition of the smeared space.
By the definition of Poisson point processes, we have for each j ∈ [n] (where we use the conven-
tion [n] to denote the set {1, . . . , n} for a positive integer n) M(Tj) ∼ Poisson(λ(Tj)), where
λ(Tj) =

∫
Tj
f(t) dt. Additionally, since {Tj}nj=1 partitions T , M(Ti) and M(Tj) are indepen-

dent for all i ̸= j. Define the vector λ = [λ(T1), . . . , λ(Tn)]
⊤. Likewise, let µ(Si) =

∫
Si
g(s) ds

for i ∈ [m] and define µ = [µ(S1), . . . , µ(Sm)]
⊤. Thus, we can model particle-level and

detector-level histograms, represented as random vectors x and y with elements M(Tj),
j ∈ [n], and N(Si), i ∈ [m], respectively, as follows:

x ∼ Poisson(λ), y ∼ Poisson(µ).(2.2)

But, we also have

µ(Si) =

∫

Si

g(s)ds =

∫

Si

∫

T
k(s, t)f(t) dt ds(2.3)

=

∫

Si




n∑

j=1

∫

Tj

k(s, t)f(t) dt


 ds =

n∑

j=1

∫

Si

∫

Tj

k(s, t)f(t) dt ds(2.4)
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=
n∑

j=1

∫

Si

∫

Tj

k(s, t)f(t) dt ds

(∫

Tj

f(t) dt

)−1

λ(Tj).(2.5)

Hence, if we define

(2.6) Kij =

∫
Si

∫
Tj
k(s, t)f(t) dt ds
∫
Tj
f(t) dt

, i ∈ [m], j ∈ [n]

a linear system of equations relates the two discretized Poisson point processes

(2.7) µ = Kλ,

where K ∈ Rm×n has the ij-th element given by Eq. (2.6). Additionally, elements Kij

have a probabilistic interpretation. Namely, the probability that an event in the true bin Tj
propagates to the smeared bin Si is given by Kij (see Proposition 2.11 in [19]), i.e., we have
Kij = P (Y ∈ Si | X ∈ Tj). This discretization allows us to re-express Eq. (2.2) as

(2.8) y ∼ Poisson (Kλ) .

This statistical model tells us that we observe Poisson distributed bin counts with mean Kλ.
Given this model, we wish to make inferences on the particle-level histogram λ.

2.1.1. Approximations. To frame this statistical model in a more tractable form, we
employ the Normal approximation to the Poisson distribution, which holds well in this appli-
cation since each bin of observations typically contains a large number of events. Hence, we
re-express the model as

(2.9) y = Kλ+ ε

where ε ∼ N (0,Σ) and Σ = diag(Kλ) is anm×m diagonal matrix with Kλ on the diagonal.
We use the statistical model described Eq. (2.9) to perform inference on λ. For the simulations
in later sections, we assume Kλ is known, but this vector can easily be estimated via the
observations y as shown in [20].

As described in [20], the response matrixK is typically obtained using detector simulations
or other knowledge about the response behavior of the detector. But, as can be seen from
Eq. (2.6), K depends on the unknown intensity function f . There are several ways to get
around this when computing K, of which we describe the one that we use in this paper.

A Monte Carlo (MC) ansatz of the intensity function, denoted fMC, can be used in the
computation of K. This is what happens when a Monte Carlo event generator is used to
generate particle-level events which are then smeared using a detector simulator to obtain an
estimate of K. Hence, a different approximation to Eq. (2.6) is given by

(2.10) Kij ≈
∫
Si

∫
Tj
k(s, t)fMC(t) dt ds
∫
Tj
fMC(t) dt

, i ∈ [m], j ∈ [n].

The matrix elements in Eq. (2.10) are usually obtained by tracking propagation of events
across bins in a Monte Carlo simulation. We assume the simulation is large enough so that
the Monte Carlo noise in these values is negligible. This approximation improves as the number
of true bins (n) increases. Hence, we would like to use the finest possible (by computation or
otherwise) discretization of the true space, leading to a rank-deficient K matrix.
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2.2. Regularization Bias, Wide-Bin Bias and Wide-Bins-via-Fine-Bins Unfolding. As
described in the introduction, using a large number of true bins (n) renders the problem
severely ill-posed. For finite linear operators, this ill-posedness is the result of small values
in the spectrum of singular values of K [18, 10, 15], causing large fluctuations in the point
estimators. Regularization methods like Tikhonov regularization essentially replace the small
singular values with a term that is a function of the singular values and the regularization
parameter, helping to tamp down the large fluctuations. Statistically, regularization intro-
duces a bias to bring down the variance of the estimator. As illuminated in Section 4 of [20],
Gaussian confidence intervals generated by these regularized estimators suffer from a loss of
coverage as the regularization strength increases, due to the increasing regularization bias of
the estimator. More precisely, letting λ̂j be the point estimator for the j-th bin count as
estimated via a regularization method, Kuusela shows in Section 4 of [20] that in most cases

(2.11) P
(
λj ∈

[
λ̂j − z1−α/2 se(λ̂j), λ̂j + z1−α/2 se(λ̂j)

])
≪ 1− α,

where 1− α is the desired confidence level for the interval, z1−α/2 is (1− α/2) quantile of the

standard Gaussian distribution and se(λ̂j) is the standard error of λ̂j . This happens because

the estimator λ̂j is inherently biased and it is very difficult to account for this regularization
bias in order to construct regularized confidence intervals with accurate coverage. Alterna-
tively, one can reason that these small singular values requiring explicit regularization can
be avoided by only inverting with a bin resolution commensurate with the resolution of the
detector with which the data are being observed. Using these types of wide bins acts as im-
plicit regularization. Specifically, instead of discretizing λ ∈ Rn, we discretize λ̃ ∈ Rk, where
k ≪ n. Unfortunately, this approach is still exposed to bias since using wide bins makes K
increasingly dependent on the assumed MC ansatz and hence the standard wide-bin approach
can suffer from under-coverage in some bins due to this wide-bin bias. Although, instead of
the bias coming from explicit regularization as described above for Tikhonov regularization,
for instance, it comes in this case from the potentially large systematic error in K.

Our proposed general solution is to first invert, without regularization, using the same
number of unfolded bins as in typical regularization-based inversion, but to then aggregate
and propagate the errors of this first inversion to a bin resolution similar to the wide-bin
strategy above. This strategy is implemented by defining a set of functionals aggregating
groups of fine-resolution bins to the desired wide-bin resolution. More precisely, using the
notation above, for each wide bin, l ∈ [k], we define an associated functional θl(λ) = h⊤

l λ,
where hl ∈ Rn is an aggregation weight vector and find a confidence interval for each such
functional. A key feature of the two intervals presented herein is the direct optimization of the
interval endpoints, as opposed to finding a point estimator and then subtracting and adding
the appropriately scaled standard error of the estimator. This enables us to avoid explicitly
performing the first inversion step which allows us to handle rank-deficient smearing matrices.

3. Proposed Methods - One-at-a-time Strict Bounds and Prior-Optimized Intervals.
In Section 4, we motivate the need and utility of both the One-at-a-time Strict Bounds (OSB)
and Prior-Optimized (PO) intervals through an expressive toy problem and least-squares
intervals, which are the simplest analytically tractable confidence intervals one can construct
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(using the least-squares estimator). But these intervals pay for their simplicity in practice
since they are unable to incorporate the null space of K and any constraints on the feasible
space and their coverage guarantees break down under sufficient systematic error.

To address these concerns we explore the use of OSB intervals, described in [23, 27, 26, 33],
and expand on these intervals with PO intervals. The OSB intervals can leverage physical
constraints and elegantly handle rank-deficient response matrices, the use of which provides
a mitigation technique for handling systematic error. The intervals have correct empirical
coverage; however, we are presently unable to theoretically prove their coverage. By contrast,
we can prove coverage for the PO intervals even for constrained and rank-deficient situations.
Empirical exploration has shown the PO intervals to be slightly wider than the OSB intervals,
but with the advantage of coverage guarantees that are important for scientific applications.

Using optimization to directly find interval endpoints for statistical models shown in
Eq. (2.9) is not a novel concept. Notably, Donoho provides a rigorous treatment of confi-
dence intervals for linear functionals under model Eq. (2.9) in a minimax sense in [9]. Stark
develops the “strict-bounds” approach in [30] which develops techniques for intervals with
simultaneous coverage. In exploring the utility of the OSB and PO intervals, we compare,
when possible, with the minimax and strict-bounds intervals from these works. We describe
the constructions of these intervals in Section 3.3.

3.1. One-at-a-time Strict-Bounds Intervals (OSB). We adapt the nomenclature of [23]
to fit the terms we have already defined. As a historical note, these intervals have also been
described by Rust and O’Leary [27], Rust and Burrus [26], and Tenorio et al. [33] for a simpler
version of the problem with non-negativity constraints. For ease of description, we consider a
statistical model described per Eq. (2.9) for which the covariance matrix is the identity matrix
Im ∈ Rm×m. This assumption is warranted since we can always whiten the observation vector
y. More precisely, consider the Cholesky decomposition of the covariance matrix: Σ = LL⊤

where L ∈ Rm×m is a lower triangular matrix, and consider

(3.1) L−1y = L−1Kλ+ η,

where η ∼ N
(
0,L−1Σ(L−1)

⊤)
. Since L−1Σ(L−1)

⊤
= Im, we have that η ∼ N (0, Im). As

such, when building upon the statistical model in Eq. (2.9), we assume that ε ∼ N (0, Im).
For the OSB intervals, we wish to perform inference on a single functional of the true

underlying parameter λ. We denote this functional by θ = θ(λ) and parameterize it using
the vector h ∈ Rn. This functional thus defines a quantity of interest, θ := h⊤λ, for which
we wish to build a confidence interval [θ, θ]. Furthermore, the confidence interval should be
constructed such that for a fixed α ∈ [0, 1] and any λ such that Aλ ≤ b,

(3.2) Py

(
θ ∈ [θ, θ]

)
≥ 1− α,

where A ∈ Rq×n. Here Aλ ≤ b reflect any linear constraints that one has on the parameter
λ. We elaborate more below. To find these interval endpoints, [23] sets up two optimization
problems, one to find the lower endpoint and one to find the upper endpoint. To find θOSB,
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we solve the following optimization problem:

minimize h⊤λ

subject to ∥y −Kλ∥22 ≤ z21−α/2 + s2,(3.3)

Aλ ≤ b,

where z1−α/2 is the quantile at level (1 − α/2) of the standard Gaussian distribution, the
matrix K is assumed to be transformed as in Eq. (3.1) corresponding to data with identity
covariance, and s2 is defined as the optimum value of the following optimization problem:

minimize ∥y −Kλ∥22(3.4)

subject to Aλ ≤ b.

Similarly, to find θOSB, we solve the following optimization problem:

maximize h⊤λ

subject to ∥y −Kλ∥22 ≤ z21−α/2 + s2,(3.5)

Aλ ≤ b.

The linear inequality constraint Aλ ≤ b allows the analyst to implement a wide range of
restrictions on the feasible set. As we explore in Section 5, these constraints can enforce
a variety of shape constraints on the vector λ, such as non-negativity, monotonicity, and
convexity. For instance, to enforce non-negativity, which always holds true for the unfolding
problem, we set the linear inequality constraint withA = −In and b = 0 so that the inequality
constraint becomes λ ≥ 0. Both optimization problems (3.3), (3.5), and (3.4) are convex
optimization problems, and additionally can be cast as second-order cone programs.

Tenorio et al. [33] proved the coverage of these intervals under a stochastic ordering crite-
rion which leads to the requirement that h be in the row space of K. For scientists interested
in a specific functional, this condition is restrictive when K does not have full column rank.
Yet, both later in this paper and in [23], it is observed empirically that these intervals in prac-
tice have the desired coverage even in rank-deficient situations. Indeed, in extensive testing,
we have yet to find a situation where the coverage would breakdown. Unfortunately, rigorous
proof in this case seems difficult, and hence we attest that these intervals do not yet have
provable coverage in a wide range of scientifically-relevant situations.

Generalizing slightly, given ξ ∈ R+, define the set Z(ξ) such that

(3.6) Z(ξ) =
{
λ : ∥y −Kλ∥22 ≤ ξ and Aλ ≤ b

}
.

Then, defining ψ2
1−α/2 := z21−α/2 + s2, the OSB intervals can be compactly represented as

follows:

(3.7)
[
θOSB, θOSB

]
=


 min
λ∈Z

(
ψ2
1−α/2

)h⊤λ, max
λ∈Z

(
ψ2
1−α/2

)h⊤λ


 ,
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We can also consider the Lagrangian dual programs for both optimization problems (3.3)
and (3.5) as presented in [23]. To find θ, the dual problem is formulated as

maximize
w,c

w⊤y − ψ1−α/2∥w∥2 − b⊤c

subject to h+A⊤c−K⊤w = 0,(3.8)

c ≥ 0.

Similarly, to find θ, the dual optimization problem is formulated as

minimize
w,c

w⊤y + ψ1−α/2∥w∥2 + b⊤c

subject to h−A⊤c−K⊤w = 0,(3.9)

c ≥ 0.

We will see that these dual optimization problems provide useful insights on the intervals that
subsequently lead to the construction of the Prior-Optimized intervals as discussed next.

3.2. Prior-Optimized Intervals (PO). As noted in [23], considering the dual optimization
problems (3.8) and (3.9) can provide useful insight into the interval [θOSB, θOSB]. Namely, let
(w, c) and (w, c) be dual variables satisfying the constraints in the optimization problems
(3.8) and (3.9), respectively. Further, consider an interval of the form

(3.10)
[
w⊤y − z1−α/2∥w∥2 − b⊤c,w⊤y + z1−α/2∥w∥2 + b⊤c

]
.

Patil et al. demonstrate in [23] that this interval has the correct coverage, i.e., it satisfies
Eq. (3.2), for any fixed (w, c) and (w, c) that satisfy the dual constraints. However, as [23]
also notes (an echo of Tenorio et al. [33]), the optimized dual variables depend on y and
therefore an optimized version of interval Eq. (3.10) similar to problems (3.8) and (3.9) does
not necessarily satisfy the coverage requirement (which is why problems (3.8) and (3.9) replace
z1−α/2 by ψ1−α/2 to inflate the interval).

Although this subtle point appears to block a path towards provable coverage for the
optimized interval, the coverage guarantee with respect to fixed elements satisfying the dual
constraints exposes an opportunity. Namely, since we may choose any (w, c) and (w, c) satis-
fying the dual constraints and not depending on y, then perhaps we can use extra information
to optimally choose these variables. This perspective drives the ethos of the PO intervals.

To choose optimal (w, c) and (w, c) (that do not depend on y), we use a decision-theoretic
framework. We follow the language and notation from Berger [2]. First, define the action space
to consist of real number pairs, A = {(a, b) | a, b ∈ R}. Then, a decision rule, δ : Rm → A, is
a function mapping an observation to an element in the action space, i.e., δ(y) = (θ(y), θ(y)).
Let D be the space of all such decision rules. To match the form of the interval in Eq. (3.10),
we parameterize the decision rule δ(y;w, c,w, c) =

(
θ(y;w, c), θ(y;w, c)

)
, where

θ(y;w, c) = w⊤y − z1−α/2∥w∥2 − b⊤c,(3.11)

θ(y;w, c) = w⊤y + z1−α/2∥w∥2 + b⊤c.(3.12)
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Note, these endpoints are affine functions of the data, hence we are limiting ourselves to affine
decision rules. For compactness, we simply write θ(y) for θ(y;w, c) and θ(y) for θ(y;w, c).
To guarantee the coverage of the intervals chosen by decision rules parameterized in this way,
we define the decision space on which coverage is guaranteed by

(3.13) Dc :=
{
δ ∈ D | h+A⊤c−K⊤w = 0,h−A⊤c−K⊤w = 0, c, c ≥ 0

}
.

Note, not all elements of the action space A define intervals with a < b, and by extension,
the decision rules in Dc are not guaranteed to produce intervals for all realizations of data.
However, all the decision rules are guaranteed (by their construction) to cover the true func-
tional value θ at least (1− α) percent of the time. Since a decision rule that covers the truth
must be an interval, this means that for every δ ∈ Dc, δ must produce an interval at least
(1−α) percent of the time. Empirically, in all simulations for the applications in Section 4 and
Section 5, we did not encounter a situation in which θ(y) > θ(y). However, in principle, since
y ∼ N (Kλ, I), which has positive measure on all subsets of Rm, there exists a realization y′

of the data such that θ(y′) > θ(y′). We refer to this as the pathological case.
Picking an optimal decision first requires a way to measure the quality of the decision rule

via a loss function L : A → R. Since we only consider δ ∈ Dc, i.e., decision rules for which
coverage is guaranteed, we restrict our loss function definition to only account for interval
size. As such, we simply define the loss to be the interval width, i.e.,

(3.14) L(δ(y)) = θ(y)− θ(y) = (w −w)⊤ y + z1−α/2 (∥w∥2 + ∥w∥2) + b⊤ (c+ c) .

Note, this definition of interval size is also the Lebesgue measure of the interval.
The risk functional of a decision rule is then defined as the expectation of the loss function

with respect to the probability measure on the data. In other words,

(3.15) R(δ) = Ey [L(δ(y))] = (w −w)⊤Kλ+ z1−α/2 (∥w∥2 + ∥w∥2) + b⊤ (c+ c) .

Optimal choices of the decision rule can now be defined in terms of this risk functional.
Note that R(δ) is a function of the true parameter λ. Luckily, in physical science applica-

tions, we often have access to well-justified prior information about λ stemming from theory
or previous experimentation. As such, the Bayes Risk Principle sensibly defines an optimal de-
cision rule (see Section 1.5 of Berger [2]). Given a prior distribution πλ on λ with expectation
mλ, the Bayes risk (Definition 6 in Section 1.3.2 of [2]) of a decision rule δ is defined,

(3.16) r(πλ, δ) := Eλ [R(δ)] = (w −w)⊤Kmλ + z1−α/2 (∥w∥2 + ∥w∥2) + b⊤ (c+ c) .

Under the Bayes Risk Principle, an optimal decision rule minimizes the Bayes risk and is
called a Bayes rule. As such, we define the Prior-Optimized intervals by the decision rule that
is the Bayes rule under the above construction, i.e., we find δ∗ ∈ Dc such that

(3.17) r(πλ, δ
∗) ≤ r(πλ, δ), for all δ ∈ Dc.
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Since our class of decision rules is parameterized by the dual variables, (w, c,w, c), finding
the Bayes decision rule is achieved by solving the following optimization problem:

minimize
w,c,w,c

r(πλ, δ)

subject to h+A⊤c−K⊤w = 0,(3.18)

h−A⊤c−K⊤w = 0,

c, c ≥ 0.

Under the above construction, only the prior expectation, mλ needs to be specified, and the
coverage guarantee follows from the constraints inherited from optimization problems (3.8)
and (3.9). The optimization problem (3.18) is a convex optimization problem, and can be
cast as a second-order cone program and solved efficiently. Note, to solve optimization (3.18)
in practice, we can equivalently maximize the expected lower endpoint and minimize the
expected upper endpoint.

It is important to emphasize that since interval (3.10) has provable coverage for fixed dual
variables and since here the choice of these variables is done without using the data y, it
follows that the PO interval also has provable coverage. This holds true even in the presence
of affine constraints on λ and for column-rank-deficient K. Importantly, despite the use of the
prior πλ, the coverage guarantee is entirely frequentist. The prior is only used to optimize the
interval width. If the prior is misspecified (as it usually is), the width might be suboptimal,
but the coverage guarantee still holds. This is different from standard Bayesian use of prior
information in which case the coverage depends strongly on the choice of the prior [23].

Additionally, although we have made specific choices regarding the parameterization of the
decision rule and the loss function, the above decision-theoretic framework is general enough
to accommodate a variety of choices and modifications. For instance, one might parameterize
the decision rule with non-linear endpoints. Or, with access to a prior covariance matrix, one
might choose a loss function to incorporate this second-order information in addition to the
information on the first moment. More generally, this framework suggests a meta-algorithm
to find interval estimators with frequentist coverage guarantees. Namely, if one is able to
define a set of decision rules for which coverage is guaranteed as we did in Eq. (3.13), then
the Bayes Risk Principle can be used to optimize the expected interval size.

3.3. Other Related Intervals. The model described by Eq. (2.9) is a well-studied statis-
tical model. In particular, the functional interval estimation task accomplished by the OSB
and PO intervals can also be accomplished by intervals based on the least-squares estima-
tor, minimax intervals [9], and simultaneous strict bounds intervals (henceforth referred to as
“SSB” intervals) [30]. Each alternative method provides a reference point against which OSB
and PO intervals can be compared.

Each of these methods can be categorized according to its assumptions and properties.
For instance, both the least-squares and minimax intervals require a full-column-rank linear
model to ensure that the model has a trivial nullspace. Otherwise, the interval endpoints can
be unbounded depending on the orientation of the model’s null space. Additionally, these
intervals can be categorized according to whether they are designed to provide one-at-a-time
functional coverage or simultaneous coverage. The SSB intervals are the only simultaneous
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intervals we consider here. If considered for a single functional, this criterion makes these
intervals more conservative than the others, since their coverage is required to hold over a set
of functionals, as opposed to one. As such, we expect these intervals to be wider than both
the OSB and PO intervals. Similarly, the minimax intervals are, by their nature, conservative,
and thus, we also expect these intervals to be wider than both the OSB and PO intervals.

Perhaps the most obvious interval construction to use with model in Eq. (2.9) is the
unconstrained least-squares (LS) intervals. Not only are these intervals the obvious procedure
to use given the statistical model of the problem, but [23] shows that the OSB intervals for
unconstrained full-column-rank models are equivalent to least-squares intervals, and thus are
a natural comparison. We refer readers to Appendix C of [23] for a full description and
derivation of this result.

The primary necessary condition for constructing finite intervals using the least-squares
estimator is for K to have full column rank, which implies the invertibility of KTK. Note,
as shown in Eq. (3.1), the data model can always be transformed to have identity covariance
matrix. As such, we assume identity covariance. Assuming this condition holds, we can

compute the minimum variance unbiased estimator of the parameter, λ̂ =
(
K⊤K

)−1
K⊤y,

and construct a confidence interval with guaranteed coverage (1− α) for the quantity of
interest θ = h⊤λ as the interval:

(3.19)
[
θLS, θLS

]
=
[
h⊤λ̂− γ,h⊤λ̂+ γ

]

where γ = z1−α/2(hT
(
K⊤K

)−1
h)1/2.

By contrast, as shown in Sections 4 and 5, the SSB intervals [30] are finite even in rank-
deficient situations, but are overly conservative for a single functional given their simultaneous
coverage guarantee. These intervals are computed similarly to optimization problems (3.3)
and (3.5), where

(3.20)
[
θSSB, θSSB

]
=

[
min

λ∈Z(χ2
n,1−α)

h⊤λ, max
λ∈Z(χ2

n,1−α)
h⊤λ

]
.

Note, the SSB intervals are constructed by replacing the feasible region Z(ψ2
1−α/2) from the

OSB interval construction in Eq. (3.7) with Z(χ2
n,1−α), where χ

2
n,1−α is the (1−α)-th quantile

of the chi-squared distribution with n degrees of freedom [23, 30].
The half-width of the fixed-width affine minimax confidence intervals is described in [9],

using the notation C∗
α,A(σ), where α is the same as above, and σ is the standard deviation

of the Gaussian noise. Computing this exact half-width is difficult, so we instead note that
Corollary 2 in [9] provides upper and lower bounds, which can be more easily computed.
Following [31], we compute the lower and upper bounds of the minimax interval half-width by
evaluating the modulus of continuity as an optimization problem. We use the double of these
bounds to compare against the other interval widths. Generally, given ϵ > 0, the modulus of
continuity is defined in [9] as follows:

(3.21) ω (ϵ;h,K,Λ) = sup
λ1,λ−1

{
|h⊤λ1 − h⊤λ−1| : ∥K(λ1 − λ−1)∥2 ≤ ϵ, λ1,λ−1 ∈ Λ

}
,
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where h is the functional of interest, K is the smearing matrix, and Λ is a convex subset of
the underlying parameter space. For instance, in Section 4, we consider the case when this
subset is simply the positive orthant of Rn. Using the modulus of continuity, Corollary 2 in
[9] gives the following upper and lower bounds:

(3.22) ω(2z1−ασ) ≤ C∗
α,A(σ) ≤ ω(2z1−α/2σ)

where z1−α and z1−α/2 are the (1 − α) and (1 − α/2) level quantiles of a standard normal
distribution. Hence, we can find the lower bound indicated in Eq. (3.22) using the following
optimization problem:

maximize
λ1,λ−1

|h⊤λ1 − h⊤λ−1|

subject to ∥Kλ1 −Kλ−1∥2 ≤ 2z1−ασ,(3.23)

Aλ−1 ≤ b,

Aλ1 ≤ b.

To cast optimization problem (3.23) into a more standard form, define z := [ λ⊤
1 λ⊤

−1 ]
⊤ ∈ R2n,

B := [ In −In ] ∈ Rn×2n, f⊤ := h⊤B ∈ R1×2n, A2 :=
[

A 0q×2n

0q×2n A

]
∈ R2q×2n, b2 :=

[
b
b

]
∈

R2q×1, and K̃ := KB, where In is the n×n identity matrix. Thus, we can re-write Eq. (3.23)
as follows:

maximize
z∈R2n

|f⊤z|

subject to ∥K̃z∥2 ≤ 2z1−ασ,(3.24)

A2z ≤ b2.

Note, when solving optimization problem (3.24) with a non-negativity constraint on the pa-
rameters as in Section 4, we can drop the absolute value signs in the objective function. Since
the indexing of λ1 and λ−1 is arbitrary, if the objective function is negative, the labels can
simply be reversed to render it positive. Thus, optimization problem (3.24) simply becomes
a quadratically constrained linear program which we can solve using standard convex opti-
mization algorithms. Computing the minimax half-width upper bound is performed almost
exactly as above in the optimization problem (3.24), but by replacing z1−α with z1−α/2.

As shown in the results section below, full-column-rank K produces finite lower and
upper bounds on the minimax interval width. However, in the rank-deficient cases, since our
functionals of interest are not in the row space of K (i.e., they are not in the orthogonal
complement of the null space), the lower bounds on the minimax interval widths are infinite.
As a result, these minimax intervals are not practical for arbitrary functionals in the rank-
deficient situation. Our discussion of minimax intervals is restricted to the notion of minimax
optimality for fixed-width intervals as defined in [9]. It is worth noting that there are other
notions of minimax optimality such as that of [11, 28].

4. Application to Wide-Bin Deconvolution.
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Table 1: Parameter settings for the GMM simulation.

Parameter Value Description

Nc 10,000 Expected number of collision events over the entire true space
(µ1, µ2) (−2, 2) Mixture means
(σ21, σ

2
2) (1, 1) Mixture variances

T (S) [−7,−7] True and smeared spaces
(π1, π2) (0.3, 0.7) Mixture weights

4.1. Simulation Setup. In this section, we describe the simulation setup we use to nu-
merically explore the coverage and width of the OSB and PO intervals presented above. We
must define a true intensity function f , a smearing kernel k, and a collection of functionals
for which we seek to build confidence intervals.

To define the intensity function, we utilize Theorem 1.2.1 in [25], which gives us a conve-
nient way to define and sample from a Poisson point process. As described in Section 2, let X
represent a random collision event in the true space T . Let τ ∼ Poisson(λ(T )) be independent
from X ∼ PX , where the distribution PX is the same as the normalized measure λ/λ(T ).
Since the mean of a Poisson random vriable is the same as its rate parameter, λ(T ) = E[τ ],
and hence when the densities exist, we have

(4.1) f(x) = E[τ ]pX(x)

where pX is the Radon–Nikodym derivative of PX (for more details about this construction,
see [19]). Practically, Eq. (4.1) allows us to construct an intensity function for the true
particle-level Poisson point process by specifying an expected number of events E[τ ] over the
state space T , and a probability density pX .

To define the density pX , we use a Gaussian mixture model (GMM). For x ∈ R, we let
N (x;µ, σ2) denote the probability density function of a Gaussian distribution with mean µ
and variance σ2 at x. For our simulations, we define pX as follows

(4.2) pX(x) = π1N (x;µ1, σ
2
1) + π2N (x;µ2, σ

2
2),

where πi = P[Z = i], where Z ∈ {1, 2} and pX(x) =
∑2

z=1 pX,Z(x, z), where pX,Z is the joint
density of (X,Z). Hence, the intensity f is defined as

(4.3) f(x) = Nc

{
π1N (x;µ1, σ

2
1) + π2N (x;µ2, σ

2
2)
}

where Nc = E[τ ]. The full list of parameter settings used for the GMM simulations is shown in
Table 1. These parameter settings are chosen to continue and build upon the simulation setup
described in Section 3.4.1 of [20]. Note, in our setup, we use only two mixture components
without the uniform background.

We define the smearing kernel to correspond to the situation where we add independent
Gaussian noise to smear the points drawn from the intensity in Eq. (4.3). Namely,

(4.4) k(s, t) =
1√
2πγ

exp

(
− 1

2γ2
(s− t)2

)
.
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(a) (b)

Figure 1: Fig. 1a: Illustration of the true intensity function used for simulations and the two ansatz functions
used for computing the smearing matrix K. Fig. 1b: (Left) True bin expected counts. The deviations in each
bin between the true expectation and the ansatz expectations drives the systematic error. (Right) Smeared
bin expected counts. Note the reduced magnitude of difference in expectation with respect to the true space,
emphasizing the convolutional nature of the smearing matrix.

Said differently, a true point X creates an observed point Y = X + ε, where ε ∼ N (0, γ2) and
X and ε are independent. As noted above, since T = S = [−7, 7], points that are smeared
beyond these boundaries are not included among the observed points. This kernel includes the
parameter γ, which essentially controls the magnitude of the smearing, and hence, controls
the extent to which this problem is ill-posed. For our simulations, we use γ = 0.35.

Additionally, we create two MC ansatz functions for computing the smearing matrix K.
The first is simply a slightly misspecified version of the true data generating process in
Eq. (4.3). Namely, we let (µ1, µ2) = (−1.8, 1.8) and (σ1, σ2) = (0.8, 1.2) and keep all other
parts of Eq. (4.3) the same. We refer to this ansatz as the “Misspecified GMM Ansatz”.
The second is specifically created so that it fits the smeared data well but has oscilla-
tions which magnify the effect of the systematic error. To find such an ansatz, we gener-
ate a realization of data from the smeared process (i.e., use Eq. (2.8) to generate a vector
y ∈ Rm), find the non-negatively constrained least-squares estimate of the true bin counts
(i.e., λ̂ = argminλ≥0∥y −Kλ∥2), and define the ansatz fMC by fitting a cubic spline to λ̂ and
forcing it to be non-negative. Clearly, this ansatz fits the data that generated it well. How-
ever, because it is a mildly constrained cubic spline, it is highly oscillatory. See Supplement
Section SM1 for a more detailed account of this its creation. We refer to this ansatz as the
“Adversarial Ansatz”. Fig. 1a shows the true intensity functions and the two ansatz functions
described above.

4.2. The Wide-Bin Problem. When obtaining confidence intervals for bin counts in the
unfolding problem, it is common practice to use more smeared bins than unfolded bins. Fun-
damentally, the ill-posedness of the problem motivates this design choice. However, as more
thoroughly described in the sections below, systematic error in the Monte Carlo ansatz used
when computing the smearing matrix (per Eq. (2.10)) can cause coverage issues even in simple
examples. To demonstrate this point, we consider a true intensity function as described by
Eq. (4.3) and construct 95% confidence intervals for each bin in the unfolded space.

Of course, if the ansatz were correctly specified, systematic error from the wide-bin bias



UNCERTAINTY QUANTIFICATION FOR WIDE-BIN UNFOLDING 17

would not be a concern, but this would be unrealistic since it would mean assuming that
we already know the unknown intensity function before carrying out the experiment. So in
practice, we need to assume that the ansatz will not be correctly specified in any analysis.
However, the ansatz is still likely to be fairly close to the true function since it usually follows
from some assumed physical theory. As such, we first consider the Misspecified GMM Ansatz
since it is nearly the same as the true intensity function.

We discretize the true space shown into n = 10 bins, while the smeared space discretization
is set to m = 40 bins. Fig. 1b shows the deviations in the expected bin counts both in the
true space (left) and the smeared space (right). The differences in the left side of Fig. 1b flow
to the smearing matrix and provide the source for the systematic error.

To show how the wide-bin bias disrupts coverage guarantees with even the Misspecified
GMM Ansatz, we evaluate the coverage of 95% least-squares confidence intervals for each
of the 10 unfolded bins. To estimate the coverage, we generate MD = 1,000 realizations of
smeared data, y1, . . . ,yMD

∼ Poisson(µ), where µ ∈ R40 is defined above in Eq. (2.7). Since
µ = Kλ, where λ ∈ R10 is the vector of true bin expected counts, and the bin counts are all
sufficiently large, we use the Normal approximation to the Poisson distribution to construct
confidence intervals for each bin using the least-squared intervals described in Eq. (3.19). The
intervals constructed for one realization of data are shown in the left portion of Fig. 2. For
each i = 1, . . . ,MD, we thus construct ten intervals. For each bin j = 1, . . . , 10, we estimate
the coverage with the following statistic:

(4.5) γj =
1

M

M∑

i=1

1
{
θij ∈ [θij , θij ]

}

where [θij , θij ] is the least-squares interval computed for the ith realization of data for the
jth bin, and 1{A} denote indicator function for event A. By the law of large numbers, if the

procedure is working as expected, γj
P→ 1− α for all j = 1, . . . , 10. However, as we can see in

the right portion of Fig. 2, all but three of the ten intervals exhibit severely deficient coverage.
So, although the intervals have a desirable width, they do not cover the true values nearly as
often as we would like because of the wide-bin bias from the misspecified MC ansatz.

4.3. Addressing the Wide-Bin Problem. If K were correctly specified when constructing
the intervals, the previous coverage problem would not exist. However, with wide true bins,
theK matrix will realistically never be correctly specified. As such, bin count interval coverage
breaks down even with the relatively harmless Misspecified GMM Ansatz.

Since the misspecification is exacerbated by the wide-binning, one strategy is simply to
use more fine bins, mitigating bin-wise ansatz misspecification. Staying with m = 40 smeared
bins, with the least-squares intervals, we are restricted to at most n = 40 true bins so that
the smearing matrix retains full-column-rank. With more true bins, we obtain results as
those shown in Fig. 3a. This figure shows that unfolding with more true bins nearly fixes the
coverage problem shown in the right side of Fig. 2, but at the expense of creating significantly
wider bin-wise intervals. Ideally, we want to obtain intervals with widths like those on the
left of Fig. 2, but with the coverages like those on the right of Fig. 3a. The intervals shown in
Fig. 2 were constructed by first discretizing the true space into ten bins and then finding the
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Figure 2: (Left) Bin count intervals constructed from one out of the MD samples of data with the Misspecified
GMM Ansatz. (Right) Estimated bin-wise coverage of the least-squares intervals shows that most of the bin
count intervals undercover.

least-squares intervals directly. However, we could alternatively invert at the finest possible
binning (as shown in Fig. 3a) subject to least-squares assumptions (namely, that K be full
rank) and then aggregate the fine-bin intervals to the same coarse-bin level. We refer to
this wide-bins-via-fine-bins strategy as “post-inversion aggregation”. In the above example,
this paradigm leads us to create a new matrix, K ∈ R40×40, corresponding to n = 40 true
bins which are then aggregated into the original 10 bins post-inversion using a sequence of
functionals {h}10i=1. Changing this order of operations yields significantly wider intervals, as
seen in the left portion of Fig. 3b compared with the intervals in the left portion of Fig. 2.
However, in exchange for wider intervals, the right portion of Fig. 3b shows that the coverage
is now at the desired level across all bins. This happens because with n = 40 true bins, the
dependence of K on the MC ansatz is reduced and, as a result, the systematic misspecification
in K is no longer large enough to cause a substantial bias in the unfolded solutions. In this
particular example, as seen in the right portion of Fig. 3a, even using using a finer true binning
does not entirely fix the coverage deficiency caused by the ansatz misspecification. As such, it
is perhaps fortuitous that the post-inversion aggregation results in the right portion of Fig. 3b
show nominal coverage. However, the coverage improvement with the finer bins is clear and
ideally, we would reduce the bin width further until we can be confident that the sensitivity
to the ansatz misspecification is negligible. With the least-squares intervals, the full-rank
constraint sets up a barrier for finer binning but the other methods presented herein do not
have that limitation, as demonstrated in Section 4.5.

4.4. Enforcing Non-negativity Improves Interval Width. With the bin-wise coverage
now at nominal level, one might be tempted to conclude that these intervals are the best
we can do. However, some of the intervals shown in the left portion of Fig. 3a used in the
aggregations violate the known physical constraints of the unfolding problem; namely, that
bin counts must be non-negative. Hence, constructing intervals containing negative values
indicates that some key information is absent from the procedure.

The OSB and PO intervals are both capable of including this physical constraint. Using
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(a)

(b)

Figure 3: 3a: Unfolding with n = 40 true bins and least-squares intervals. The Left and Right are analogous
to those in Fig. 2, but with the n = 40 true bins. Using more true bins fixes the coverage problem of the
least-squares intervals in Fig. 2 (Right), at the expense of significantly wider bin-wise intervals. 3b: (Left)
Bin count intervals from one out of the M samples using post-inversion aggregation with the Misspecified GMM
Ansatz. (Right) Estimated bin-wise coverage of the post-inversion aggregation approach shows these intervals
have the desired coverage.

this additional information in the optimization has a clear benefit for the expected width of
the constructed intervals. Indeed, the right portion of Fig. 4 shows that the least-squares
intervals are uniformly wider in expectation than both the OSB and PO intervals constructed
with A = −In and b = 0 to enforce the non-negativity constraint. These expected widths are
estimated using the same MD = 1,000 samples used to estimate the coverage in the previous
sections, with the error bars computed as twice the mean’s sample standard error. More
specifically, but less generally, the left portion of Fig. 4 illustrates how intervals generated for
one data sample are dramatically shortened when using the non-negativity constraint in the
optimization. As presented in Section 3.2, the PO intervals require a prior expectation. To
refrain from adding additional complexity here, the PO intervals constructed to make Fig. 4
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use a uniform prior, with bin counts set to the average true bin count, i.e.,

(4.6) mλ :=
λ⊤1
n
· 1.

We consider the effect of using different priors in Section 4.6, where we show that the PO
intervals have little sensitivity to the choice of the prior.

Figure 4: (Left) Comparing least-squares, OSB, and PO intervals for one realization of data shows that
incorporating the non-negativity constraint dramatically reduces interval width. (Right) Expected interval width
comparison between the least-squares, OSB, and PO interval constructions shows that incorporating the non-
negativity physical constraint dramatically shortens the constructed confidence intervals. The error bars show
the standard error of the average interval widths in order to demonstrate that the expected widths are significantly
different. Additionally, the least-squares intervals are fixed width, so their standard error is zero.

In addition to providing shorter intervals, both the OSB and PO intervals maintain cov-
erage guarantees as shown in Supplement Fig. SM2a. In fact, both the OSB (left) and PO
(right) intervals over-cover relative to the desired confidence level on most bins. However, we
note the nearly nominal coverage of the OSB intervals on the boundary bins shown in the left
portion of Supplement Fig. SM2a. Given the nature of the true intensity, these bins lie on
the portions of the domain on which the intensity is nearly zero. Similar to an observation
made in [22], it appears that having the true intensity close to the non-negativity constraint
can produce this type of behavior. While over-coverage may indicate a lack of efficiency in
the form of slack in the interval widths, it is clear that both the OSB and PO interval widths
are good relative to the least-squares intervals.

4.5. Handling an Adversarial Ansatz. If systematic error from the ansatz can cause
coverage problems in the wide-bin unfolding setting as shown in Section 4.2, it may be the
case that there exists an ansatz which induces enough systematic error to even break the
coverage shown for the OSB and PO intervals in Supplement Fig. SM2a. Exploring this
scenario was the motivation for creating the Adversarial Ansatz as shown in Fig. 1a.

To explore this potential failure mode, we compute a smearing matrix K ∈ R40×40 with
n = 40 true bins, as in Section 4.3, but this time using the Adversarial Ansatz for fMC, and
estimate the coverage of 95% intervals in the same manner as above for the least-squares,
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OSB, and PO procedures. The results of the 95% interval estimation in Fig. 5 show the
coverage of least-squares, OSB, and PO intervals from left to right. Since we have already
demonstrated the effect of the wide-bin bias on the least-squares intervals, it is not surprising
that a few of those intervals show under-coverage with the Adversarial Ansatz despite using
a large number of true bins. But, here the systematic misspecification is large enough to
also affect the coverage of the OSB intervals as shown by their significant under-coverage in
the seventh bin. One solution is to further circumvent the systematic error induced by the

Figure 5: Coverage of (from left to right) least-squares, OSB, and PO 95% intervals using a smearing matrix
constructed with the Adversarial Ansatz. This ansatz leads to systematic error in the smearing matrix, creating
severe lack of empirical coverage for both the least-squares and OSB intervals.

Adversarial Ansatz by using an even finer binning in the true space during inversion and then
adjusting each bin functional to aggregate more of the fine bins to arrive at the same ten final
bins. Assuming that we keep the number of smeared bins fixed at m = 40, we end up with a
column-rank-deficient smearing matrix, and therefore cannot use the least-squares intervals.
However, there is no such full-rank requirement for the OSB and PO intervals. We therefore
construct a new smearing matrix, K ∈ R40×80 using n = 80 true bins, and perform the same
coverage estimation as above for 95% intervals. The results of this experiment are shown in
Supplement Fig. SM2b. Now, both the OSB and PO intervals (left to right in Supplement
Fig. SM2b) have at least nominal coverage across all bins. By moving to the rank-deficient
scenario, we were able to use enough true bins to reduce the systematic misspecification in K
to a level where the OSB intervals are no longer affected by the wide-bin bias. Though using
a finer true binning fixes the coverage issues shown in Fig. 5 and gives increased protection
against misspecification of fMC, we pay by increasing the expected interval widths as shown
in Fig. 6. Both the PO the OSB intervals experience substantial width inflation in the rank-
deficient regime relative to the full-rank scenario. Nevertheless, their expected widths are
almost uniformly shorter than those of the full-rank least-squares intervals, which are both
longer and undercover in this scenario. Since OSB’s seventh bin exhibits under-coverage in
Fig. 5, the increase in interval width is reasonable. It may be noted that the expected least-
squares interval width for bin seven is less than the interval width for the 80-bin PO interval.
However, the PO intervals have coverage while the least-squares intervals do not so we would
still opt for the PO intervals among these two.

In summary, we have shown that with the Adversarial Ansatz, both the OSB and PO
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intervals can be constructed to provide coverage and, in most cases, out-perform the width
of the least-squares intervals, which either undercover or are not applicable in this scenario.
This was enabled by the ability of the OSB and PO intervals to make use of the physical
constraints and to handle a rank-deficient K while still maintaining frequentist coverage.

Figure 6: Expected 95% interval widths when using K ∈ R40×80 and more true bins than in the original full-
rank smearing matrix. For almost all bins, for both the OSB and PO intervals, the 80 true bin expected interval
width is greater than that of the 40 true bin configuration.

4.6. Further Simulations. The sections above provide some insight into the OSB and
PO intervals’ ability to incorporate physical constraints and to address the coverage issues
in least-squares intervals that arise from wide-binning due to the systematic error in the MC
ansatz. In this section, we provide additional interval method comparisons against the OSB
and PO intervals, demonstrate that using more bins in the true space does not cause interval
widths to diverge, and provide evidence that the expected PO interval widths are robust to
the choice of the prior.

4.6.1. Comparison against simultaneous strict bounds and minimax intervals. In the
above analysis (e.g., as seen in Fig. 4), we compared the expected widths of the OSB and PO
intervals constructed using the full-rank smearing matrix and the Misspecified GMM Ansatz
with the fixed-width least-squares intervals. The width improvement for the OSB and PO
intervals over the least-squares intervals is expected since the latter do not incorporate the
non-negativity constraint. In order to compare against other methods that also account for
constraints, we consider the expected interval widths of the SSB intervals and minimax inter-
vals, as described in Section 3.3. We perform the same procedure as described in Section 4.4
in order to estimate the expected width of the SSB intervals. Like the least-squares intervals,
the minimax intervals are fixed-width, and hence have interval width that is independent of
any particular realization of data (although the actual width is only known up to a fixed
range, as described in Section 3.3). The results of these simulations are shown in Fig. 7.

Since we are able to only find a lower and upper bound for the minimax interval widths,
we shade the region between these bounds to indicate where the actual minimax interval
widths would be for each bin. We observe that the OSB and PO intervals still have the
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shortest expected width for almost all bins (excluding the end bins) when compared against
the other three alternatives. This result is sensible since the SSB intervals are simultaneous
intervals, and are therefore conservative if evaluated as one-at-a-time intervals. Furthermore,
the minimax intervals are, by definition, the most conservative fixed-width affine intervals for
this setup, aligning with the observation that they are uniformly the widest of these intervals.

Figure 7: Expected 95% interval widths for LS, OSB, PO, and SSB intervals, shown with upper and lower
bounds for the minimax interval widths. All intervals are constructed with the full-rank smearing matrix. Since
the minimax intervals are the most conservative, the least-squares intervals do not take physical constraints into
account, and the SSB intervals are simultaneous intervals applied one at a time, it makes sense the PO and
OSB intervals are uniformly narrower across almost all bins. Between the OSB and PO intervals, the OSB
intervals are narrower since each interval optimizes width with respect to the observed data, whereas the PO
intervals optimize width offline.

4.6.2. Interval widths as a function of the number of true bins. One of the primary
practical benefits of the OSB and PO intervals is that they can be constructed even with
rank-deficient smearing matrices. As we demonstrated above by increasing the number of
true bins from 40 to 80, this flexibility can be used to overcome the systematic error that
exists due to the MC ansatz. However, this ability is questionable if the width of the intervals
diverges as a function of the number of true bins. We know from previous work [22] that the
SSB intervals are finite even for infinite-dimensional true spaces. Since we expect the OSB
and PO intervals to be shorter than the SSB intervals, we expect these intervals to remain
finite as the number of true bins is increased. To provide assurance that the interval widths
do not diverge, we repeat the simulation study in Section 4.5, but additionally compute the
OSB and PO intervals using 160 and 320 true bins in addition to the 40- and 80-bin setups.
For this study, we use the Misspecified GMM Ansatz to construct each smearing matrix and
a flat prior (see Eq. (4.6)) for the PO intervals. The results of these experiments can be seen
in Fig. 8a showing the expected width as a function of the binning setup, with one line for
each aggregated bin. Across all bins, and for both OSB and PO intervals (left and right,
respectively), we observe that the interval width stabilizes as a function of the number of true
bins. As such, if we need to increase the number of true bins to circumvent the wide-bin
systematic error, we can be reasonably sure that the interval widths will not diverge.
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(a) (b)

Figure 8: 8a: Estimated expected 95% interval widths as a function of the number of true unfolding bins
provide assurance that both OSB and PO intervals remain finite as the number of true bins increases. Both
OSB (Left) and PO (Right) interval widths become less sensitive to unfolding dimension as the number of
true bins increases. 8b: The choice of prior used when optimizing 95% PO interval does not have a substantial
impact on the expected interval widths. We observe that for three incorrectly specified priors (Flat, Misspecified
GMM, and Adversarial), in all but three bins, the expected interval widths are close. In bins 6, 7, and 8, we
observe the width benefits of having a more correctly specified prior. We also observe the closeness of most bin
expected interval widths to the expected OSB interval widths.

4.6.3. Robustness against the choice of the prior. Not only are the PO interval expected
widths robust to the binning setup, but they also exhibit a degree robustness with respect to
the choice of the prior. We explore this robustness by repeating the simulation in Section 4.4
with the 40× 40 full-rank smearing matrix. In addition to constructing the PO intervals with
a flat prior (see Eq. (4.6)), we consider three additional priors. First, we compute the bin
means of the true data generating function (see Eq. (4.3)) to compute the Correctly Specified
Prior, followed by the bin means of the Misspecified GMM Ansatz to create the Misspecified
GMM Prior, and finally the Adversarial Ansatz to create the Adversarial Prior. The expected
interval widths for each bin for each prior can be seen in Fig. 8b. The Adversarial Prior, the
most misspecified out of the four, shows the largest expected width in most of the bins. The
Misspecified GMM Prior creates intervals with expected widths close to the correctly specified
prior. This result is sensible since the Misspecified GMM is close to the true data generating
process. For half of the bins, the choice of the prior does not appear to lead to substantively
different results, but in some bins (especially bins 6, 7, and 8), having a more correctly specified
prior appears to shorten the interval width. Notably, using the Misspecified GMM Prior (or
the Correctly Specified Prior) would make the PO interval widths comparable to the OSB
intervals.

5. Application to Unfolding a Steeply Falling Particle Spectrum. While the above re-
sults in Section 4 demonstrate the properties of the OSB and PO intervals in a wide-bin
deconvolution setting, the data generating process was not directly motivated by a specific
particle physics data analysis scenario. In this section, we use the inclusive jet transverse mo-
mentum spectrum [4] as a more concrete unfolding problem in particle physics. This spectrum
reflects the production rate of jets (collimated streams of particles) as a function of the jet
(transverse) momentum at proton-proton collisions at the Large Hadron Collider at CERN.
The associated intensity is an example of a steeply falling particle spectrum, for which the
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intensity rapidly decays for larger transverse momentum (pT ) values. We follow the test setup
equations and parameters outlined in [20] (see Section 3.4.2). In the same way as we defined
a true and ansatz intensity function for the deconvolution example in Section 4, we define a
true intensity using the parameters in Section 3.4.2 of [20], and an ansatz intensity using the
alternative parameters in Section 4.2 of [20]. Supplement Fig. SM3 shows both intensities in
the left panel and the fine-bin and wide-bin discretized true intensity functions in the middle
and right panels. As seen in Supplement Fig. SM3, we consider the intensity function from
400 to 1,000 GeV.

Like the wide-bin deconvolution problem, we find confidence intervals for 10 wide bins
in two ways. First, we provide a baseline by directly computing the wide-bin intervals using
least-squares via a smearing matrix built on 10 true and 30 smeared bins. Second, we compute
the OSB, PO and SSB intervals with a rank-deficient smearing matrix built on 60 true and 30
smeared bins to again reduce the magnitude of the systematic error induced by the misspecified
ansatz intensity. To get a sense of the misspecification in this problem, consider Supplement
Fig. SM4. This figure shows |Kij−KMC

ij | for all rows i and columns j, plotted on a logarithmic
scale. The left panel in Supplement Fig. SM4 shows the difference between the true and ansatz
smearing matrices for the 30× 10 case, i.e., the case in which intervals are computed directly
on the wide bins. The right panel in Supplement Fig. SM4 show the same difference but for
the 30 × 60 matrix, i.e., the rank-deficient case. The misspecification in the 30 × 10 case is
O(102) times larger than the misspecification in the 30× 60 case.

In the wide-bin deconvolution example, directly computing wide-bin confidence intervals
via least squares produces intervals lacking coverage because of the systematic error induced
by the misspecified ansatz. As shown in Fig. 9, least-squares intervals computed in this sce-
nario similarly lack coverage. Further, the bottom right panel in Fig. 10 shows the wide-bin
least-squares intervals for one realization of data. As expected, these intervals are very narrow
on the bins where they lack coverage, namely, the first four bins, making them sensitive to the
wide-bin bias induced by the misspecification of the ansatz. We now proceed to show that the

Figure 9: Wide-bin unfolding in the steeply falling spectrum example with least-squares intervals produces
dramatic undercoverage in several bins.

coverage problems displayed in Fig. 9 can again be ameliorated by using the rank-deficient
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setup to form the wide-bins-via-fine-bins intervals using the OSB, PO or SSB methods. Al-
though we use 10 wide bins in this example as we did in the deconvolution example, reference
[20] shows in Eq. (3.36) that the additive noise used to model the smearing is heteroskedastic
as a function of the pT , meaning that the wide-bin width should ideally vary across the pT
domain, unlike the constant wide-bin width in the homoskedastic deconvolution example. The
physical motivation for this choice is that the wide-bin widths should be comparable to the
resolution of the measurement apparatus, which in this case varies as a function of pT . For
the range of pT considered, the noise standard deviation is characterized by σ(pT ) ∝

√
pT .

As such, the wide-bin widths in pT are enlarged at the same proportional rate. Namely, for
wide-bin width B, as pT increases, B is increased such that B ∝ √pT . The resulting endpoints
of these bins are then matched to the closest endpoints of the uniformly sized 60 true fine
bins. As a result, Supplement Fig. SM3 shows that the left-most wide bin includes five fine
bins while the right-most includes seven fine bins.

In addition to the inclusive jet transverse momentum spectrum providing a more realistic
example of unfolding than the simple deconvolution setup, as explained in [22], there are phys-
ically motivated intensity function shape constraints that can be included when optimizing
the intervals in addition to the non-negativity constraint used in the deconvolution example.
Namely, we expect the intensity to be monotonically decreasing and convex. These constraints
are implemented via the A matrix as seen in the optimization problem (3.3), for example.

When optimizing over the parameter λ ∈ Rn, the non-negativity, monotonically de-
creasing, and convexity shape constraints can be implemented as follows. For the infinite-
dimensional version of implementing these shape constraints, see [22]. The non-negativity im-
plementation is already explained in Section 3.1. Denote this constraint matrix byAn ∈ Rn×n.
To implement the decreasing constraint, we first note that for all i ∈ [n− 1], λi ≥ λi+1 must
hold. When working with the optimizations like program (3.3), these necessary conditions
can be met by constructing Ad ∈ R(n−1)×n such that Ad

i,i = −1 and Ad
i,i+1 = 1, for all

i ∈ [n − 1]. To create a necessary convexity condition, we observe that for three adjacent
elements, e.g., λi, λi+1 and λi+2, in order for the vector λ to follow a convex shape, it must
be true that for all i ∈ [n − 2], we have λi+λi+2

2 ≥ λi+1. Thus, we must have the following
inequality for all i ∈ [n− 2]: −λi + 2λi+1 − λi+2 ≤ 0. These necessary conditions can be met
by creating a matrix Ac ∈ R(n−2)×n such that Ac

i,i = −1, Ac
i,i+1 = 2, and Ac

i,i+2 = −1, for all
i ∈ [n− 2]. Combining these constraints is accomplished simply by stacking these individual
shape constraint matrices on top of each other. In particular, we work with the same three
constraint setups as those shown in Table 1 of [22], namely, non-negativity; non-negativity and
monotonically decreasing; and non-negativity, monotonically decreasing, and convex. These
setups are referred to as N, ND, and NDC, respectively. Here we assume that the fine bins
have a uniform width. If the fine-bin discretization was done using variable bin widths, the
matrices Ad and Ac would need to be adjusted to account for the variable bin widths.

Like the deconvolution example, we are primarily interested in evaluating the coverage and
expected width of the intervals created with each of the above three constraint setups. We
estimate the coverage and interval width by samplingMD = 1,000 draws from the distribution
shown in Eq. (2.8), and the smearing matrix is constructed as described above. In particular,
we build OSB, PO, and SSB intervals with each of the above three constraint combinations,
for a total of nine different interval setups. First, Fig. 10 shows one realization of the 1,000
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intervals constructed for each interval procedure and for each aggregated bin. Despite the
rapid interval width decay as a function of the number of shape constraints, Supplement
Fig. SM5 in Supplement Section SM2 shows that across all interval procedures, constraint
configurations, and aggregated bins, we retain at least nominal coverage, as desired.

Figure 10: Example 95% wide-bin intervals across different procedures and constraint configurations for the
steeply falling particle spectrum based on a 30 × 60 smearing matrix. Adding shape constraints significantly
shortens interval widths across all procedures. In the upper left plot, the PO intervals intersecting the horizontal
axis have a lower bound close to zero. The top two and bottom left plots show OSB intervals as the shortest,
PO as the middle width, and SSB intervals as the widest, across most bins. Example least-squares intervals are
included in the bottom right and essentially show interval widths comparable to the OSB/PO/SSB intervals in
the bottom left panel, but as shown in Fig. 9 the wide-bin least-squares intervals do not have correct coverage.

Interval widths decreasing as a function of the number of shape constraints also holds
in expectation, as shown in Fig. 11. Additionally, the left panel in Fig. 11 shows the same
expected width ordering across interval procedures as previously in Section 4. Namely, OSB
intervals are uniformly shorter in expectation than PO intervals, which are in turn uniformly
shorter in expectation than the SSB intervals. For a few bins in higher pT values, these
improvements are difficult to see. The improvements can be more easily observed in the right
panel of Fig. 11, showing the percent reduction in expected interval width using the SSB
intervals as a baseline. This figure additionally shows that the percent reduction increases
as shape constraints are added. For instance, the PO intervals are shorter than the SSB
intervals for all bins and constraint configurations, but for the ND and NDC constraints, the
PO intervals provide a much larger width improvement over the SSB intervals compared to
the improvement with just the N constraint. The same applies to the OSB intervals as well.

This example provides a more concrete demonstration of how classical wide-bin unfolding
with systematic error in the smearing matrix can nullify the typical coverage guarantees of
least-squares intervals. This can be addressed using the wide-bins-via-fine-bins approach based
on the OSB, PO and SSB intervals which are able to handle the nontrivial null space of the
smearing matrix and incorporate additional physical constraints, while maintaining the desired
coverage. It additionally demonstrates that the non-simultaneous OSB and PO methods offer
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Figure 11: (Left) Expected 95% interval widths across bins. Similar to the deconvolution example, the OSB
intervals are uniformly shorter than the PO intervals, which are uniformly shorter than the SSB intervals.
(Right) Percent decrease in expected interval width with respect to the SSB interval widths. Both the OSB and
PO interval procedures produce shorter intervals across all bins and constraint configurations than SSB. The
width improvement with respect to the SSB intervals increases as more shape constraints are added for both
OSB and PO intervals.

substantial interval width improvements over the comparable SSB intervals, assuming that
one-at-a-time coverage is what we are interested in.

6. Discussion and Conclusions. When performing unfolding in high energy physics, wide-
bin unfolding is an increasingly popular alternative for regularization. It reasonably sets wide
bin widths to match the detector resolution. However, as we showed in Section 4, even a slight
systematic error caused by the ansatz used to create the wide-bin smearing matrix can scupper
the coverage guarantees of classical least-squares intervals. In this paper, we have proposed
and substantiated a different approach to avoid these coverage issued in the aforementioned
setup. Namely, instead of unfolding directly to the detector resolution, we propose a general
methodology in which one first unfolds with as many true bins as possible and then aggregates
these narrow-bin inversion results to the detector resolution. In order to maximally mitigate
the systematic error caused by the ansatz misspecification, we invert with a rank-deficient
matrix that has more true bins than smeared bins facilitated by the OSB and PO intervals.

In Sections 4 and 5, we explored the coverage and width properties of the OSB and PO
intervals for a histogram deconvolution problem and for unfolding a steeply falling particle
spectrum, respectively. In the deconvolution problem, the OSB and PO intervals clearly
address the coverage deficiencies of the wide-bin least-squares intervals, while also providing
superior interval width properties when compared against least-squares, SSB, and minimax
intervals. Additionally, we demonstrated a low interval width sensitivity to the number of
true bins (i.e., the extent to which the smearing matrix is rank-deficient) for both the OSB
and PO intervals and to the choice of the prior for the PO intervals. Similarly, in the steeply
falling spectrum example, we showed that the coverage and expected width properties of the
OSB and PO intervals carry over to this more realistic unfolding setting from the simpler
deconvolution example. This example further demonstrates the capacity and utility of these
intervals to include shape constraints (i.e., non-negativity, monotonicity, and convexity) to
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Table 2: Summary of the properties of the intervals considered or mentioned herein. The SSB intervals are
the only simultaneous intervals considered, the rest of the methods are designed to work with one functional
at a time. “Empirical Coverage” indicates if the method covers at the desired level in simulations. “Prov-
able Coverage” indicates the existence of a mathematical proof guaranteeing the method’s coverage. “Physical
Constraints” indicates the method’s ability to incorporate physical knowledge in the form of affine constraints
into the interval construction. “Rank-Deficient Model” indicates if the method can be used with a column-
rank-deficient linear model, helping mitigate systematic uncertainty due to the binning. ✓* indicates that the
coverage depends upon sufficiently small systematic error in the linear model used to construct the interval.
We assume here that the systematic error can be made sufficiently small for those methods that can handle a
rank-deficient matrix. ✓** indicates that the method makes use of the constraints but the final intervals do not
necessarily respect the physical constraints.

Interval Type Coverage Design Interval Width Empirical Coverage Provable Coverage Physical Constraints Rank-Deficient Model

Tikhonov/Regularized One-at-a-time Narrow ✗ ✗ ✗ ✓

Least-Squares One-at-a-time Medium ✓* ✓ ✗ ✗

OSB One-at-a-time Medium ✓ ? ✓ ✓

PO One-at-a-time Medium ✓ ✓ ✓** ✓

SSB Simultaneous Wide ✓ ✓ ✓ ✓

Minimax One-at-a-time Wide ✓* ✓ ✓ ✗

further reduce the width of the optimized intervals while preserving coverage.
The OSB and PO intervals have properties that make them good methodological choices

for the types of ill-posed inverse problems considered herein. However, determination of the
“best” interval is largely dependent upon the specific application. As such, Table 2 provides
an overview of some key properties of various intervals relevant to the statistical context
of this paper. Note in Table 2 that the PO intervals are the narrowest intervals having
empirical coverage, provable coverage, incorporation of physical constraints, and handling
of rank-deficient linear models, which stem in part from their methodological novelty. In
particular, the decision-theoretic framing allows the definition of a set of decision rules for
which coverage is guaranteed. With this definition, we are able to focus the loss function
only on interval width, as opposed to considering both width and coverage as in many other
decision-theoretic treatments of confidence sets. Indeed, in previous literature [11, 12, 28,
34], decision-theoretic loss functions for interval estimation have balanced these two criteria:
interval size and interval coverage. Restricting the set of decision rules as we have adds upfront
difficulty in determining such a set, but enables us to obtain guaranteed coverage and avoids
the downstream difficulty of maintaining two optimality criteria in the loss function.

More generally, we have shown with the decision-theoretic approach how one can effectively
use “prior” information available in the form of a prior distribution to construct confidence
intervals that still maintain frequentist coverage. If the prior is indeed correct, then the
method would be optimal (in a decision-theoretic sense), but even if the prior was wrong, the
method still provides correct coverage at the cost of the width of the interval. In a sense, the
method is “tuned” using the prior information, while ensuring frequentist “validity.” Broadly,
our work falls under an umbrella of work [13, 14], among others, that unites the Bayesian
and frequentist perspectives, providing direct ways of accommodating prior information while
keeping frequentist coverage guarantees.

Additionally, the decision-theoretic framework elucidates a practical computational ad-
vantage of the PO intervals over the OSB and SSB intervals. Namely, since the optimal
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decision rule is computed based solely on the functional of interest h, the forward operator
K, and a given prior, the convex program (3.18) only has to be solved once to find a se-
quence of intervals for a sequence of observations. Since the interval computation requires
only vector-vector multiplication given an arbitrary decision rule, computing a sequence of
intervals requires relatively little computation. By contrast, no such “pre-computing” can be
done for the OSB and SSB intervals, meaning that for each new data vector, the full end point
convex programs must be solved to compute each interval. The “pre-computed” nature of the
PO intervals provides therefore an advantage in applications with a fixed problem setting and
a stream of data for which confidence intervals are desired.

The above results provide strong evidence that the OSB and PO intervals work well in the
wide-bins-via-narrow-bins unfolding paradigm, but we imagine several immediate next steps
to build upon these results. One, as stated in Section 3.1, despite having shown good empirical
coverage results in a variety of contexts, the OSB intervals do not yet have a mathematical
guarantee that they cover for arbitrary functionals. This is an important future direction as
a rigorous proof of the coverage guarantee would provide a solid basis for the use of these
intervals in scientific applications. Two, there are a variety of possible configurations we can
explore in the decision-theoretic setup for the PO intervals. In particular, we could broaden
the class of decision rules beyond affine rules to non-linear rules, and we could explore different
loss functions beyond the interval width that take higher-order information into account. It
would be interesting to explore how these different decision rules and loss functions affect
the interval widths and their sensitivity to prior choice. Third, the results presented herein
are based upon simulated data, so applying this method to real data would be a cogent next
step. Clearly, applications to real data could not directly assess interval coverage, but they
would provide more realistic comparisons of unfolded interval widths between the OSB and
PO intervals and other commonly used methods. Fourth, while we have provided a solution to
the systematic error stemming from the wide-bin bias, our approach still assumes knowledge
of the smearing kernel k. In reality, since this kernel is also uncertain, a next step would be to
develop methods for incorporating this uncertainty into the final uncertainty quantification.
Finally, there is an important middle-ground between the one-at-a-time nature of the OSB
and PO intervals and the simultaneous SSB intervals, which by construction provide coverage
for an infinite set of functionals (i.e., the set of all linear functionals). Namely, finding n-
at-a-time intervals or other n-variate confidence sets with a coverage guarantee that holds
simultaneously for a finite number of n functionals would be useful for scientific inference, as
such uncertainty quantification might be more fitting for answering questions such as how well
unfolded results comport with theory predictions. The decision-theoretic framework seems like
a useful starting point for this extension.
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SUPPLEMENTARY MATERIALS: Uncertainty quantification for wide-bin
unfolding: one-at-a-time strict bounds and prior-optimized confidence intervals∗

Michael Stanley† , Pratik Patil‡ , and Mikael Kuusela§

SM1. Computing the Adversarial Ansatz. The ansatz fMC used to compute the matrix
K (per Eq. (2.10)) is a source of systematic error. As seen in Section 4, the least-squares
intervals in the wide-bin setting are unable to overcome the minor misspecification of the
GMM Ansatz, but this shortcoming can be addressed by increasing the number of true bins
and then aggregating those bins to the same wide-bin resolution. The OSB and PO intervals
are also able to handle this misspecification the same way. But, to motivate the need to handle
rank-deficient linear models, we construct the Adversarial Ansatz as an ansatz that provides
enough systematic error to depress the least-squares and OSB intervals’ empirical coverages
significantly below their nominal levels, thus warranting the use of more true bins. We call
this constructed ansatz “adversarial” since it is made for the explicit purpose of breaking
the empirical coverage of these methods. We construct such an ansatz by leveraging the
observations that this problem is ill-posed (and hence inversions are sensitive to noise) and
that least-squares estimators have high variance in the absence of regularization.

The brute-force procedure for generating the Adversarial Ansatz is described in Algo-
rithm SM1.1 below. On a high level, Algorithm SM1.1 generates an ensemble of potential
ansatz functions, estimates the bin-wise coverage of the least-squares intervals for each ansatz,
and then identifies the ensemble element with the lowest minimum estimated bin-wise cov-
erage. The resulting ansatz fMC from this procedure is shown in Figure 1a. Each potential
ansatz function is constructed by generating a realization of data in the smeared space, esti-
mating the true bin counts via non-negatively constrained least-squares estimation, followed
by a cubic spline interpolation of the least-squares estimator. This constrained least-squares
estimator is very sensitive to noise and hence looks nothing like the true bin means (see the
right panel of Figure SM1). A key feature of this construction is that it creates an oscillatory
ansatz (see Figure 1a) that when mapped back into the smeared space, fits the data almost
exactly (see the left panels of Figures SM1 and 1b). Hence this ansatz could not be ruled out
based on the smeared observations. Because of its oscillatory nature, this ansatz creates more
systematic error than the Misspecified GMM Ansatz.

∗This work was supported by NSF grants DMS-2053804 and PHY-2020295, as well as JPL RSA No. 1670375.
†Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA 15213

(mcstanle@andrew.cmu.edu).
‡Department of Statistics and Data Science and Machine Learning Department, Carnegie Mellon University,

Pittsburgh, PA 15213 (pratik@cmu.edu).
§Department of Statistics and Data Science and NSF AI Planning Institute for Data-Driven Discovery in Physics,

Carnegie Mellon University, Pittsburgh, PA 15213 (mkuusela@andrew.cmu.edu).
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Algorithm SM1.1 Brute-Force Construction of the Adversarial Ansatz

Inputs:
– Nc ∈ N: Number of samples for estimating bin-wise coverage.
– Na ∈ N: Number of ansatz functions to compute.
– K ∈ R40×40: The true smearing matrix.
– λ ∈ R40: True bin means.
– {hi}10i=1: A sequence of linear functionals, each aggregating four adjacent bins into one

wide bin.
Output:

– fMC: Adversarial ansatz.

Procedure:
1. Sample y1, . . . ,yNc ∼ Poisson(Kλ).
2. Let C denote an array of length Na that will store the minimum estimated bin-wise

coverage for each generated ansatz. For i = 1, . . . , Na:
(a) Generate data from the true distribution: yi ∼ Poisson(Kλ).
(b) Find the non-negatively constrained least-squares estimator:

λ̂i = argmin
λ≥0

‖yi −Kλ‖22.

(c) Interpolate λ̂i using a cubic spline, defining an ansatz function fMC
i : R→ R.

(d) Compute a smearing matrix KMC
i using Eq. (2.10) and the previously com-

puted ansatz function fMC
i .

(e) For each sample yj and each function hk for j ∈ [Nc] and k ∈ [10], compute
the least-squares interval using Eq. (3.19), and estimate the bin-wise coverage
using Eq. (4.5), obtaining a sequence of estimated bin-wise coverages {γl}10l=1.

(f) Find the minimum estimated bin-wise coverage by γmin
i = minl∈[10] γl, and set

C[i]← γmin
i .

3. Identify the generated ansatz with the lowest estimated bin-wise coverage:

i∗ = argmin
i∈[Na]

C[i].

4. Return the adversarial ansatz fMC
i∗ .
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Figure SM1: As shown on the left panel, the constrained least-squares estimator (λ̂) used to create the Adver-
sarial Ansatz chosen via the minimum bin-wise estimated coverage criterion closely fits the data when mapped
back into the smeared space via Kλ̂, but clearly does not match the true bin means as shown on the right.
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SM2. Additional Supporting Figures.

(a)

(b)

Figure SM2: Fig. SM2a: Coverage of (from left to right) OSB and PO 95% interval coverage using a flat
prior mean constructed from the mean of the true bin expectations. Both methods construct intervals with at
least nominal coverage. Fig. SM2b: Coverage of (from left to right) OSB and PO 95% intervals using the
40 × 80 smearing matrix constructed with the Adversarial Ansatz. Using a finer true-space binning for the
inversion ameliorates the coverage issues displayed in Fig. 5. The least-squares intervals are not applicable in
this scenario because of the rank-deficient smearing matrix.
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Figure SM3: (Left) True and ansatz inclusive jet transverse momentum spectrum intensities. (Middle) Scaled
(by bin width) expected bin counts for the fine binning (black) and wide binning (red). (Right) The middle
image but on a logarithmic scale to more clearly see the right-most bins. All these figures show the spectrum in
the true space before smearing.

Figure SM4: |Kij −KMC
ij | for all rows i and columns j for the (left) 30 × 10 and (right) 30 × 60 matrices.

The misspecification in the 30× 10 case is O(102) times larger than that of the 30× 60 case.
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Figure SM5: Coverage across interval constructions, constraint configurations, and aggregated bins for the
steeply falling spectrum. Estimated coverage shows all combinations achieving at least 95% nominal coverage.
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