
Streaming Erasure Codes under Mismatched
Source-Channel Frame Rates

Pratik Patil, Ahmed Badr and Ashish Khisti
School of Electrical and Computer Engineering

University of Toronto
Toronto, ON, M5S 3G4, Canada

Email: {ppatil, abadr, akhisti}@comm.utoronto.ca

Abstract—Streaming erasure codes (SCo) sequentially encode
a source stream into channel packets over a burst erasure
channel and guarantee that each source packet is recovered
within a fixed decoding delay. We study SCo codes when M
channel packets need to be transmitted between successive source
frames. This extends earlier works which exclusively focus on
the case when M = 1. We obtain a general upper bound on the
associated streaming capacity and show that it can be achieved
for sufficiently large decoding delays using a layered code. For the
minimum possible decoding delay we also establish the streaming
capacity and show that it can be obtained using a repetition code.

I. INTRODUCTION

In media streaming applications, a data source stream is
encoded into channel packets by a transmitter. These packets
are sent over a noisy channel and the receiver expects each
source packet to be decoded within a fixed decoding delay.
This delay constraint presents many interesting coding prob-
lems. Traditionally to protect data sent over a channel block
codes such as maximum distance separable (MDS) codes have
been used. These codes map blocks of data to a codeword. But
such codes are not ideal in streaming applications as an entire
codeword must be received before the corresponding source
symbols can be decoded and the receiver cannot afford to wait
for the end of the entire codeword due to delay constraints.
Codes such as the digital fountain codes are also not suitable
as they require the entire source data before the output stream
is reproduced. Also sequential reconstruction of the source
stream is not guaranteed.

In [1] (Chapter 8), [2], [3] a new class of codes called
streaming erasure codes (SCo) is developed. Transmitter ob-
serves a source stream with one source frame arriving in each
channel use. The source stream is encoded in a causal manner
with rate R. The channel is modeled as a burst erasure channel
in which starting at an arbitrary time, it introduces an erasure
burst of maximum B channel packets. The decoder is required
to output each source packet within a delay of T packets. A
fundamental relationship between R, B, and T is established
and SCo codes are constructed that achieve this tradeoff. The
above setup has been extended in various directions in [4],
[5], [6].

In this paper we generalize the above SCo setup when a
total of M channel packets need to be transmitted between the
arrival of successive source frames. One practical motivation

Fig. 1. System under consideration

of our model is that in many network architectures the size
of a channel packet is restricted and upper layer packets are
fragmented into smaller packets before transmission. There-
fore the M packets between two successive source frames
will be considered as a macro-packet. Note that M = 1
corresponds to the previously studied setup. We assume a
burst-erasure channel where a burst of length B can occur
across any window of B consecutive channel packets, which
may span multiple macro-packets. For such a scenario we
study the associated steaming capacity. We split the problem
into different cases. First we obtain a general upper bound on
the achievable rate in terms of M,B and T using the technique
of periodic erasure channel. Then we construct codes with
rates that achieve the upper bound for a certain range of
parameter values. Our main code construction involves a
layered approach by dividing each source frame into urgent
and non-urgent source symbols and applying different levels
of error correction to each to carefully form parity check
symbols.

In the next section, we describe our system model in
detail. We obtain the upper bound in section III. General code
constructions are provided in section IV. Section V presents
a special case of minimum decoding delay T (referred to as
Tmin). Finally we show an example of streaming code con-
struction using the proposed approach in section VI followed
by the conclusion.

II. SYSTEM MODEL

We consider discrete time slots i, i ∈ Z. Without loss
of generality, we assume that everything before time 0 is
recovered and start from i = 0. Figure 1 depicts the system
under consideration.

A. Encoder

All symbols considered in this paper are elements from a
common base field Fq . The encoder receives a stream of i.i.d.
source packets s[i] at the beginning of time slot i. Each s[i]



Fig. 2. General burst pattern

is causally encoded into M channel packets xj [i] ∈ (Fq)
n×1,

j = [1 : M ] i.e.,

xj [i] = f j
i (s[i], s[i− 1], · · · , s[0]) (1)

where f j
i (·) is a deterministic encoding function. We call the

set of these M channel packets as one macro-packet X[i] ∈
(Fq)

nM×1, X[i] =
(
x1[i],x2[i], · · · ,xM [i]

)
.

B. Channel

The channel packets are sent through a burst erasure
channel and received packets are denoted by yj [i]. The
actual (channel) time slot associated with packet xj [i] is
t = iM+j−11. The channel is such that it may introduce an
erasure burst of maximum B channel packets starting at an
arbitrary time slot ts and ending at tf ≤ ts +B − 1. We get
yj [i] = xj [i], when the packet is not erased and yj [i] = ?,
when the packet is erased i.e.,

yj [i] =

{
? for ts ≤ iM + j − 1 ≤ tf

xj [i] otherwise
(2)

Note that the erasure burst can span multiple macro-packets
as shown in Figure 2. We denote the set of all channel
packets corresponding to time index i by Y[i], Y[i] =(
y1[i],y2[i], · · · ,yM [i]

)
.

C. Decoder

The decoder attempts to decode the original source stream
using the received channel packets with maximum allowed
delay of T ≥ 0 macro-packets. The delay T means that the
receiver must be able to decode the source packet s[i] at
the end of macro-packet i + T . The decoder implements a
decoding function gi(·) such that,

ŝ[i] = gi(Y[i+ T ],Y[i+ T − 1], · · · ,Y[0]) (3)

and requires that ŝ[i] = s[i].
Let H(s[i]) = H(s) and H(xj [i]) = H(x). Rate of the

streaming code is defined as the ratio of the entropy of the
source packet to the size of the macro-packet i.e.,

R =
H(s)

n×M
(4)

An optimal streaming erasure code is the one that achieves
the maximum rate (i.e. streaming capacity) for a given choice
of (M,B, T ).

1With the exception of this section, the time index will denote macro-packet
index.

III. UPPER BOUNDS

Here we discuss an upper bound on the achievable rate of
any streaming erasure code.

Theorem 1. For the given streaming setup with any M , T
and B of the form bM+B′ where b ∈ Z≥0, B′ = [1 : M−1],
the streaming capacity C is upper bounded by the following
expression:

C ≤ R+ = 1− B

M(T + b+ 1)
(5)

Proof: We use the technique of periodic erasure channel
([2], [4], [5]) to derive the upper bound on rate R. Consider
periodic bursts each of length B with a guard interval of
M(b+ T + 1)−B as shown in Figure 3. One period length
(Tperiod) is T+b+1 macro-packets. We let the first burst start
from x1[0]. By definition we require all lost packets due to this
erasure burst the first period to be recovered by macro-packet
t = T + b + 1. Once these erased packets are recovered, we
can treat these erasures as having never happened and simply
repeat the technique for the next period and so on. Therefore
we must have that the information used to recover source
packets in one period must equal the information contained
within the unerased channel packets in that period. We have
a total of Tperiod number of source packets within one period
and (MTperiod − B) number of unerased channel packets.
Therefore for any streaming code with parameters (M,B, T ),
the following relationship must hold:

Tperiod · H(s) ≤ (MTperiod −B) · H(x) (6)

From the definition of rate R (= H(s)
MH(x) ), we have that for any

achievable rate (and thus for streaming capacity C)

C = maxR ≤ M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
(7)

which completes the proof.

Remark 1. In the above theorem we restrict ourselves to
burst lengths B of the form bM + B′ (b ∈ Z≥0 and B′ =
[1 : M − 1]) which leave out burst lengths B = bM . Bound
derived above also applies to these bursts, but we can easily
tighten it (using the same technique). For this case,

C ≤ R+ =
T

T + b
(8)

Further we can easily show that this upper bound is achievable
using the (b, T ) SCo codes with a simple interleaving of a
factor of M . So we only consider burst lengths bM + B′

(b ∈ Z≥0, B′ = [1 : M − 1]) and construct codes for this
non-trivial case.

Remark 2. Note that we can let the first burst take other
positions in the first period. However such burst positions
result in loose upper bounds. The burst position considered
in the proof gives the strictest bound.

Remark 3. Also by inspection of the figure 3, we observe
that the minimum delay Tmin for any positive achievable rate
is b.



Fig. 3. Periodic erasure patterns

In the next section we describe our streaming code con-
structions.

IV. CODE CONSTRUCTIONS

We separately treat the case b = 0 and b ≥ 1 as the former
special case is simpler.

A. b = 0

If we substitute b = 0 in the equation 5, we get the
upper bound as M(T+1)−B

M(T+1) on the streaming rate. Below we
construct a code that achieves this upper bound. As pointed
in the section II, all symbols are considered over Fq .

1) Encoding: Let k = M(T + 1) − B and n =
T + 1. We split each source packet s[i] into k symbols
(s1[i], s2[i], · · · , sk[i]). We then apply a (nM, k, T ) convolu-
tional code to form the macro-packet X[i] ∈ (Fq)

nM×1 such
that,

X[i] =

 T∑
j=0

s†[i− j] ·Gj

† (9)

2 where G0, · · · ,GT ∈ (Fq)
k×nM . Thus each macro-packet

contains nM = M(T + 1) symbols. Rate R of this code is
k

nM = M(T+1)−B
M(T+1) as required. First T macro-packets can be

expressed as[
X†[0] X†[1] · · · X†[T ]

]
=
[
s†[0] s†[1] · · · s†[T ]

]
·Gs

T

(10)
where

Gs
T =


G0 G1 · · · GT

0 G0 · · · GT−1
...

. . .
...

0 · · · G0

 (11)

We consider matrices Gi such that they form a maximum
distance profile (MDP) code [7]. Particularly we consider
systematic codes where matrices Gi take the form

G0 =
[
Ik×k H0

]
, Gi =

[
0k×k Hi

]
, i = [1 : T ] (12)

Matrices Hi ∈ (Fq)
k×B generate B parity check symbols

q[i] ∈ (Fq)
B×1 (q1[i], q2[i], · · · , qB [i]) i.e.,

q[i] =

 T∑
j=0

s†[i− j] ·Hj

† (13)

Finally we let xj [i] = X
(j−1)M+n
(j−1)M+1 [i].

2† denotes the transpose of a vector.

2) Decoding: We now show that the above code construc-
tion indeed corrects any erasure burst of length B within a
decoding delay T . Since the code is time invariant it suffices
to consider only the burst patterns that concern X[0] (i.e.,
patterns which erase symbols from s[0]). There are maximum
M such different burst patterns that need to be checked. Note
that since b = 0, 1 ≤ B ≤ M − 1. Thus the burst can erase
symbols from at most two adjacent macro-packets. The key
idea in the decoding is that in all burst positions we have
enough number of unerased parity symbols (equations) to
recover the lost symbols (unknowns) within decoding delay
T .

Consider any burst pattern that involve X[0]. Using [8,
Corollary 3.2], it suffices to show that if we have enough parity
symbols within the decoding window, we can completely
recover from the erasure burst. We consider the decoding
window from the macro-packet i = 0 to the macro-packet
i = T with nM(T +1) total symbols. We have following two
cases.
• Burst is such that none of the parity symbols in the

decoding window are erased. In this case, number of
symbols erased=B(T + 1) (each channel packet con-
tains (T + 1) symbols and B such channel packets
are erased). Number of parity symbols within decod-
ing window=B(T + 1) (each macro-packet contains B
parities and none of them are erased). Hence we can
completely recover within the deadline.

• Burst is such that it erases r parities. In this case, number
of symbols erased=B(T + 1) − r. Number of unerased
parities within the decoding window=B(T +1)−r. Thus
all such bursts are recoverable as well.

Remark 4. Note that the above construction simultaneously
recovers all the erased packets. If the burst spans the macro-
packet i = 0 and i = 1 then both s[0] and s[1] are
simultaneously recovered at the end of the macro-packet T
even though the delay of s[1] is later. As we will show next for
b ≥ 1, sequential recovery in general is necessary to achieve
the upper bound in equation 5.

B. b ≥ 1

Our target rate in this case is R = M(T+b+1)−B
M(T+b+1) (upper

bound).
1) Encoding: Let k = M(T + b + 1) − B and n = (T +

b+1). Each source packet is split into k = M(T +b+1)−B
symbols. We refer to first B symbols of each source packet as



urgent symbols u[i] (s1[i], s2[i], · · · , sB [i]) and rest as non-
urgent symbols (represented by V[i]). All urgent symbols of
the source packet s[i] are placed in the first channel packet
x1[i] of the macro-packet X[i]3. Overall we construct a sys-
tematic (nM, k, T ) convolutional code generating (n− k) =
B parity check symbols p[i] (p1[i], p2[i], · · · , pB [i]). The code
construction involves two layers for the parity symbols. First
layer is a repetition code of urgent symbols u[i] with a delay
of T macro-packets. Second layer is a (k − B,B, T ) MDP
code applied to the non-urgent symbols V[i] forming B parity
symbols q[i] in a similar fashion as in the case of b = 0
(subsection IV-A) i.e.,

q[i] =

 T∑
j=0

V†[i− j]Hj

† (14)

where H0, · · · ,HT ∈ (F)k×Bq and the corresponding gen-
erator matrices Gi form a MDP code. Thus parity symbols
p[i] for the streaming code consist of two parts p[i] =
q[i] + u[i − T ], where addition is over field Fq . We put all
the parity check symbols into the last channel packet xM [i]
of each macro-packet4 and divide non-urgent symbols V[i] to
form v1[i] to vM [i]. Overall arrangement of symbols in the
macro-packet X[i] is as shown below.

X[i] =

[
u[i]
v1[i]

]
v2[i] v3[i] · · ·

[
vM [i]
p[i]

]
(15)

2) Decoding: Similar to the case of b = 0 (subsection
IV-A), we only need to worry about M different burst patterns
that erase symbols from s[0] (because of the time invariance of
the code). Key idea here is that we recover all erased urgent
symbols at their respective deadlines (that’s why the name
urgent) e.g., u[0] at T if its erased. All other erased non-
urgent symbols are decoded before the deadline. Below we
explicitly explain decoding for different burst positions that
start at xj [0].
• j = 1:

– Decoding of urgent symbols - In this burst pat-
tern, urgent symbols u[0] are erased. We use p[T ]
to recover them. We can do this given q[T ] is
known (which is a function of non-urgent symbols
(V[0], · · · ,V[T ]). Parity symbols p[j], j > T are
used to decode rest erased urgent symbols u[j−T ].

– Decoding of non-urgent symbols - Next we show
that we can recover all the erased non-urgent sym-
bols by macro-packet T−1. Using [8, Corollary 3.2]
similar to the case with b = 0 , it suffices to show
that if we have enough unerased parity symbols,
we can recover erased non-urgent symbols (as q is
constructed by applying MDP to V). We consider

3Here we implicitly assumed that all urgent symbols (u[i]) are accommo-
dated in the first channel packet (x1[i]). Hence we require that B ≤ T+b+1
i.e., T ≥ b(M − 1) +B′ − 1 (let’s call this T ′).

4For all the parity symbols (p[i]) to be accommodated in the last channel
packet (xM [i]), we require that B ≤ T + b + 1 i.e., T ≥ T ′ which is the
same condition as the footnote above for urgent symbols.

a window of length (nM − B)T (from x1[0] to
xM [T − 1]). In this window we can recover from
an erasure burst of no longer than BT non-urgent
symbols. Number of non-urgent symbol erased=total
symbol erased-total urgent symbols erased=B(T +
b + 1) − (b + 1)B=BT which is exactly what we
can recover from. Thus we can recover all the erased
non-urgent symbols by macro-packet T −1 and then
at each subsequent deadline we can recover urgent
symbols.

• 2 ≤ j ≤M −B′ + 1:
– Decoding of urgent symbols - For these burst pat-

terns x1[0](and thus u[0]) is available at decoder. So
we no longer need p[T ] to recover u[0]. Similar to
the case above, we use parity symbols p[j], j > T
to decode rest erased urgent symbols u[j − T ].

– Decoding of non-urgent symbols - Since we have
u[0], we can use p[T ] to recover erased non-urgent
symbols. Thus we consider a bigger window of
length (nM − B)(T + 1). Therefore recoverable
burst length is B(T + 1). Number of non-urgent
symbols erased=B(T +b+1)−bM (since u[0] is no
longer erased)=B(T + 1) which is exactly equal to
the recoverable burst length.

• j > (M −B′ + 1):
– Decoding of urgent symbols - These burst patterns

include x1[b+1]. x1[0] is still unerased. So recovery
of urgent symbols is same as the case above.

– Decoding of non-urgent symbols - Similar to the
case above, we can use p[T ] for the recovery of
non-urgent symbols. So while the recoverable length
remains the same (B(T + 1)), the number of non-
urgent erasures is B symbols less than what we have
in the case above (as x1[b + 1] contains B urgent
symbols). Hence we easily recover all the erased
non-urgent symbols as required.

Remark 5. It is easy to check we can achieve a rate of R′ =
M(T+1)−B
M(T+1) using random linear codes for this case. This is

strictly less than the rate achieved by the construction above
(as b ≥ 1). We also see that when b = 0, both our codes and
random linear codes achieve the same rates.

Remark 6. Note that although our model only considers a
single erasure burst, as with SCo, our constructions correct
multiple erasure-bursts separated with a sufficient guard in-
terval.

Overall so far we have constructed codes whose rates meet
the upper bound except for when b ≥ 1 and Tmin ≤ T ≤ T ′.
In the next section, we consider a special case of the minimum
decoding delay.

V. CASE WITH MINIMUM DECODING DELAY

When T = Tmin = b, we obtain a tighter upper bound than
that given by equation 5. We also propose a code construction
to achieve the new upper bound.



X[0] X[1] X[0] X[1]

x1[0] x2[0] x1[1] x2[1] x1[2] x2[2] x1[3] x2[3]

u1[0] v2
1 [0] u1[1] v2

1 [1] u1[2] v2
1 [2] u1[3] v2

1 [3]

u2[0] v2
2 [0] u2[1] v2

2 [1] u2[2] v2
2 [2] u2[3] v2

2 [3]

u3[0] u1[−3]+v2
1 [−3]+v1

1 [−1] u3[1] u1[−2]+v2
1 [−2]+v1

1 [0] u3[2] u1[−1]+v2
1 [−1]+v1

1 [1] u3[3] u1[0]+v2
1 [0]+v1

1 [2]

v1
1 [0] u2[−3]+v2

2 [−3]+v1
2 [−1] v1

1 [1] u2[−2]+v2
2 [−2]+v1

2 [0] v1
1 [2] u2[−1]+v2

2 [−1]+v1
2 [1] v1

1 [3] u2[0]+v2
2 [0]+v1

2 [2]

v1
2 [0] u3[−3]+v2

2 [−2]+v2
1 [−1] v1

2 [1] u3[−2]+v2
2 [−1]+v2

1 [0] v1
2 [2] u3[−1]+v2

2 [0]+v2
1 [1] v1

2 [3] u3[0]+v2
2 [1]+v2

1 [2]

TABLE I
CODE CONSTRUCTION FOR (M=2,B=3,T=3)

Theorem 2. For any burst B = bM + B′ and delay T = b,
the streaming capacity is given by,

R =

{
M−B′

M B′ ≥ M
2

1
2 B′ < M

2

(16)

Proof:

A. Converse

Consider a channel that erases first B = bM +B′ channel
packets x1[i], . . . ,xB′

[i+b]. Since the delay constraint for s[i]
is i+ T = i+ b, the following equation should be satisfied,

H(s[i]|xB′+1[i+ b], . . . ,xM [i+ b]) = 0. (17)

Now we consider a channel erasing channel packets
xM−B′+1[i+b], . . . ,xM [i+2b]. The delay of s[i+b] is i+2b.
Thus the following equation should be satisfied,

H(s[i+ b]|x1[i+ b], . . . ,xM−B′
[i+ b]) = 0. (18)

Combining (17) and (18) one can write,

H(s[i], s[i+ b]|x1[i+ b], . . . ,xM−B′
[i+ b],xB′+1[i+ b], . . . ,

xM [i+ b]) = 0. (19)

We have following two cases.
• If B′ ≥ M

2 , 2(M −B′)H(x) ≥ 2H(s)
• If B′ < M

2 , H(x) ≥ 2H(s)

Therefore R+ = H(s)
MH(x) ≤

{
M−B′

M B′ ≥ M
2

1
2 B′ < M

2

and the

converse follows.

B. Achievability

For the achievability scheme, a simple repetition scheme is
considered as follows:
• B′ < M

2
We split each source packet into M symbols i.e., s[i] =
(s1[i], . . . , sM [i]) and assign the channel packets as fol-
lows,

xj [i] =


(s2j−1[i], s2j [i])

† j < M+1
2

(sM [i], s0[i− T ])† j∗ = M+1
2

(s2j−M−1[i− T ], s2j−M [i− T ])† j > M+1
2

(20)

where j = {1, · · · ,M}; * - only when M is odd.
• B′ ≥ M

2
In this case, we split each source packet into M − B′

symbols i.e., s[i] = (s1[i], . . . , sM−B′ [i]) and assign the
channel packets as follows,

xj [i] =

 sj [i] j ∈ [1,M −B′]
0 j ∈ [M −B′ + 1, B′]
sj−B′ [i− T ] j ∈ [B′ + 1,M ]

(21)

where j = {1, · · · ,M}.
In each case, by inspection we can check that the codes

described above are decodable within delay b.

Remark 7. It can easily be seen that the capacity in Theo-
rem 2 is strictly less than the upper bound in Theorem 1.

VI. EXAMPLE

In this section we show a code construction for parameters
M = 2, B = 3, T = 3. B = 2 + 1, so we have b = 1
and B′ = 1. From Theorem 1, R ≤ M(T+b+1)−B

M(T+b+1) = 7
10 . We

construct a code with rate 7
10 as follows.

A. Encoding

• Step 1: Split each source packet s[i] into M(T +b+1)−
B = 7 symbols (s1[i], · · · , s7[i]).

• Step 2: Group these into urgent and non-urgent symbols.
For each source packet s[i], we call first B = 3
symbols as urgent symbols u[i], (u1[i], · · · , u3[i]) =
(s1[i], · · · , s3[i]). Rest symbols are referred to as non-
urgent symbols. We divide them to form v1[i] =
(v11 [i], v

1
2 [i]) = (s4[i], s5[i]) and v2[i] = (v21 [i], v

2
2 [i]) =

(s6[i], s7[i]). Note that in general v1[i] and vM [i] contain
(T + b + 1) − B symbols and vj [i], j = [2 : (M − 1)]
contain T + b+ 1 symbols as shown in equation 15.

• Step 3: We place B parity symbols p[i] (p1[i], p2[i], p3[i])
into the last channel packet of each macro-packet.
We generate these parities using two components,
p[i]=q[i]+u[i − 3]. q[i] is formed either by ap-
plying MDP to (v1[i],v2[i]) or more directly as
(q1[i], q2[i], q3[i])=(v21 [0] + v11 [2], v

2
2 [0] + v12 [2], v

2
2 [1] +

v21 [2]). Component u[i− 3] is just a repetition code.

B. Decoding

Since M = 2, there are two burst patterns that we need to
check.

1) Burst that erases first three channel packets
• Non-urgent symbol recovery - We recover v11 [0],

v12 [0], v
2
1 [0] from p1[1], p2[1] p3[1] respectively and



v22 [0], v
1
1 [1], v

1
2 [1] from p3[2], p1[2], p2[2] respec-

tively.
• Urgent symbol recovery - Since we have recovered

all the erased non-urgent symbols, we can easily
recover u[0] from p[3] and u[1] from p[4] at their
respective deadlines.

2) Burst that erases next three channel packets (i.e.,
x2[0],x1[1],x2[1])
• Non-urgent symbol recovery - Since u[0] is

unerased, we can use p[3] for non-urgent symbol
recovery. We recover v21 [0], v

2
2 [0], v

1
1 [1], v

1
2 [1] from

p1[3], p2[3], p1[2], p2[2] respectively and v22 [1] from
p3[3]. Finally we use previously decoded v22 [0] to
obtain v21 [1] from p3[2].

• Urgent symbol recovery - u[0] is not erased and
u[1] is easily recovered from p[4] since all the
erased non-urgent symbols are already decoded.

VII. CONCLUSION

This paper studies delay constrained streaming erasure
codes for mismatched source-channel frame rates where M
channel packets need to be transmitted between two succes-
sive source frames. Using the technique of periodic erasure
channel, a general upper bound on the streaming capacity is
obtained. Streaming codes are then constructed for different
cases of parameter choices. Our proposed codes are capacity
achieving for certain range of parameter values (explicitly for
all M , B and T such that T ∈ [0, Tmin] ∪ [T ′, inf)) and
achieve strictly better rates than random linear codes for any
M , B > M and T ∈ Tmin ∪ [T ′, inf). Finding streaming
capacity for T ∈ [Tmin + 1, T ′] is left for future work.

REFERENCES

[1] E. Martinian, Dynamic Information and Constraints in Source and
Channel Coding, Ph.D. Thesis, MIT, September 2004

[2] Emin Martinian and Carl-Erik W. Sundberg, ”Burst Erasure Correction
Codes With Low Decoding Delay,” IEEE Transactions on Information
Theory, October 2004

[3] Emin Martinian and Mitchell Trott, ”Delay-optimal Burst Erasure Code
Construction,” International Symposium on Information Theory, (Nice,
France), July 2007

[4] A. Badr, A. Khisti and E. Martinian, Diversity Embedded Streaming
Erasure Codes (DE-SCo): Constructions and Optimality, in IEEE Global
Telecommunications Conf., Miami, FL, USA, 2010

[5] A. Badr, D. Lui and A. Khisti, Multicast Streaming Codes (Mu-SCo) for
Burst Erasure Channels, Allerton Conf., Monticello, IL, USA, 2010

[6] A. Badr, A. Khisti, W. Tan and J. Apostoloupolos, “Streaming Codes for
Channels with Burst and Isolated Erasures ” To Appear, Infocomm 2013

[7] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, ”Strongly
MDS convolutional codes,” IEEE Transactions on Information Theory,
vol. 52, no. 2, pp. 584598, 2006

[8] Virtudes Toms, Joachim Rosenthal, Roxana Smarandache, ”Decoding of
Convolutional Codes over the Erasure Channel,” IEEE Transactions on
Information Theory, vol. 58, no. 1, pp. 90-108, Jan. 2012


