
Estimating Functionals of the Out-of-Sample Error Distribution in
High-Dimensional Ridge Regression

Pratik Patil Alessandro Rinaldo Ryan J. Tibshirani
Carnegie Mellon University

Abstract

We study the problem of estimating the dis-
tribution of the out-of-sample prediction error
associated with ridge regression. In contrast,
the traditional object of study is the uncen-
tered second moment of this distribution (the
mean squared prediction error), which can be
estimated using cross-validation methods. We
show that both generalized and leave-one-out
cross-validation (GCV and LOOCV) for ridge
regression can be suitably extended to esti-
mate the full error distribution. This is still
possible in a high-dimensional setting where
the ridge regularization parameter is zero. In
an asymptotic framework in which the feature
dimension and sample size grow proportion-
ally, we prove that almost surely, with respect
to the training data, our estimators (exten-
sions of GCV and LOOCV) converge weakly
to the true out-of-sample error distribution.
This result requires mild assumptions on the
response and feature distributions. We also
establish a more general result that allows us
to estimate certain functionals of the error
distribution, both linear and nonlinear. This
yields various applications, including consis-
tent estimation of the quantiles of the out-of-
sample error distribution, which gives rise to
prediction intervals with asymptotically exact
coverage conditional on the training data.

1 INTRODUCTION

The out-of-sample error associated with a predictive
model is the difference between the true (unobserved)
response and the predicted response at a new draw
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from the feature distribution. Being able to accurately
estimate functionals of the out-of-sample error distri-
bution is of critical importance in practice, both for
model assessment and model selection purposes. By
far the most common functional considered is the un-
centered second moment of this error distribution—the
mean squared error of the predictive model. Estimating
this quantity has been the focus of many decades of
research in the statistics and machine learning commu-
nities, which has yielded numerous advances in both
theory and methodology. A central method in practice
for estimating the mean squared prediction error is
cross-validation (CV), which comes in many variants,
including generalized and leave-one-out cross-validation
(GCV and LOOCV, respectively). Classic references on
CV include Allen (1974); Stone (1974, 1977); Geisser
(1975); Golub et al. (1979); Wahba (1980, 1990); Li
(1985, 1986, 1987). See Arlot and Celisse (2010) for a
general review of CV.

In this paper, we study the problem of estimating the
entire out-of-sample error distribution. Part of reason
why so much past work in risk estimation has focused
on mean squared out-of-sample error is undoubtedly
the special analytical structure that it affords and the
associated bias-variance decomposition. A main goal
of this paper is to understand what other functionals of
the out-of-sample error distribution can be reliably esti-
mated using cross-validation. Such an understanding is
useful for not only theoretical purposes (necessitating
novel proof techniques to analyze generic functionals),
but practical ones as well, since cross-validation estima-
tors that work under such general settings then open
up the possibility of employing a wider range of met-
rics for model evaluation and selection, which may be
informative for the data analyst in any given problem
setting at hand.

Throughout, we will focus on ridge regression (Hoerl
and Kennard, 1970a,b) for the predictive model, a spe-
cial form of Tikhonov regularization (Tikhonov, 1943,
1963), which is very widely used in statistics and ma-
chine learning. We choose to focus on ridge regression
because GCV and LOOCV admit special forms for this
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Figure 1: A simulation with n = 2500 samples and p ∈ {100, 2000, 5000} features (a different p per panel above).
In each setting, we generated the feature vectors xi to have independent components from a t-distribution with 5
degrees of freedom, and generated the responses yi by adding t-distributed noise with 5 degrees of freedom to a
nonlinear (quadratic) function of xi. We then fit the minimum `2 norm least squares solution, as in (1) with
λ = 0. The blue curve in each panel is a histogram of the true prediction error distribution, computed from
105 independent test samples. The red curve is a histogram of the training errors; when p > n, this is just a
point mass at zero. The yellow curve is a histogram of GCV-reweighted training errors, as in (11) (for p < n, in
the first two panels) and (13) (for p > n, in the last panel). This tracks the blue curve very well in all settings.
Empirical results for LOOCV are given in the supplement.

estimator, and also because ridge has recently attracted
much attention—especially in the limiting case of zero
regularization, often called the “ridgeless” limit—due to
its somewhat exotic behavior in the overparametrized
regime (see, e.g., Bartlett et al., 2020; Belkin et al.,
2020; Hastie et al., 2019; Muthukumar et al., 2020, and
references therein). Importantly, it has been recently
shown that the ridgeless (minimum `2 norm) interpo-
lator can be optimal for mean squared out-of-sample
error, among all ridge models, for well-specified linear
models with certain data geometries and high signal-to-
noise ratios (Wu and Xu, 2020; Richards et al., 2020).
This has been corroborated empirically using real data
sets for ridge regression (Kobak et al., 2020) and ker-
nel ridge regression (Liang and Rakhlin, 2020). Thus,
providing theory that covers that ridgeless case is both
of foundational and practical importance.

Before summarizing our main contributions, we give
some empirical examples in Figure 1 to motivate our
study.

1.1 Summary of Contributions

An overview of our main contributions is as follows.

• We define natural extensions of GCV and LOOCV
in order to estimate the out-of-sample prediction
error distribution associated with ridge regression.
These are empirical distributions over reweighted
training errors (where the reweighting is tied to
GCV or LOOCV).

• Under an asymptotic framework where the feature

dimension p and sample size n grow proportionally,
p/n → γ ∈ (0,∞), we prove that, almost surely
with respect to the training data, these extensions
of GCV and LOOCV converge weakly to the true
out-of-sample error distribution of ridge regression.
This result requires mild assumptions; we do not
need the true regression model to be linear.

• The GCV and LOOCV extensions and the theory
we prove about them all accommodate the choice
of zero (or even negative) ridge regularization in
high dimensions, where p > n.

• For certain linear functionals of the error distribu-
tion P , which take the form

∫
t dP for a function

t, we prove that suitable plug-in estimators (based
on the GCV and LOOCV estimators of the entire
error distribution) are asymptotically consistent,
almost surely. This result requires t to satisfy cer-
tain continuity and growth conditions, but it can
be unbounded.

• Finally, we use a uniform convergence argument
to handle certain nonlinear functionals of the error
distribution (that can be written in a variational
form involving linear functionals). This allows us
to consistently estimate, as an application, quan-
tiles of the ridge error distribution.

1.2 Related Work

Among the different CV variants to assess prediction
accuracy, k-fold CV is widely used in practice (Györfi
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et al., 2006; Hastie et al., 2009). However, in a high-
dimensional regime where the feature dimension p is
comparable to the sample size n, small values of k (such
as k = 5 or 10) lead to bias in error estimation (see,
e.g., Rad and Maleki, 2020). LOOCV (where k = n)
mitigates these bias issues, and consequently LOOCV
and various approximations to it (that circumvent its
computational burden) have been of interest in recent
work, including Meijer and Goeman (2013); Liu et al.
(2014); Obuchi and Kabashima (2016); Beirami et al.
(2017); Wang et al. (2018); Stephenson and Broderick
(2020); Giordano et al. (2019); Wilson et al. (2020);
Rad et al. (2020); Xu et al. (2021). For recent results
on ridge regression in particular, where LOOCV can
be done efficiently via a “shortcut” formula, see Patil
et al. (2021).

On the inferential side, Bayle et al. (2020) prove central
limit theorems for CV error and a derive a consistent
estimator of its asymptotic variance under certain sta-
bility assumptions, similar to Kale et al. (2011); Kumar
et al. (2013); Celisse and Guedj (2016). Their results
yield asymptotic confidence intervals for the prediction
error and apply to k-fold CV (for a fixed k) as well as
LOOCV. See also Austern and Zhou (2020) for similar
guarantees. A prominent and distinctive aspect of our
work compared to these papers and others is the focus
on properties of the entire empirical distribution of the
CV errors, rather than specific functionals such as the
mean squared CV error.

In a contribution that is quite relevant to this paper,
Steinberger and Leeb (2016, 2018) construct prediction
intervals from quantiles of the empirical distribution of
the LOOCV errors and provide conditional coverage
guarantees, which hold in expectation. Their key as-
sumptions are algorithmic stability, as in Bousquet and
Elisseeff (2002), along with a bound in probability on
the prediction error at a new test point. Under a more
restrictive asymptotic regime in which p/n → γ < 1,
they show that the Kolmogorov-Smirnov distance be-
tween the empirical distribution of LOOCV errors and
the conditional prediction error distribution vanishes
in expectation. This general result is then applied to
yield corollaries for various predictive models, including
ridge regression, by leveraging model-specific stability
and error results from the literature.

In comparison, our paper focuses on ridge regression
alone, but we deliver stronger and broader guarantees.
To be specific, our results (1) accommodate the high-
dimensional regime, p/n → γ ≥ 1; (2) assume quite
weak conditions on the data (e.g., we do not require
a well-specified linear model); (3) hold uniformly over
the choice of regularization parameter (which includes
no regularization—the ridgeless limit); (4) yield not
only consistent estimation of the prediction error distri-

bution itself, but of a broad class of functionals of this
distribution (which includes unbounded and nonlinear
ones); and (5) produces guarantees that hold almost
surely—rather than in expectation or in probability—
with respect to the training data.

2 PRELIMINARIES

We adopt a standard regression setting, with i.i.d. sam-
ples (xi, yi), for i = 1, . . . , n, where each xi ∈ Rp is a
feature vector and yi ∈ R is its corresponding response
value. We will denote by X ∈ Rn×p the feature matrix
whose ith row is x>i , and by y ∈ Rn the response vector
whose ith entry is yi.

2.1 Ridge Regression

The ridge regression estimator β̂λ ∈ Rp, based on X, y,
is defined as the solution to the following problem:

minimize
β∈Rp

1
n
‖y −Xβ‖22 + λ‖β‖22.

Here λ is a regularization parameter. When λ > 0, the
above optimization problem is strictly convex and has
a unique solution:

β̂λ = (X>X/n+ λIp)−1X>y/n.

When λ = 0, and X>X is rank deficient (which will
always be the case when p > n), there will be infinitely
many solutions, and we focus on the solution with the
minimum `2 norm, which we refer to as the min-norm
solution for short. By defining the ridge estimator as

β̂λ = (X>X/n+ λIp)†X>y/n, (1)

where A† denotes the Moore-Penrose pseudoinverse of
a matrix A, we simultaneously accommodate the case
of λ > 0, in which case (1) reduces to the second to
last display, and the case of λ = 0, in which case (1)
becomes the min-norm solution (it lies in the column
space of (X>X)†, i.e., the row space of X, so it has the
minimum `2 norm among all least squares solutions).
In fact, the above display even accommodates the case
of λ < 0, in which case (1) remains well-defined.

The case of zero regularization is of particular interest
when rank(X) = n, because then any least squares
solution interpolates the training data, and the min-
norm solution β̂0 (by construction) has the minimum
`2 norm among all such interpolators.

2.2 Out-of-Sample Error

Let (x0, y0) denote a test point drawn independently
from the same distribution as the training data (xi, yi),



Estimating Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression

i = 1, . . . , n, and denote the out-of-sample prediction
error of ridge regression at tuning parameter λ by

eλ = y0 − x>0 β̂λ. (2)

This is a scalar random variable, and we denote by Pλ
its distribution conditional the training data:1

Pλ = L
(
eλ | X, y

)
. (3)

We are interested in estimating Pλ using the training
data. A naive estimator would be to use the empirical
distribution over the training errors expressed as

P̂λ = 1
n

n∑
i=1

δ
(
yi − x>i β̂λ

)
. (4)

Here we use δ(z) for a point mass at z. Of course, this
can be very inaccurate in high dimensions (as we saw
in Figure 1); at the extreme case of rank(X) = n and
λ = 0, the naive estimator P̂λ trivially places all mass
at zero. In the next subsection, we will introduce more
sensible estimators based on cross-validation.

Aside from estimating Pλ itself, we may be interested
in estimating a particular functional of Pλ, denoted by
ψ(Pλ). Recall, a functional ψ acting on distributions
is such that P 7→ ψ(P ) ∈ R for all distributions P .

In the context of the out-of-sample error distribution
Pλ, the most common functional of interest is its un-
centered second moment,

ψ(Pλ) =
∫
z2 dPλ(z) = E

[
e2
λ | X, y

]
,

which is simply the mean squared prediction error. We
will consider general linear functionals of the form

ψ(Pλ) =
∫
t(z) dPλ(z) = E

[
t(eλ) | X, y

]
, (5)

for functions t (possibly nonlinear and unbounded, but
subject to certain continuity and growth conditions).
We will also consider certain nonlinear functionals such
as the level-τ quantile, for τ ∈ (0, 1):

ψ(Pλ) = Quantile(Pλ; τ) = inf{z : Fλ(z) ≥ τ}, (6)

where Fλ denotes the cumulative distribution function
(CDF) of Pλ.

2.3 Cross-Validation

GCV and LOOCV are two popular versions of cross-
validation that are used to estimate the mean squared

1To be clear, Pλ is itself a random quantity, because it
depends on the training data X, y. However, we suppress
this dependence notationally, for simplicity.

prediction error. GCV is traditionally defined for linear
smoothers only, but LOOCV is fully general: it applies
to any predictive model. In order to describe the details
for ridge regression, we introduce the notation:

Lλ = X(X>X/n+ λIp)†X>/n, (7)

for the ridge smoother matrix at regularization level
λ. Thus, by definition, we can express the fitted values
(predicted values at the training points xi, i = 1, . . . , n)
from ridge regression as Xβ̂λ = Lλ y.

The LOOCV estimate for the mean squared prediction
error of a given ridge model β̂λ can now be written as

1
n

n∑
i=1

(
yi − x>i β̂−i,λ

)2
= 1
n

n∑
i=1

(
yi − x>i β̂λ
1− [Lλ]ii

)2
, (8)

where β̂−i,λ denotes the ridge estimate when the ith

pair (xi, yi) is excluded from the training data set, and
[Lλ]ii denotes the ith diagonal element of Lλ. The left-
hand side in (8) is the usual definition of LOOCV for
any predictive model; the right-hand side is a so-called
“shortcut” formula that holds for ridge (and a handful
of other special linear smoothers; see, e.g., Chapter 7
of Hastie et al., 2009).

The GCV estimate for the mean squared error of β̂λ is
given by

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2
, (9)

where tr[A] denotes the trace of a matrix A.

Caution needs to be taken in (8) and (9) when λ = 0
and rank(X) = n, in which case Lλ = In, and both of
the numerators and denominators in every summand
of (8), (9) are zero. To avoid this problem we redefine
them by their respective limits as λ→ 0, which gives
(see the supplement for details):

1
n

n∑
i=1

(
[(XX>)†y]i
[(XX>)†]ii

)2
and 1

n

n∑
i=1

(
[(XX>)†y]i

tr[(XX>)†]/n

)2
,

(10)
for LOOCV and GCV, respectively.

2.4 Proposed Estimators

We propose estimators for the out-of-sample prediction
error distribution Pλ in (3), building off the empirical
distributions of reweighted training errors, inspired by
GCV in (9) and LOOCV in (8). Precisely, we define

P̂ gcv
λ = 1

n

n∑
i=1

δ

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
, (11)
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which we refer to as the GCV estimate of the out-of-
sample error distribution, and

P̂ loo
λ = 1

n

n∑
i=1

δ

(
yi − x>i β̂λ
1− [Lλ]ii

)
, (12)

which we refer to as the LOOCV estimate of the out-
of-sample error distribution.

When λ = 0 and rank(X) = n, the above expressions
are ill-defined, and we redefine them based on the forms
of GCV and LOOCV in (10):

P̂ gcv
0 = 1

n

n∑
i=1

δ

(
[(XX>)†y]i

tr[(XX>)†]/n

)
, (13)

P̂ loo
0 = 1

n

n∑
i=1

δ

(
[(XX>)†y]i
[(XX>)†]ii

)
. (14)

To estimate a generic functional of ψ(Pλ) of the error
distribution, we simply use

ψ̂gcv
λ = ψ(P̂ gcv

λ ) and ψ̂loo
λ = ψ(P̂ gcv

λ ). (15)

For ψ(Pλ) =
∫
z2 dPλ(z), the plug-in estimates above

reduce to the standard GCV and LOOCV estimates of
the mean squared prediction error.

3 DISTRIBUTION ESTIMATION

We first cover distributional convergence results. We
impose the following mild structural and moment as-
sumptions on the feature and response distributions.
Assumption 1 (Feature distribution). Each feature
vector can be decomposed as xi = Σ1/2zi, for a deter-
ministic symmetric matrix Σ ∈ Rp×p whose maximum
eigenvalue is bounded above by rmax <∞, and mini-
mum eigenvalue is bounded below by rmin > 0, where
rmax and rmin are constants, and for a random vector
zi ∈ Rp whose entries are i.i.d. with mean zero, unit
variance, and E[|zij |4+µ] ≤Mz <∞, where µ > 0 and
Mz are constants.

The maximum eigenvalue bound for the feature covari-
ance matrix Σ is used to control the magnitude of ridge
predictions; the minimum eigenvalue bound is used
in the analysis of the min-norm interpolator. Both of
these can be relaxed further for some of our results,
but we do not pursue such refinements here.
Assumption 2 (Response distribution). Each yi has
mean zero and satisfies E[|yi|4+ν ] ≤My <∞, where
ν > 0 and My are constants.

The condition that each yi is centered is only used for
simplicity. When yi does not have mean zero, we would
simply include an intercept in the model defined in (1),
and all of our results would translate accordingly.

We work in an asymptotic regime where the number the
samples n and the number of features p both diverge
to ∞, and yet their ratio p/n converges to γ ∈ (0,∞).
Such asymptotic regime has received considerable at-
tention recently in high-dimensional statistics and ma-
chine learning theory, which is commonly referred to as
proportional asymptotics. The range of regularization
parameter values λ over which our results will hold is a
function of γ and rmin. In preparation for the coming
theorem statements, we define λmin = −(1−√γ)2rmin.

We are now ready to state the result concerning weak
convergence of the empirical distributions (11)–(14) to
the true out-of-sample error distribution (3).
Theorem 1 (Distribution estimation). Suppose As-
sumptions 1 and 2 hold. Then, for λ > λmin,

P̂ gcv
λ

d−→ Pλ and P̂ loo
λ

d−→ Pλ, (16)

almost surely (which means, here and henceforth, al-
most surely with respect to the distribution of X, y), as
n, p→∞ and p/n→ γ ∈ (0,∞).

In (16), note the left- and right-hand sides both depend
on n, p. To explain what we mean by convergence in
distribution here: if P̂n and Pn are univariate distribu-
tions depending on n (where we make the notational
dependence explicit for concreteness), and their CDFs
are F̂n and Fn respectively, then we write P̂n

d−→ Pn as
n→∞ to mean that |F̂n(z)− Fn(z)| → 0 for every z
that is a continuity point of Fn for all n large enough.

We remark that if we make the stronger assumption
that Pλ converges weakly to a continuous distribution,
then Theorem 1 can be strengthened from pointwise
to uniform convergence in the following sense: in place
of (16), we have supz∈R |F̂

gcv
λ (z)− Fλ(z)| → 0, where

Fλ and F̂ gcv
λ are the distribution functions associated

with Pλ and P̂ gcv
λ , respectively. The analogous result

holds for LOOCV as well. This follows from standard
arguments (e.g., Chapter 3 of Durrett, 2019), and we
omit the details.

An extension (resembling the continuous mapping the-
orem) of Theorem 1 is given next.
Corollary 2. Let h : R→ R be a continuous function,
and Hλ denote the distribution of the transformed error
h(eλ) conditional on the training data. Let Ĥgcv

λ and
Ĥ loo
λ denote the empirical distributions as in (11)–(14),

but where the point mass in each summand is evaluated
at h of its argument. Then, under Assumptions 1 and 2,
for λ > λmin,

Ĥgcv
λ

d−→ Hλ and Ĥ loo
λ

d−→ Hλ, (17)

almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

Some remarks on the above results are in order. The
assumptions required on the distributions of response
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Figure 2: An example with n = 2500, p = 5000. We generated each xi according to a Bernoulli distribution, and
yi by adding Bernoulli noise to a nonlinear (quadratic) function of xi. The ridge tuning parameter was fixed
at λ = 1. Each panel above examines weak convergence per (17) for a different function h of the error variable
(identity, absolute value, and square, from left to right). In each case, the GCV estimate (yellow) tracks the true
distribution (blue) closely. Empirical results for LOOCV are given in the supplement.

and features are very weak. Notably, we do not require
that the response comes from a well-specified model.
Further, the distributions of the response and feature
components could be arbitrary so long as they satisfy
the moment bounds. As an illustration, we consider
examples with binary features and noise in Figure 2.
Finally, since λmin < 0, the results cover the case of
the min-norm interpolator (except when γ = 1).

We next provide some intuition as to why the above
results are true. Consider the special case of an un-
derlying linear model y0 = x>0 β0 + ε0, where β0 ∈ Rp
is deterministic unknown parameter vector and ε0 is
independent of x0. In this case, the out-of-sample pre-
diction error simplifies to eλ = x>0 (β0 − β̂λ) + ε0, and

Pλ = L
(
x>0 (β0 − β̂λ)

)
? L(ε0),

where ? denotes convolution. Further assuming that
the features x0 are Gaussian, as is the noise ε0, with
mean zero and variance σ2, this law will be Gaussian
with mean zero and variance ‖β0 − β̂λ‖2Σ + σ2, where
‖a‖2Σ = a>Σa. The variance here is the same as the
mean squared prediction error of β̂λ. As LOOCV and
GCV (in their usual forms (8) and (9)) track this vari-
ance term, Theorem 1 can be viewed as establishing
asymptotic normality of the empirical distributions of
LOOCV and GCV errors, in this special case.

However, Theorem 1 is considerably more general and
applies even when L(x>0 (β0 − β̂λ)) does not have an
analytically known asymptotic limit (and to reiterate,
applies even when E[y0 | x0] is not linear in x0). In fact,
Theorem 1 is itself a consequence of a more general
result on the convergence of certain functionals of the
error distribution, which is covered next.

4 FUNCTIONAL ESTIMATION

Now we derive convergence theory on the estimation of
linear functionals (5) of the out-of-sample prediction
error distribution. In addition to serving as the main
ingredient for proving Theorem 1, it forms a building
block for establishing convergence results that apply to
certain nonlinear functionals of the error distribution,
discussed in the next section.

4.1 Pointwise Convergence

We impose the following assumption on the error func-
tion t in (5).
Assumption 3 (Growth rate for the error function).
There are constants a, b, c > 0 such that |t(z)| ≤ az2 +
b|z|+ c for any z ∈ R.

The quadratic growth condition on the error function
t in Assumption 3 is tied to the moment conditions in
Assumptions 1 and 2. In particular, both assumptions
together let us bound E[|t(eλ)|2+ξ], where ξ > 0. One
can thus relax the requirement on the growth rate by
assuming higher moments in Assumptions 1 and 2.

Henceforth, let Tλ denote the linear functional in (5)
corresponding to an error function t, and let T̂ gcv

λ , T̂ loo
λ

denote the associated plug-in estimators in (15). Next
we give the first functional convergence result.
Theorem 3 (Linear functional estimation). Suppose
Assumptions 1 and 2 hold, and the function t is contin-
uous and satisfies Assumption 3. Then, for λ > λmin,

T̂ gcv
λ − Tλ → 0 and T̂ loo

λ − Tλ → 0, (18)

almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).
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Several remarks on the above result follow. As before,
the allowed range of tuning parameter values includes
the min-norm estimator, since λmin < 0 (except when
γ = 1). Moreover, the convergence result in (18) holds
almost surely (with respect to the training data X, y).
This is stronger than many previous results for CV
that hold either in probability or expectation over the
training data. Lastly, the error function t can be any
arbitrary continuous, subquadratic function. In partic-
ular, it does not need to be bounded (which, by the
Portmanteau theorem, would be equivalent to the weak
convergence result in Theorem 1).

A special case of the last result was recently given in
Patil et al. (2021) for squared error, t(e) = e2, who as-
sume a much more restricted setting of a well-specified
linear model. The current result greatly extends this
last one, by allowing for general error functions as well
as nonlinear models. The proofs in Patil et al. (2021)
exploit the bias-variance decomposition that accompa-
nies squared error, analyze the asymptotic behavior of
GCV first, and then tie this to LOOCV. Our approach
in this paper is completely different (as it must be, due
to the general lack of bias-variance decompositions for
non-squared error functions). Below we highlight key
steps involved in the proof of Theorem 3.

Proof overview. Our strategy is to study LOOCV
first, and then connect it to GCV. It helps to introduce
an intermediate quantity:

T̃λ = 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
, (19)

where we use X−i and y−i for the feature matrix and
response vector with the ith row and element removed,
respectively, and β̂−i,λ for the ridge estimator trained
on X−i and y−i. One can interpret (19) as the average
of the functionals of the leave-one-out estimators β̂−i,λ,
i = 1, . . . , n. The result then follows from establishing
that: (i) Tλ − T̃λ

a.s.−−→ 0, (ii) T̃λ − T̂ loo
λ

a.s.−−→ 0, and (iii)
T̂ loo
λ − T̂ gcv

λ
a.s.−−→ 0. In step (i), we use the modulus of

continuity of a suitably truncated error function and
the stability of the ridge regression estimator. Step (ii)
is based on identifying a martingale difference sequence
and applying the Burkholder concentration inequality.
In step (iii), we use a key lemma from Patil et al. (2021)
on the asymptotic equivalence of certain functionals of
sample covariance matrices. The full proof is deferred
to the supplement (as with all others in this paper).

4.2 Uniform Convergence

The result in Theorem 3, which is pointwise in λ, can
be made uniform in λ under a stronger assumption on
the error function t.

Assumption 4 (Growth rate for the derivative of the
error function). There are constants g, h > 0 such that
|t′(z)| ≤ g|z|+ h for any z ∈ R.
Theorem 4 (Linear functional estimation, uniform in
λ). Assume the conditions of Theorem 3, and that t
is differentiable and satisfies Assumption 4. Then, for
any compact Λ ⊆ (λmin,∞),

sup
λ∈Λ

∣∣T̂ gcv
λ − Tλ

∣∣→ 0 and sup
λ∈Λ

∣∣T̂ loo
λ − Tλ

∣∣→ 0,

(20)
almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

We remark that it is not essential that the error func-
tion t be differentiable. We can prove a similar result
assuming that the error function t is Lipschitz continu-
ous. We assume a global Lipschitz error function t to
simplify the proof, but it should be possible to further
relax this to a locally Lipschitz assumption, where we
have control over the average Lipschitz constant. We
do not pursue this in the current paper.
Theorem 5 (Linear functional estimation, uniform in
λ, nonsmooth t). Assume the conditions of Theorem 3,
and that t is Lipschitz continuous. Then, for any com-
pact Λ ⊆ (λmin,∞), the same result as in (20) holds,
almost surely as n, p→∞ and p/n→ γ ∈ (0,∞).

Such uniform convergence will come in handy in the
applications discussed next.

5 OTHER APPLICATIONS

The main application of Theorem 3 discussed thus far
is the weak convergence in Theorem 1. Several other
applications are possible, as detailed in this section.

5.1 Variational Functional Estimation

We consider estimation of certain nonlinear functionals
that can be represented in variational form as minimiz-
ers of parametrized linear functionals over a sufficiently
“nice” family of error functions. The main idea behind
such an approach is to exploit uniform convergence of
the plug-in estimators over the family.

Let TV = {t(·, v) : R→ R : v ∈ V} denote a family of
functions indexed by a set V ⊆ R. Corresponding to
each error function t(·, v) in TV , let Tλ(v) denote the
linear functional (5) associated with β̂λ. A variational
error functional, denoted by Vλ, is defined as

Vλ = arg min
v∈V

Tλ(v). (21)

This is assumed to be unique.2 Meanwhile, denoting
by T̂ gcv

λ (v) and T̂ loo
λ (v) the plug-in estimators (15) as-

sociated with the error function t(·, v), for v ∈ V, we
2This is done for simplicity, so we do not have to appeal
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can then define:

V̂ gcv
λ ∈ arg min

v∈V
T̂ gcv
λ (v), (22)

V̂ loo
λ ∈ arg min

v∈V
T̂ loo
λ (v). (23)

Note that we do not assume that these are unique (as
is reflected by the element notation above). Our main
result in the variational setting is as follows.
Theorem 6 (Variational functional estimation). Sup-
pose Assumptions 1 and 2 hold. Let TV be a pointwise
equicontinuous family of functions, where V is compact,
and each t(·, v) satisfies Assumption 3. For λ > λmin,

V̂ gcv
λ − Vλ → 0 and V̂ loo

λ − Vλ → 0, (24)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).

The proof of Theorem 6 builds on the previous results.
We apply Theorem 3 on t(·, v) to establish the conver-
gence of T̂ gcv

λ (v) to Tλ(v) for each v ∈ V . The pointwise
equicontinuity of functions in TV leads to stochastic
equicontinuity of T̂ gcv

λ (v)− Tλ(v), which then provides
GCV part of (24). Similar arguments hold for LOOCV.

5.2 Quantile Estimation

To illustrate the use of Theorem 6, we consider esti-
mating quantiles of the out-of-sample prediction error
distribution. For τ ∈ (0, 1), letQλ(τ) denote the level-τ
conditional quantile (6), assumed unique for simplicity.
While this is a nonlinear functional of Pλ, we will ex-
ploit the fact that (6) can expressed in an equivalent
variational form (Koenker and Bassett Jr., 1978):

Qλ(τ) = arg min
u∈U

E
[
tτ
(
y0 − x>0 β̂λ − u

)
| X, y

]
, (25)

where tτ (u) = u(τ − I(u < 0)), sometimes called the
pinball or tilted `1 loss. If U is any set containing the
true quantile, we can recognize Qλ(τ) as being in the
form (21), for the family TU = {tτ (·, u) : u ∈ U}. We
can then define plug-in estimators Q̂gcv

λ (τ) and Q̂loo
λ (τ)

as in (22) and (23), or to be fully explicit:

Q̂gcv
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x>i β̂λ
1− tr[Lλ]

n

− u
)
, (26)

Q̂loo
λ (τ) ∈ arg min

u∈U

1
n

n∑
i=1

tτ

(
yi − x>i β̂λ
1− [Lλ]ii

− u
)
, (27)

with suitable adaptations based on (13), (14) if λ = 0.
These are essentially just the sample quantiles of GCV
and LOOCV residuals, up to discretization issues (the
sample quantiles not being unique for integral τn).
to set-theoretic notation for convergence of minimizers in
the statements that follow. More general formulations that
do not assume uniqueness, via variational analysis, should
be possible.

Corollary 7 (Quantile estimation). Suppose Assump-
tions 1 and 2 hold. Given τ ∈ (0, 1), assume the level-τ
quantile Qλ(τ) of Pλ is unique, and assume U in (26),
(27) is any compact set that contains the true quantile.
For any λ > λmin,

Q̂gcv
λ (τ)−Qλ(τ)→ 0 and Q̂loo

λ (τ)−Qλ(τ)→ 0,
(28)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).

Thanks to the general result in Theorem 6, the proof of
(28) reduces to verifying the pointwise equicontinuity
of the family of pinball loss functions.

Estimating quantiles gives us a way to construct pre-
diction intervals for the out-of-sample response y0, of
the form:

Igcv
λ =

[
x>0 β̂λ − Q̂

gcv
λ (τl), x>0 β̂λ + Q̂gcv

λ (τu)
]
, (29)

I loo
λ =

[
x>0 β̂λ − Q̂loo

λ (τl), x>0 β̂λ + Q̂loo
λ (τu)

]
, (30)

where τl < τu are appropriate lower and upper quantile
levels chosen to provide the desired coverage. These in-
tervals have asymptotically exact coverage conditional
on the training set, as a consequence of Corollary 7.
See Figure 3 for empirical results.

5.3 Regularization Tuning

One important application of convergence results that
are uniform in λ, for given functionals, is that we can
tune the amount of regularization according to those
functionals, and uniformity will imply that any mini-
mizer of the plug-in estimator converges to a minimizer
of the population functional. A typical strategy is to
tune by minimizing the mean squared GCV or LOOCV
error; but we can also tune via more robust measures
such as absolute error, Huber error, or the length of
the prediction intervals.

The next corollary certifies that the the level of regular-
ization tuned by using the plug-in GCV and LOOCV
estimators is almost surely optimal for a wide range of
error functions.
Corollary 8 (Convergence of tuned errors). Suppose
Assumptions 1 and 2 hold. Suppose the error function
t satisfies Assumption 3, and furthermore, it is either
differentiable and satisfies Assumption 4, or else it is
Lipschitz. Let Λ ⊆ (λmin,∞) be compact, and let λ? be
a minimizer of Tλ over Λ. Similarly, let λ̂gcv and λ̂loo

denote minimizers of T̂ gcv
λ and T̂ loo

λ over Λ, respectively.
Then,

T
λ̂gcv − Tλ? → 0 and T

λ̂loo − Tλ? → 0, (31)

almost surely as n, p→∞ with p/n→ γ ∈ (0,∞).



Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nominal coverage

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
m

p
ir
ic

a
l 
c
o

v
e

ra
g

e

 = -0.15

 = 0

 = 1

 = 10

Ideal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Nominal coverage

0

5

10

15

20

25

P
re

d
ic

ti
o

n
 i
n

te
rv

a
l 
le

n
g

th

 = -0.15

 = 0

 = 1

 = 10

Figure 3: Illustration of empirical coverage and length of GCV prediction intervals (29) against nominal coverage,
where n = 2500, p = 5000. The data model has a latent structure with autoregressive feature covariance and true
signal aligned with the principal eigenvector, similar to that in Kobak et al. (2020) (the supplement gives details),
who investigated the empirical optimality of the min-norm interpolator. Here we see that intervals for any λ have
excellent finite-sample coverage (left), and the case of λ = 0 provides the smallest interval lengths (right).

6 DISCUSSION

In this paper, we investigate the distribution of errors
arising from both generalized and leave-one-out cross-
validation in the context of ridge regression. We show
that these distributions converge to the out-of-sample
prediction error distribution, under generic conditions.
A core result in our work is on consistent estimation
of linear functionals of the error distribution, yielding
wide implications, including an extension to estimating
certain nonlinear functionals which has applications in
conditional predictive inference.

Amazingly (and surprisingly, even to us), these results
continue to hold in an high-dimensional setting when
p > n. LOOCV for ridge regression takes on a special
form, based on the beautiful “shortcut” relation:

yi − x>i β̂−i,λ = yi − x>i β̂λ
1− [Lλ]ii

≈ yi − x>i β̂λ
1− tr[Lλ]/n.

When p > n and λ = 0, the numerator and denomina-
tor in both fractions here are zero. However, as λ→ 0
the numerator and denominator (in each fraction) tend
to zero at exactly the same rate, allowing us to “cancel”
the dependence on λ infinitesimally, leading to:

yi − x>i β̂−i,0 = [(XX>)†y]i
[(XX>)†]ii

≈ [(XX>)†y]i
tr[(XX>)†]/n.

This fact was first derived in Hastie et al. (2019), and
it is key for our results.

The most immediate next direction is to study kernel
ridge regression, which yields a similar “shortcut” for-
mula (Hastie, 2020) where XX> gets replaced by the
kernel gram matrix. For other predictive models that

do not yield exact leave-one-out formulae (in terms
of training errors), examining to what degree similar
results hold true is an interesting direction for future
study. This is especially interesting for “benign” inter-
polators, now an active area of research, which decom-
pose into a “simple” component useful for prediction
and a “spiky” component that interpolates the training
data (Bartlett et al., 2021). As interpolators gain a
central role in modern machine learning, adapting CV
methods to work seamlessly with them is becoming of
foundational importance. This current paper serves as
a step in that direction.
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This supplement contains additional details, proofs, and numerical experiments for the paper “Estimating
Functionals of the Out-of-Sample Error Distribution in High-Dimensional Ridge Regression.” All section, equation,
and figure numbers in this document begin with the letter “S” to differentiate them from those appearing in the
main paper that do not have such prefix.

The content of the supplement is organized as follows. In Sections S.1 to S.3, we first provide proofs related to
Theorems 3 to 5, respectively, along with supporting lemmas used in the process, as they constitute building
blocks for other theoretical results. Then Section S.4 contains proof of Theorem 1, while Section S.5 contains
proofs related to Theorem 6, along with further theoretical results related to quantile estimation. Additional
numerical results and experimental details are provided in Section S.6. Finally, Section S.7 collects statements of
supplementary results from the literature that are used in various proofs throughout the supplement.

A note about constants throughout the supplement: we use the letter C (either standalone or with a subscript
such as C1) to denote a generic constant whose value can change from line to line. Additionally, some of the
inequalities only hold almost surely for sufficiently large n. We will sometimes use the term eventually almost
surely to indicate such statements.
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S.1 PROOFS RELATED TO Theorem 3

As suggested in the proof overview in Section 4 of the paper, we will first show the second part of the theorem
statement: T̂ loo

λ −Tλ
a.s.−−→ 0, and use it to show the first part: T̂ gcv

λ −Tλ
a.s.−−→ 0, as n, p→∞ with p/n→ γ ∈ (0,∞).

• To prove T̂ loo
λ − Tλ

a.s.−−→ 0, we introduce an intermediate quantity T̃λ as in (19) and break the difference

Tλ − T̂ loo
λ = (Tλ − T̃λ) + (T̃λ − T̂ loo

λ ). (S.1)

We will show that both terms in the decomposition (S.1) almost surely vanish. Section S.1.1 shows the
convergence for the first term, while Section S.1.2 shows the convergence for the second term.

• To prove T̂ gcv
λ − Tλ

a.s.−−→ 0, we similarly break the difference

Tλ − T̂ gcv
λ = (Tλ − T̂ loo

λ ) + (T̂ loo
λ − T̂ gcv

λ ). (S.2)

We have already dealt with the first term in the decomposition (S.2) in (S.1). We show the second term
almost surely goes to zero in Section S.1.3.

We will show the three aforementioned converges first under a slight stronger assumption that the error function t
is uniformly continuous. Using a truncation argument, we will then relax them to continuous error functions t in
Section S.1.4. Let ωt : [0,∞]→ [0,∞] denote a modulus of continuity of t. Without of loss of generality, we can
assume ωt to be non-decreasing and continuous. Since the error function is assumed to be uniformly continuous,
such a modulus exits (see, e.g., Chapter 2 of DeVore and Lorentz, 1993). In addition, let ωt denote the least
concave majorant of ωt. From DeVore and Lorentz (1993, Lemma 6.1), ωt is also a modulus of continuity and
satisfies ωt(r) ≤ 2ωt(r) for r ≥ 0. We will make use of these properties below.

S.1.1 Functional to LOO Functional

Towards showing Tλ − T̃λ
a.s.−−→ 0, we begin by manipulating the desired difference using properties of conditional

expectation as follows:

Tλ − T̃λ = E
[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X−i, y−i

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X−i, y−i, xi, yi

]
= E

[
t(y0 − x>0 β̂λ) | X, y

]
− 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂−i,λ) | X, y

]
= 1
n

n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]
.

The second equality above uses independence of (y0, x0) and (X−i, y−i), while the third equality uses independence
of (y0, x0), β̂−i,λ, and (xi, yi). We will next show below that under proportional asymptotics absolute value of
the right-hand side of the last display almost surely goes to zero; in other words, we will show∣∣∣∣∣ 1n

n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]∣∣∣∣∣ a.s.−−→ 0. (S.3)

Using the modulus of continuity of t and its least concave majorant, we first bound the summands in (S.3) for
i = 1, . . . , n as ∣∣t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ)

∣∣ ≤ ωt(∣∣x>0 (β̂λ − β̂−i,λ)
∣∣)

≤ ωt
(∣∣x>0 (β̂λ − β̂−i,λ)

∣∣).
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We can then bound the summation in (S.3) as

∣∣∣∣∣ 1n
n∑
i=1

E
[
t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y

]∣∣∣∣∣ ≤ 1
n

n∑
i=1

∣∣∣E[t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ) | X, y
]∣∣∣

≤ 1
n

n∑
i=1

E
[∣∣t(y0 − x>0 β̂λ)− t(y0 − x>0 β̂−i,λ)

∣∣ ∣∣ X, y]
≤ 1
n

n∑
i=1

E
[
ωt
(∣∣x>0 (β̂λ − β̂−i,λ)

∣∣) ∣∣ X, y]
≤ 1
n

n∑
i=1

ωt

(
E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y])
≤ ωt

(
1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y])

≤ 2ωt

(
1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y]) .
In the above chain of inequalities, the second, forth, and fifth inequalities follow from repeated use of Jensen’s
inequality (on the absolute value function and the concave majorant function). To finish the proof, we will finally
show below that

1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] a.s.−−→ 0, (S.4)

which along with the continuity of the modulus that vanishes at 0 shows (S.3), leading to the desired conclusion
that Tλ − T̃λ

a.s.−−→ 0.

Towards showing (S.4), first note that under Assumption 1, we can bound the summands for each i = 1, . . . , n as

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] ≤ (E[∣∣x>0 (β̂λ − β̂−i,λ)
∣∣2 ∣∣ X, y])1/2

=
(
E
[∣∣z>0 Σ1/2(β̂λ − β̂−i,λ)

∣∣2 ∣∣ X, y])1/2

=
(
E
[
(β̂λ − β̂−i,λ)>Σ1/2z0z

>
0 Σ1/2(β̂λ − β̂−i,λ)

∣∣ X, y])1/2

=
(

(β̂λ − β̂−i,λ)Σ(β̂λ − β̂−i,λ)
)1/2

≤
(
rmax(β̂λ − β̂−i,λ)>(β̂λ − β̂−i,λ)

)1/2

= √rmax
∥∥(β̂λ − β̂−i,λ)

∥∥
2.

The inequality in the first line uses Jensen’s inequality (on the square root function), and the inequality in the
forth line follows since the maximum eigenvalue of Σ is upper bounded by rmax. Hence, overall we can bound the
left-hand side of (S.4) by

1
n

n∑
i=1

E
[∣∣x>0 (β̂λ − β̂−i,λ)

∣∣ ∣∣ X, y] ≤ √rmax

(
1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2

)
. (S.5)

We show in Lemma S.2 that the term in the parenthesis on the right-hand side of (S.5) almost surely goes to zero
under Assumptions 1 and 2, proving (S.4) and completing the proof.
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S.1.2 LOO Functional to LOOCV Estimator

To show T̃λ − T̂ loo
λ

a.s.−−→ 0, we start by breaking the difference into two pieces:

∣∣T̃λ − T̂ loo
λ

∣∣ =
∣∣∣∣∣T̃λ − 1

n

n∑
i=1

t(yi − x>i β̂−i,λ) + 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̂ loo
λ

∣∣∣∣∣
≤

∣∣∣∣∣T̃λ − 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)
∣∣∣∣∣+
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̂ loo
λ

∣∣∣∣∣ . (S.6)

In the sequel, we will show that each of two pieces in (S.6) vanishes almost surely under proportional asymptotics.

For the second piece in (S.6), using the modulus of t and its concave majorant, we can bound the difference as

∣∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,λ)− T̃ loo
λ

∣∣∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t(yi − x→i β̂−i,λ)− 1
n

n∑
i=1

t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t(yi − x>i β̂−i,λ)− t
(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣∣yi − x>i β̂−i,λ − yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)
, (S.7)

where line four uses Jensen’s inequality (on the concave majorant). Note that the above is valid when 1− [Lλ]ii 6= 0
for any of i = 1, . . . , n. For the case of min-norm estimator where [L0]ii = 0, we similarly bound

∣∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,0)− T̃ loo
λ

∣∣∣∣∣ ≤ 2ω
(

1
n

n∑
i=1

∣∣∣∣yi − x>i β̂−i,0 − [(XX>/n)†]i
[(XX>/n)†]ii

∣∣∣∣
)
. (S.8)

The argument of ω in either cases of (S.7) and (S.8) goes to 0 almost surely, and thus the continuity of ω provides
the desired convergence of the second piece in (S.6) It is worth mentioning that the only reason we need to
worry about (S.7) and (S.8) is the way we have defined ridge estimator in (1) where the leave-one-out estimator
β̂−i,λ gets a dividing factor of (n − 1) instead of n, otherwise these terms would be exactly 0. It is a short
straightforward calculation to show however that this does not make a difference as n→∞.

We now focus on the first piece in the decomposition (S.6). Note that we can express

1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− T̃λ = 1
n

n∑
i=1

t(yi − x>i β̂−i,λ)− 1
n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]
= 1
n

n∑
i=1

{
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]} . (S.9)

For i = 1, . . . , n, let Fi denote the increasing σ-field generated by (x1, y1), . . . , (xi, yi). Observe that

{
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]}n
i=1
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forms a martingale difference array with respect to the filtration {Fi}ni=1. To see this, note that

E
[
t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i] ∣∣∣ Fi−1

]
= E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
− E

[
E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i] ∣∣∣ Fi−1

]
= E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
− E

[
t(yi − x>i β̂−i,λ)

∣∣∣ Fi−1

]
= 0,

where for the second equality we used the tower property of conditional expectation as Fi−1 is a subset of the
σ-field generated by (X−i, y−i). This observation allows us to use the Burkholder inequality (see Lemma S.8 for
an exact statement) to bound q-th moment of the difference for q ≥ 2.

Applying the Burkholder inequality to our martingale sequence, we can bound

E

[∣∣∣∣ n∑
i=1

t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q
]

≤ CE

{ n∑
i=1

E

[∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1

]}q/2
+ CE

[
n∑
i=1

∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣q] (S.10)

for some constant C > 0. We next bound each of the terms in turn. Denote by Xn
i+i and yni+i dataset consisting

of observations (xi+1, yi+1), · · · , (xn, yn).

For the first term, from the law of total expectation observe that

E

[∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1

]

= E

[
E

{∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ Fi−1, X
n
i+1, y

n
i+1

}]

= E

[
E

{∣∣∣∣t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣2 ∣∣∣∣ X−i, y−i
}]

≤ 4E
[
E
[∣∣t(yi − x>i β̂−i,λ)

∣∣2 ∣∣∣ X−i, y−i]] ,
where in the last step we used the inequality E[|a+ b|2] ≤ 2

(
E[|a|2] + E[|b|2]

)
.

For the second term, similarly note that

E
[∣∣∣∣t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q]
≤ E

[
E
[∣∣∣t(yi − x>i β̂−i,λ)− E

[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣q] ∣∣∣∣ X−i, y−i]
≤ 2qE

[
E
[∣∣∣t(yi − x>i β̂−i,λ)

∣∣∣q ∣∣∣ X−i, y−i]] ,
where the last step follows from using the inequality E[|a+ b|q] ≤ 2q−1(E[|a|q] + E[|b|q]

)
for q > 1.

In addition, from Jensen’s inequality, we have for q ≥ 2

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣2 ∣∣ X−i, y−i] ≤ E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i].
Hence, to bound both the terms, it is sufficient to control q-th moment of the functional. From Lemma S.1, for
q ≤ 2 + min{µ/2, ν/2},

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i] ≤ (C1 + C2
∥∥β̂−i,λ∥∥2

)2q
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for some positive constants C1 and C2. Combined Lemma S.3 that implies ‖β̂−i,λ‖2 ≤ C almost surely for n large
enough under Assumptions 1 and 2, we have

E
[
E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣ X−i, y−i]] ≤ C
for some constant C > 0 and 2 ≤ q ≤ 2 + min{µ/2, ν/2}.

Therefore, from (S.10) we can bound q-th moment of normalized sum (S.9) to get

E

[∣∣∣∣ 1n
n∑
i=1

t(yi − x>i β̂−i,λ)− E
[
t(yi − x>i β̂−i,λ)

∣∣ X−i, y−i]∣∣∣∣q
]

≤ (nC)q/2 + nC

nq

≤ C 1
nq/2

+ C
1

nq−1 .

Finally, choosing 2 < q ≤ 2 + min{µ/2, ν/2} and applying Lemma S.14 provides the desired convergence for the
first piece in (S.6). This concludes the proof.

S.1.3 LOOCV Estimator to GCV Estimator

To prove T̂ gcv
λ − T̂ loo

λ
a.s.−−→ 0, we start by bounding the absolute difference of interest by the average of absolute

differences for i = 1, . . . , n:

∣∣T̂ gcv
λ − T̂ loo

λ

∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− 1
n

n∑
i=1

t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣
≤ 1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n

)
− t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣ . (S.11)

We will show below that the right-hand side of the expression (S.11) almost surely goes to zero. As with the
proof of T̃λ − T̂λ

a.s.−−→ 0, we will first assume Lii 6= 0 so (S.11) is well defined. We will indicate the changes that
we need to make when Lii = 0 towards the end of the proof.

Using the modulus of continuity of t and it least concave majorant, we have

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n

)
− t

(
yi − x>i β̂λ
1− [Lλ]ii

)∣∣∣∣∣ ≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 1
n

n∑
i=1

ωt

(∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣∣∣ yi − x>i β̂λ1− tr[Lλ]/n −
yi − x>i β̂λ
1− [Lλ]ii

∣∣∣∣∣
)

≤ 2ωt

(
1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
)
.

In the above chain on inequalities, we used Jensen’s inequality on the concave majorant ωt for the third line, and
monotonicity of ωt on the fifth line.

Thus, from continuity of ωt at 0, we will be done by showing

1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣ a.s.−−→ 0. (S.12)
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To build towards proving (S.12), let us denote by r ∈ Rn the vector of residuals yi − x>i β̂λ and by d ∈ Rn the
vector of differences (1− tr[Lλ]/n)−1 − (1− [Lλ]ii)−1. Observe that

1
n

n∑
i=1

∣∣∣yi − x>i β̂λ∣∣∣ ∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣ = 1
n
r>d

≤ 1
n
‖r‖1‖d‖∞

≤ 1√
n
‖r‖2‖d‖∞,

where we used Hölder’s inequality in the second line and the the bound ‖a‖1 ≤
√
n‖a‖2 for any a ∈ Rn in the

last line. Since r = (I − Lλ)y, and the operator norm of I − Lλ is bounded for λ ∈ (λmin, 0) and ‖y‖2/
√
n is

almost surely bounded for sufficiently large n from the strong law of large numbers under Assumption 2, we have
that ‖r‖2/

√
n is eventually almost surely bounded. We now show in the sequel that ‖d‖∞

a.s.−−→ 0 leading to the
desired conclusion.

First for each i = 1, . . . , n, by adding and subtracting 1+tr
[
(X>X/n+λI)†Σ

]
/n, and tr

[
(X>−iX−i/n+λI)†Σ

]
/n,

we decompose the difference∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
=
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1 + tr

[
(X>X/n+ λI)†Σ

]
/n
)

+ tr
[
(X>X/n+ λI)†Σ

]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n

+
(
1 + tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣

+
∣∣tr [(X>X/n+ λI)†Σ

]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣

+
∣∣∣∣(1− tr

[
(X>X/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣ .
This lets us decompose

‖d‖∞ = max
1≤i≤n

∣∣∣∣ 1
1− tr[Lλ]/n −

1
1− [Lλ]ii

∣∣∣∣
≤
∣∣∣∣ 1
1− tr[Lλ]/n −

(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣

+ max
1≤i≤n

∣∣tr[(X>X/n+ λI)†Σ
]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣

+ max
1≤i≤n

∣∣∣∣(1− tr
[
(X>−iX−i/n+ λI)†Σ

]
/n
)
− 1

1− [Lλ]ii

∣∣∣∣ .
Finally, we verify that each of the term in the decomposition almost surely vanishes. Using the λ 6= 0 case of
Lemma S.11, we have for the first term∣∣∣∣ 1

1− tr[Lλ]/n −
(
1− tr

[
(X>X/n+ λI)†Σ

]
/n
)∣∣∣∣ a.s.−−→ 0.

For the second term, following the proof of Lemma S.11, for i = 1, . . . , n we can bound∣∣ tr[(X>X/n+ λI)†Σ
]
/n− tr

[
(X>−iX−i/n+ λI)†Σ

]
/n
∣∣ ≤ C/n,

almost surely for sufficiently large n. This uses the Sherman-Morrison-Woodbury formula with Moore-Penrose
inverse to express the difference

(X>X/n+ λI)† − (X>−iX−i/n+ λI)† = −
(X>−iX−i/n+ λI)†xix>i /n(X>−iX−i/n+ λI)†

1 + x>i (X>−iX−i/n+ λI)†xi
. (S.13)
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The second term thus almost surely goes to zero. For the third term, note that from using the Sherman-Morrison-
Woodbury formula again, we can simplify

1− [Lλ]ii = 1− x>i (X>X/n+ λI)†xi/n
= 1− x>i (X>−iX−i/n+ λI + xix

>
i /n)†xi/n

= 1
1 + x>i (X>−iX−i/n+ λI)†xi/n

.

Therefore, for q ≥ 2, we can now proceed to bound the q-th moment of the second term as

E
[{

max
1≤i≤n

∣∣∣∣1 + tr
[
(X>−iX−i/n+ λI)†Σ

]
/n− 1

1− [Lλ]ii

∣∣∣∣}q]
= E

[{
max

1≤i≤n

∣∣1 + tr
[
(X>−iX−i/n+ λI)†Σ

]
/n−

(
1 + x>i (X>−iX−i/n+ λI)†/n

)∣∣}q]
= E

[{
max

1≤i≤n

∣∣tr[(X>−iX−i/n+ λI)†Σ
]
/n− x>i (X>−iX−i/n+ λI)†/n

∣∣}q]
≤ max

1≤i≤n
E
[{∣∣tr [(X>−iX−i/n+ λI)†Σ

]
/n− x>i (X>−iX−i/n+ λI)†/n

∣∣}q]
≤ nE

[{
tr
[
(X>−jX−j/n+ λI)†Σ

]
/n− x>j (X>−jX−j/n+ λI)†xj/n

}q]
for any j = 1, . . . , n. Note that the last line follows from noting that tr

[
(X>−jX−j/n + λI)†Σ

]
/n, and

x>i
(
X>−iX−i/n+ λI

)†
xi are identically distributed for i = 1, . . . , n. Since

tr
[
(X>−jX−j/n+ λI)†

]
/n ≤ C/n

almost surely for sufficiently large n, using Lemma S.10, the above quantity is of order O(n/nq). Choosing q > 2
and applying Lemma S.14 thus provides the desired almost sure convergence.

The above argument assumed that Lii 6= 0. For the case of min-norm interpolator when Lii = 0, we follow exactly
similar steps as above using the modified errors defined in (13) and (14). (For more details on the λ cancellation
for modified errors, see the proof of T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0 in Section S.1.4.) This reduces to showing

1
n

n∑
i=1

∣∣[(XX>/n)†y]i
∣∣ ∣∣∣∣ 1

tr[(XX>/n)†]/n −
1

[(XX>/n)†]ii

∣∣∣∣ a.s.−−→ 0. (S.14)

The same way we argued the almost sure boundedness of ‖r‖2, we can bound the norm of modified error vector
(XX>/n)†y as shown in Section S.1.4. Finally, analogous to the argument used to bound d, we can now use the
case of λ = 0 equivalence in Lemma S.11 for the difference vector in the modified errors of (S.14). This takes care
of both the cases and concludes the proof.

S.1.4 Truncation Arguments

We established the converges in Sections S.1.1 to S.1.3 under the the assumption that the error function t is
uniformly continuous. In this section, we relax this assumption to t being only continuous by a truncation
argument. Let I{A} denote the indicator function for set A.

Let t be a continuous error function. Define w : R→ R to be the truncation of t on the compact interval [−n, n],
in other words, w(r) = t(r)I{|r| ≤ n}. Let Wλ denote the linear functional (5) corresponding to the error function
w, and let W̃λ be the intermediate averaged LOO functional defined analogously to (19) using w. Let Ŵ gcv

λ and
Ŵ loo
λ denote the plug-in GCV and LOOCV estimators associated with w. The arguments in Sections S.1.1 to S.1.3

establish Wλ − W̃λ
a.s.−−→ 0, W̃λ − Ŵ loo

λ
a.s.−−→ 0, and Ŵ loo

λ − Ŵ gcv
λ

a.s.−−→ 0. We will now show that Tλ −Wλ
a.s.−−→ 0,

T̃λ − W̃λ
a.s.−−→ 0, T̂ gcv

λ − Ŵ gcv
λ

a.s.−−→ 0, T̂ loo
λ − Ŵ loo

λ
a.s.−−→ 0 to finish the proof of Theorem 3. Since the proof of

LOOCV mirrors that for GCV, we will only show the argument for GCV to avoid repetition.
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Showing Tλ −Wλ
a.s.−−→ 0.

We can bound the absolute difference as follows:

|Tλ −Wλ| =
∣∣∣E[t(y0 − x>0 β̂λ) | X, y

]
− E

[
w(y0 − x>0 β̂λ) | X, y

]∣∣∣
=
∣∣∣E[t(y0 − x>0 β̂λ)− w(y0 − x>0 β̂λ) | X, y

]∣∣∣
=
∣∣∣E[t(y0 − x>0 β̂λ)I{|y0 − x>0 β̂| > n} | X, y

]∣∣∣
≤
√
E
[
|t(y0 − x>0 β̂λ)|2 | X, y

]√
P
[
|y0 − x>0 β̂λ| > n | X, y

]
≤ C

√
P
[
|y0 − x>0 β̂λ| > n | X, y

]
≤ C

√
E
[
|y0 − x>0 β̂λ|2 | X, y

]
n2

≤ C

n
→ 0,

where the third line uses the Cauchy-Schwarz inequality, the fourth line uses Lemmas S.1 and S.3 with q = 2, the
fifth line uses Chebychev’s inequality, and the last line again uses Lemmas S.1 and S.3 with t as the identity
function and q = 2.

Showing T̃λ − W̃λ
a.s.−−→ 0.

We can bound the absolute difference as follows:

∣∣∣T̃λ − W̃λ

∣∣∣ =
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ) | X−i, y−i

]
− 1
n

n∑
i=1

E
[
w(yi − x>i β̂−i,λ) | X−i, y−i

]∣∣∣∣∣
=
∣∣∣∣∣ 1n

n∑
i=1

E
[
t(yi − x>i β̂−i,λ)− w(yi − x>i β̂−i,λ) | X−i, y−i

]∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
i=1

E
[
t(yi − x>i β̂−i,λ)I

{
|yi − x>i β̂−i,λ| > n

} ∣∣ X−i, y−i]
∣∣∣∣∣

≤ 1
n

n∑
i=1

√
E
[
|t(yi − x>i β̂−i,λ)|2

∣∣ X−i, y−i]√P
{
|yi − x>i β̂−i,λ| > n

∣∣ X−i, y−i}

≤ 1
n

n∑
i=i

√
E
[
|t(yi − x>i β̂−i,λ)|2 | X−i, y−i

]√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

∣∣∣ X, y}

≤

∣∣∣∣∣ 1n
n∑
i=i

√
E
[
|t(yi − x>i β̂−i,λ)|2 | X−i, y−i

]∣∣∣∣∣
√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}

≤ C

√
P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}
.

Above, line four uses the Cauchy-Schwarz inequality, line five uses the fact that the event |yi − x>i β̂−i,λ| > n for
any i = 1, . . . , n is contained inside the event maxnj=1 |yj − x>j β̂−j,λ| > n, and the last line follows from the q-th
moment control as done in Section S.1.2 with q = 2. It therefore suffices to bound the probability of the event
maxnj=1 |yi − x>i β̂−i,λ| > n which we do below.
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Starting with union bound, we have that

P
{

nmax
j=1
|yi − x>i β̂−i,λ| > n

}
≤

n∑
i=1

P
{
|yi − x>i β̂−i,λ| > n

}
≤

n∑
i=1

E
[
|yi − x>i β̂−i,λ|2

]
n2

≤
n∑
i=1

C

n2

≤ C

n
→ 0.

Showing T̂ gcv
λ − Ŵ gcv

λ
a.s.−−→ 0.

By following similar argument used to bound
∣∣T̃λ − W̃λ

∣∣, it suffices to show that

P

{
nmax
j=1

yi − x>i β̂λ
1− tr[Lλ]/n > n

}
→ 0.

Using the union bound, it is thus enough to show that almost surely

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2

≤ C.

Note that this is valid when λ 6= 0. To cover the case of min-norm interpolator, we start by rewriting the residuals
in an alternate form as follows:

yi − x>i β̂λ = yi − x>i (X>X/n+ λI)†X>y/n
= yi − [X>(X>X/n+ λI)†X>y/n]i
= [y −X>(X>X/n+ λI)†X>y/n]i
= [(I −X>(X>X/n+ λI)†X/n)y]i
= λ[(XX>/n+ λI)†y]i (S.15)

Similarly, we rewrite the denominator of GCV using

1− tr[Lλ]/n = 1− tr[X(XX>/n+ λI)†X>]/n
= tr[I −X(XX>/n+ λI)†X>]/n
= λ tr[(XX>/n+ λI)†]/n. (S.16)

This lets us rewrite the invidual GCV reweighted errors as

yi − x>i β̂λ
1− tr[Lλ]/n = λ[(XX>/n+ λI)†y]i

λ tr[(XX>/n+ λI)†]/n = [(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n.

Thus, we can now bound

1
n

n∑
i=1

(
yi − x>i β̂λ

1− tr[Lλ]/n

)2

=
∥∥(XX>/n+ λI)†y

∥∥2
2/n(

tr[(XX>/n+ λI)†]/n
)2

≤

∥∥(XX>/n+ λI)†
∥∥2

op

∥∥y∥∥2
2/n(

tr[(XX>/n+ λI)†]/n
)2 .

Each term in the above ratio is almost surely bounded for sufficiently large n under Assumption 1 and Assumption 2
as explained in the proof of Lemma S.3. This finishes the argument.
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S.1.5 Auxiliary Lemmas

In this section, we gather supporting lemmas used in the proofs in Sections S.1.1 to S.1.3, along with their proofs.
Lemma S.1 (Bounding conditional q-th moment of the i-th LOO residual). Suppose Assumptions 1 and 2 hold,
and the error function t satisfies Assumption 3. Then, for q ≤ min{µ/2, ν/2} and λ ∈ (λmin,∞),

E
[∣∣t(yi − x>i β̂−i,λ)

∣∣q ∣∣X−i, y−i ] ≤ (C1 + C2 ‖β̂−i,λ‖2
)2q

for some positive constants C1 and C2.

Proof. Note that under Assumption 3,
∣∣t(yi − x>i β̂−i,λ)

∣∣q ≤ a
∣∣yi − x>i β̂−i,λ∣∣2q + b

∣∣yi − x>i β̂−i,λ∣∣q + c for some
positive constants a, b, c. Because E

[
Zql
]
≤ E

[
Zqh

]ql/qh for ql ≤ qh from Jensen’s inequality, it suffices to bound
E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i], which we do below.

From the triangle inequality for the conditional Lq norm, observe that

E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q ≤ E

[∣∣yi∣∣2q ∣∣ X−i, y−i]1/2q + E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q

≤ E
[∣∣yi∣∣2q]1/2q + E

[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q.
The first term is bounded for q ≤ 2 + µ/2 under Assumption 2. For the second term, start by writing

E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i] = E

[∣∣z>i Σ1/2β̂−i,λ
∣∣2q ∣∣ X−i, y−i].

Note that conditional on X−i and y−i, Σ1/2β̂−i,λ is a fixed vector in Rp. For q ≤ 2 + ν/2, Lemma S.9 then
provides

E
[∣∣x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i]1/2q ≤ C‖Σ1/2β̂−i,λ‖2 ≤ C

√
rmax‖β̂−i,λ‖2,

where the last inequality follows since the maximum eigenvalue of Σ is bounded by rmax. Therefore, for
q ≤ 2 + min{µ/2, ν/2}, we get

E
[∣∣yi − x>i β̂−i,λ∣∣2q ∣∣ X−i, y−i] ≤ (C1 + C2‖β̂−i,λ‖2

)2q
for some positive constants C1 and C2 as desired. This completes the proof.

Lemma S.2 (Bounding norm of the difference of leave-one-out ridge estimators). Suppose Assumptions 1 and 2
hold. Then, for λ ∈ (λmin,∞),

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2
a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

Proof. For each i = 1, . . . , n, we start by breaking the difference

β̂λ − β̂−i,λ = (X>X/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>i y−i/(n− 1)
= (X>X/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>y/n

+ (X>−iX−i/n+ λI)†X>y/n− (X>−iX−i/n+ λI)†X>−iy−i/(n− 1)
=
{

(X>X/n+ λI)† − (X>−iX−i/n+ λI)†
}
X>y/n

+ (X>−iX−i/n+ λI)†
{
X>y/n−X>−iy−i/(n− 1)

}
.

Applying the triangle inequality, for each i = 1, . . . , n, we can then bound∥∥β̂λ − β̂−i,λ∥∥2 ≤
∥∥{(X>X/n+ λI)† − (X>−iX−i/n+ λI)†

}
X>y/n

∥∥
2

+
∥∥(X>−iX−i/n+ λI)†

{
X>y/n−X>−iy−i/(n− 1)

}∥∥
2.
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Averaging the bounds above thus provides

1
n

n∑
i=1

∥∥β̂λ − β̂−i,λ∥∥2 ≤
1
n

n∑
i=1

∥∥(X>−iX−i/n+ λI)†
{
X>y/n−X>−iy−i/(n− 1)

}∥∥
+ 1
n

n∑
i=1

∥∥{(X>X/n+ λI)† − (X>−iX−i/n+ λI)†
}
X>y/n

∥∥. (S.17)

We will see below that each of the two terms on the right-hand side of (S.17) almost surely goes to zero providing
the desired convergence. Note that for each i = 1, . . . , n, we can bound∥∥(X>−iX−i/n+ λI)†

{
X>y/n−X>−iy−i/(n− 1)

}∥∥
2 ≤

∥∥(X>−iX−i/n+ λI)†
∥∥

op

∥∥X>y/n−X>−iy−i/(n− 1)
∥∥

2

≤ C
∥∥X>y/n−X>−iy−i/(n− 1)

∥∥
2

= C

∥∥∥∥∥∥xiyin −
∑
j 6=i

xjyj
(n− 1)n

∥∥∥∥∥∥
2

≤ C√
n

‖xiyi‖2√
n

+ C

(n− 1)
√
n

∑
j 6=i

‖xjyj‖2√
n

,

where the second line follows from the fact that
∥∥(X>−iX−i/n + λI)†

∥∥
op is almost surely bounded for n large

enough (as explained in the proof of Lemma S.3), and last line uses triangle inequality. Now writing xi = Σ1/2zi,
note that for each i = 1, . . . , n,∥∥xiyi∥∥2/

√
n =

∥∥Σ1/2ziyi
∥∥

2/
√
n ≤

∥∥Σ1/2∥∥
opyi

∥∥zi∥∥2/
√
n ≤ yi

∥∥zi∥∥2/
√
n ≤ Cyi

almost surely for sufficiently large n since ‖zi‖2/
√
n is eventually almost surely bounded from the strong law of

large numbers. Hence, we have

1
n

n∑
i=1

∥∥(X>−iX−i + λI)†
{
X>y/n−X>−iy−i/(n− 1)

}∥∥ ≤ C√
n

1
n

n∑
i=1
|yi|+

C

(n− 1)
√
n

1
n

n∑
i=i

∑
j 6=i
|yj |

≤ C√
n

(2n− 1)
(n− 1)n

n∑
i=1
|yi|

≤ C√
n
→ 0. (S.18)

Here the second inequality follows by adding |yi| to the second term, and the last inequality follows because∑n
i=1 |yi|/n is eventually almost surely bounded from the strong law of large numbers under Assumption 2. Using

the leave-one-out sample covariance difference (S.13), we can similarly show that the second term goes to zero
almost surely. Hence, we have that (S.17) almost surely goes to zero. This completes the proof.

Lemma S.3 (Bounding norm of the ridge estimator). Suppose Assumption 1 and Assumption 2 hold. Then, for
λ ∈ (λmin,∞), ‖β̂λ‖2 ≤ C for some positive constant C eventually almost surely.

Proof. We can bound the norm of ridge estimator as∥∥β̂λ∥∥2 =
∥∥(X>X/n+ λI)†X>y/n

∥∥
2

≤
∥∥(X>X/n+ λI)†X>/

√
n
∥∥

op‖y‖2/
√
n

≤
∥∥(X>X/n+ λI)†

∥∥
op

∥∥X>/√n∥∥op‖y‖2/
√
n. (S.19)

Now for λ ∈ (λmin,∞), the first two terms in the product (S.19) are almost surely bounded for n large enough.
This is because the maximum eigenvalue of X>X/n is upper bounded by C(1 +√γ)2rmax for some C > 1 and
the minimum non-zero eigenvalue is lower bounded by c(1−√γ)2rmin for some c < 1 almost surely for sufficiently
large n under Assumption 1 (Bai and Silverstein, 1998). From the strong law of large numbers, the final term is
eventually almost surely bounded as the second moment of the response is bouned under Assumption 2. Hence,
the product is eventually almost surely bounded, finishing the proof.
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S.2 PROOFS RELATED TO Theorem 4

To show almost sure uniform convergence (in λ), we will appeal to Lemma S.12. A sufficient condition to establish
strong stochastic equicontinuity in the current differentiable case is uniform boundness of the associated functions
and their derivatives (with respect to λ) (e.g., Chpater 21 of Davidson, 1994). We will show that both Tλ and
T̂ gcv
λ and their derivates are bounded over Λ, implying strong stochastic equicontinuity of the family of functions
{Tλ − T̂ gcv

λ }λ∈Λ. Analogous analysis holds for {Tλ − T̂ loo
λ }λ∈Λ, which we omit due to its similarity with the GCV

analysis. Recall that Λ is a compact set in (λmin,∞). In the following, let Λ ⊂ [λ, λ] where λmin < λ ≤ λ <∞.

Bounding Tλ. We start with Tλ. Using Lemma S.1 with q = 1, under Assumptions 1 and 2, for error function
t satisfying Assumption 3, we can bound Tλ in terms of the norm of the ridge estimator β̂λ as

Tλ = E
[
t(y0 − x>0 β̂λ) | X, y

]
≤
(
C1 + C2‖β̂λ‖2

)2
, (S.20)

for some positive constants C1 and C2. Now following Lemma S.3, over Λ, we have that ‖β̂λ‖2 is eventually
almost surely bounded by C√rmax(λmin + λ)−1 for some positive constant C (independent of λ). This shows
that Tλ is eventually almost surely bounded over λ ∈ Λ.

Bounding T̂ gcv
λ . We next consider T̂ gcv

λ . Using the alternate representation (S.15), for error function t satisfying
Assumption 3, for some positive constants C,C1, C2, we can bound

T̂ gcv
λ = 1

n

n∑
i=1

t

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)

≤ C2

n

n∑
i=1

{
[(XX>/n+ λI)†y]i

}2{
tr[(XX>/n+ λI)†]/n

}2 + C1

n

n∑
i=1

∣∣[(XX>/n+ λI)†y]i
∣∣∣∣ tr[(XX>/n+ λI)†]/n
∣∣ + C

≤ C2

n

n∑
i=1

{
[(XX>/n+ λI)†y]i

}2 + C1

n

n∑
i=1

∣∣[(XX>/n+ λI)†y]i
∣∣+ C. (S.21)

The last inequality above follows by noting that the map λ 7→ tr[(XX>/n + λI)†]/n is non-increasing over
[λ, λ], so tr[(XX>/n+ λI)†]/n is lower bounded by tr[(XX>/n+ λI)†/n]. Since λmin < λ, we then have that
{tr[(XX>/n+ λI)†]/n}−1 is upper bounded by (λmin + λ)−1. Now, observe that for the first term in (S.21):

1
n

n∑
i=i

{
[(XX>/n+ λI)†y]i

}2 = 1
n

∥∥(XX>/n+ λI)†y
∥∥2

2 ≤
1
n

∥∥(XX>/n+ λI)†
∥∥2

op

∥∥y∥∥2
2.

Similarly, note that for the second term in (S.21):

1
n

n∑
i=1

∣∣[(XX>/n+λI)†y]i
∣∣ = 1

n

∥∥(XX>/n+λI)†y
∥∥

1 ≤
1√
n

∥∥(XX>/n+λI)†y
∥∥

2 ≤
1√
n

∥∥(XX>/n+λI)†
∥∥

op

∥∥y∥∥2.

Since ‖(XX>/n+ λI)†‖op is uniformly bounded over λ ∈ Λ under Assumption 1 as argued above, and ‖y‖22/n is
almost surely bouned for n large enough from the law of large numbers under Assumption 2, it follows that T̂ gcv

λ

is almost surely bounded over λ ∈ Λ.

Bounding derivative of Tλ. We now turn to bounding the derivaties of the map λ 7→ Tλ. First note that
since E

[
|y0 − x>0 β̂λ| | X, y

]
≤ E

[
|y0 − x>0 β̂λ|2 | X, y

]1/2, and since the latter is almost surely bounded as shown
above, we can switch the order of differentiation and integration. The derivative of Tλ with respect to λ can then
be bounded above by

T ′λ = E
[
t′(y0 − x>0 β̂λ) x>0 β̂′λ | X, y

]
≤ E

[
{t′(y0 − x>0 β̂λ)}2 | X, y

]1/2 · E[(β̂′λ)>x0x
>
0 β̂
′
λ | X, y

]
≤ C
√
rmax‖β̂′λ‖2.

(S.22)
In the above chain, the first inequality follows from Cauchy-Schwarz inequality, and the second inequality follows
from the bounding of Tλ per (S.20) above (because under Assumption 3, t′ is bounded above by a linear function),
and the fact that ‖Σ‖op ≤ rmax. Applying Lemma S.4 on the last term of (S.22), we thus conclude that the
derivative of Tλ is almost surely uniformly bounded over λ ∈ Λ, as desired.
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Bounding derivative of T̂ gcv
λ . Finally, we bound the derivative of the map λ 7→ T̂ gcv

λ . From the chain rule,
the derivative of T̂ gcv

λ with respect to λ can be expressed as

1
n

n∑
i=1

t′
(

[(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n

)
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)

≤

√√√√ 1
n

n∑
i=1

{
t′
(

[(XX>/n+ λI)†y]i
tr[(XX>/n+ λI)†]/n

)}2
√√√√ 1
n

n∑
i=1

{
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)}2
(S.23)

≤ C

√√√√ n∑
i=1

{
d

dλ

(
[(XX>/n+ λI)†y]i

tr[(XX>/n+ λI)†]/n

)}2
(S.24)

The first inequality above again follows from the Cauchy-Schwarz inequalty. The second inequality follows since,
from Assumption 3, t′ is bouned above by a linear function, and the bounding of T̂ gcv

λ per (S.21) above shows
that the first term of (S.23) is almost surely bounded. Applying Lemma S.5, we can now upper bound the final
term of (S.24). This leads the derivative of T̂ gcv

λ to be almost surely bounded over λ ∈ Λ and concludes the proof.
Lemma S.4 (Bounding norm of the derivative of ridge estimator). Suppose Assumptions 1 and 2 hold. Then,
for λ ∈ (λmin,∞), ‖β̂′λ‖2 ≤ C eventually almost surely for some positive constant C.

Proof. The proof follows from a straightforward calculation. Expressing the ridge estimation in the gram form,
observe that

dβ̂λ
dλ

= dX>(XX>/n+ λI)†y/n
dλ

= X>(XX>/n+ I)†(XX>/n+ λI)†y/n.

In the above, we use the fact that for λ ∈ (λmin,∞), the map λ 7→ (XX>/n+ λI)† is almost surely differentiable
for n large enough, with the derivative given by (XX>/n + λI)†(XX>/n + λI)†. The result then follows by
noting that the opeator norms of X/

√
n and (XX>/n+ λI)† are uniformly bounded over Λ as argued above,

and ‖y‖2/
√
n is almost surely bounded for n large enough, as explained in the proof of Lemma S.3.

Lemma S.5 (Bounding norm of the derivative of modified GCV residuals). Suppose Assumptions 1 and 2 hold.
Then, for λ ∈ (λmin,∞), we have that

1√
n

∥∥∥∥ ddλ
(

(XX>/n+ λI)†y
tr[(XX>/n+ λI)†]/n

)∥∥∥∥
2
≤ C

eventually almost surely for some positive contant C.

Proof. The proof uses straightforward matrix calculus (Petersen et al., 2008). Using the chain rule, we can write

d

dλ

(
(XX>/n+ λI)†y

tr[(XX>/n+ λI)†]/n

)
= − tr[(XX>/n+ λI)†(XX>/n+ λI)†]/n

{tr[(XX>/n+ λI)†]/n}2 (XX>/n+ λI)†y

+ 1
tr[(XX>/n+ λI)†]/n

d

dλ

(
(XX>/n+ λy)†y

)
.

Note that {tr[(XX>/n + λI)†]/n}−1 is almost surely bounded for n sufficiently large as argued above. In
addition, since the operator norm of (XX>/n+ λI)† is uniformly upper bounded for λ ∈ Λ, we also have that
tr[(XX>/n+ λI)†(XX>/n+ λI)†]/n is uniformly upper bounded over Λ. Next, observe that

d

dλ

(
(XX>/n+ λI)†y

)
= (XX>/n+ λI)†(XX>/n+ λI)†y.

As above, since the opeator norm of (XX>/n+ λI)† is uniformly bounded for λ ∈ Λ, and ‖y‖2/
√
n is almost

surely bounded for n large enough, the result then follows from simple application of the triangle inequality (with
respect to the `2 norm). This finishes the proof.
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S.3 PROOFS RELATED TO Theorem 5

The proof is similar to that of proof of Theorem 4. We will again use Lemma S.12. In the current the nonsmooth
case, it is sufficient to show that the family of random functions under consideration is almost surely Lipschitz
continuous, along with the almost sure uniform bounds as shown in the proof of Theorem 4 (see, e.g., Chpater 21
of Davidson, 1994). We will show in the two helper lemmas below that this holds for {Tλ}λ∈Λ and {T̂ gcv

λ }λ∈Λ,
assuming that the loss function t is Lipschitz continuous. This will show that {Tλ − T̂ gcv

λ }λ∈Λ is almost surely
Lipschitz continuous from which the theorem follows. A similar analysis holds for {Tλ − T̂ loo

λ }λ∈Λ.
Lemma S.6 (Lipschitz continuity of the out-of-sample functional). Suppose Assumption 1 and Assumption 2
hold, and the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞). Then, over Λ, the
random map λ 7→ Tλ is almost surely Lipschitz continuous.

Proof. Since Λ is compact, let Λ ⊆ [λ, λ] where λmin < λ ≤ λ <∞. For any λ1, λ2 ∈ [λ, λ], using the Lipschitz
continuity of the error function, we have∣∣t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)

∣∣ ≤ L∣∣x>0 (β̂λ1 − β̂λ2)
∣∣

for some L ≥ 0. Now consider∣∣Tλ1 − Tλ2

∣∣ =
∣∣∣E[t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)

∣∣ X, y]∣∣∣
≤ E

[∣∣t(y0 − x>0 β̂λ1)− t(y0 − x>0 β̂λ2)
∣∣ ∣∣ X, y]

≤ LE
[∣∣x>0 (β̂λ1 − β̂λ2)

∣∣ ∣∣ X, y]
= LE

[√∣∣x>0 (β̂λ1 − β̂λ2)
∣∣2 ∣∣ X, y]

≤ L
√
E
[∣∣x>0 (β̂λ1 − β̂λ2)

∣∣2 ∣∣ X, y]
≤ L

√
E
[∣∣(β̂λ1 − β̂λ2)>x0x>0 (β̂λ1 − β̂λ2)

∣∣2 ∣∣ X, y]
≤ L

√
(β̂λ1 − β̂λ2)>Σ(β̂λ1 − β̂λ2)

≤ L
√
rmax

∥∥β̂λ1 − β̂λ2

∥∥
2.

Above, the second and fourth lines follow from using Jensen’s inequality (on the absolute and square root functions,
respectively), the third line follows from the Lipschitz bound on the error function, and the last inequality follow
since the operator norm of Σ is bounded above by rmax.

To complete the proof, we show below that over [λ, λ], ‖β̂λ1 − β̂λ2‖ ≤ C|λ1 − λ2| for some constant C that
is eventually almost surely bounded. To see this, we start by writing the difference using equivalent gram
representation for ridge estimator:∥∥β̂λ1 − β̂λ2

∥∥
2 =

∥∥X(XX>/n+ λ1)†y/n−X(XX>/n+ λ2)†y/n
∥∥

2

≤
∥∥X/√n∥∥op

∥∥(XX>/n+ λ1)− (XX>/n+ λ2)
∥∥

op

∥∥y∥∥2/
√
n. (S.25)

As argued before, both the first and the last term in the product (S.25) are eventually almost surely bounded under
Assumptions 1 and 2. For the middle term, note that on [λ, λ], since λmin < λ, the map λ 7→ (XX>/n+ λI)†
is differentiable on [λ, λ] with the derivative with respect to λ equal to (XX>/n+ λI)†(XX>/n+ λI)†. Thus,
using the mean value theorem, for some λ ∈ (λ, λ), we can bound∣∣(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

∣∣ ≤ ∣∣(XX>/n+ λI)†(XX>/n+ λI)†
∣∣ |λ1 − λ2| .

Hence, we can bound the second term as∥∥(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
∥∥

op ≤
∥∥(XX>/n+ λI)†(XX>/n+ λI)†

∥∥
op |λ1 − λ2|

≤
∥∥(XX>/n+ λI)†

∥∥
op

∥∥(XX>/n+ λI)†
∥∥

op |λ1 − λ2|

≤ C |λ1 − λ2| , (S.26)
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where the last inequality follows because λ ≥ λ > λmin as explained in the proof of Lemma S.3. This concludes
the proof.

Lemma S.7 (Lipschitz continuity of the GCV functional). Suppose Assumption 1 and Assumption 2 hold, and
the error function t is Lipschitz continuous. Let Λ be a compact set in (λmin,∞). Then, over Λ, the random map
λ 7→ T̂ gcv

λ is almost surely Lipschitz continuous.

Proof. Let Λ ⊆ [λ, λ], where λmin < λ ≤ λ <∞. Using the alternate representation (S.15) for the numerator and
(S.16) for the denominator of GCV reweighted errors, we can rewrite the plug-in functional T̂ gcv

λ as

T̂ gcv
λ = 1

n

n∑
i=1

t

( [
(XX>/n+ λI)†y

]
i

tr
[
(XX>/n+ λI)†

]
/n

)
.

For λ1, λ2 ∈ Λ using the Lipschitz continuity of the error function, note that

T̂ gcv
λ1
− T̂ gcv

λ2
(S.27)

= 1
n

n∑
i=1

t

( [
(XX>/n+ λ1I)†y

]
i

tr
[
(XX>/n+ λ1I)†

]
/n

)
− t

( [
(XX>/n+ λ2I)†y

]
i

tr
[
(XX>/n+ λ2I)

]
/n

)

≤ 1
n

n∑
i=1

L

∣∣∣∣∣
[
(XX>/n+ λ1I)†y

]
i

tr
[
(XX>/n+ λ1I)†

]
/n
−

[
(XX>/n+ λ2I)†y

]
i

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[(XX>/n+ λ1I)†y
]
i
−
[
(XX>/n+ λ2I)†y

]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

n∑
i=1

∣∣∣[{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
]
i

∣∣∣
≤ L

∣∣∣∣∣ 1
tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ 1
n

∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
∥∥

1

(S.28)

Since the map λ 7→ tr
[
(XX> + λI)†

]
/n is non-increasing over [λ, λ], we can bound the first term of (S.28) using∣∣∣∣∣ 1

tr
[
(XX>/n+ λ1I)†

]
/n
− 1

tr
[
(XX>/n+ λ2I)†

]
/n

∣∣∣∣∣ ≤ 2
∣∣∣∣∣ 1
tr
[
(XX>/n+ λI)†

]
/n

∣∣∣∣∣ . (S.29)

For bounding the second term of (S.28), note that∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†
}
y
∥∥

1 /n ≤
∥∥{(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

}
y
∥∥

2 /
√
n

≤
∥∥(XX>/n+ λ1I)† − (XX>/n+ λ2I)†

∥∥
op ‖y‖2/

√
n

≤ C |λ1 − λ2| , (S.30)

where we used the bound from (S.26), along with the fact that ‖y‖2/
√
n is almost surely bounded for n large

enough from the strong law of large numbers under Assumption 2. Plugging (S.29) and (S.30) into (S.28) then
finishes the proof.

S.4 PROOF OF Theorem 1

Let F̂ gcv
λ and F̂ loo

λ denote the CDFs associated with the plug-in distributions P̂ gcv
λ and P̂ loo

λ of the GCV and
LOOCV reweighted errors, respectively. Recall that Fλ denotes the CDF of the out-of-sample error distribution
Pλ. To prove Theorem 1, for all z ∈ R that are continuity points of Fλ for n sufficiently large, we will sandwich
Fλ(z) such that, almost surely, lim supn→∞ F̂ gcv

λ (z) ≤ Fλ(z) along with Fλ(z) ≤ lim infn→∞ F̂ gcv
λ (z). This then

yields the desired result that F̂ gcv
λ (z)− Fλ(z) a.s.−−→ 0. Similar argument shows F̂ loo

λ (z)− Fλ(z) a.s.−−→ 0. The idea of
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the proof is similar to that used in the proof of the Portmanteau theorem, with the main difference being that
the target distribution in our case is also a random distribution. We will make use of Theorem 3 to deduce the
desired inequalities in each direction using suitably chosen error functions.

Fix ε > 0 and z ∈ R. For the first direction, let tz,ε be an error function defined as

tz,ε(r) =


1 r ≤ z
1 + (z − r)/ε z ≤ r ≤ z + ε

0 r ≥ z + ε.

Observe that I{r ≤ z} ≤ tz,ε(r) for all r ∈ R. Here I denotes the indicator function. This allow us to write

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x>i β̂λ

1− tr[Lλ]/n ≤ z
}
≤ 1
n

n∑
i=1

tz,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
. (S.31)

Furthermore, tr,ε is Lipschitz continuous and satisfies Assumption 3. Hence, invoking Theorem 3, we have that

1
n

n∑
i=1

tz,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− E

[
tz,ε(y0 − x>0 β̂λ) | X, y

] a.s.−−→ 0. (S.32)

In addition, observe that tz,ε(r) ≤ I{r ≤ z + ε} for all r ∈ R. This gives us

E
[
tz,ε(y0 − x>0 β̂λ) | X, y

]
≤ E

[
I{y0 − x>0 β̂λ ≤ z + ε} | X, y

]
= P

[
y0 − x>0 β̂λ ≤ z + ε | X, y

]
. (S.33)

Thus, combining (S.31) to (S.33), we get that almost surely

lim sup
n→∞

F̂ gcv
λ (z) ≤ lim sup

n→∞
P
[
y0 − x>0 β̂λ ≤ z + ε | X, y

]
= lim sup

n→∞
Fλ(z + ε). (S.34)

Now sending ε→ 0, we obtain the desired inequality lim supn→∞ F̂ gcv
λ (z) ≤ Fλ(z) almost surely.

We proceed analogously on the other side. Again fix ε > 0 and let z ∈ R be a continuity point of Fλ for n
sufficiently large. We will now use the function tz−ε,ε. Explicitly, the evaluation map of tz−ε,ε is given by

tz−ε,ε(r) =


1 r ≤ z − ε
(z − r)/ε z − ε ≤ r ≤ z
0 r ≥ z.

Noting that tz−ε,ε(r) ≤ I{r ≤ z} for all r ∈ R, we obtain

F̂ gcv
λ (z) = 1

n

n∑
i=1

I

{
yi − x>i β̂λ

1− tr[Lλ]/n ≤ z
}
≥ 1
n

n∑
i=1

tz−ε,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
. (S.35)

Again, since tz−ε,ε is Lipschitz continuous and satisfies Assumption 3, application of Theorem 3 yields

1
n

n∑
i=1

tz−ε,ε

(
yi − x>i β̂λ

1− tr[Lλ]/n

)
− E

[
tz−ε,ε(y0 − x>0 β̂λ) | X, y

] a.s.−−→ 0. (S.36)

Finally, because tz−ε,ε(r) ≥ I{r ≤ z − ε} for r ∈ R, we have that

E
[
tz−ε,ε(y0 − x>0 β̂λ) | X, y

]
≥ E

[
I{y0 − x>0 β̂λ ≤ z − ε} | X, y

]
= P

[
y0 − x>0 β̂λ ≤ z − ε

]
. (S.37)

Combining (S.35) to (S.37), we have almost surely,

lim inf
n→∞

F̂ gcv
λ (z) ≥ lim inf

n→∞
P
[
y0 − x>0 β̂λ ≤ z − ε

]
= lim inf

n→∞
Fλ(z − ε). (S.38)

Since z is a continuity point of Fλ, sending ε → 0, we get the desired inequality lim infn→∞ F̂ gcv
λ (z) ≥ Fλ(z)

almost surely.

Combining (S.34) and (S.38), we conclude that almost surely lim supn→∞ F̂ gcv
λ (z)− lim infn→∞ F̂ gcv

λ (z)→ 0, and
F̂ gcv
λ (z)− F (z)→ 0, completing the proof.
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S.5 PROOFS RELATED TO Theorem 6

S.5.1 Proof of Theorem 6

As hinted in the paper, the proof of Theorem 6 mainly builds on the result of Theorem 3. We will use Theorem 3
to certify pointwise convergence (in v) of T̂ gcv

λ (v) and T̂ loo
λ (v) to Tλ(v). Then using the equicontinuity of TV and

appealing to Lemma S.13, we will prove the convergence of the minimizers V̂ gcv
λ and V loo

λ to Vλ.

First observe that each t(·, v) : R→ R is a continuos function since TV is an equicontinous family of functions. In
addition, each t(·, v) satisfies Assumption 3. Thus, for each v ∈ V, Theorem 3 implies

T̂ gcv
λ (v)− Tλ(v) a.s.−−→ 0.

Next note that for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣Tλ(v1)− Tλ(v2)
∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x>0 β̂λ, v1) | X, y
]
− E

[
t(y0 − x>0 β̂λ, v2) | X, y

]∣∣∣
= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣E[t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2) | X, y
]∣∣∣

≤ sup
|v1−v2|≤δ, v1,v2∈V

E
[∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)

∣∣ ∣∣ X, y]
≤ E

[
sup

|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)
∣∣ ∣∣∣ X, y] , (S.39)

where the third line follows from Jensen’s inequality, the last inequality follows because for any v1, v2 ∈ V such
that |v1 − v2| ≤ δ, we have that∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)

∣∣ ≤ sup
|v1−v2|≤δ, v1,v2∈V

∣∣t(y0 − x>0 β̂λ, v1)− t(y0 − x>0 β̂λ, v2)
∣∣,

which after taking expectation and taking sup gives the desired inequality. Similarly, for any δ > 0,

sup
|v1−v2|≤δ, v1,v2∈V

∣∣T̂ gcv
λ (v1)− T̂ gcv

λ (v2)
∣∣

= sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣ 1n
n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v1

)
− 1
n

n∑
i=1

t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣
≤ sup
|v1−v2|≤δ, v1,v2∈V

1
n

n∑
i=1

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n, v1

)
− t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣
≤ 1
n

n∑
i=1

sup
|v1−v2|≤δ, v1,v2∈V

∣∣∣∣∣t
(

yi − x>i β̂λ
1− tr[Lλ]/n, v1

)
− t

(
yi − x>i β̂λ

1− tr[Lλ]/n, v2

)∣∣∣∣∣ . (S.40)

Note that the exact argument holds for the case of λ = 0 by replacing replacing the first argument of t with
the modified GCV errors. Since the family {t(·, v) : v ∈ V} is pointwise equicontinous, (S.39) and (S.40) imply
equicontinuity of {Tλ(v) : v ∈ V} and {T̂ gcv

λ (v) : v ∈ V}. Moreover, as V is compact and Vλ is assumed to be
unique, Lemma S.13 yields

V̂ gcv
λ − Vλ

a.s.−−→ 0.

Analogous argument shows the convergence for V̂ loo
λ by using the LOOCV part of Theorem 3.

S.5.2 Proof of Corollary 7

We verify that the conditions of Theorem 6 are satisfied. For τ ∈ (0, 1) and compact set U ⊆ R, the family of
error functions under consideration is TU = {tτ (·, u) : u ∈ U}, where each function tτ (·, u) is such that for r ∈ R

tτ (r, u) = (r − u)(τ − I{r − u < 0}.
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In other words, the evaluation map is given by

tτ (r, u) =
{

(r − u)τ if r ≥ u
(u− r)(1− τ) if u > r.

A sufficient condition to establish equicontinuity of TU is to show that the functions in the family are Lipschitz
continuous with uniformly bounded Lipschitz constant (see, e.g., Section 1.8 of Tao, 2010). It is easy to check
that each function in the family TU is Lipschitz continuous with uniformly bounded constant L = max{τ, 1− τ}.
Thus, the family TU is equicontinous over compact set U . Furthermore, since U is assumed to contain the true
quantile, Qλ(τ) is unique. Therefore, invoking Theorem 6 we obtain the desired conclusion.

S.6 ADDITIONAL NUMERICAL RESULTS

In this section, we provide additional numerical illustrations to complement those included in the main paper.
The details of feature and response models used throughout different experiments are described next.

Feature model. The feature xi ∈ Rp is generated according to

xi = Σ1/2zi, (S.41)

where zi ∈ Rp contains independently sampled entires from a common distribution, and Σ ∈ Rp×p is a positive
semidefinite feature covariance matrix. The different distributions that we use for the components of zi include:
(1) Gaussian distribution, (2) Student’s t-distribution, and (3) Bernoulli distribution. These represent a mix of
both continuous and discrete, and light- and heavy-tailed distributions. We standardize the distributions so that
the mean is zero and the variance is one. The different feature covariance matrix structures that we use include:
(1) Identity (Σij = 1 when i = j and Σij = 0 when i 6= j) and (2) Autoregressive with parameter ρ (Σij = ρ|i−j|

for all i, j).

Response model. Given xi, the response yi ∈ R is generated according to

yi = β>0 xi +
(
x>i Axi − tr[AΣ]

)
/p+ εi, (S.42)

where β0 ∈ Rp is a fixed signal vector, A ∈ Rp×p is a fixed matrix, and εi ∈ R is a random noise variable. Note
that we have subtracted the mean from the squared nonlinear component and scaled it to keep the variance of the
nonlinear component at the same order as the noise variance (see Mei and Montanari (2019) for more details, for
example). We again use either Gaussian, Student’s t, or Bernoulli distribution for the random noise component,
which is again standardized so that the mean is zero and the variance is one. We refer to the value of β>0 Σβ0 as
the effective signal energy.

Train and test set sizes. In all of our experiments, the sample size for the train set is fixed at n = 2500. To
compute various out-of-sample quantities, we use a test set of 100000 indepedent observations. We use three
feature sizes of p = 100, p = 2000, and p = 5000 that represent low, moderate, and high-dimensional settings
(with aspect ratios p/n of 0.04, 0.8, and 2), respectively.

S.6.1 Distribution Estimation

As promised in the paper, we first present illustrations with LOOCV reweighted errors for Figures 1 and 2 in
Figures S.1 and S.2, respectively.

Note that both in Figures 1 and 2 in the paper, as well as Figures S.1 and S.2, the out-of-sample error distributions
and the associated GCV and LOOCV reweighted error distributions are all symmetric distributions. This need
not be the case. In Figure S.3, we consider a case in which the out-of-sample error distribution and the estimated
distributions based on GCV and LOOCV reweighted errors are negatively skewed.
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(b) Moderate dimension (p/n = 0.8)
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Figure S.1: A simulation with n = 2500 and p ∈ {100, 2000, 5000} features with a different p per panel above. In
each setting, the feature vectors xi are generated as in (S.41) with identity covariance with components of zi
sampled from a t-distribution with 5 degrees of freedom, and the responses yi are generated as in (S.42). We fit
the min-norm least squares solution, as in (1) with λ = 0. The blue curve in each panel is a histogram of the
true prediction error distribution, computed from 105 independent test samples. The red curve is a histogram of
the training errors; when p > n, this is just a point mass at zero. The purple curve is a histogram of LOOCV
reweighted training errors, as in (12) (when p < n in the first two panels) and (14) (when p > n in the last panel).
This tracks the blue curve very well in all three settings again. Empirical results for GCV are provided in Figure 1
of the paper.

S.6.2 Quantile Estimation

We first provide further details on the setup used in Figure 3 of the main paper. We use a special “latent” space
data model, in which the true signal component lies in a small eigenspace of the feature covariance matrix. Such
setup was investigated in the context of ridge regression by Kobak et al. (2020); Wu and Xu (2020); Richards
et al. (2020); Hastie et al. (2019), who study the optimality of zero (or even negative) ridge regularization for
expected squared out-of-sample error under special cases. We verify empirically that such behavior continues to
hold even for general functionals of the out-of-sample error distribution and their plug-in estimators based on
GCV and LOOCV such as the length of prediction intervals, and even under nonlinear model.

For numerical illustration, we consider an extreme case where the signal vector is aligned with the eigenvector
of the covariance matrix corresponding to the largest eigenvalue. More precisely, let Σ = WRW> denote the
eigenvalue decomposition of the covariance matrix Σ, where W ∈ Rp×p is a orthogonal matrix whose columns
w1, . . . , wp are eigenvectors of Σ and R ∈ Rp×p is a diagonal matrix whose entries r1 ≥ · · · ≥ rp are eigenvalues
of Σ in descending order. We then let β0 = ζw1, where ζ controls the effective signal energy. Figure S.4 illustrate
the coverage and length of prediction intervals (30) computed using the LOOCV reweighted error distribution.

Finally, as a contrast we consider a “regular” setting in Figure S.5 where the signal does not have any special
structure, and the signal covariance is identity, where we see that regularization does in fact help indicating the
subtle interplay between the signal vector and feature covariance that causes the near optimality of ridgeless
estimator for various functionals of the out-of-sample error distribution.

S.7 SUPPLEMENTARY RESULTS

In this section, we record statements of various results adapted from other sources that are used in the proofs
throughout the supplement.

The following inequality bounding q-th moment of sum of random variables is by Burkholder (1973). See also Bai
and Silverstein (2010, Lemma 2.13).
Lemma S.8 (Burkholder’s inequality). Let {Zk} be a martingale difference sequence with respect to the increasing
σ-field {Fk}. Then, for q ≥ 2,

E
[∣∣∣∑

k

Zk

∣∣∣q] ≤ Cq {E[(∑
k

E
[∣∣Zk∣∣2 ∣∣ Fk−1

])q/2]
+ E

[∑
k

∣∣Zk∣∣q]}
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Figure S.2: An example with n = 2500, p = 5000. We generated each xi according to (S.41) with identity
covariance with the components of zi sampled from a symmetric Bernoulli distribution, and each response yi
is generated according to (S.42). The ridge parameter was fixed at λ = 1. Each panel above examines weak
convergence per (17) for a different function h of the error variable (identity, absolute value, and square, from
left to right). In each case, the LOOCV estimate (purple) tracks the true distribution (blue) closely. Empirical
results for GCV are in Figure 2 of the paper.
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Figure S.3: An example with n = 2500, p = 5000. We generated each xi according to (S.41) with identity
covariance and components of zi sampled from a Gaussian distribution, and each response yi according to (S.42)
with noise variable εi distributed according to a Bernoulli random variable with success probability 0.8. The ridge
parameter was fixed at λ = 1. Each panel above examines weak convergence per (17) for a different function h
of the error variable (identity, absolute value, and square, from left to right). In each case, the GCV estimate
(yellow) and LOOCV estimate (purple) track the true distribution (blue) closely.

for a constant Cq that only depends on q.

The following inequality bounding Lp norm of an inner product is from Erdos and Yau (2017, Lemma 7.8).
Lemma S.9 (Lq norm of an inner product). Let u ∈ Rp be a random vector consisting of independent entries ui
with E[ui] = 0, E[u2

i ] = 1, and ‖ui‖Lq
≤ Kq for i = 1, . . . , p. Let a ∈ Rp be a deterministic vector. Then,

‖a>u‖Lq ≤ CqKq‖a‖2

for a constant Cq depending only on q.

The following lemma bounding q-th moment of a quadratic form is from Bai and Silverstein (2010, Lemma B.26).
See also Dobriban and Wager (2018, Lemma 7.10).
Lemma S.10 (Centered moment a quadratic form). Let W ∈ Rp×p be a deterministic matrix. Let v ∈ Rp be a
random vector of independent entries vi for i = 1, . . . , p with each E[vi] = 0, E[v2

i ] = 1, and E[|vi|r] ≤Mr. Then,
for any q ≥ 1,

E
[∣∣v>Wv − tr[W ]

∣∣q] ≤ Cq {(M4 tr[WW>]
)q/2 +M2q tr

[
(WW>)q/2

]}
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Figure S.4: Illustration of empirical coverage and length of LOOCV prediction intervals constructed using
(30) against nominal coverage, where n = 2500, p = 5000. We generated features xi according to (S.41) with
autoregressive covariance structure (with ρ = 0.25) and t-distributed components of zi with 5 degrees of freedom.
The responses yi are generated according to (S.42) where the signal β0 is aligned with the top eigenvector of the
covariance matrix and the effective signal energy is 50. We see that intervals for any λ have excellent finite-sample
coverage (left), and the case of λ = 0 provides the smallest interval lengths (right). Empirical results for GCV
prediction intervals are in Figure S.4 of the paper.

for a constant Cq that only depends on q.

The following equivalence lemma for the denominator arising from GCV is adapted from Patil et al. (2021, Lemma
S.3.1).
Lemma S.11 (GCV denominator lemma). Suppose Assumption 1 holds. Then, for λ ∈ (λmin,∞) \ {0}

1 + tr
[
(X>X/n+ λI)†Σ

]
/n− 1

1− tr
[
(X>X/n+ λI)†X>X/n

]
/n

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞), and for the case of λ = 0,

tr
[(
I − (X>X/n)†X>X/n

)
Σ
]
/n− 1

tr
[
(X>X/n)†

]
/n

a.s.−−→ 0,

as n, p→∞ with p/n→ γ ∈ (0,∞).

The following results are standard results on stochastic uniform convergence. See, e.g., Chapter 21 of Davidson
(1994).
Lemma S.12 (Stochastic uniform convergence). Let fn(θ), θ ∈ Θ be a family of stochastic functions. Suppose
Θ is a compact, and for every θ ∈ Θ, fn(θ) a.s.−−→ f(θ). Further, assume that {fn(θ)} is strongly stochastic
equicontinous. Then, as n→∞,

sup
θ∈Θ
|fn(θ)− f(θ)| a.s.−−→ 0.

A corollary of Lemma S.12 is the following statement.
Lemma S.13 (Convergence of minimizers). Assume the setting of Lemma S.12. Let ξ̂n and ξ be minimizers of
fn and f over θ ∈ Θ, respectively. Moreover, assume that f has a unique minimizer over Θ. Then, as n→∞,

ξ̂
a.s.−−→ ξ.

The following lemma is a simple application of Markov’s inequality along with the Borel-Cantelli lemma.
Lemma S.14 (Moment version of the Borel-Cantelli lemma). Let {Sn} be a sequence of random variables.
Suppose

{
E[|Sn|p]

}
forms a summable sequence for some p > 0. Then, as n→∞, Sn

a.s.−−→ 0.
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Figure S.5: Illustration of empirical coverage and length of LOOCV prediction intervals (30) against nominal
coverage, where n = 2500, p = 5000. The features xi are generated according to (S.41) with identity covariance
and components of zi having Gaussian distribution. The responses yi are generated according to (S.42) with the
nonlinearity component set to 0 (thus a well-specified linear model) and a random signal vector. We see again
that the intervals for any λ have excellent finite-sample coverage (left) and now the case of λ = 1 provides the
smallest interval lengths (right). Similar trend holds for GCV prediction intervals, and hence we do not present
the corresponding figure for GCV.
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