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Abstract—This paper studies the downlink of a cloud radio
access network (C-RAN), in which the base stations (BSs) are
connected to a central processor (CP) via finite-capacity fronthaul
links, modeled as a two-hop broadcast-relay network. We focus
on a compression-based strategy in which the CP jointly encodes
the signals to be broadcasted by the BSs, then compresses and
sends these signals to the BSs through the fronthaul links. The
paper characterizes an achievable rate region for a generalized
compression strategy with Marton’s multicoding for broadcasting
and multivariate compression for fronthaul transmission. We
then compare this rate region with the distributed decode-
forward (DDF) scheme, which achieves the capacity of a general
relay network to within a constant gap, and show that the
difference lies in that DDF performs Marton’s multicoding and
multivariate compression jointly as opposed to successively as
in the generalized compression strategy. A main result of this
paper is that under an assumption of a sum fronthaul capacity
constraint this difference is immaterial, so the successive encoding
based compression strategy can already achieve the capacity
region of the C-RAN to within a constant gap, where the gap is
independent of the channel parameters and the power constraints
at the BSs. For the special case of the Gaussian network, we
further establish that under individual fronthaul constraints, the
generalized compression strategy achieves to within a constant
gap to the sum capacity of the C-RAN.

A full version is accessible at arxiv.org/abs/1801.00394.

I. INTRODUCTION

Cloud radio access network (C-RAN) is a promising archi-
tecture for future cellular networks in which the base stations
(BSs) are connected to a centralized processor (CP) through
wired or wireless fronthaul links [1]. Information theoretically,
the downlink C-RAN can be modeled as a broadcast-relay
channel: the CP broadcasts the user messages through the BSs
via the fronthaul links and the BSs act as relays for the users.
This paper focuses on characterizing the theoretical achievable
rate region of the downlink C-RAN with noiseless digital
fronthaul links between the CP and BSs. Ideally with infinite
fronthaul capacity links, downlink C-RAN model reduces
to a multi-antenna broadcast channel for which cooperative
beamforming combined with dirty-paper coding (DPC) [2] is
known to be optimal. For the practical situation with finite
fronthaul capacity links, the optimal coding strategy must com-
bine both broadcasting and relaying, and is currently still an
open problem. This paper makes progress by establishing the
achievable rate region of a generalized compression strategy
and showing that it is approximately optimal for the downlink
C-RAN under certain conditions.

Several transmission strategies have been studied for the
downlink C-RAN, including data-sharing [3], compression-
based [4], reverse compute-forward [5], hybrid data-sharing
and compresssion [6], that differ in how the fronthaul links
are utilized and where the encoding of user messages is
performed. We focus on the compression strategy in which
the encoding is performed at the CP and the encoded analog
signals are compressed and sent to the BSs to accommodate
the fronthaul capacity constraints. The BSs then transmit the
decompressed signals to the users. The aim of the paper is
to understand the compression strategy from an information
theoretical point of view.

As pointed earlier, with infinite fronthaul capacity, DPC
achieves the capacity region for a Gaussian C-RAN. With
finite fronthaul capacity, DPC and linear precoding schemes
cannot be applied directly. A compressed version of DPC
using independent compression across the BSs is introduced
in [4]. The independent compression scheme can be further
improved using a multivariate compression strategy across all
the BSs [7] to better control effect of quantization noises
by correlating them. The achievable rate expressions under
linear beamforming and multivariate compression for the
Gaussian C-RAN model are given in [7] and the corresponding
achievable rate region using dirty paper coding followed by
multivariate compression is given in [1]. This paper provides
an achievable rate region of a general form of the compres-
sion strategy that includes Marton’s multicoding followed by
multivariate compression for a general discrete memoryless
channel (DMC) in the second hop of C-RAN.

Can such generalized compression strategy approach the
information theoretic capacity region of the C-RAN model?
Toward answering this question, this paper draws inspiration
from a new coding strategy named distributed decode-forward
(DDF) [8] for broadcasting multiple messages over a general
relay network, which has been shown to achieve the capacity
region of the general Gaussian broadcast relay network to
within a constant gap that is independent of the channel
parameters and the power constraints and linear in the number
of nodes in the network. When specialized to the downlink C-
RAN model, the gap can be further improved from linear to
logarithmic in the number of users and BSs [9]. Further, an
improvement to the DDF strategy using a common message in
Marton’s coding is proposed in [10] for a 2-user 2-BS C-RAN
model that allows for conferencing between the BSs.



This paper makes an observation that when specialized to
C-RAN model, the DDF strategy resembles the generalized
compression strategy, but with a crucial difference that instead
of performing the compression followed by Marton’s multicod-
ing, DDF performs both the Marton’s coding and multivariate
compression jointly at the CP. As practical implementation
for performing successive Marton’s coding and multivariate
compression would likely be much easier, we ask in this paper
whether there are conditions under which the difference is
immaterial. One of the main results of this paper is that under
a sum fronthaul constraint, this is indeed true for a general
DMC on the second hop. Furthermore, in the special case of
Gaussian networks, we show that Marton’s encoding followed
by multivariate compression achieves the sum capacity of the
downlink C-RAN to within a constant gap.

Rest of the paper is organized as follows. Section II provides
the mathematical model for downlink C-RAN. Section III
provides the achievable rate region for the generalized com-
presion strategy. Section IV specializes the DDF strategy for
downlink C-RAN. In Section V, we compare two rate regions
and provide conditions under which the two coincide. Finally,
Section VI concludes the paper. We follow the notation of [2]
throughout the paper. In addition, total correlation between a
group of random variables indexed by a set S is defined as

T (X(S)) =
∑
l∈S

H(Xl)−H(X(S)). (1)

II. SYSTEM MODEL

Consider the downlink of a C-RAN comprising of a CP, L
BSs, and K users. The CP communicates with BSs through
noiseless fronthaul links of finite capacities. Let Cl denote
the capacity of the fronthaul link from the central processor
to BS l, l ∈ L := [1 : L]. We assume a general DMC
p(y1, . . . , yK |x1, . . . , xL) between the BSs and the users.
Let the intended message for user k be denoted by Mk,
k ∈ K := [1 : K]. A (2nR1 , . . . , 2nRK , n) code for the
downlink C-RAN consists of a mapping at the CP from the K
user messages (m1, . . . ,mK) ∈ [1 : 2nR1 ]× · · · × [1 : 2nRK ]
to L indices (t1, . . . , tL) ∈ [1 : 2nC1 ] × · · · × [1 : 2nCL ];
encoders at the L BSs that map the index tl to a codeword
xnl (tl); decoders at the K users that estimate m̂k based on
the received signals ynk . The average probability of error is
defined as P (n)

e = P{m̂k 6= mk for some k ∈ K}. A rate
tuple (R1, . . . , RK) is achievable if there exists a sequence of
codes such that limn→∞ P

(n)
e = 0.

Of particular interest is the special case where the channel
between the BSs and the users is a vector additive white
Gaussian noise channel such that the received signal at user k
is given by

Yk =
∑
l∈L

hk,lXl + Zk, (2)

where Zk are independent Gaussian noises with zero mean and
variance σ2. We assume all the BSs have an average power
constraint of P without loss of generality. For simplicity, both
the BSs and the users are assumed to be equipped with a single
antenna in this paper.

III. GENERALIZED COMPRESSION STRATEGY

The compression strategy has been extensively studied in
the literature [4], [7]. The coding strategy involves two steps.
First, the CP jointly encodes the user messages. Second, the
encoded signals are compressed in order to accommodate
them through the fronthaul links. Different options for joint
encoding include linear beamforming strategies such as zero-
forcing or regularized zero-forcing, or non-linear beamforming
strategy such as DPC. Different options for compression
include independent compression or multivariate compression.

The key point of this section is that these specific com-
pression strategies previously studied in [4], [7] are special
forms of a generalized compression strategy in which the joint
encoding is performed via Marton’s multicoding. This section
characterizes the achievable rate region of such a generalized
compression strategy assuming a general DMC on the second
hop of C-RAN.

Theorem 1: A rate tuple (R1, . . . , RK) is achievable for
the downlink C-RAN using the compression strategy with
Marton’s multicoding followed by multivariate compression
if ∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (3)

for all D ⊆ K such that∑
l∈S

Cl > I(U(K);X(S)) + T (X(S)) (4)

for all S ⊆ L for some distribution p(u1, . . . , uK , x1, . . . , xL).
The set of inequalities (3) represents the achievable user

rates using Marton’s multicoding for broadcast channels. In
linear beamforming, the U ’s are just the messages and are thus
independent of each other. The advantage of using Marton’s
multicoding is to introduce correlation among U ’s for the
possibility of increased rates. But doing so incurs a penalty
that depends on the total correlation present among U ’s. DPC
is an example of such Marton’s coding.

The set of inequalities (4) represents the multivariate com-
pression of U(K) into X’s that are transmitted by the BSs.
If the BSs were co-located and can cooperate, the amount
of quantization needed for compression is simply the first
term I(U(K);X(S)). If the BSs are distributed and cannot
cooperate, there’s a penalty in terms of the correlation between
the signals transmitted by the BSs.

The above achievability region has been presented at [11]
and is subsequently generalized in [10] to the case with
common information and BS cooperation when there are two
BSs in the C-RAN.

IV. DISTRIBUTED DECODE-FORWARD

The main objective of this paper is to understand whether
the generalized compression strategy can approximately
achieve the capacity region of the C-RAN model. Toward this
end, we examine the DDF strategy [8], which is a general
coding scheme for broadcasting multiple messages over a
general relay network that combines Marton’s coding for the
broadcast channel with partial decode-forward for the relay



channel. The coding scheme involves using auxiliary random
variables at each node in the network that implicitly carry
information about the user messages. By specializing DDF
to the C-RAN setup, we write down a succinct form of the
achievable rate region using DDF that can be readily compared
with the generalized compression strategy.

Theorem 2 ( [8]): A rate tuple (R1, . . . , RK) is achievable
for the downlink C-RAN using the DDF strategy if∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk) +
∑
l∈S

Cl − T (U(D), X(S)) (5)

=
∑
k∈D

I(Uk;Yk)− T (U(D))

+
∑
l∈S

Cl − I(U(D);X(S))− T (X(S)) (6)

for all D ⊆ K and S ⊆ L for some distribution
p(u1, . . . , uK , x1, . . . , xL).

Comparing Theorem 2 with Theorem 1, we observe that
DDF generalizes the compression strategy by jointly encoding
the Marton’s and compression codewords as opposed to suc-
cessively as in the compression strategy. This allows the DDF
strategy to consider distribution p(u1, . . . , uK , x1, . . . , xL)
that can violate the fronthaul constraint (4) in compression.

A key advantage of enlarging the allowable distribu-
tions to beyond the ones that explicitly satisfy the fron-
thaul constraints is that it permits a proof that the DDF
strategy can achieve to within a constant gap to the cut-
set bound of the general Gaussian broadcast relay channel
[8]. The ingenious choice of p(u1, . . . , uK |x1, . . . , xL) pro-
posed in [8] that accomplishes this task is a distribution for
p(u1, . . . , uK |x1, . . . , xL) that tries to mimic the Gaussian
channel distribution p(y1, . . . , yK |x1, . . . , xL).

We now specialize the result of [8] to the C-RAN setup,
where the second hop is a Gaussian network

Y = HX+ Z, (7)

where Y = [Y1, . . . , YK ]
T are the received signals at the K

users, X = [X1, . . . , XL]
T are the transmitted signals from

the L BSs, H = [h1, . . . ,hk]
T is the K × L channel matrix

consisting of channel vectors h1 to hk for users 1 to K,
respectively, and Z = [Z1, . . . , ZK ]T ∼ N (0, σ2I) is the
additive white Gaussian noise. The DDF strategy can be shown
to achieve to within a constant gap to the cut-set outer bound
by choosing X to be a vector of L independent Gaussian
random variables N (0, P ) and by choosing

U = HX+ Z̃, (8)

where Z̃ ∼ N (0, σ2I) is independent of Z. With this choice
of p(u1, . . . , uK |x1, . . . , xL), the DDF strategy achieves a rate
region which is within a constant gap to the capacity region
of C-RAN, where the gap is independent of the channel, the
BS power constraints, and the fronthaul constraints [9].

A natural question at this point is whether we can use the
generalized compression strategy to accomplish the same. The
next section gives some partial answer in the affirmative but
under specific conditions.

V. COMPRESSION VERSUS DDF

As DDF generalizes the compression strategy, the achiev-
able rate region of the compression strategy is a subset of the
DDF region. This section asks the question of whether this
subset inclusion is strict. The main result here is that under
certain conditions the rate regions of the two strategies actually
coincide. Specifically, we show that under a sum fronthaul
constraint, the rate regions of the two strategies coincide for a
general DMC on the second hop of C-RAN. As a second
result of this section, we show that in the special case of
Gaussian networks but under individual fronthaul constraint,
the compression strategy achieves the sum capacity of C-RAN
to within a constant gap. These results are useful, because
successive Marton’s coding and multivariate compression is
much easier to implement in practice than DDF.

A. Sum Rate Under Sum Fronthaul Constraint

From (21) and (22), we have that achievable sum rate Rs
DDF

for the DDF strategy under the sum fronthaul constraint C
satisfies

Rs
DDF ≤ I(Uk;Yk)− T (U(K))

+ min {0, C − I(U(K);X(L))− T (X(L))} , (9)

for some distribution p(u1, . . . , uK , x1, . . . , xL). Similarly,
from (19), the achievable sum rate Rs

COM using the compres-
sion strategy under the sum fronthaul constraint is given by

Rs
COM ≤ I(Uk;Yk)− T (U(K)), (10)

under some distribution p(u1, . . . , uK , x1, . . . , xL) that satis-
fies

C ≥ I(U(K);X(L)) + T (X(L)), (11)

from (20).
Theorem 3: Maximizing Rs

DDF over distributions
p(u1, . . . , uK , x1, . . . , xL) is equivalent to maximizing
Rs

COM over distributions p(u1, . . . , uK , x1, . . . , xL) that
satisfy the sum fronthaul constraint given in (11).

Proof 1: We use proof by contradiction. Assume that
the maximizing distribution p(u1, . . . , uK , x1, . . . , xL) is such
that I(U(K);X(L)) + T (X(L)) > C. We show that we
can alter any such distribution and produce a strictly better
sum rate producing a contradiction. We remark that this proof
is similar in spirit to the proof of equivalence between the
unconstrained and constrained forms of compress-and-forward
for the three-node relay channel, e.g., see Appendix 16C of
[2]. Let us first rewrite the DDF sum rate Rs

DDF in a different
form. It can be shown that we can write Rs

DDF equivalently as

Rs
DDF ≤ I(U(K);X(L))−

K∑
k=1

I(Uk;Uk−1, . . . , U1, X(L)|Yk)

+ min {0, C − I(U(K);X(L))− T (X(L))} (12)

≤ min
{
I(U(K);X(L))

−
K∑

k=1

I(Uk;Uk−1, . . . , U1, X(L)|Yk),



C −
K∑

k=1

I(Uk;Uk−1, . . . , U1, X(L)|Yk)− T (X(L))
}
,

(13)

where, in this case, the expression
I(Uk;Uk−1, . . . , U1, X(L)|Yk) involves additional
Uk−1, . . . , U1 as we do not assume any assumptions
on the distribution p(u1, . . . , uK , x1, . . . , xL). With this
equivalent way of writing the sum rate, under the assumption
that I(U(K);X(L)) + T (X(L)) > C, we have

Rs
DDF = C −

K∑
k=1

I(Uk;Uk−1, . . . , U1, X(L)|Yk)− T (X(L)).

(14)
Now, we alter the distribution p(u1, . . . , uK , x1, . . . , xL)

in the following way. In the altered distribution, we keep
(X1, . . . , XL) the same, but conditioned on (X1, . . . , XL), we
set (U ′1, . . . , U

′
K) = (U1, . . . , UK) with probability p and and

set it to 0 with probability (1 − p). Then, (U ′1, . . . , U
′
K) →

(U1, . . . , UK) → (X1, . . . , XL) → (Y1, . . . , YK) form a
Markov chain. With this altered distribution, we have that

C −
K∑

k=1

I(U ′k;U
′
k−1, . . . , U

′
1, X(L)|Yk)− T (X(L))

> C −
K∑

k=1

I(Uk;Uk−1, . . . , U1, X(L)|Yk)− T (X(L)),

(15)

because each of the terms I(U ′k;U
′
k−1, . . . , U

′
1, X(L)|Yk) is

now reduced by (1− p) fraction, while

I(U ′(K);X(L))− I(U ′k;U ′k−1, . . . , U ′1, X(L)|Yk)
< I(U(K);X(L))− I(Uk;Uk−1, . . . , U1, X(L)|Yk), (16)

because the I(U(K);X(L))−I(Uk;Uk−1, . . . , U1, X(L)|Yk),
which is positive, on whole decreases by a factor of (1− p).
As a consequence of this, we can observe from (13) that the
resulting sum rate Rs

DDF is higher with the altered distribution,
thus producing the required contradiction. Since the mutual
information terms are continuous functions of p, continuing
to decrease p, we also see that we can keep increasing the
sum rate until the two terms in the minimum match, in which
case, we have

C = I(U(K);X(L)) + T (X(L)), (17)

i.e., the optimal distribution to maximize the sum rate must
be such that the sum fronthaul constraint is met with equality,
and the corresponding sum rate is given by

Rs
DDF = I(Uk;Yk)− T (U(K)), (18)

which is exactly the same as the compression strategy. In other
words, there is no harm the sum rate due to performing the
generalized compression strategy.

B. Rate Region Under Sum Fronthaul Constraint

Under a sum fronthaul constraint C, only the constraint for
S = L is active in (4) for the compression strategy. Therefore,
the achievable rate tuples (R1, . . . , RK) satisfy∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (19)

over all D ⊆ K such that

C > I(U(K);X(L)) + T (X(L)) (20)

for some distribution p(u1, . . . , uK , x1, . . . , xL). Similarly, for
the DDF strategy, the active constraints correspond to S = L
or S = ∅. The achievable rate tuples (R1, . . . , RK) thus satisfy∑

k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D)) (21)∑
k∈D

Rk <
∑
k∈D

I(Uk;Yk)− T (U(D))

+ C − I(U(D);X(L))− T (X(L)) (22)

over all D ⊆ K for some p(u1, . . . , uK , x1, . . . , xL).
Definition 1: Let Rs

COM(C) denote the closure of the convex
hull of achievable rate-sum-fronthaul tuples (R1, . . . , RK , C)
using the generalized compression strategy satisfying (19)-
(20) over all joint distributions p(u1, . . . , uK , x1, . . . , xL) sat-
isfying possibly input constraints on (x1, . . . , xL). Similarly,
define the set Rs

DDF(C) for the DDF strategy satisfying (21)
and (22) in respective manner.

Theorem 4: For the downlink C-RAN with a general DMC
p(y1, . . . , yK |x1, . . . , xL) in the second hop and a sum fron-
thaul constraint C, we have Rs

COM(C) = Rs
DDF(C).

The proof makes use of the polymatroidal structure of the
rate region to characterize all the corner points of the rate
region achieved by the DDF strategy and construct appropriate
time-shared compression strategies (by shutting down some
users) to achieve all such corner points.

Since the DDF strategy is known to achieve the rate region
of the C-RAN to within a constant gap for the Gaussian
network, having the generalized compression rate region coin-
cide with the DDF region under the sum fronthaul constraint
immediately gives us the following corollary.

Corollary 1: For a Gaussian C-RAN under a sum fronthaul
constraint C, the compression strategy achieves a rate region
to within a constant gap to the capacity region, where the gap
is independent of the channel, the BS power constraints, and
the sum fronthaul constraint, and only depends on the number
of BSs and users.

As a remark, we wonder whether the generalized com-
pression and DDF rate regions coincide also under individual
fronthaul constraints. While the answer is still not yet clear,
we note here that the successive coding strategy of computing
Marton’s codewords first, then forming the compression code-
words is not the only way to perform successive encoding.
There is also the possibility of interleaving the encoding of
U ’s and X’s and it is perhaps necessary in general. However,
the next section shows that if we only consider the sum



rate, the two-step encoding of the generalized compression
strategy indeed achieves the sum capacity of C-RAN to within
a constant gap, even under individual fronthaul constraints, if
we assume a Gaussian channel p(y1, . . . , yK |x1, . . . , xL).

C. Sum Rate Under Individual Fronthaul Constraints

Consider the Gaussian C-RAN model specified in (7).
Recall if we set p(u1, . . . , uK , x1, . . . , xL) according to (8),
the DDF strategy can be shown to achieve to within a constant
gap to the capacity region. We show in this section that the
sum rate achieved by the DDF strategy for the Gaussian C-
RAN under the constant-gap distribution can also be achieved
using the generalized compression strategy under the same set
of fronthaul constraints.

The sum rate achieved by the DDF strategy is given by R
that satisfies

R <
∑
k∈K

I(Uk;Yk) +
∑
l∈S

Cl − T (U(K), X(S)), (23)

for all S ⊆ L under some p(u1, . . . , uK , x1, . . . , xL). The sum
rate achieved by the generalized compression strategy is given
by R that satisfies

R <
∑
k∈K

I(Uk;Yk)− T (U(K)) (24)∑
l∈S

Cl > I(U(K);X(S))− T (X(S)), (25)

for all S ⊆ L under some p(u1, . . . , uK , x1, . . . , xL).
Definition 2: Consider the closure of the convex hull of

achievable sum-rate-fronthaul tuples (R,C1, . . . , CL) for the
C-RAN with the Gaussian channel model (7) using the DDF
strategy as expressed in (23) under the constant-gap distri-
bution (8) with the BS powers constrained by the power
constraint P . Define Rg

DDF to be the maximum sum rate
under individual fronthaul constraints (C1, . . . , CL) in this
set. Similarly, define Rg

COM for the generalized compression
strategy as expressed in (24)-(25) in respective manner.

Comparing the sum rate of DDF in (23) with the sum
rate of generalized compression in (24)-(25), we clearly have
Rg

COM ≤ Rg
DDF. We show that actually Rg

COM = Rg
DDF. As a

consequence, we have the following theorem.
Theorem 5: For a memoryless Gaussian channel on the

second hop of C-RAN, the compression scheme achieves
a sum rate to within a constant gap to the cut-set bound
under arbitrary fronthaul constraints (C1, . . . , CL) where the
gap is independent of the channel parameters, the BS power
constraints, and the individual fronthaul constraints, and only
depends on the number of BSs and users.

The proof uses the contra-polymatroidal structure of the
fronthaul region to characterize the corner points for each fixed
sum rate R under the DDF strategy. Using appropriate time-
sharing schemes in the generalized compression strategy (by
shutting down some BSs), we show that each such corner point
is achievable in the compression strategy with a sum rate at
least as large as R.

As a final remark, [9] shows that the gap between the
achievable rate region and the cut-set bound for DDF can
be refined in donwlink C-RAN to being logarithmic in the
number of BSs and users, instead of being linear as in
[8]. The refinement uses a slightly modified form of the
constant-gap distribution. The equivalence result shown in this
section also works for this modified constant-gap distribution.
Thus, a similar refinement can be used to conclude that the
compression strategy can achieve the sum capacity of the C-
RAN network to within a constant gap which is a logarithmic
in the number of BSs and users.

VI. CONCLUSION

This paper investigates the compression strategy for the
downlink C-RAN from an information theoretic point of view.
The paper first generalizes the existing compression strategies
to include Marton’s multicoding followed by multivariate
compression for a C-RAN with a general DMC in the second
hop. When compared with the DDF strategy specialized to
the downlink C-RAN, it is observed that DDF is a gen-
eralization of the compression strategy where the Marton’s
multicoding and the multivariate compression are done jointly
as opposed to successively as in the compression strategy.
The paper then shows that under a sum fronthaul constraint,
such generalization does not lead to higher rates. Furthermore,
for the case of Gaussian network, the paper shows that the
two-phase compression strategy achieves a sum rate that is
within a constant gap to the cut-set bound. These results
provide a justification for the practical choice of the two-phase
compression strategy for the downlink C-RAN.
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