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Abstract—This paper studies transmission strategies for the
downlink of a cloud radio access network, in which the base
stations are connected to a centralized cloud-computing based
processor with digital fronthaul or backhaul links. We provide a
system-level performance comparison of two fundamentally dif-
ferent strategies, namely the data-sharing strategy and the com-
pression strategy, that differ in the way the fronthaul/backhaul
is utilized. It is observed that the performance of both strate-
gies depends crucially on the available fronthaul or backhaul
capacity. When the fronthaul/backhaul capacity is low, the data-
sharing strategy performs better, while under moderate-to-high
fronthaul/backhaul capacity, the compression strategy is superior.
Using insights from such a comparison, we propose a novel hybrid
strategy, combining the data-sharing and compression strategies,
that allows for better control over the fronthaul/backhaul capac-
ity utilization. An optimization framework for the hybrid strategy
is proposed. Numerical evidence demonstrates the performance
gain of the hybrid strategy.

Index Terms—Cloud radio access network, cooperative multi-
point (CoMP), network multiple-input multiple-output (MIMO),
fronthaul, backhaul, data-sharing, compression, common public
radio interface (CPRI).

I. INTRODUCTION

This paper considers a promising future cellular architec-
ture, the Cloud Radio Access Network (C-RAN) [3], in which
the base stations (BSs) are connected to centralized cloud-
computing based servers via high-speed but finite-capacity
digital (wireline or wireless) links. These digital links are
referred to either as backhaul, when they carry digital data, or
as fronthaul, when they carry compressed analog signals. For
convenience, this paper uses the term fronthaul and backhaul
interchangeably. One of the benefits of the C-RAN architecture
is that it provides an ability for flexible allocation of radio and
computing resources across all the BSs managed by the same
central processor and a cost-effective path for upgrading the
existing wireless infrastructure for mobile service delivery. But
more importantly, it facilitates coordinated and cooperative
signal processing across the multiple BSs connected to the
same central processor.

This paper studies the downlink transmission in a C-RAN
setting. In the downlink C-RAN, the user data originate from
the centralized cloud server and are destined for the mobile
devices distributed throughout a geographical area, while the
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BSs act as relays between the user terminals and the cloud.
In this sense, the downlink C-RAN can be modeled as a
broadcast-relay channel. If the backhaul links between the
cloud processor and the BSs have infinite capacities, the
information theoretical capacity analysis for this setting is
straightforward, as the downlink C-RAN becomes a vector
broadcast channel. But in the practical implementation of the
C-RAN architecture, the backhaul links have finite capacities.
In this more realistic case, both the theoretical analysis and the
optimal practical system design become much more difficult.
This paper studies transmission strategies for the downlink C-
RAN with finite backhaul capacities.

There are two fundamentally different transmission strate-
gies for the downlink C-RAN, depending on whether the joint
precoding operation is performed at the central processor or at
the individual BSs. First, this paper asks the question of how
the limited backhaul capacities influence the achievable rates
in each strategy, and compares their system-level performance
under practical network settings. Second, this paper proposes
a novel hybrid transmission scheme, which allows for better
utilization of the finite-capacity backhaul, by combining these
two strategies.

The interference mitigation capability of C-RAN stems from
its ability to jointly encode the user messages across multiple
BSs. One way to enable such joint precoding is to simply share
each user’s messages with multiple BSs over the backhaul
links. This backhaul transmission strategy, called the data-
sharing strategy in this paper, is analogous to the decode-
and-forward relaying strategy. As an alternative strategy, the
joint precoding of user messages can also be performed at the
cloud server rather than at the individual BSs. In fact, one
of the original motivations for C-RAN is to entirely shift the
baseband processing from the BSs to the central processor
making BS units as simple as possible for easy deployments,
maintenance, and upgrades. In this case, the precoded analog
signals are compressed and forwarded to the corresponding
BSs over the finite-capacity fronthaul/backhaul links for direct
transmission by the BS antennas. This approach, called the
compression strategy in this paper, is akin to the compress-
and-forward relaying strategy.

One of the key questions in the implementation of C-RAN
is whether or not the functionalities of the BSs should be
entirely moved to the central processor, or whether there is
some benefit to having a functional split between the central
processor and the BSs. One of the main contributions of the
paper is to answer this question.

In the data-sharing strategy, the BSs receive clean copies of
the user messages. Thus the precise beamformed signals can
be formed at the BSs. However, carrying raw user data multi-
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ple times to multiple BSs across the entire network consumes
large amount of backhaul. Therefore, practical implementation
of data-sharing strategy must involve finite cooperation clus-
ters, where each user selects a subset of cooperating BSs and
only those BSs in its cooperation cluster receive its message.
In the compression strategy, since the beamformed signals
are computed at the central processor, the cooperation cluster
size can, in principle, be large. But, the analog beamformed
signals need to be compressed in order to be transported
to the remote antenna heads under limited fronthaul. The
compression process introduces quantization noises that limit
the system performance. We remark here that the feasibility of
the joint cooperative signal processing also depends crucially
on the availability of the channel state information (CSI)
at the BSs and the central processor. The requirement for
CSI is proportional to the BS cooperation cluster size. The
data-sharing strategy typically has smaller cluster size, so it
typically requires less CSI than the compression strategy.

Individually, both the data-sharing and compression strate-
gies have been studied in the context of C-RAN. However, a
fair system-level comparison between the two strategies under
practical network settings has been a challenging task due to
the numerical difficulty in solving the corresponding network
optimization problems involving user scheduling, beamform-
ing, power control, along with the optimization of clusters for
the data-sharing strategy and the optimization of quantization
noise levels for the compression strategy. This paper tackles
such a system-level performance evaluation and tries to find
the conditions under which one strategy outperforms the other.

The paper further demonstrates that in a practical C-RAN
setting with finite backhaul capacity, instead of individual
data-sharing or compression strategies, a hybrid strategy that
combines the two can improve the overall system performance.
We propose an approach where the central processor directly
sends messages for some of the users to the BSs, along with
the compressed version of the precoded signals for the rest of
the users. The intuition behind such an approach is that it is
beneficial, in terms of backhaul capacity utilization, to send
clean messages for strong users while compressing the rest
of the interference canceling signals. To quantify the benefit
of this hybrid strategy, this paper proposes an optimization
methodology to select which users to do direct data-sharing
and which ones to compress.

A. Contributions

The overall contributions of this paper are as follows. First,
the paper provides a system-level performance comparison
of the data-sharing and compression strategies under finite
backhaul capacity and practical network settings by adopting a
unified network-wide utility maximization framework applica-
ble to both strategies. The unified optimization methodology
is based on an equivalence between the weighted sum rate
maximization problem and the weighted minimization of sum
mean squared error (WMMSE) problem. As compared to most
prior work, we take into account the loss due to practical mod-
ulation schemes in terms of gap to capacity for both strategies,
and introduce a similar notion of gap to rate-distortion limit for

the compression strategy to account for the quantization losses
due to non-ideal quantizers used in practice. A main novelty
of the first part of this paper is a joint optimization of the
beamformers and quantization noise levels for the compression
strategy, based on the equivalence between the weighted sum
rate maximization and the WMMSE problems.

Moreover, this paper proposes a novel hybrid transmis-
sion strategy that combines the data-sharing and compression
strategies that allows for better utilization of the limited
backhaul capacity. An optimization framework to quantify the
performance gains due to the hybrid strategy is developed.
Specifically, we develop a unified optimization framework
that jointly optimizes the network-wide beamformers, user
selection for either data-sharing or compression, and the
quantization noise levels for the compressed signals. This
framework generalizes the frameworks for both the data-
sharing and compression strategies.

B. Related Work

As pointed out earlier, information theoretically, the down-
link of C-RAN is an instance of a broadcast-relay network,
where the BSs can be considered as relays. The capacity of
such network is unknown. A general coding strategy for the
broadcast-relay network is proposed in [4] based on a combi-
nation of Marton coding for the general broadcast channel [5]
and a coding scheme for deterministic linear relay networks
[6]. However, unlike in the uplink of the C-RAN, which is an
instance of a multiple-access-relay channel, where compress-
and-forward strategies such as quantize-map-forward scheme
of [6], or more generally noisy network coding [7], are known
to be approximately optimal (in the sense of constant gap to
the cutset outer bound), there are no approximation results
known on the capacity region for the downlink C-RAN setup.
The main difficulty lies in the need for careful coordination
among the codewords for multiple user messages at the central
processor. In the uplink, there is no such need as the central
processor decodes all the compressed signals and the original
user messages jointly. In the downlink, the central processor
can induce coordination among different codewords and the
relays potentially need to decode carefully chosen parts of
the messages. Recently a new coding scheme that combines
Marton coding for single-hop broadcast channels and partial
decode-forward for relay channels, called distributed decode-
forward (DDF), is proposed for broadcasting multiple mes-
sages over a general relay network in [8] that can achieve
the capacity of arbitrary broadcast relay networks to within
constant gap that only depends on the number of nodes in
the system. In the context of C-RAN, the recent work [9]
shows that under certain conditions the DDF strategy applied
to C-RAN is equivalent to a generalized compression strategy
that can achieve the capacity of downlink C-RAN to within
a constant gap that only depends on the number of users and
BSs. However, these results are information theoretic in nature,
and a practical implementation of the generalized compression
strategy is yet to be realized.

If the backhaul capacity is infinite, downlink C-RAN with
a Gaussian channel model reduces to the well-known vector
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Gaussian broadcast channel, for which dirty paper coding
(DPC) achieves the capacity region. For the finite backhaul
capacity, however, DPC and other linear precoding schemes
cannot be applied directly. In [10], inner bounds for the
downlink transmission schemes with different levels of BS
cooperation (infinite, limited or no BS cooperation) are stud-
ied. The effect of imperfect CSI at the BSs and users is also
taken into account.

For compression based strategies, a compressed version of
DPC (named CDPC) is introduced in [11]. Different trans-
mission strategies that require varying degrees of codebook
information (the encoding function information needed to em-
ploy DPC) at the BSs are investigated for a simple Wyner type
model. CDPC is a scheme in which the BSs are oblivious of
any codebook information, and the central processor performs
joint DPC, then independently compresses the codeword for
each BS, and sends the quantized codeword to the correspond-
ing BS. If some degree of codebook information is available at
the BSs, then data-sharing becomes possible. The conclusion
of [11] is that oblivious BSs are sufficient in the regime
of sufficiently large backhaul capacity for the Wyner model.
To further optimize the compression strategy, [12] proposed
a multivariate compression scheme across the signals of all
the BSs, instead of independent compression for each BS, to
better control the effect of resulting total quantization noises
at the users by correlating the quantization noises for signals
of different BSs. An iterative algorithm achieving a stationary
point for the problem of maximizing sum rate with respect
to the precoding matrix and the quantization noise covariance
matrix is proposed. Our work differs from [12] in that [12]
optimizes the covariance matrices of transmit beamformers
along with the quantization noise covariance matrix using a
rank approximation method. In our optimization framework
for the compression strategy, we make a novel use of the equiv-
alence between the weighted sum rate maximization and the
WMMSE problem, which does not require any approximation.

For data-sharing based strategies, various ways to selectively
share the user messages have been investigated in the litera-
ture [13]–[17]. Information theoretic results for the downlink
network multiple-input multiple-output (MIMO) model using
the data-sharing strategy have been reported in [11], [18],
[19], but most of the theoretical works are limited to certain
simplified models. A modified linear Wyner cellular model
is studied in [11], and a two-BS, two-user setup is studied in
[18]. Our optimization framework for the data-sharing strategy
is based on previous work on sparse beamforming in [20],
but extending the algorithm in [20] to account for the gap to
capacity factor. Differing from [15]–[17], this paper takes a
network utility maximization approach in order to provide a
realistic and unified comparison to the data-sharing strategy in
terms of the cumulative distribution of user rates that accounts
for fairness.

We mention here that the performance comparison con-
ducted in this paper is closely related to the work of [21],
where a sum-rate evaluation has been carried out both under
perfect and stochastic CSI. The results of this paper go one
step further in examining the cumulative distribution of user
rates. Further, we utilize a WMMSE approach, instead of the

stochastic successive upper bound minimization method of
[21], but our findings are largely consistent with that of [21].

It is worth pointing out that a third transmission strategy,
based on the compute-and-forward (CoF) strategy for relay
networks [22], is proposed in [23] and named as reverse
compute-and-forward (RCoF). The roles of BSs and users
are reversed in RCoF compared to CoF. Since users do not
cooperate, an appropriate invertible precoding is performed to
the messages to be sent by the BSs at the central processor
such that the effect of linear combination can be undone
at the user terminal and each user obtains just its desired
message in the end. Low complexity version of RCoF based
on the standard scalar quantization is also studied, named
as quantized reverse compute-and-forward. But, as with CoF,
the performance of RCoF is quite sensitive to the channel
coefficients due to the non-integer penalty, since the channel
coefficients are not exactly matched to the computed integer
linear combination. The main challenge with the lattice-coding
based strategies is that the underlying optimization problems
often involve integer matrices, which are difficult to optimize
in practical networks.

C. Organization

The rest of the paper is organized as follows. Section
II describes the C-RAN system model under consideration.
Sections III and IV formulate the network-wide optimization
for the data-sharing and compression strategies. The opti-
mization frameworks for the two strategies are provided in
separate sections, then the numerical system-level performance
comparison between the two is made in Section V. Section
VI proposes the hybrid strategy that combines the data-
sharing and compression strategies. We provide a unifying
optimization framework for the hybrid strategy that generalizes
the data-sharing and compression strategies. Joint optimization
of network-wide beamformers, user selection for data-sharing
component, and quantization noise optimization for the com-
pressed signal is performed. We then provide system-level
numerical evaluation of the hybrid strategy in Section VII to
quantify its performance gains over the individual data-sharing
and compression strategies. Finally, Section VIII concludes the
paper.

D. Notation

The notations used in this paper are as follows. Plain lower
or upper case letters are used to denote scalars, e.g., w, C.
Bold face lower letters are used to denote vectors, e.g., w.
Bold face upper letters are used to denote matrices, e.g., H.
An n-dimensional identity matrix is denoted by either In×n or
I when the dimension is clear from the context. For a complex
scalar, Re{·} denotes its real part and | · | denotes its magnitude.
For a vector, (·)T denotes its transpose, | | · | |p denotes its `p
norm. For a matrix, (·)−1 denotes its inverse, (·)H denotes its
conjugate transpose (or just conjugate in case of a scalar). For
a random variable, E [·] denotes its expected value. Calligraphy
letters are used to denote sets, e.g., L. Letters C and R are used
to denote the set of real and complex numbers, respectively.
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Fig. 1. The data-sharing strategy for the downlink C-RAN.

II. SYSTEM MODEL

Consider the downlink of a C-RAN comprising of L BSs
equipped with M antennas serving K users equipped with N
antennas. All the BSs are connected to a central processor
with capacity-limited backhaul links or fronthaul links. The
capacity of the backhaul link connecting BS l to the central
processor is denoted by Cl , l ∈ L = {1, . . . ,L}. We transmit
a single independent data stream from the central processor
to each user. The user k’s information signal is denoted by
sk , k ∈ K = {1, . . . ,K }, and it is assumed to be chosen
independently from a complex Gaussian distribution with zero-
mean and unit variance. We assume that the central processor
has access to the data and perfect CSI for all the users in the
network. The complex signal transmitted by antenna m at BS
l is denoted by xm

l
, m ∈ M = {1, . . . ,M }, l ∈ L. We assume

a per-antenna transmit power constraint with maximum power
budget denoted by Pm

l
, i.e.,

E[���x
m
l

���
2
] ≤ Pm

l , l ∈ L,m ∈ M . (1)

A flat-fading channel model is assumed. Let xl ∈ CM×1 =

[x1
l
, . . . , xm

l
]T denote the vector signal transmitted by BS l and

x ∈ CLM×1 = [xT1 , . . . ,x
T
L]T denote the aggregate signal from

all the BSs. The received signal at user k, yk ∈ CN×1, is

yk = Hkx + zk , (2)

where Hk ∈ C
N×LM = [H1,k , . . . ,HL,k ] is the channel to user

k from all the BSs, Hl,k ∈ C
N×M is the channel response from

the M transmit antennas of BS l to the N receive antennas
of user k, and zk is the additive complex Gaussian noise with
zero-mean and variance σ2 on all of its diagonals.

III. DATA-SHARING STRATEGY

In the data-sharing strategy, as shown in Fig. 1, a cluster
of BSs locally form beamformers to cooperatively serve each
user. The data for that user is replicated at all participating
BSs in the cluster via the backhaul links. A crucial decision
is to select an appropriate cluster of BSs for each user for
interference mitigation, while being constrained under the
limited backhaul capacity.

A. Optimization Framework

Let wl,k ∈ C
M×1 = [w1

l,k
, . . . ,wM

l,k
]T be the beamforming

vector from BS l to user k with wm
l,k

denoting the beamforming
coefficient from the mth antenna of BS l to user k, and
wk ∈ C

LM×1 = [wT
1,k , . . . ,w

T
L,k

]T be the aggregate network-
wide beamformer to user k from all the BSs. If user k is
not cooperatively served by BS l, then wl,k = 0. This can
be equivalently represented by: wl,k

2
2 = 0, if BS l does not

serve user k. The beamformed signal x to be transmitted by
all the BSs can be written as

x =
K∑
k=1

wk sk . (3)

At user k, the signal-to-interference-plus-noise ratio (SINR) is

SINRk = wH
k HH

k
*.
,

∑
j,k

Hkw jwH
j HH

k + σ
2I+/

-

−1

Hkwk . (4)

The information theoretical achievable rate for user k is
related to SINR as Rk = log(1 + SINRk ). However, this
rate expression assumes Gaussian signaling, while in practice
Quadrature Amplitude Modulation (QAM) constellations are
typically used for the Gaussian channel in the moderate and
high SINR regime. To achieve a given data rate at a certain
probability of error, we need an SINR higher than what
is suggested above. This extra amount of power is usually
captured by a so-called SNR gap, denoted here by Γm . Its value
is approximately independent of the size of the constellation
for square QAM, and can be easily computed as a function of
the target probability of error [24]. For example, at Pe = 10−6,
uncoded QAM has Γm = 9 dB. The use of error correcting
codes can lower the value of Γm . Now with the SNR gap
taking into account, we can rewrite the achievable rate for
user k as

Rk = log
(
1 +

SINRk

Γm

)
. (5)

The optimization problem of finding the optimal set of BS
clusters and beamformers for the data-sharing scheme can now
be formulated as a weighted sum rate maximization problem
under per-antenna power constraints and per-BS backhaul
constraints as follows:

maximize
{wl,k }

K∑
k=1

αk Rk (6a)

subject to
K∑
k=1

���w
m
l,k

���
2
≤ Pm

l , l ∈ L,m ∈ M (6b)

K∑
k=1

1

{wl,k
2

2

}
Rk ≤ Cl , l ∈ L, (6c)

where αk denotes the priority weight associated with user k
at the current user scheduling time slot which can be updated
according to proportional fairness criterion, for example. The
indicator function 1

{wl,k
2

2

}
in the constraint (6c) denotes

whether BS l participates in beamforming to user k, and if
so, the user rate Rk is included in the backhaul constraint
Cl . The constraint (6b) accounts for the per-antenna power
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constraint at antenna m of BS l. The beamforming coefficients
are computed at the central processor, and are assumed to
be transmitted to the BSs without any error. We neglect
the backhaul consumption for transmitting the beamforming
coefficients, because the beamformers need to be transmitted
only once during each user scheduling time slot; comparing
with the backhaul needed to send the data, it is a very small
fraction. The above formulation considers joint design of
BS clustering, beamforming, and power control. Note that
it also implicitly does joint user scheduling, which can be
seen from the fact that a user k is scheduled, i.e., Rk is
non-zero, if and only if its beamformer vector wk is non-
zero. Thus the user scheduling is implicitly jointly done
along with BS clustering and beamforming optimization to
satisfy the per-antenna and per-BS backhaul constraints. The
optimization problem is solved repeatedly and the BS clusters
are dynamically optimized in each time slot as the priority
weights are updated.

B. Optimization Methodology

The presence of the backhaul constraint (6c) makes the
optimization problem challenging. In this paper, we follow the
approximation suggested in [20] to first write the indicator
function as an `0 norm which is then approximated as a
weighted `1 norm as

1

{wl,k
2

2

}
=


wl,k

2
2

0
≈ βl,k wl,k

2
2 , (7)

where βl,k is a constant weight associated with BS l and user
k and is updated iteratively according to

βl,k =
1

wl,k
2

2 + τ
, (8)

for some regularization constant τ > 0 and wl,k
2

2 from the
previous iteration. This simplifies the constraint (6c) to

K∑
k=1

βl,k wl,k
2

2 Rk ≤ Cl , l ∈ L, (9)

which is equivalent to a generalized power constraint, if Rk

is assumed fixed and heuristically chosen from the previous
iteration in an iterative manner. The resulting optimization
problem then becomes:

maximize
{wl,k }

K∑
k=1

αk Rk (10a)

subject to
K∑
k=1

���w
m
l,k

���
2
≤ Pm

l , l ∈ L,m ∈ M (10b)

K∑
k=1

βl,k R̂k
wl,k

2
≤ Cl , l ∈ L, (10c)

where R̂k is the rate from the previous iteration.
Even though the approximated problem (10) is still non-

convex, it can be formulated as an equivalent WMMSE
problem using the equivalence between the weighted sum rate
maximization and the WMMSE problem. The advantage of
working with the WMMSE problem is that the optimization

Algorithm 1 Weighted sum rate maximization for the data-
sharing strategy

Initialization: {βl,k }, {wk }, {R̂k };
Repeat:

1) For fixed {wk }, compute the MMSE receivers {uk } and
the corresponding MSE {ek } according to (14) and (12);

2) Update the MSE weights {ρk } according to (13);
3) For fixed {uk }, {ρk }, and {R̂k } in (15c), find the optimal

transmit beamformers {wl,k } by solving (15);
4) Update {βl,k } as in (8);
5) Compute the achievable rates {Rk } according to (5).

Update R̂k = Rk , k ∈ K .
Until convergence

variables can be split into groups such that with respect to
each group of variables, the optimization problem is convex,
if all other variables are fixed. Thus we can use the block
coordinate descent method to reach a stationary point of (10).
The relationship between the weighted sum rate maximization
and the WMMSE problem is first established for the MIMO
broadcast channel in [25], and is generalized to the MIMO
interference channel in [26] and to the MIMO interference
channel with partial cooperation in [27]. In the context of C-
RAN, the equivalence is used in [20]. The difference between
the formulation (6) and that in [20] is the gap factor Γm
and per-antenna power constraints, instead of per-BS power
constraint. It can be verified that the equivalence between
weighted sum rate maximization and WMMSE extends even
for (10).

We summarize the overall algorithm for the optimization
of the data-sharing strategy in Algorithm 1. The algorithm is
essentially the one already proposed in [20]. We include it
here for completeness and for subsequent unified comparison
to the compression strategy. Although we do not have theo-
retical guarantee of its convergence in general, it is observed
to converge in simulations. Following a similar analysis as
in [20], we observe that finding the transmit beamformers
by solving the optimization problem (15) in Step 3 of the
Algorithm 1 is computationally the most expensive step and
dominates rest of the steps for any iteration. Problem (15) is
a quadratically constrained quadratic programming (QCQP)
problem which can also be equivalently cast as a second
order cone programming (SOCP) problem, and can be solved
in O((K LM)3.5) time complexity using the interior-point
method [28] in standard solvers such as CVX [29]. Thus,
the overall computational complexity of Algorithm 1 scales
as O((K LM)3.5T ), where T is the number of iterations to
converge.

The quantities used in the WMMSE approach in the Algo-
rithm 1 are as follows. Let

Vk = Γm
*.
,

∑
j,k

Hkw jwH
j HH

k + σ
2I+/

-
+HkwkwH

k HH
k . (11)

• The mean square error (MSE) for user k is defined as

ek = uH
k Vkuk − 2Re

{
uH
k Hkwk

}
+ 1. (12)
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Fig. 2. The compression strategy for the downlink C-RAN.

• The optimal MSE weight ρk under fixed {wk } and {uk }

is given by

ρk = e−1
k . (13)

• The optimal receive beamformer uk under fixed {wk } and
{ρk } is given by

uk = V−1
k Hkwk . (14)

• The optimal transmit beamformers {wk } under fixed {uk },
{ρk } and fixed {R̂k } can be obtained by solving the
following QCQP problem:

minimize
{wl,k }

K∑
k=1

wH
k Akwk − Re{bH

k wk } (15a)

subject to
K∑
k=1

���w
m
l,k

���
2
≤ Pm

l , l ∈ L,m ∈ M (15b)

K∑
k=1

βl,k R̂k
wl,k

2
2 ≤ Cl , l ∈ L, (15c)

where {Ak } ∈ C
LM×LM and {bk } ∈ C

LM×1 are defined
to be

Ak =
∑
j,k

α j ρ jΓmHH
j u juH

j H j + αk ρkHH
k ukuH

k Hk ,

(16)

bk = 2αk ρkHH
k uk . (17)

IV. COMPRESSION STRATEGY

In the compression strategy, as shown in Fig. 2, the central
processor computes the beamformed analog signals to be
transmitted by the BSs. These signals have to be compressed
before they can be forwarded to the corresponding BSs
through the finite-capacity backhaul links. The process of
compression introduces quantization noises; the quantization
noise levels depend on the backhaul capacities.

A. Optimization Framework

In the data-sharing strategy, the beamformed signal is com-
puted at the BSs. In the compression strategy, the beamformed
signal is computed at the central processor, then compressed,
sent over the backhaul links, and reproduced by the BSs.
Let x̂l ∈ CM×1 = [x̂1

l
, . . . , x̂M

l
]T denote the precoded signal

computed at the central processor intended for BS l and
x̂ ∈ CLM×1 = [x̂T1 , . . . , x̂

T
L]T be the aggregate signal in-

tended for all the BSs. As in the data-sharing strategy, let
the beamforming vector from BS l to user k be denoted
by wl,k ∈ C

M×1 = [w1
l,k
, . . . ,wM

l,k
]T with wm

l,k
being the

beamforming coefficient from the mth antenna of BS l to
user k and wk ∈ C

LM×1 = [wT
1,k , . . . ,w

T
L,k

]T be the aggregate
network-wide beamformer to user k from all the BSs. We can
then write x̂ as

x̂ =
K∑
k=1

wk sk . (18)

The analog signal x̂ is then compressed and forwarded to BSs.
We model the quantization process as

x = x̂ + e, (19)

where the quantization noise e is assumed to be complex
Gaussian distributed with zero mean and covariance matrix
Q ∈ CLM×LM and is independent of x̂. Under this model,
the achievable rate for user k, accounting for the SNR gap, is
given by

Rk = log
(
1 +

SINRk

Γm

)
, (20)

where the SINR at user k is

SINRk = wH
k HH

k
*.
,

∑
j,k

Hkw jwH
j HH

k + σ
2I +HkQHH

k
+/
-

−1

Hkwk .

(21)
We consider independent quantization at each antenna at all
the BSs, in which case Q is a diagonal matrix with diagonal
entries qm

l
. (Multivariate compression is also possible and has

been studied in [12].) Assuming an ideal vector quantizer, the
quantization noise level qm

l
and the backhaul capacity Cm

l
allocated to each antenna at each BS is related as (from rate-
distortion theory [30])

log
(
1 +

∑K
k=1

���w
m
l,k

���
2

qm
l

)
≤ Cm

l . (22)

However, the quantizers used in practice for compression can
be far from ideal. In order to capture these losses, we introduce
a notion of gap to rate-distortion limit. Following [31], we note
that the operational distortion, δ(R), achieved by virtually all
practical quantizers at high resolution follows the relation

δ(R) = Γqvar(X )2−R , (23)

where var(X ) is the variance of the signal being quantized, R
is the rate of the quantizer, and Γq is a constant that depends
on the particular choice of the quantizer. For example, for
a fixed-rate (uncoded) uniform scalar quantizer, Γq =

√
3π
2 ,

which is approximately 2.72. For a uniform scalar quantizer
followed by variable-rate entropy coding, Γq = πe

6 , which
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is approximately 1.42. Note that Γq = 1 corresponds to the
distortion achievable by the best possible vector quantization
scheme. Accounting for this, we can rewrite the relation (22)
above as

log
(
1 +
Γq

∑K
k=1

���w
m
l,k

���
2

qm
l

)
≤ Cm

l . (24)

The quantization noise relation described by (24) assumes
that individual BSs have access to the quantization codebooks
used at the central processor for compressing the signals
intended for all of their antennas. The quantization code-
books depend on the variance of the signal being compressed∑K

k=1 |w
m
l,k
|2 and rate of the quantizer Cm

l
. Since we are

also designing the beamforming coefficients {wl,k } at each
user scheduling time slot, the variance of the signal being
compressed can change at each user scheduling iteration. Also,
the rate of the quantizer, Cm

l
, used for compressing the signal

of antenna m at BS l, depends on the backhaul capacity
allocated to antenna m of BS l. This allocation can also
potentially change from time slot to time slot. Thus, to achieve
(24), the information about the quantization codebooks used
at the central processor for all antennas of a BS needs to be
sent to that BS at the start of each user scheduling iteration.

In practice, however, it may not be feasible to convey all
such relevant codebook information from the central processor
to each individual BS at each user scheduling time slot. We
consider below two optimization formulations, one that allows
for adaptive quantization codebooks, while the other with
fixed quantization codebooks, and develop the corresponding
algorithms in each case.

B. Optimization Methodology

1) Adaptive Quantization: We refer to the situation when
the quantization codebooks are allowed to be changed at the
central processor at each user scheduling time slot as adaptive
quantization. It is adaptive in the sense that, depending on
the active users and their priority weights, the quantization
codebooks are allowed to be adapted. Recall that the quanti-
zation codebooks depend on the variance of the signal being
compressed

∑K
k=1 |w

m
l,k
|2 and the rate of the quantizer Cm

l
.

The variance of the signal to be compressed depends on the
beamformers which can change per each time slot; the rate
of the quantizer depends on the backhaul capacity allocated
for compression. In the case of single-antenna BSs, since the
backhaul capacity per-antenna is fixed (which is same as the
per-BS backhaul capacity), the rate of the quantizer for that
BS is fixed. In the case of multiple antennas, the rate of the
quantizers used for different antennas at a BS can potentially
be different, but for simplicity, this paper assumes that the
compression rate allocation among different antennas at a BS
to be uniform among all the antennas, i.e.,

Cm
l =

Cl

M
, l ∈ L,m ∈ M . (25)

The design of the compression strategy with adaptive com-
pression can now be stated as a weighted sum rate max-

Algorithm 2 Weighted sum rate maximization for the com-
pression strategy with adapative quantization
Initialization: {wk }, {qm

l
};

Repeat:
1) For fixed {wk }, {ql }, compute the MMSE receivers {uk }

and the corresponding MSE {ek } according to (29) and
(28);

2) Update the MSE weights {ρk } according to (13);
3) For fixed {uk } and {ρk }, find the optimal transmit

beamformers {wk } and quantization noise levels {qm
l
}

by solving the convex optimization problem (30);
Until convergence

imization problem over the transmit beamformers and the
quantization noise levels as follows:

maximize
{wl,k }, {q

m
l
}

K∑
k=1

αk Rk (26a)

subject to
K∑
k=1

���w
m
l,k

���
2
+ qm

l ≤ Pm
l , l ∈ L,m ∈ M (26b)

K∑
k=1

���w
m
l,k

���
2
−

2C
m
l − 1
Γq

qm
l ≤ 0, l ∈ L,m ∈ M,

(26c)

where the constraint (26c) is just a reformulation of (24), while
the constraint (26b) is the per-antenna power constraint at BS
l.

Finding the globally optimal solution to (26) is challenging.
An iterative approach based on the majorize-minimization
(MM) algorithm has been suggested in [12]. The algorithm
in [12] transforms wkwH

k
into a non-negative definite matrix

variable Rk and ignores the rank constraint on Rk in the
optimization. In this paper, we propose a novel way to solve
(26) by reformulating it as an equivalent WMMSE problem
then using the block coordinate descent method between the
groups of variables of the transmit beamformers {wk } and
the quantization noise levels {qm

l
}, the receive beamformers

{uk }, and the MSE weights {ρk }. We summarize the overall
algorithm to solve (26) in Algorithm 2. The algorithm can be
shown to reach a stationary point of (26). Following a similar
analysis as in the data-sharing strategy, the computational
complexity of the algorithm scales as O((K LM)3.5T ), where
T is the number of iterations to converge.

The quantities used in the WMMSE approach in the Algo-
rithm 2 are as follows. Let

Vk = Γm
*.
,

∑
j,k

Hkw jwH
j HH

k + σ
2I +HkQHH

k
+/
-
+HkwkwH

k HH
k .

(27)
• The MSE for user k is calculated as

ek = uH
k Vkuk − 2Re

{
uH
k Hkwk

}
+ 1. (28)

• The optimal receive beamformer uk under fixed {wk } and
{ρk } is given by

uk = V−1
k Hkwk . (29)
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• The optimization of the transmit beamformers {wk } and
the quantization noise levels {qm

l
} under fixed {uk } and

{ρk } is solved via the following convex program:

minimize
{wl,k }, {q

m
l
}

K∑
k=1

wH
k Akwk − Re{bH

k wk }

+ Γmαk ρkuH
k HkQHH

k uk (30a)

subject to
K∑
k=1

���w
m
l,k

���
2
+ qm

l ≤ Pm
l , l ∈ L,m ∈ M

(30b)
K∑
k=1

���w
m
l,k

���
2
−

2C
m
l − 1
Γq

qm
l ≤ 0, l ∈ L,m ∈ M,

(30c)

where {Ak } and {bk } are as defined in (16) and (17),
respectively. We further observe that the convex optimiza-
tion problem (30) has a particular structure that can be ex-
ploited. Observe that the two constraints (30b) and (30c)
provide an upper and a lower bound on {qm

l
}, respectively.

Since the objective (30a) is monotonically decreasing in
{qm

l
}, we can replace the inequality with equality in the

constraint (30c) and substitute {qm
l
} from (30c) into the

objective (30a) and the constraint (30b). This results in a
QCQP problem in only a single set of variables {wl,k },
which can be solved efficiently by standard solvers such
as CVX [29].

2) Fixed Quantization: We now consider the quantization
model when the quantization codebooks are fixed at the central
processor and at the BSs. The achievable rate is as given by
(20). To fix the codebook for the quantizer for antenna m of
BS l, we assume that the range of the quantizer is constrained
within the power constraint for the antenna, Pm

l
. Further, we

assume that the allocation of the backhaul capacity to each an-
tenna of a BS is uniform, i.e., Cm

l
=

Cl

M , l ∈ L,m ∈ M . With
these assumptions, the quantization relation (24) becomes

log
(
1 +
ΓqPm

l

qm
l

)
≤ Cm

l . (31)

We can now formulate the weighted sum rate maximization
problem over the transmit beamformers and the quantization
noise levels as:

maximize
{wl,k }, {q

m
l
}

K∑
k=1

αk Rk (32a)

subject to
K∑
k=1

���w
m
l,k

���
2
+ qm

l ≤ Pm
l , l ∈ L,m ∈ M (32b)

qm
l ≥

ΓqPm
l

2C
m
l − 1

, l ∈ L,m ∈ M, (32c)

where the constraint (32c) is a reformulation of (31).
In order to solve the optimization problem (32), we first

observe that the objective (32a) is a decreasing function of
qm
l

. The constraint (32c) provides a lower bound on qm
l

,
while the constraint (32b) provides an upper bound. Hence,
the constraint (32c) will always be met with equality at a
stationary point. Thus, we can substitute the value of qm

l
from
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Fig. 3. Cumulative distribution function of user rates for the data-sharing and
compression strategies with adaptive quantization and single antenna terminals
for varying fronthaul/backhaul capacities.

(32c) into the objective (32a) as well as the constraint (32b)
and eliminate the variables qm

l
. This modifies the constraint

(32b) into

K∑
k=1

���w
m
l,k

���
2
≤ Pm

l

(
1 −

Γq

2C
m
l − 1

)
, l ∈ L,m ∈ M . (33)

We then end up with a weighted sum rate maximization
problem over only the beamformers {wl,k } with modified per-
antenna power constraints, which can be tackled by solving
its equivalent WMMSE problem.

V. PERFORMANCE COMPARISON OF DATA-SHARING
VERSUS COMPRESSION STRATEGIES

A main contribution of the first part of this paper is a
comparison between data-sharing and compression strategies
under the same network utility maximization framework using
a unified WMMSE approach. Toward this end, we consider
a 7-cell wrapped-around two-tier heterogeneous network with
intercell distance of 0.8 km over a 10 MHz channel bandwidth.
Each cell is a regular hexagon with 1 macro-BS at the center
and 3 pico-BSs equally separated in space. There are 30 users
randomly placed in each cell. The power budget per each
antenna is 43 dBm at macro-BSs and 30 dBm at pic-BSs.
We assume antenna gain of 15 dBi. The path loss in dB
from macro-BS to user is modeled as 128.1 + 37.6 log10(d),
while from pico-BS to user as 140.7+36.7 log10(d), with log-
normal shadowing of 8 dB and small scale Rayleigh fading
of 0 dB. The combined background noise and interference
caused by two tiers of cells outside the 7-cells is estimated to
be at -150 dBm/Hz. We assume an SNR gap of Γm = 9 dB
(corresponding to uncoded QAM transmission) and a gap to
rate-distortion limit of Γq = 4.3 dB (corresponding to uncoded
fixed-rate uniform scalar quantizer). At each time slot, we
solve the respective network optimization problems and update
the weights in the weighted sum rate maximization according
to the proportional fair criterion.
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In the first set of simulations, we compare the performance
of the data-sharing strategy and the compression strategy with
adaptive quantization and with single transmit antenna at both
the macro-BSs and pico-BSs, and single receive antenna at
the users. Fig. 3 shows the cumulative distribution of user
rates under varying fronthaul/backhaul capacities for both
strategies. Plots for the compression strategy are shown in
red, while those for data-sharing strategy are shown in blue.
For reference, we also include the full cooperation case with
infinite backhaul capacity and the baseline scheme of no
cooperation with each user connected to the strongest BS.

When the fronthaul/backhaul capacity is low at 40
Mbps/macro-BS and 20 Mbps/pico-BS, the data-sharing strat-
egy outperforms the compression strategy. The 50-percentile
rate for the data-sharing strategy is about 3 times that of
the compression strategy. If we double the fronthaul/backhaul
capacity to 80 Mbps/macro-BS and 40 Mbps/pico-BS, the
compression strategy becomes comparable to the data-sharing
strategy and both have about the same 50-percentile user rates.
At this operating point, the sum fronthaul/backhaul capacity
is about 6 times that of the average sum rate per cell. We also
observe that the compression strategy favors low rate users
while the data-sharing strategy favors high rate users. A reason
for this is that the compression strategy under low fronthaul
capacity is limited by the quantization noises which are about
the same for all the BS signals resulting in more uniform user
rates.

We observe that with moderate-to-high fronthaul/backhaul
capacity of 160 Mbps/macro-BS and 80 Mbps/pico-BS, the
compression strategy outperforms the data-sharing strategy
with the 50-percentile rate for the compression strategy more
than 2.5 times than that of data-sharing. Increasing the
fronthaul/backhaul in this regime improves the compression
strategy drastically, while the data-sharing strategy sees only
a moderate increase. This is because at low backhaul capacity,
the performance of the compression strategy is limited by
the quantization noises. An increase in fronthaul capacity
reduces the quantization noise levels exponentially, while a
similar increase in the backhaul capacity does not buy as
much for the data-sharing strategy. Finally with a fronthaul of
240 Mbps/macro-BS and 120 Mbps/pico-BS, the compression
strategy performs close to the full cooperation limit, while
for the data-sharing strategy, backhaul capacities of 1200
Mbps/macro-BS and 600 Mbps/pico-BS are needed to get as
close. This is because to match the full cooperation limit,
the data-sharing strategy needs large cluster size, leading to
significantly higher backhaul capacity.

In the second set of simulations, we compare the per-
formance of the data-sharing strategy and the compression
strategy with fixed quantization when all the terminals have
multiple antennas. We assume 4 antennas per macro-BS, 2 an-
tennas per pico-BS, and 2 receive antennas for each user. Fig. 4
shows the cumulative distribution of user rates with varying
fronthaul/backhaul capacities for both strategies. For reference,
the plot for full cooperation with infinite fronthaul/backhaul
capacity is also included. We observe similar trends as in the
case of single-antenna terminals and adaptive quantization.
When the backhaul capacity is low at 160 Mbps/macro-BS
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Fig. 4. Cumulative distribution functions of user rates for the data-sharing and
compression strategies with fixed quantization and multi-antenna terminals for
varying fronthaul/backhaul capacities.

and 40 Mbps/pico-BS (note that on average per-antenna fron-
thaul/backhaul capacities are maintained at 40 Mbps/macro-
BS antenna and 20 Mbps/pico-BS antenna), the data-sharing
strategy outperforms the compression compression strategy.
The 50-percentile rate for the data-sharing strategy is about
2.5 times that of the compression strategy.

If we double the fronthal/backhaul capacity to 320
Mbps/macro-BS and 80 Mbps/pico-BS, we see that the com-
pression strategy becomes comparable to the data-sharing
strategy and both have about the same 40-percentile user
rates. In this regime the sum fronthaul/backhaul capacity is
about 5 times that of the average sum rate per cell. This
is in the similar range to what we observe in the single-
antenna case. As the fronthaul/backhaul capacity is increased
further to 640 Mbps/macro-BS and 160 Mbps/pico-BS, the
compression strategy starts to significantly outperform the
data-sharing strategy with the 50-percentile user rate being
about 80% higher than that in the data-sharing strategy. With
the fronthaul/backhaul capacity of 1280 Mbps/macro-BS and
320 Mbps/pico-BS, the compression strategy already achieves
the maximum achievable rates of the full cooperation. At this
fronthaul/backhaul capacity the quantization noises are small
enough that they do not affect the user rates. At the same
backhaul capacity, the data-sharing strategy is still far behind
that of full cooperation. This is because the backhaul capacity
is not high enough to allow for the backhaul exchange required
to maintain full cooperation.

It is important to note that the benefits from the compression
strategy come at a cost of high CSI requirements at the
central processor. To understand the impact of CSI on the
data-sharing and compression strategies, we limit the amount
of CSI available at the central processor by only allowing
CSI of the few strongest BSs for each user. We call such a
restriction clustered CSI, because the CSI of only a cluster of
BSs around any user is available. All the proposed algorithms
can be adapted when such clustered CSI is available for each
user.
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Fig. 5. Comparison of cumulative distribution functions of user rates for
the data-sharing and compression strategies with clustered CSI for varying
fronthaul/backhaul capacities.

Fig. 5 shows the cumulative distribution of user rates
for both strategies when the CSI is limited to only 7
strongest BSs for each user. We observe that the general
trend seen in the above two cases remains the same. At
low fronthaul/backhaul capacity of 160 Mbps/maco-BS and
40 Mbps/pico-BS, the data-sharing strategy outperforms the
compression strategy, while at the high fronthaul/backhaul
capacity of 640 Mbps/macro-BS and 160 Mbps/pico-BS, the
compression strategy outperforms the data-sharing strategy.
However, notice that, in this case the compression strategy
is not as significantly better than the data-sharing strategy
as in the previous case. The 50-percentile user rate of the
compression strategy is only 20% better than that of the data-
sharing strategy, as compared with the case with full CSI when
it is almost 80% better. Finally, when the fronthaul/backhaul
capacity is high at 1280 Mbps/macro-BS and 320 Mbps/pico-
BS, both the data-sharing and compression strategies saturate
to the full cooperation user rates with infinite backhaul ca-
pacity under clustered CSI. For reference, the plot with full
cooperation with infinite fronthaul/backhaul capacity and full
CSI is also included to highlight the performance loss that is
attributed to the lack of full CSI.

In order to closely look at the how the lack of full CSI
affects the data-sharing and compression strategies, we fix the
fronthaul/backhaul capacity at 320 Mbps/macro-BS and 80
Mbps/pico-BS. This is the regime where the two strategies
are comparable in the case with full CSI. Fig. 6 shows the
cumulative distribution of user rates for both strategies with
full CSI and with clustered CSI at this fixed fronthaul/backhaul
capacity. As is evident from the plot, the compression strategy
suffers more than the data-sharing strategy when only clustered
CSI is available. The reason for this behavior is that the
compression strategy benefits from having the ability to fully
cooperate at the central processor, but when only clustered
CSI is available at the central processor, the cooperation
cluster size at the central processor becomes limited. The data-
sharing strategy on the other hand does not pay as much
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Fig. 6. Comparison of the cumulative distribution functions of user rates for
the data-sharing and compression strategies with full CSI and clustered CSI
at the fronthaul/backahul capacity of 320 Mbps/macro-BS and 80 Mbps/pico-
BS.

penalty because the cooperation cluster size for the data-
sharing strategy is already small due to the backhaul capacity
limitations. As a result, we also see that the fronthaul/backhaul
capacity at which the two strategies are comparable is higher
when only clustered CSI is available (at 400 Mbps/macro-BS
and 100 Mbps/pico-BS) than the case with full CSI (at 320
Mbps/macro-BS and 80 Mbps/pico-BS).

To conclude, the data-sharing and compression strategies
show different characteristics depending on the operating
regime of interest. The data-sharing strategy is advantageous
when the fronthaul/backhaul is severely limited as the com-
pression strategy suffers from high quantization noises intro-
duced under low fronthaul capacity, while the compression
strategy is advantageous when the fronthaul/backhaul capacity
is large due to its ability to have full cooperation before quan-
tization. Further, the compression strategy is more sensitive to
the availability of CSI than the data-sharing strategy, as in the
former the benefits stem from the ability to fully cooperate at
the central processor, which is affected adversely by the lack
of full CSI.

VI. HYBRID DATA-SHARING AND COMPRESSION
STRATEGY

In the data-sharing based cooperation scheme, the backhaul
links are exclusively used to carry user messages. The ad-
vantage of such an approach is that BSs get clean messages
which they can use for joint encoding. However, the backhaul
capacity constraint limits the cooperation cluster size for
each user. In the compression based scheme, the precoding
operation is exclusively performed at the central processor.
The main advantage of such an approach is that, since the
central processor has access to all the user data, it can form
a joint precoding vector using all the user messages, thus
achieving full BS cooperation. Additionally, the BSs can now
be completely oblivious of the user codebooks as the burden of
preprocessing is shifted from the BSs to the central processor.
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Fig. 7. The hybrid data-sharing and compression strategy for the downlink
C-RAN.

However, since the precoded signals are compressed, we pay
a price in the form of quantization noises.

The second part of this paper proposes a hybrid compression
and data-sharing strategy in which the precoding operation is
split between the central processor and the BSs. The rationale
is that as the desired precoded signal typically consists of both
strong and weak users, it may be beneficial to send clean
messages for the strong users, rather than including them as a
part of the signal to be compressed. In so doing, the amplitude
of the signal that needs to be compressed can be lowered, and
the required number of compression bits reduced.

Building on this intuition, we propose an approach where a
part of backhaul capacity is used to send direct messages for
some users (for whom the BSs are better off receiving mes-
sages directly, instead of their contributions in the compressed
precoded signals) and the remaining backhaul capacity is used
to carry the compressed signal that combines the contributions
from the rest of the users. Typically, each BS receives direct
messages for the strong users and compressed precoded signals
combining messages of the rest of the weak users in the
network. Each BS then combines the direct messages with
the decompressed signal, and transmits the resulting precoded
signal on its antenna. Note that the appropriate beamforming
coefficients are assumed to be available at both the cloud
processor and at the BSs.

We point out that a dirty-paper coding based scheme pro-
posed in [11] also makes use of the backhaul links to carry
a combination of user message and the compressed version
of interfering signal from the neighboring BS in a simplified
linear array model. But the scheme of [11] is limited to the
simplified linear array model; it also does not provide a method
to decide if and what user messages should be shared among
the BSs and what signals should be compressed.

A. Optimization Framework

A key question is how to optimize the hybrid data-sharing
and compression strategy. In the hybrid strategy, as shown
in Fig. 7, the central processor computes a part of the
beamformed analog signals to be transmitted by BSs. These

signals are compressed and sent over to BSs using a part of the
backhaul capacity. For the rest of the beamformed signal, the
central processor sends digital data of selected users to the
BSs using the remaining backhaul capacity. To simplify the
description of the hybrid strategy, we assume single-antenna
at the BSs and the user terminals.

The idea is to introduce separate beamforming coefficients
for the data-sharing and compression parts. Let wc

k
∈ CL×1 =

[wc
1,k , . . . ,w

c
L,k

]T be the beamformers for user k used to
compute the beamformed signal that is going to be compressed
at the central processor. Let x̂c ∈ CL×1 = [x̂c1 , . . . , x̂

c
L]T denote

the beamformed signals intended for all the BSs computed at
the central processor. These are given by

x̂c =
K∑
k=1

wc
k sk . (34)

The quantization process for x̂c is again modeled as

xc = x̂c + e, (35)

where e is the quantization noise with covariance Q ∈ CL×L

assumed to be Gaussian and independent of x̂c . Assuming
independent quantization at each BS, in which case Q is
a diagonal matrix with diagonal entries ql , the amount of
backhaul capacity consumed by BS l, Cc

l
, for the compression

part of its total beamformed signal is given by

log
(
1 +
Γq

∑K
k=1

���w
c
l,k

���
2

ql

)
≤ Cc

l . (36)

Similarly, let wd
k
∈ CL×1 = [wd

1,k , . . . ,w
d
L,k

]T be the
beamformers that are used for data-sharing at the BSs and
xd ∈ CL×1 = [xd1 , . . . , x

d
L]T denote the beamformed signals

computed at the BSs using the direct data given by

xd =

K∑
k=1

wd
k sk . (37)

If BS l does not receive direct data for user k, then wd
l,k
= 0.

The amount of backhaul capacity, Cd
l

, consumed by BS l for
the data-sharing part is then given by

1

{���w
d
l,k

���
2
}

Rk ≤ Cd
l , (38)

where the indicator function is used to indicate whether BS
l participates in computing the beamformed signal using the
direct data for user k. If so, the backhaul needs to support
the user rate Rk . Note that we neglect the portion of the
backhaul capacity that would be needed to communicate the
beamforming coefficients at the start of each user scheduling
iteration as the required rate is negligible compared to the
direct data rate. The final beamformed signal transmitted by
BSs to the users, x, is then the sum of compressed beamformed
signals, xc , communicated through the backhaul link and the
direct beamformed signal, xd , computed at the BSs, i.e.,

x = xc + xd . (39)

The achievable rate for user k is then

Rk = log
(
1 +

SINRk

Γm

)
, (40)
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where the SINR at user k is

SINRk =

���h
H
k

(
wc

k
+ wd

k

) ���
2

∑
j,k

���h
H
k

(
wc

j + wd
j

) ���
2
+ σ2 + hH

k
Qhk

. (41)

If we let wc
k
+wd

k
= wk , k ∈ K , the rate Rk can be simplified

to

Rk = log
*...
,

1 +
���h

H
k

wk
���
2

Γm

(∑
j,k

���h
H
k

w j
���
2
+ σ2 + hH

k
Qhk

) +///
-

, (42)

where wk ∈ C
L×1 can be thought of as the final combined

beamformer for user k.
Now the weighted sum rate maximization problem for the

hybrid strategy can be formulated as follows:

maximize
{wd

l,k
}, {wc

l,k
},

{wl,k }, {ql }

K∑
k=1

αk Rk (43a)

subject to
K∑
k=1

��wl,k
��2 + ql ≤ Pl , l ∈ L (43b)

K∑
k=1

1

{���w
d
l,k

���
2
}

Rk

+ log
*..
,
1 +
Γq

∑K
k=1

���w
c
l,k

���
2

ql

+//
-
≤ Cl , l ∈ L

(43c)

wd
l,k + w

c
l,k = wl,k , l ∈ L, k ∈ K . (43d)

Note that in the problem formulation (43) above, it may
seem at first that, we allow a more general hybrid strategy
where a user k can both participate in direct data-sharing to a
BS l as well as be part of the signal compressed by that BS, if
both the beamforming coefficients wc

l,k
and wd

l,k
are non-zero.

However, it can be shown that, if Rk in the constraint (43c) is
fixed, indeed at most one of the two can be non-zero, i.e., a
user may only participate in data-sharing or compression, but
not both. Intuitively this is due to the fact that if a user’s data
is shared at a particular BS, it is always better to put all the
beamforming power in the data-sharing beamformer, rather
than splitting it with the compression beamformer, to avoid
the quantization noise penalty associated with the compression
process. A more precise statement is given below.

Proposition 1. The global optimal point
({wl,k }, {w

c
l,k
}, {wd

l,k
}) to the optimization problem (43)

with fixed Rk in the constraint (43c) has either wc
l,k
= 0, or

wd
l,k
= 0, or both for all l ∈ L, k ∈ K .

The proposition can be proved using contraction by showing
that if both wc

l,k
and wd

l,k
are non-zero, then we can construct

another feasible solution that strictly improves the weighted
sum rate, thus such a solution cannot be optimal.

B. Optimization Methodology

The problem (43) involves a joint optimization of beam-
forming vector for compression and data-sharing signals

({wc
l,k
,wd

l,k
}) (and as a consequence the combined beam-

formers {wl,k }), the quantization noise levels {ql } for the
compression signal, and the BS clustering for data-sharing
(and thus compression), i.e., the decision of which users should
data-shared and which users should be compressed for which
BSs. The problem is challenging as it combines the difficulties
in optimizing the individual data-sharing and compression
strategies. This paper proposes a solution strategy as follows.

The main source of difficulty is the constraint (43c). The
first term is the indicator function accounting for backhaul
consumption due to direct data-sharing, along with the user
rate Rk that is also part of the objective function. The second
term with the log function in the compression part is a non-
convex function of the variables ({wc

l,k
}, {ql }). For the indicator

function, as before we approximate it as a weighted l1 norm
as

1

{���w
d
l,k

���
2
}
=


���w

d
l,k

���
20
≈ βdl,k

���w
d
l,k

���
2
, (44)

where βd
l,k

is a constant weight associated with BS l and user
k and is updated iteratively in an outer loop according to

βdl,k =
1

���w
d
l,k

���
2
+ τ

, (45)

for some regularization constant τ > 0 and |wd
l,k
|2 from the

previous iteration. Similarly, Rk in the constraint (43c) is
kept fixed from the previous iteration, denoted by R̂k , and is
updated in the same outer loop. This simplifies the constraint
(43c) to

K∑
k=1

βdl,k R̂k
���w

d
l,k

���
2
+ log

*..
,
1 +
Γq

∑K
k=1

���w
c
l,k

���
2

ql

+//
-
≤ Cl , l ∈ L.

(46)
Next, we rewrite the log function in the above constraint (46)
into sum of two terms for all l ∈ L as follows:
K∑
k=1

βdl,k R̂k
���w

d
l,k

���
2
+ log *

,
Γq

K∑
k=1

���w
c
l,k

���
2
+ ql+

-
− log

(
ql

)
≤ Cl .

(47)
Thus, we need to solve the optimization problem (43c) with
the constraint (43c) modified as (47). In this formulation, in
the constraint (47), − log(ql ) is a convex function of {ql },
but log

(
Γq

∑K
k=1 |w

c
l,k
|2 + ql

)
is a non-convex function of

({wl,k }, {ql }). Additionally the objective function (43a) is a
non-convex function of ({wl,k }, {ql }). In order to solve the
optimization problem (43c) with the modified constraint (47),
we use the iterative successive convex approximation method
by linearizing the non-convex part in both the objective and the
constraint in an inner loop. First, we transform the objective
into a suitable form, by utilizing the relationship between the
achievable rate and the MSE. The MSE for user k is defined
as

ek = |uk |2 vk − 2Re{uH
k hH

k wk } + 1, (48)

under a receive beamformer uk , where

vk = Γm

(∑
j,k

���h
H
k w j

���
2
+ σ2 + hH

k Qhk

)
+

���h
H
k wk

���
2
. (49)
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The rate Rk can then be written as

Rk = max
uk

log
(
e−1
k

)
. (50)

Second, to deal with the non-convexity of the log function
in the transformed objective function (50) and the modified
constraint (47), we find the appropriate tight convex upper
bounds and successively update them. We make use of the
following result, which is a consequence of the inequality
log y ≤ y − 1 for any positive y, with y = x

x0
.

Lemma 1. For any positive x, x0 ∈ R, log x ≤ log x0+
1
x0

x−1,
with equality if and only if x = x0.

We make successive convex approximations to log (ek ) and
log

(
Γq

∑K
k=1 |w

c
l,k
|2 + ql

)
as follows.

log (ek ) ≤ − log (ρk ) + ρk ek − 1, (51)

where the equality holds if

ρk = e−1
k , (52)

with ek as defined in (48), and ({wl,k }, {uk}) taken from the
previous iteration in an iterative manner in the inner loop.
Similarly,

log *
,
Γq

K∑
k=1

���w
c
l,k

���
2
+ ql+

-

≤ − log (γl ) + γl *
,
Γq

K∑
k=1

���w
c
l,k

���
2
+ ql+

-
− 1, (53)

where the equality holds if

γl = *
,
Γq

K∑
k=1

���w
c
l,k

���
2
+ ql+

-

−1

, (54)

with ({wc
l,k
}, {ql}) taken from previous iteration in the inner

loop.
Note the similarity of the update (52) to the MSE weight

update in Section III (i.e., equation (13)) used in the iterative
algorithm to solve the equivalent WMMSE problem. The two
are in fact related. Another way of looking at the iterative
algorithm for the equivalent WMMSE problem is exactly
what we have done above for the objective function. We
successively upper bound the log function in the rate Rk

after writing it as a function of the transmit and receive
beamformers as in (50), then update the convex upper bound
in successive block updates in the transmit and receive beam-
formers. The MSE weights are the multiplying factors in
the convex approximations at each step. Such an approach
is referred to as block successive upper bound minimization
(BSUM) [32].

Thus, in the end, we iteratively solve the following programs
with alternating block updates in the inner loop for fixed βl,k
and R̂k , and then update βl,k according to (45) and R̂k as the
modified Rk in the outer loop, as discussed when simplifying
the original constraint (43c) to (46). Since the outer loop
involves estimates of the user rates from the previous iteration,
it is difficult to prove the convergence of the entire algorithm.
However, for fixed βl,k and R̂k , the inner iterations can

Algorithm 3 Weighted sum rate maximization for the hybrid
strategy

Initialization: {wk ,wc
k
,wd

k
}, {ql }, {βdl,k }, {R̂k };

Repeat:
1) Repeat:

a) For fixed {wk ,wc
k
,wd

k
}, {ql }, compute the optimal

receivers {uk } according to (55) and the corre-
sponding MSE {ek } according to (48);

b) Update the weights {ρk } according to (52);
c) Update the weights {γl} according (54), for fixed
{wc

k
}, {ql };

d) For fixed {uk }, {ρk }, and {R̂k } in (56c), find
the optimal transmit beamformers {wk ,wc

k
,wd

k
} by

solving (56);
Until convergence

2) Update {βl,k } as in (45);
3) Compute the achievable rates {Rk } according to (42).

Update R̂k = RK , k ∈ K .
Until convergence

be shown to converge due to the convergence properties of
BSUM. Moreover, outer iterations are observed to converge
in numerical experiments.
• The optimal receive beamformer uk under fixed
{wk ,wc

k
,wd

k
} and {ql } is given by

uk = v−1
k hH

k wk . (55)

• Under fixed {uk }, the optimal transmit beamformers
{wk ,wc

k
,wd

k
} and the optimal quantization noise levels

{ql } are obtained by solving the following convex pro-
gram:

minimize
{wd

l,k
}, {wc

l,k
},

{wl,k }, {ql }

K∑
k=1

−αk ρk ek (56a)

subject to
K∑
k=1

��wl,k
��2 + ql ≤ Pl , l ∈ L (56b)

K∑
k=1

βcl,k R̂k
���w

d
l,k

���
2
+ γlΓq

K∑
k=1

���w
c
l,k

���
2

+ γlql − log(ql ) ≤ C ′l , l ∈ L (56c)

wd
l,k + w

c
l,k = wl,k , l ∈ L, k ∈ K , (56d)

where C ′
l
= Cl + log (γl ) + 1.

The overall algorithm for the joint optimization of the prob-
lem (43) for the hybrid strategy is summarized in Algorithm
3. Following a similar analysis to the data-sharing strategy,
the computational complexity of the algorithm can be shown
to scale as O((K LM)3.5T1T2), where T1 and T2 are the total
number of inner and outer iterations needed to converge,
respectively.

VII. NUMERICAL EVALUATION OF THE HYBRID
STRATEGY

We evaluate the hybrid strategy for the 7-cell wrapped
around two-tier heterogeneous network considered in Section
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Fig. 8. Comparison of the hybrid strategy with the data-sharing and com-
pression strategies.

V. All the BSs and the user terminals are equipped with a
single antenna each. We compare the hybrid strategy designed
with the joint optimization done by Algorithm 3, with the data-
sharing and compression strategies, optimized with explicit
per-BS backhaul constraints using Algorithm 1 and Algorithm
2, respectively.

Fig. 8 shows the average sum rate as a function of total
backhaul capacities across the 7-cell network for the three
strategies. For low backhaul capacity, we observe that the data-
sharing performs better than the compression strategy. In this
case, the hybrid strategy performs just as well, because almost
all the users in the final beamformer for the hybrid strategy
are data-shared. The reason that the hybrid strategy is seen to
be slightly worse than the data-sharing strategy at very low
backhaul capacity is due to numerical precision. For moderate
backhaul capacity, the data-sharing and compression strategies
are comparable. This is the regime where hybrid strategy
has some potential to provide benefits by having some users
participate in data-sharing and rest in the compression. When
the backhaul capacity is high, the compression strategy starts
to outperform the data-sharing strategy. The hybrid strategy
shows some improvement in this regime and the gains tend to
diminish as we increase the backhaul even further as the rates
saturate to the maximum sum rate of the system. Thus, overall
we see that the hybrid strategy achieves the best of the two
strategies under low and high backhaul capacities, and when
the backhaul capacities are moderate, there is some benefit
from the hybrid design.

VIII. CONCLUSIONS

This paper compares two fundamentally different strategies,
the compression strategy, which is the standard solution for
C-RAN, and the data-sharing strategy, which is the traditional
implementation in most cellular systems. Our main conclusion
is that fronthaul/backhaul capacity constraint is crucial in
deciding which strategy should be adopted for the downlink C-
RAN. If the available fronthaul/backhaul capacity is medium-
to-high, the compression strategy outperforms the data-sharing

strategy due to the possibility of having large cooperation
cluster at the central processor, whereas using data-sharing, the
cluster size is limited by the backhaul capacity. However, if the
available fronthaul/backhaul capacity is low, the data-sharing
strategy outperforms the compression strategy. Under low
fronthaul capacity, the quantization noises introduced in the
compression strategy dominate the interference, in which case
it is better to share the data directly with a limited set of BSs
rather than to compress. When we also take into account the
cost of CSI acquisition, the performance of the compression
strategy suffers more from the lack of CSI than data-sharing.
This is because the gain in the compression strategy stems
from the possibility of forming larger cooperation clusters at
the central processor, which requires more CSI than the data-
sharing strategy, which already has a smaller cluster size due
to the limited backhaul capacity.

Motivated by such comparison, this paper proposes to com-
bine the data-sharing and compression strategies into a hybrid
scheme that can benefit from the advantages of both strategies.
Such hybrid combination results in flexibility in terms of
backhaul utilization. The optimization framework proposed
for the hybrid strategy generalizes both individual strategies.
When the backhaul capacity is low, the hybrid strategy reduces
to primarily data-sharing and when the backhaul capacity is
high, it reduces to almost all compression. But when the
fronthaul/backhaul capacity is moderate, we observe that the
system performance can be improved by sharing the data
for some of the users directly with the BSs and sending
compressed version of the signals of the rest of the users
using the remaining fronthaul/backhaul capacity. Having the
flexibility to switch between data-sharing and compression
depending on the available fronthaul/backhaul capacity at
different BSs is especially useful in the future dense cellular
networks with different tiers of BSs, with different levels of
fronthaul/backhaul capacities.
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