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Abstract—We study error correction codes for multimedia Distance Separable (MDS) and rateless codes are not ideal
streaming applications where a stream of source packets mts streaming codes. Their encoders operate on the sour@a¥stre
be transmitted in real-time, with in-order decoding, and stict in blocks, and introduce buffering delays. The decoders can

delay constraints. In our setup, the encoder observes a s@e of | L kets simult | ith
source packets in a sequential fashion, and/ channel packets only recover missing source packets simuftaneously, wiho

must be transmitted between the arrival of successive souec considering the different decoding deadlines.

packets. Each channel packet can depend on all the source Classical results in information theory provide little igists
packets observed up to and including that time, but not on any into real-time communication. Naturally the Shannon cipac
future source packets. The decoder must reconstruct the seee  js g |onger the fundamental limit under delay constraints.
stream with a delay of T' packets. . .

We consider a class of packet erasure channels with burst A re_cem emp'”_cal study [1] notes that .'n the Skype confgr-
and isolated erasures, where the erasure patterns are lodgl €ncing application, the overhead used in the error comecti
constrained. Our proposed model provides a tractable apprei- codes far exceeds the Shannon limit without delay conggrain
mation to statistical models, such as the Gilbert-Elliott diannel, Furthermore, the performance degradation due to burstdoss
for capacity analysis. WhenM = 1, i.e., when the source-packet s far more detrimental than random losses. This is again

arrival and channel-packet transmission rates are the equiawe . . .
establish upper and lower bounds on the capacity, that are \tiin fundamentally different from classical systems withoulagte

one unit of the decoding delayl’. We also establish necessary and constraints where one can use interleaving or codes witp lon
sufficient conditions on the column distance and column spanf  block-lengths to average out the effect of local burst eesu

a code to be feasible, and in turn establish a fundamental tdeoff | practice, channels introduce both burst and isolatese®s
between these. Our proposed codes — Maximum Distance And iy captured by statistical models such as the GilbdiiEl

Span (MiDAS) codes — achieve a near-optimal tradeoff betwee . .
the column distance and column span, and involve a layered (GE) channel. Thus, burst losses are unavoidable and it is of

construction. When M > 1, we establish the capacity for the Practical interest to study the optimal coding schemes over
burst-erasure channel and an achievable rate in the general such channels.

case. Extensive numerical simulations over Gilbert-Ellitt and In the present paper, we Study a class of packet-erasure
Fritchman channel models suggest that our codes also ach®v annels that introduce both burst and isolated losseseSin
significant gains in the residual loss probability over staistical the direct vsis of the GE ch | under del sgraint
channel models. e direct analysis of the GE channel under delay constrain
) ) o appears intractable, we introduce a simplified channel that
Index Terms—Delay Constrained Capacity, Application Layer provides a useful approximation. We propossiding-window
Error Correction, Packet Erasure Channels, Real-Time Stream- h | dek : h . lidi
ing Communication, Deterministic Channel Models erasure channel modet-C(N, B, W) — where in any sliding
window of sizelW, the channel can introduce either an erasure
burst of maximum lengttB or up to N erasures in arbitrary
o . _ locations. Thus, error correction codes over such channels
ULTIMEDIA applications such as interactive au-must correct both burst erasures and isolated erasures. We
dio/video conferencing, mobile gaming, and cloudshow that our proposed model is not only amenable to a
computing require the transmission of a stream of sourg@ctable capacity analysis under delay constraints, lbat t
packets in real time, and under strict delay constraint® Tthe resulting streaming codes also provide significantgyain
transmitter must encode a source-stream sequentially, ai@ulations over the GE and related channel models.
the receiver must decode each source packet within a fixedyje model our streaming setup as follows. The encoder
playback deadline. In this paper, we investigate a sysiemajhserves a stream of source packets in a sequential fashion.
approach for constructingtreaming codegor such appli- Between the arrival of two consecutive source packets, the
cations. Classical error correction codes such as Maximwhcoder transmitd/ channel packets. Each channel packet can
A. Badr, P. Patil and A. Khisti are with University of Torontdoronto, deperjd on all the source packets observed up to and including
ON, Canada. W. Tan and J. Apostolopoulos were with Hewletk&a Lab- that time, but not on any future source packets. The decoder

oratories, USA when this work was done. They are now with €8gstems, g required to reconstruct each source packet with a delay of
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M can be as small as the underlying statistical models of interest.

In the first part of the paper, we treat the case whenIn other related works, references [6]-[10] study a mudtica
M =1, i.e., the source-packet arrival rate and the channelxtension of [2], [3] to the case of two users and a common
packet transmission rate are equal. A special case of thip,sesource stream. The stronger receiver's channel introduces
involving the burst-erasure channel, was previously sty shorter bursts and in turn, the decoding delay is required to
Martinian et. al. [2], [3]. The authors establish the capaci be smaller. The weaker receiver's channel introduces longe
as well as the optimal code, for tlidN = 1, B,/W > T+1) bursts and the decoding delay can be longer. Such codes can
channel. These codes were called Maximally Short Codalso be used in applications where the decoding delay can
(MS) and involved constructing a block code with certaimary based on channel conditions. The construction of these
properties, and then converting it into a convolutional &€odcodes involves embedding the parity-checks of two singk-u
In the present paper, we revisit this construction and mepdvS codes in a careful manner to simultaneously satisfy the
a modification that has certain advantages. First it does mainstraints of both the receivers. References [11]-[1B]yst
require construction of a block code, but directly condiice an extension of MS codes to parallel channels with burst
streaming code using a strongly-MDS convolutional code [4¢rasures where the constructions involve a modification of
[5], and a repetition code as constituent codes. We belieMsS codes to exploit the diversity across the parallel chenne
that our approach provides a more transparent viewpoint bn[14], streaming codes that can correct multiple bursts ar
how classical codes can be modified to achieve sequenpabposed using an interleaving-type approach. We note that
recovery of source packets over the burst erasure chantieése references do not consider channels with burst and
Furthermore, our construction for the burst erasure cHarmme isolated erasure as in the present work. References [15]-
be naturally extended to the sliding window erasure chanrjé&l’] study streaming codes motivated by connections betwee
when N > 1. This is achieved by simply concatenating astreaming and unicast network coding and study channelfs wit
additional layer of parity-checks to the burst-erasureecatle either burst erasures or i.i.d. erasures. However, to teedfe
call this approach #yered codelesign. For ang (N, B,W) our knowledge, these papers do not consider channels with
channel, our proposed layered code achieves within one umith burst and isolated erasures, or the layered approach for
of the optimal decoding delay. We note that our constructimoding, which is the focus of the present work. In the broader
provides the first family of streaming codes that can corréliterature, problems involving real-time coding and coegpr
both burst and isolated erasures in the streaming setup. FBien have been studied from many different perspectivaseSo
importance of studying such robust codes was also discusseuictural properties of optimal codes have been studied in
in [2], and some specific examples were obtained usingea., [18]-[20], and a dynamic programming based formaifati
computer search, but these do not appear to immediately lésgproposed. However, to the best of our knowledge, these
to a general constructions. papers do not consider explicit codes as considered here.

The streaming codes by construction are convolutionitee codes for streaming over i.i.d. channels are studied
codes, and hence it is natural to study their underlyingudi=z® in [21]-[23]. There is also a significant body of literatune o
properties. We show that any feasible streaming code owtapting various coding techniques for streaming systeess,
the C(N, B, W) channel must simultaneously have a certaie.g., [24]-[28] and references therein.
minimum column distance and column span. The column dis-
tance is associated with isolated erasures, whereas themgol Il. SYSTEM MODEL AND MAIN RESULTS
span is associated with the recovery from burst erasures. Asn this section, we introduce the streaming setup and sum-
a corollary to our capacity bound, we characterize a newarize the main results of the paper.
tradeoff between the column distance and column span for any
convolutional code, which could be of independent intereg{ ~ sjiding-Window Erasure Channel Model
Furthermore, our proposed codes attain a near optimaldfade

Hence, we call them Maximum Distance and Span (MIDASe)rasure patterns are locally constrained. In any slidingloiv

codes. : of length W, the channel can introduce one of the following
In the second part of the paper, we consider the gener%ltterns (i) a single erasure burst of maximum lengthor
case whenV/ > 1, i.e., the source-packet arrival and channel. : 9

o -(ii) a maximum of N erasures in arbitrary locations. Note that
packet transmission rates are unequal. We propose an opti o : . .
. . e conditionN < B follows since a burst erasure is a special
construction for the burst erasure channel, and an acHe&v .
rate for the general case. Both the construction as well ge of erasure pattern. We will assume throughout the paper
9 that B+1 < W, so that in any window of lengti’ there is at-

the decoding analysis are a non-trivial extension of the cas .
when M = 1g Final)ll we present extensive simulation resuli‘]east one non-erased packatle use the notatiod(N, B, W)
e y P for such a channel. Note that the special case wNee: 1

over the GE and Fritchman channels that suggest substanrﬁaéj

We consider a class of packet erasure channels where the

: . . educes the above model to a burst-only channel model. In
performance gains over baseline codes for a wide rangeﬂ%

channel parameters. We also discuss how the parameter?jl t—%eggtsv(; ihle guard separation between successive bsrsts i

the sliding-window erasure channel can be selected based 0 . . L
9 Pn practice, we can view (N, B, W) as an approximation
1The setup in [2], [3], only considers a single burst-erastiiannel. But Of statistical models such as the Gilbert-Elliott (GE) cheln
their construction also applies to the sliding window eraschannel when
W >T+1. 2|f this condition is violated, it follows that the capacity zero.



lo]1]2]3]4]5[6]7[8]9]10]11]r2]13]14[15] -  must satisfy the following upper bound:

Fig. 1. An example of the sliding-window erasure channel
C(N = 2,B = 3,W = 5). In any sliding window of length

W = b5, there is either a single erasure burst of length no " .
greater tharB = 3, or no more thanV = 2 isolated erasures. WheréTes = min(7, W —1). 0

Theorem 1 provides an upper bound on the rate for any
code, linear or not, and any field size Alternatively, when
model. A GE channel is in one of two states. In the goatie rateR and delayl” are fixed, Eq. (1) illustrates a tradeoff
state, it behaves as an i.i.d. erasure channel, while in thetween the achievable values Bfand N. We cannot have
bad state, it behaves as a burst-erasure channel. Thus,alsreaming code that can simultaneously correct long erasu
interval consisting of a burst loss corresponds to the bédrsts and many isolated erasures. The proof of Theorem 1 is
state, whereas a window comprising of isolated erasune®vided in Section IV-A.
corresponds to the good state. Fig. 1 provides an exampléNote thatT,g + 1 = min(7 + 1, W), whereT + 1 denotes
of C(N = 2,B = 3,W = 5). The intervals[0,2] and the active duration of each source packet, i.e., each source
[12,14] of burst erasures correspond to the bad state of thackets[i] arrives at timet = i and must be decoded by
GE channel, whereas the intervial 11] corresponds to the time t =i +7. When W > T + 1 the right hand side in
good state of the GE channel. The advantage of studyittge upper bound in (1) depends on the decoding délay
the C(N, B,W) is that it is a tractable model for capacityand not on the window/V; otherwise it depends of¥/. In
analysis. Furthermore, streaming codes developed usigg tine latter case, the upper bound corresponds to the capacity
model with suitable parameters can provide significantgjaiof a certain periodic erasure channel with = oco. The
over statistical models. This will be verified in our simidat intuition here is that theZ(N, B, W) channel only controls
results over the Gilbert-Elliott and Fritchman channel gisd the allowable erasure patterns in a local window of lerigith
We separately treat the cases when the source-packet intiefd” < 7'+ 1, one can construct an erasure pattern such that
arrival rates and channel-packet transmission rates aral eghe channel packets received after tiine W — 1 cannot be
and when they are not. For convenience we refer to theseuseful for the decoding of source packgi. Thus the effective

R
P )B4+ N<Tyg+1, 1
(25) B+ N < T+ ®

source-channel inter-arrival rates delay reduces tdV — 1. Indeed our lower bound involves the
construction of a streaming code the delayiBf— 1, instead
of T.

B. Equal S -Ch | Inter-arrival Rat
qual source-Lhannel Inter-arrival kates Theorem 2 (Lower Bound) For any channeC (N, B, W) and

At each time-sloti > 0, the encoder observes a sourcdelayT > B, there exists a code of ratg that satisfies
packets[i], and transmits a channel packdt] as shown in R
Fig. 2. We will assume throughout that the source packet ——— | B+ N > T.q, (2)

; . ) 1-R
consists of k symbols, while the channel packet consists
of n symbols over a common finite fieldf,. The rate of whereT.g = min(T, W — 1). O

the code equals? = % The channel input at timeé can

depend causally on all the source packets observed up tJhe_ proof of Theorem 2 is presented in Section IV-C. Upon
and including timei, but not on any future packets, i.e.£*amining the upper bound (1) and the lower bound (2) we
x[i] = fi(s[0],...,s[i]). The channel output at time is note that the right hand side only differs by one. Thus, the

denoted by the packeti]. Note that eithery[i] = x|i], or Proposed codes are optimal within one unitiofy.
yli] = %, when the channel introduces an erasure. The decodef N€ Streaming codes proposed in Theorem 2 is a new

is required to reconstruct each source packet with a delay®fily of codes and will be calledlaximum Distance And

T, i.e., for eachi > 0 we must have a decoding function Span tradeoff (MiDAS) code3heir construction is based on

s[i] = gi(y[0],....y[i + T]). Such a collection of encoding & two-step, layered coding approach. In the first step, we

and decoding functions constitutes tsteeaming code construct an optimal streaming code f6(N’ = 1, B, W)
channel. Then we append an additional layer of parity-check

Definition 1 (Streaming Capacity - Equal Source-Channglackets that enables the recovery from Mésolated erasures.
Inter-arrival Rates) A rate R is achievable with a delay of While the recovery from the burst erasure does not use the
T over theC(N, B,W) channel, if there exists a streamingparity-checks generated in the second step, the recovemy fr
code of this rate over some field of sigesuch that every isolated erasures uses parity-checks from both the steps. T
source packes[i] can be decoded at the destination with @ur knowledge MIDAS codes constitute the first family of
delay of T packets. The supremum of all achievable rates igreaming codes that can recover from both burst and isblate
the streaming capacity. erasures and demonstrate significant gains over the Gilbert

We establish the following upper and lower bounds on thEelllott channel and Fritchman channel over a wide range of

streaming capacity parameters.
. Note that Theorem 2 does not explicitly state the field-

Theorem 1 (Upper Bound) For the sliding-window erasure size q. The underlying constructions are based on systematic
channelC(N, B, W), an achievable rat&? with delayT’ > B Strongly-MDS convolutional codes [4], [5] and their vari-



Delay =T

{s[il},., X[l {y[il}i
—®»Encoder———» C(N,B,W)
x[i] = £(s[0], ... , s[i])

{slil},.,

Fig. 2: The source streasit| for ¢t > 0 is causally encoded to a channel streaft] which is transmitted over the sliding
window erasure channél(N, B, ). The decoder tolerates a maximum delayZopackets.

ants, which are known to exist for field-sizes that increaskenotes the macro-packetonsisting of A/ channel packets.
exponentially inT,¢. However, we also provide an alternatéit the start of macro-packetthe encoder observes the source
construction in Section IV-D, that satisfies (2), and whoggackets|[i] € IF’; and generated/ packetsx|i, j] € Fy, for
field-size increases a8(T2;). j €{1,..., M} which can depend on all the observed source

Remark 1 (Column Distance and Column Span Proper&y packets up to that time, i.e.,

definition the streaming code is (@, k) convolutional code, x[i, j] = fi;(s[0],s[1],- - ,s]i]). (6)
where the source streasfi] € % is the input andk|i] € F is , i i
the output. Traditional constructions for convolutionades These packets are transmitted in fhietime-slots correspond-

maximize the underlying free distance [29]. However, in tH89 © the macro-packet Fig. 3 shows the system model.
present setup, theolumn distancandcolumn sparfsee Def. 3 NOte that for the case whell = 1 the setup reduces to that
and 4 in Appendix A) determine the error correction prop Section II-B.
erties. In Appendix A, we establish necessary and sufficientrhe jth channel output packet in the macro-packeis

conditions on the column distance and column span of afgnoted byyli, j]. When the channel input is not erased,

feasible convolutional code for th& N, B, W) channel. we have,y[i, j] = x[i, j], whereas when the channel input
i o is erasedy]i, j] = . The channel output macro-packets are
The following result, which is a consequence of Theoremé‘xpressed a¥[i,;] = [yli,1] | ... | y[i, M]]. The decoder is

and Theorem 2, appears new and could be of independgt ired to decode each source packet with a maximum delay
interest. of T macro-packets, i.e.,

Proposition 1 (A Fundamental Tradeoff between Column s[i] = ¢:(Y[0,:, Y[1,:],--- , Y[i + T, 1)) @

Distance and Column Spanfor any (n, k) convolutional

code with rateR = % and an integerI” > 0, the column e define the rate of this code by = -%. In the above

distancedr and the column spanr must satisfy the upper definition, we are normalizing the size of each source packet
following bound: with the size of each macro-packet. This is due to the fact
R 1 that in our proposed setup, a total 8fn channel symbols
(m) cr+dp <T+1+ 1R (3) are transmitted for each source symbols.

Furthermore, there exists a convolutional code with columbefinition 2 (Streaming Capacity - Unequal Source-Channel
distancedr and column sparcy, over a sufficiently large Inter-arrival Rates) A rate R is achievable with a delay of

field-size that satisfy: T macro-packets ovef (N, B, W) if there exists a streaming
R 1 code of this rate over some field of sizesuch that every
(ﬁ%) cr+dpr >T+ - " (4) source packes[i:] can be decoded with a delay @f macro-
packets. The supremum of all achievable rates is the stregami
0 capacity.
Proof: See Appendix A. [ ]

For the above setup, the capacity has been obtained when
N=1landW > M(T +1).
C. Unequal Source-Channel Inter-arrival Rates

We discuss a generalization of the setup in Section Il
where one source packet arrives evardy channel uses. As
before each source packet consists:afymbols and channel
packets consists of symbols, each over a finite fiell,. For B=bM+B', B c€{0,...,M—1},beN°. (8)
convenience, the collection dff channel packets is termed as . o
a macro-packet. The index of each macro-packet is denotdef capacityC’ for T' > b is given by:

using the letter, i.e., i Lb R TLH)M7
Xli,] = [x[i,1] | ... | x[i,M]] e F2*M 5) =

_Eheorem 3. For the channelC(N = 1, B,W), and anyM
and delayT, such thatW > M(T + 1) the capacity is
expressed as follows. Létand B’ be defined via

MTivrn-p vep<m—1 O
M) 0 T+ < = T



s[0] s[1] s[2] s[T s[T + 1]
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X|0,:] X1, X[2,:] XI[T,:] l X[T+1,] l
Recover Recover
s[0] s[1]

Fig. 3: Each source symbs|i] arrives just before the transmission Xfi, :] and needs to be reconstructed at the destination
after a delay ofl" macro-packets.

For the minimum delay casé&; = b, we have: I1l. PERFORMANCEANALYSIS OF BASELINE SCHEMES
1 0< B <M We review two constructions —-m-MDS codes and Maxi-
C= {?\{_B M_< B’_<2M 1 (10) mally Short codes — that have been proposed in earlier works.
Moo2 - ’ While these codes are optimal only in some special cases,
Finally, C =0 for T < b. O they constitute important building blocks in our proposed
constructions.

The proof of Theorem 3 is divided into two main parts.
The code construction is illustrated in Section V-B whileth,  \1\0c ~o4es

converse appears in Section V-E. B _
In the traditional approach to erasure correction, the deco

We make several remarks pertaining to Theorem 3. Recallist wait till sufficiently many parity-check symbols are
that since the delay’ is expressed in terms of the macrocollected so that all the source symbols can be recovered
packets (see Fig. 1), the case whEn= b corresponds to simultaneously by inverting a full-rank system of equasioim
the minimum possible delay. In this special case, the capadiandom-linear codessee e.g., [24], [31], [32], the coefficients
can be attained using a repetition code. WHen> b the of the linear code are selected at random to guarantee near
optimal codes, as well as the decoding analysis, are a neptimal recovery with high probability. However, insteafl o
trivial extension of the case wheW = 1. Secondly note that random codes, we consider a class ddterministic code
the capacity expression in (9) involves two cases. In the firsonstructions with optimal distance properties [4], [5]tiis
case, which corresponds td/ < B < bM + TLH)M, the section.
capacity stays constant @ = ~L- even asB is increased in  Consider a7, k, ) convolutional code that maps an input

T+5 A
this range. To explain this, note that the threshgl A/ =  source streans(i] = (so[il, ..., s;_1[i])" € Fy to an output
(1 — C)M, equals the number of parity-check packets in &[i] = (xqli],...,zn_1[i])' € F} using a memorym en-

given macro-packet. This observation can be used to canistreodef. In particular, let
a code such that up t®’ erasures in the last macro-packet

m T
do not reduce the capacity. This will be further explained in x[i] = ZST[i e (11)
Section V-A. — vl
We remark that the capacity result in Theorem 3 can hkehere Gy, ..., Gy, arek x n matrices with elements iff,.

used to obtain bounds on the symbol-level column span Bfirthermore, the convolutional code is systenfaifiave can

a convolutional code. This is in contrast to our treatmeerkpress each generator matrix in the following form,

in section 1I-B where the packet-level column span was _

considered. We do not discuss the associated results in thfd0 = Lixi Hol, G = [0 He], t=1,...,m (12)

paper, but refer the reader to [30]. where I, ; denotes thek x k identity matrix, Oz, de-
; 5 for ¢ =

tes thek x k zero matrix, andH, € Fr*("~*
., m. For a systematic convolutional code, (11) reduces

Finally note that the constructions in Theorem 3 only app
to the burst-erasure channel. Based on the layered appro "
in Theorem 2 we also propose a robust construction for t
case whenN > 1 in Section V-F. However, the optimal si] m t
construction is left for future work. x[i] = [ pli] } . plil= (Z stli—1] - Ht) - (13)
This completes the discussion of the main results in ther, ... viDs codes (see e.g. [5, Corollary 2.5]), correspond

Paper. The rest O.f the paper IS organized as follows. {8 a certain choice oH, that result in the maximum column
Section 1, we review some previously proposed codes. We

treat the case of when source channel inter-arrival rates arsye uset to denote the vector/matrix transpose operation. Throutgthis

equal in Section IV and propose our MiDAS codes. The cas?)er, we will treais[i] and x[j] as column vectors and therefosé[i] and

of unequa| rates is treated in Section V. Simulation resuBr‘sU] d_enote the assoc_:lated_row vectors. For convenience, waatilise the
. . . notation when the dimensions are clear.

are presented in Section VI and Conclusions are presented Wrhroughout the paper, we only consider systematidDS codes and

section VII. thus the word systematic is dropped for convenience



distance (see Appendix B). This in turn results in following From Corollary 1, it follows that anyV, B) pair that
error correction properties in the streaming setup. satisfies

Lemma 1. Consider a systemati@:, k, m) m-MDS code and N<(1-R)(T+1), B<(1-R)(T+1) (15)

suppose that the symbols in each packgt, i.e., ) . . .
PP y packe} is achieved using &, k,T) m-MDS code of rateR = % with

x[i] = (solil, .- ., s5_1[i], poli, - - -, Pp__1li]) (14) delayT andW > T+1. In particular, if the channel introduces

up to (1 — R)(T +1) erasures in the windoy, 77, it follows

n — 1] over the channél The following properties hold for from Property P1 in Corollary 1 f[hato] is recovered at = T

eachj = 0.1,....m. Onces|0] ha_s been recpvereq, its effect can be subtracted out

. i i ) from all parity-checks involvings[0]. By the same property,

L1. If N transmitted symbols are erased in the interval(j) js guaranteed to be recovered at time T + 1. This
0,5 + Dn — 1] where N < (n — k)(j + 1), then graument can be successively repeated until all the erased
s[0] = (s0[0],...,55-1[0]) can be recovered by time h,cyets are recovered. Furthermore, upon substituing N
G+Dn—-1. . in (1), we note that then-MDS attain one extreme point on

L2. If the channel introduces an erasure-burst of length hq tradeoff, namely whe = B. This is clearly the largest
symbols in the intervalc, c + B — 1], where B < (2 —  feasible value ofV in ).
k)G +1)and0 < ¢ < k —1, then all erased source |, 5 similar fashion, it can be shown that for the case
packets are recovered by tinig + 1)7 — 1. of unequal source-channel inter-arrival rates in Sectie@ |

L3. If the channel introduces an erasure burst of len@th  \when > A7 (T + 1), any (N, B) is that satisfies
symbols in the intervgk, c+B—1], where0 < ¢ < k-1, N
followed by a total of no more thah isolated erasures N < M(1—-R)(T+1), B<M(1-R)(T+1) (16)

such thatB + I < (n — k)(j + 1), then all the erased is achieved usin k,T) m-MDS code with rateR =
packets in the burst are recovered by tifye+ 1) — 1. & g &Mn. k. T) m

Mn"

are transmitted sequentially in the time interjal i, (i + 1) -

Proof: See Appendix B. [ ]
We now discuss how the properties in Lemma 1 can & Maximally Short (MS) Codes
applied to our system model. In the case in Section II-B, whenyypijle the m-MDS codes achieve the extreme point of the
the source and channel inter-arrival rates are equal, Leiimgnper hound (1) corresponding 8 = B, the Maximally
immediately yields the following. Short (MS) codes [2], [3] achieve the other extreme point,

Corollary 1. Consider a systematita, k,m) m-MDS code Ccorresponding taV = 1. In particular, the maximum value of

of rate R = £ which transmits the entire channel packef8 With N = 1 is given in the following result.

x[i] = (woli],...,zn-1[i]) € Fy in time-sloti. For each |emma 2 (Martinian and Sundberg [2], Martinian and

j=0,1,...,m, we have the following, Trott [3]). Consider the channeC(N = 1,B,W) with

P1. Suppose that in the windd® j], the channel introduces W > T'+ 1 and M = 1. There exists an MS code of rate
N < (1-R)(j+ 1) erasures in arbitrary locations, then R satisfying

s[0] is recovered by time = j. T <

P2. Suppose an erasure burst happens in the intgtyd? — R=!T+B’ B=T, (17)
1], where B < (1 — R)(j + 1), then all the packets 0, else
s[0],...,s[B — 1] are simultaneously recovered by ime-,rthermore, R in (17) is the maximum achievable rate for
t=7 C(N =1,B,W >T + 1) channel. O

The construction of MS codes presented in [2], [3] involves
Proof: To establish property P1 we invoke property Lirst constructing a specific low-delay block code and them co
in Lemma 1. Note that in P1 we consider the transmissie@rting it into a streaming code using a diagonal interlegvi
of channel packets whereas in Lemma 1 we consider thghnique. Thus, the problem of constructing a streamirnig co
transmission of symbols. Note thaf packet erasures leadsis reduced to the problem of constructing a block code with
to N = nN symbol erasures. Thusy < (1 — R)(j + 1) certain properties. While such a simplification is appeglin
is equivalent toN < (n — k)(j + 1) symbol erasures. unfortunately it does not appear to easily generalize when
Furthermore, the interval0,j] in P1 associated with the seeking extensions of MS codes. Note that the above MS
transmission of the firs§ + 1 packets maps to the intervalcodes can only achiev& = 1 and are highly sensitive to
[0, (j4+1)n—1]in L1. Thus, the entire packst0] is guaranteed isolated losses over the channel. In [2], some examples of

to be recovered. codes with highetNV' were reported using a numerical search
Property P2 follows in an analogous fashion upon usingit a general approach for constructing robust streamidgso
property L2 in Lemma 1 withe = 0. remained elusive. In Section IV-B, we present an altereativ

B perspective that easily extends to achieve a near optinel ra

s - o for any (N, B).
Note that in this statement we are only transmitting symbets F, over = h f | h li ival
the channel. Subsequently, we will adapt these propertegréansmitting or the case ot unequal source-channel inter-arrival rates

packets ovef? a straightforward adaptation of the MS codes is as follows.
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Source Recovery
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Fig. 4: Each source symbali] is split into M sub-packets i.es[i] = (wl[i, 1], w[é, 2], ..., w[i, M]). The expanded source

stream is then encoded using a Maximally-Short code. Thedtaecovers eacw|[i, j] oncey[i + T, j] is received which
ensures thas[i] is recovered by the end of the macro-packetT.

TABLE I: Achievable(N, B) for channeC (N, B,W > T+1)
for equal source-channel inter-arrival rates. Similardeatfs
for the first three codes can be achieved for< T + 1 by
replacingT” with W — 1.

C. Numerical Comparisons

1) Equal Source-Channel Inter-arrival Rateable | sum-
marizes the feasible values of and B for different code%
For a fixed rateR and delayl’ we indicate the values oWV
Code \ N \ B and B achieved by various codes in the case of equal source-

m-MDS Codes A-R)(T+1) 1-R)(T+1) channel inter-arrival rates. The first row corresponds ® th
Maximally Short Codes 1 T-min(z-1,1)  »-MDS in Section IlI-A, while the second row corresponds
MiDAS Codes min (ByT*%B> Be[L,T] to the MS codes in Section IlI-B. The third row corresponds to
E-RLC Codes [33] our proposed construction — MiDAS codes — in Theorem 2.
Ae [R%lel/)éT* 1, | FHET-A)+1 HA In contrast to them-MDS codes and MS codes, that only

attain specific values ofV and B, the family of MIDAS
codes can attain a range @V, B) for a givenR andT. The

last row corresponds to another family of codes — Embedded
Random Linear Codes (E-RLC) — proposed in [33]. While

We split each packes|i] into M sub-packets, one for eachsuc_h constructions are optimal fﬂ‘r:_l/2, they_ are _far from
time-slot in the macro-packet and then apply a MS code gptimal in general and will not be discussed in this paper.
Lemma 2 to this expanded source stream with d&lay: MT We further numerically illustrate the achievallg, B) pairs

(cf. Fig. 4). In particular, we assume thai] € (F,)*™ and for various codes in Fig. 5. We fix the rate fo = 0.6. As
proceed as follows. stated before, then-MDS and MS codes in Sections IlI-A

and llI-B respectively only achieve the extreme points om th
tradeoff. The MIDAS codes achieve a tradeoff, very close to

« Split eachs[i] = (w[i, 1],...,w[i, M]) wherew[i, j] € the upper bound for all rates. The E-RLC codes, illustrated
F'; with the red plot, are generally far from optimal except for
« Apply a MS code in Lemma 2 for thé(N =1, B,W) R = 0.5 which is not the case in this figure.
channel with delay™” = MT (channel packets) arid > 2) Unequal Source-Channel Inter-arrival Ratesig. 6
M(T+1). illustrates the capacity and rates achieved with baseline
« Transmit the associated channel packét j] € F; in schemes for the case of unequal source-channel integhrriv
slot j of the macro-packet rates. In this example, we considéd = 20 and a de-
lay of T = 5 macro-packets and plot the rate vs. cor-

rectable burst length. The capacity is shown by the blue-

From (17) we have that i o .
(A7) curve marked with squares. Note that it is constant in the

po MT T (18) intervals B € [40,45],[60,67],[80,88], [100,110]. The red

MT+B T+b+%Z curve marked with circles denotes the rate achieved by a

is achievable whenB < MT. Note that in the second Suitable modification of the MS code (18). We note that the
equality in (18), we use (8). Note that the delay Bf — curves intersect wheneveB is an integer multiple ofM,

M - T channel packets in the expanded stream, implies tfagicating the optimality of the MS codes for these special
wli, 5] is recovered whery|i + T, ;] is received for each values: B € {40, 60,80,100}. Furthermore, for burst lengths
j € {1,2,...,M}. Thus, the entire source packel] is B > MT = 100, the MS codes are no longer feasible and

guaranteed to be recovered at the end of macro-packe, the associated rate is zero. The _dotted blgck line shows the
thus satisfying the delay constraint. We note that the rat€"formance of then-MDS codes in (16). Since these codes
in (18) is only positive ifB < MT and attains the capacityd_o r_u_)t perform sequential recovery, their achievable rate i
in Theorem 3 in the special case whah = 0. If B > M7  Significantly lower than the capacity.

the above construction is not feasible and the rate attamed 6We note that the floor of the values given in Table | should besictered
Zero. as the values might not be integers
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bound in (1). The MIDAS codes are shown with broken
green lines with X’ and are very close to the upper bound.
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Fig. 6: Achievable rates for different code constructions f
the case of unequal source-channel inter-arrival ratethéor
C(N =1,B,W = M(T + 1)) channel. We fix the delay to

T = 5 macro-packets and Iéf = 20. The blue plot (marked
with squares) corresponds to the capacity in Theorem 3.
The red curve (marked with circles) corresponds to the rate
achieved by the adapted MS code (18) whereas the black

line corresponds to the rate of the-MDS code (16).

o The first B — N + 1 packets{s[i]}o<i<p—n, Must be

In this section, we consider the case when source and @all recovered with delayl” since the recovery window

channel inter-arrival rates are equal, i.&f,= 1. We start by

establishing the upper-bound in Theorem 1 in Section IV-A.

In Section IV-B, we revisit the Maximally Short codes for the

C(N =1, B,W) channel and propose a modification that uses *
m-MDS and the repetition code as its constituent codes. We

then extend these constructions to théV, B, W) channel in
Section IV-C to construct MiDAS codes. In Section IV-D, we
provide an alternative construction of MiDAS codes achigvi

the same tradeoff in Theorem 2 but with a smaller field-size.

Finally, we compare the performance of the two construstion
through an example in Section IV-E.

A. Upper-bound

To establish the upper bound in Theorem 1, we separately

consider the cases whel® > T +1 andW < T + 1.

[i,7+ T] of each such packet only have a burst of length
B or smaller. Thus, all these packets are recovered by
timet=7p — 1.

The recovery window of each of th&/ — 1 packets,
{s[i]} B—N+1<i<B—1 IS [, + T] which sees two bursts.
The first burst span§, B — 1] and is of lengthB — i.
The second burst sparfi§ + B — N + 1,i+ 7] and is

of lengthi + N — B. Thus, the total number of erased
packets in each recovery period is exadily Thus, any
feasible code over thé(N, B, W) channels guarantees
that each such packet is also recovered at timel".

« The recovery window of each of the remaining packets in

the first periods|B],...,s[tp — 1], again sees a single-
erasure burst of lengtB at the end of the window. Hence,
each of these packets is also guaranteed to be recovered
with delay no more thaff’, in particular, by timerp — 1.

WhenW > T + 1, consider a periodic erasure channel witQye have thus shown that all the packets in the first period
a period ofrp =T+ B — N + 1 and suppose that in everyspanning[0,7» — 1] can be recovered with deldy. We can
such period the firsB packets are erased (see Fig. 7). Whilgepeat the same argument for all the remaining periods and
such a channel is not includedd{N, B, W), we nonetheless thus the claim follows. Thus, using the capacity of the pido
show that any code fo€(N,B,W) and delayT is also erasure channel, we have

feasible for the proposed periodic erasure chanhnel.
Consider the first period that spans the inteff¢akp — 1].
We note the following

A similar converse argument involving periodic erasurencte for the
burst-erasure channel is also presented in [2], [7], [8]r Borigorous
information theoretic argument, we refer the reader to [BJ], [13] for the
case of burst erasure channel. A similar approach can beingbd present
setup, but it will not be presented.

B
T+B-N+1
For the case whei/ < T + 1, we consider a periodic

R<1- (19)

erasure channel with a period ef = W + B — N where in
each period the firsB packets are erased and the remaining
W — N packets are not erased. Such a channel by construction
is aC(N, B,W) channel. In any windowV; = [i,i + W — 1]
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Fig. 7: The periodic erasure channel in the proof Theoremhke Jhaded symbols are erased while the remaining ones are
received by the destination.

/\ two sub-packefsu[i] € FX* andv[i] € F¥" as follows,
Repettion Parity-Check S[Z] = (UO [Z]v ceey Ukn—1 [Z]v Vo [Z]a cees Ugv—1 [7’])7 (22)
Al ull] | —=|u[i-T

|Combination

k> §§ Sm v =uli] =vi]
“lsfi] [{2 Pr phH & 2 ; where k" + k¥ = k, i.e., u[i] constitutes the firsk"
- /f/ o é\" L symbols ins[i] whereasv[i] constitutes the remaininif’
e /IP ool il symbols.
- « m-MDS Parity-Checks: Apply a (k* + k¥, k¥, Tog) m-

MDS code of rateR? = ﬁ on the sub-packets]i]

Fig. 8: A block diagram illustrating the encoding steps of a  and generate parity-check packets

Generalized MS code. The source packet is first split into two T ]

packets and a different code is applied to each packet. The o . v o jan

resulting parity-checks are then combined to form the divera pli] = — vili—l- Hy | pllilef,, (23)

parity-check packet. Finally, the parity-check packet #mel .

source packet are concatenated to generate the channetpack where the matrice$i F’;“X’““ are associated with a
m-MDS code (12).

« Repetition Code: Superimpose the[-] sub-packets onto

of length W, there exists either a single burst of maximum p[] and let
length B, or up to N isolated erasures. Thus, every erased qli] = p°[i] + ufi — Teg]. (24)
packet on such a channel must be recovered, i.e., we have .
that « Channel Packet Generation:Concatenate the generated
B parity-checks to the source packets so that the channel
R<l——— 20 input at timei is given byx[i] = (ulé], v]i], q[¢]) € FZ,
B W+B-N (20) wheren = 2k* + kV. vl = (vl al) !
Rearranging (19) and (20) and usifigr = min(W —1,T), In our construction discussed above, we select T,
we easily recover (1). This completes the proof of the uppét = B, k¥ = T.g — B andn = T.g + B. Clearly the rate of
bound. the proposed cod& = % matches the expression in (21).

For decoding, we suppose that the first erasure burst of
length B spans the interval0, B — 1]. Since the code is
time-invariant a completely analogous argument appliesnwh

B. Generalized MS Codes the erasure burst spans the interjgk + B — 1] for any
¢ > 0 and the source packets upto timie- 1 have been
In this section, we present a generalization of the MS codakeady recovered. By the definition of the sliding window
introduced in Section IlI-B. The proposed constructionleggp erasure channel, there can be no other erasurdsfgrackets
to any W > B + 1, and eliminates the intermediate step ofollowing the erasure burst and in particular all the channe
constructing a block code in [2], [3]. This method can be thgmacketssl[i| for i € [B,T.s + B — 1] are recovered. We

generalized to correct both burst and isolated erasurethéor claim that eacts|0], s[1],...,s[B — 1] is recovered by time
C(N, B,W) channel. t="Teg, Tog +1,...,Tog + B — 1 respectively.
The decoder proceeds in two steps as illustrated in Table I

Proposition 2. Let Tog = min(W — 1,T). For the C(N =
1, B, W) channel, there exists a streaming code with délay
and rate

» Simultaneously recovev[0],...,v[B — 1] by time ¢ =
Tex — 1. In this step, the decoder proceeds as follows.
For eachj € {B,...,Tes — 1}, the decoder recovers the
R— {TiejfB, Ter > B 21) parity-check packet®”[j], by subtracting the unerased

u[j — Tegr] from the associated[j] = p*[j] + u[j — Tes]
packets. These recovered parity-checks can then be used
O to recoverv|0],...,v[B — 1].

0, else

The encoding steps, illustrated in Fig. 8, are as follows:  8Throughout the paper, we will use packets to denote a vedtsouarce,
o . . parity and channel symbols, respectively, whereas we us@ackets fomu:|
» Source Splitting: Split each source packesfi] € IF’; into andv[].
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TABLE II: An illustration of the decoding steps in a Genetralil MS code. Each column denotes a channel packet trangmitte
at the time index shown in the first row. In each interval, tlagity check packets used for recovery are highlighted in red
whereas the parities that are computed and cancelled assett@ut.

0 B-1 B | Tew—1 Tg |...| Teg+B-1
ku u[0] . ulB —1] u[B] oo | ulTeg —1] | u[Teg] | ... | u[Tes + B—1]
ky v[0] . v[B — 1] v[B] coo | VITeg — 1] | V[Teg] | ... | v[Ten + B —1]
o Tl [ | uB-Tog—1] | ofB—F} | ... | w3+ | w0+ || uB-1+
S AP0 |- | 4p[B-]] +p[Bl | . [ plTe —1] | ptent | ... | pHentB—H
4 4
Burst Erasure Simultaneously Recover  u[0] ... u[B — 1]
v[0],...,v[B —1] Sequentially
Note that using property P2 in Corollary 1 and substitut-
ing R=RY andj = T.g — 1 we get, /_\
(1 - R")Tur = B, (25) I B R RN ot N
e E | s[i] ||
. 7 ] : n
and hence _the recovery of[0],...,v[B — 1] by time  _ s[i] | (& o [ PHH & v
t = T.g — 1 is guaranteed. S \%\ N
« Sequentially recoverul0],...,u[B — 1] at times A % IR
Teir, ..., Tog + B — 1, respectively. Consider the parity- 5 Tl =
CheCkSq[j] = u[j _Teff] +pv[j] forj € {Teffa B aTeff+ u

B — 1}, which are available to the decoder. Upon the
recovery ofv[0],...,v[B — 1] in the previous step, the _ ) ) _
requiredp®[j] can be computed, subtracted frogj], Fig. 9: A block diagram illustrating the encoding steps of

and the underlying1[-] sub-packets can be sequentiall®@ MIDAS code. The top part is equivalent to that of a
recovered by their deadlines. Generalized MS code (cf. Fig. 8). The lower part shows
. the extra layer of parity-checks added which is generated by
Upon completion of the two steps stated above, the recov%rlx lying am-MDS code to theu|] sub-packets
of s[i] for i € {0,..., B — 1} follows. Any subsequent burst, plying am P '

starting at timet > T.g + B, can be corrected in a similar

fashion. Since the rate of the code is clearly given by (21), - )
the proof of Prop. 2 is complete. channel and then concatenate an additional layer of parity

) ) packets wherdV > 1. We again assume thgf] € IF’; and split
Remark 2. The geqerallzed MS code construction makes thi€jnto two sub-packetsii] and v[i] as in (22) and generate
structure of the optimal streaming code for the burst erasughe parity-checksyi] as in (24). The resulting code up to

channel more transparent. Note thatMDS is an inter-packet this point can only correct burst erasures. We further apply

code that combines the sub-packets], across different time (k" + k*,k*, Tog) m-MDS code of rateR" = kk+k to the

instants. Such a code can only simultaneously recover all t_lav] sub-packets and generate additional parity-check packets
erasedv|-] sub-packets and does not provide the sequentia i

recovery. The repetition code applied ta[-] sub-packets Teft .
is a simple intra-packet code. It does not combine packets p"[i] = | Y ui[i—j]-HY | ,  p“[i]] eF', (26)
across different time and can be sequentially recovere@. Th j=0

roposed construction splits each source packet into twispa gy 1.8 . . .
brop P P ®=p where HY ¢ IF’; xk® agre matrices associated with a

applies the inter-packet code to one group, the |ntra-p*ackren_lvlDS Code (12). We simply concatenate the parity-

repetition code to the other group, and then superimpose _ i . .
the resulting parity-check packets. Thus, the optimal CO&‘?ecks ali] and p“li] with the source packets, i.e.,

involves balancing the contributions of the inter-packeta i] = (uld], v[i], q[i], p“[i]). Fig. 9 illustrates the layered ap-

intra-packet codes through an appropriate sub-packetzat proach in our code constructloq. Note the.{t] < Fg, Whekre
n = 2k" + k" +k° and the associated rate is given By= .

The Generalized MS code is no longer feasible whéen- In our construction, we seledt* = B, k¥ = T.g — B,
1. To see this consider two isolated erasures one=ab and ;= kv 4 k¥ = T.g and,
the other att = T.g. In this case, bothi[0] as well as its N
repeated copy are erased. We propose a modification to these k® = mk“. (27)

codes that can deal with any value &fin Theorem 2.
Remark 3. We note that if the value d#°® in (27) is non-

_ ) integer, extra source splitting by a certain factor of is

C. MIDAS: Code Construction needed. In particular, we sét" = mB, k¥ = m(Teg — B),
Our proposed construction is based on a layered approakhs k" + k" = mTos andk® = 7—g k" = 7—2o—mB.

We first construct a Generalized MS code®NV = 1, B,W) It can be clearly seen that choosing = Teg — N + 1 is
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sufficient fork?® to be an integer. we have that

Decoder Analysis:In the analysis of the decoder, we iB—%N > Tog. (31)
consider the interval0, Tog] and show that the decoder can 1-R _
recovers|0] by timet = T.g if there is either an erasure burstThe proof of Theorem 2 is thus completed.

of length B or smaller, or up taV isolated erasures in this Example - MiDAS(N, B,T) = (2,3,4) and W > T +
interval. Once we show the recovery «ff] by time¢ =Tes, 1 = 5: Table Il illustrates a MIDAS construction for

we can cancel its effect from all future parity-check paskbt (N, B) = (2,3) andT = 4 andT.¢ = T. The encoding steps
necessary. The same argument can then be used to show zhatgs follows:

s[1] can be recovered by tim&.s + 1 if there are no more _ _
thanV isolated erasures or a single burst erasure of maximume Split each source packefi] into & = 7 = 4 sym-

length B in the interval[l, T,z + 1]. Recursively continuing bols. The firstk* = B = 3 symbols areu[i] =
this argument we are guaranteed the recovery of ety (uold], u1]i], usli]) while the lastt” = T'— B = 1 symbol
time i + Teg. is vol].

If there is a burst of lengttB in the interval[0, T,g] our ~ * APPlY a (k" + k", k", T) = (4,1,4) m-MDS code of
construction ofq|] already guarantees the recovery sif] rate R = 1 to thev[:] sub-packets generating the parity-

by time ¢t = T.g (cf. Section IV-B). Thus, we only need to check packets,

consider the case when there aveisolated erasures in the 4

interval [0, Teg]. We show that the decoder is guaranteed to p"[i] = (pgli], pi[e], p5li]) = Zvo[i —jHi.  (32)
recoverv[0] at timet = Teg — 1 using the parity-checkq['] §=0

andul(0] at time¢ = Teqr using the parity-checks”[]. « Combine theu[.] with p”[-] and generatey[i] = p"[i] +

The recovery ofv[0] by time T, — 1 follows in a fashion ufi — 7.

similar to thesimultaneous recovergtep above (25) in the Apply a (k*+&°, k%, T) = (5,3,4) m-MDS code of rate
previous section. However, we use P1 in corollary 1 instead. pu _— 2 to the u[-] sub-packets generating parity-check

Recall from (24) thay[i] = p"[i] + u[i — Teq], wherep®[i] packets each with* = ¥ k" = 2 symbols,

are the parity-checks of the:-MDS code (23). Since the

interferingufi—T.¢] sub-packets in the intervake [0, Tog—1] p"[i] = (po i, p1[i])

are not erased, they can be canceled out frqfij and 4

the corresponding parity-checks’[i] are recovered at the =Y [uoli—j] wli—j] wueli—j]]HY. (33)
decoder. Since the codev[i],p”[i]) is a m-MDS code of J=0

rate R* = 15=5, applying property P1 in Corollary 1 the
number of isolated erasures under which the recoveny[@f
is possible is given byW* = (1— R")T.g = B. SinceN < B
holds, the recovery of[0] by timet = T,z — 1 is guaranteed x[i] = (uli], v[i], q[i], p“[1]) (34)
by the code construction. N L T T g

For recovering1[0] at timet = T,g, we use thep"[-] parity- whose rate IS = s = T+B+72% O
checks in the interval0, T.¢]. Note that the associated code For decoding, first assume that an erasure burst spans the
(uli], p“[i]) is a m-MDS code with rateR" = 2 and interval[i,i+2]. We first recovepg|i + 3], py[i + 3], p5li + 3|
hence it follows from P1 in Corollary 1 that the number oby subtractinguo[i — 1], u1[i — 1], uz[i — 1] from the parity-
isolated erasures under which the recoveryfff] is possible check symbolsy[i + 3], q1[i + 3], g2[i + 3] respectively. In

The channel packet at timeis given by,

is given by the intervalli,i + T — 1] = [i,i + 3], the channel introduces
s a burst of length3. Thus, the(4,1,4) m-MDS code suffices
(1-=RY(Teg+1) = W(Tcﬁ» +1)=N, (28) for recovering the three erased packeg$], vo[i + 1] and

vo[i + 2] by time i + 3 since (1 — R¥)T = 3. Once all the
where we substitute (27) in the last equality. This completgrasedv|t] are recovered, we can compute the parity-check
the proof thats[0] = (u[0], v[0]) can be recovered at timepacketsp®[t] for t € {i + 4,i + 5,7 + 6} and subtract them
t = Teg when there areV isolated erasures in the intervakrom the corresponding]] to recoveruli], u[i + 1], ui + 2]
[0, Tegr). B ot timei +4,i + 5,i + 6 respectively, i.e., within a delay of

It remains to show that our proposed code parameter satigfy— 4.

the lower bound in Theorem 2. In the case of isolated erasures, we consider a channel

o kR Tes (29) introducing ' = 2 isolated erasures in the intervali + 4]
2kt + kv + k5 T+ B+ Bﬁ of lengthT + 1 = 5. We first recover the unerased parity-
Tog check packetp?[] in the interval[i,s + 3] by subtracting

> T-+ B+t B X the correspondingy[-] sub-packets. The4, 1,4) suffices for
oft Lo =N recoveringuo|i] by timei+7T —1 =i+ 3 since(1 — R")T =
- T =N (30) 3 > 2 = N. Also, u[0] can be recovered by time + 4
Tt =N+ B using the(5, 3,4) m-MDS code in the intervali, i + 4] since
where (29) follows by substituting in (27). Rearranging)(30(1 — R*)(T'+1) =2 = N.
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TABLE Ill: MiDAS code construction for(N, B) = (2, 3), a delay ofT’ = 4 and rateR = 4/9.

[i] [i +1] [i +2] [i + 3] [i + 4]

uoi] uoli + 1] uo[i + 2] uo[i + 3] uo[i + 4]

k' =3 u1[i] uifi + 1] ui + 2] ufi + 3] uy[i + 4]

uz[z] Us z+1] uzli + 2] uzli + 3] ugli +4

kv =1 voli] voli + 1] voli + 2] volt + 3] voli +4
uoli — 4] + pgli] | woli — 3]+ p§li + 1] | woli — 2] + pgli + 2] | woli — 1]+ p§li + 3] | wold] + p§[i + 4]

k=3 | wli—4]+pi[i] | wili=3] +p{[i+1] | wili = 2] +p{[t +2] | wili — 1]+ p{[i + 3] | wili] + p{[i + 4]
upli — 4] + p3fi] | wali — 1)+ p3li + 1] | uali — 2] + psli + 2] | uali — 1] + p3li + 3] | uali] + p4li + 4]

b5 — 9 poi] poli +1] poli+2] poli + 3] pyli +4]
pi[i] pyli+1] pyfi + 2] pifi+ 3] pifi +4]
. Mi odes with Improved Field-Size symbolsp“[i| = (p§[i], p¥[i]). The codeword starting at
D. MIDAS Cod ith | d Field-Si bol 4 3 Th d d i
Our constructions in Section IV-C are based @aMDS time i is given by,
codes [4], [5]. Such codes are guaranteed to exist only when .« [i] = (uolil, urli + 1], uali + 2], pili + 3], pfi + 4])
the underlying field-sizes are very large. In particulag, fileld- (36)

size must increase exponentiallyfh; except in some special

cases [5]. In this section, we suggest an alternative aomstr ~ @nd is marked by the unshaded boxes in Table IV for

tion that uses block-MDS codes instead :0MDS codes. convenience. o
This construction requires a field-size that only increames The channel packet at timeis given by,
O(TZ). While this alternate construction also attains the x[i] = (u[i], v[i], qfi], p“[]) , (37)

tradeoff in Theorem 2, it does come at a price. It incurs some
performance loss in simulations and is less robust to neatidwhose rate ist = 41— = § which is consistent with (29).
erasure patterns as discussed in Section IV-E. For decoding, first assume that an erasure burst spans the
interval [i, 7 + 2]. We first recovepg[i + 3], py[i + 3], p5[i + 3]
. - o > attimet = i+ 3 from the parity-check packetg[i + 3], q1[i +
there exists a streaming code of raie that sat|35f|e5(2) N3], g2]i +3]. We can use the underlying MDS codes to recover
Theorem 2 with a field-size that increases@&l;). O wolil,vili + 1], vali + 2] at time ¢ = i + 3 by considering
We start by giving two examples and then discuss ti&[i],c”[i + 1],c"[i + 2] respectively (see (35)). Once all the
general code construction. The key step is to replacerthe €rasedv(t] are recovered, we recoveri| at timet =i + 4,
MDS code in (23) and (26) by two block MDS codes applietti + 1] at timet¢ =i + 5 andu[i + 2] at timet =i + 6.
diagonally to thev|-] andu[] sub-packets. In the case of isolated erasures, we assume a channel
1) Example - MIDAS(N, B,T) = (2,3,4) and W > introducing N = 2 isolated erasures in the intervil, 4]

T +1 = 5 Table IV illustrates a MiDAS construction Of lengthT + 1 = 5. Note that the codeword”[i] in (35)
using MDS as constituent codes. The rate of this code tRyminates at time/ = 7 + 3. Thus, there are no more

R— — = 4 from (29). Note that this code has thdhan N = 2 erasures on it and thus the recovery qf:]
T+B+T N+1

same parameters as in Table Il in Section IV-C. The encodlﬁg guaranteed at time = i + 3. Likewise the codewords

steps, stated below, are also similar except thatrthMDS [i — 2], c"[i — 1], e*[i] in (36) cpmbmmgug[ i], ua [i], uolil,
codes are replaced with block MDS codes. respectively, terminate at time= i+ 4 and there are no more

o Split each §ourc7:e packefi] into k = T = 4 sym- ::?Z? i‘\(])r j i%talfgr?ssg%grzwtlegjtgte?rﬁ;iuisjrtz.e recovery of
bols. The firsti* = B = 3Usymbo|s areufs] = However, splitting each source packet irite= 7' symbols
(uoli], uali], uz[d]), while the lask” = T—B =1 symbol 5 enough in general. In particular, applyingB T — B)

IS voi]. MDS code to thev|-] sub-packets requires that tk¢] sub-
« Apply a (T, T — B) - (4’_1) MDS codé to thev(] su_b- packets are split into a multiple @ — B symbols. Similarly,
packets generating parity-check packptd:] each with applying a(T + 1,T — N + 1) MDS code to theu[-] sub-
B = 3 symbols, i.e.p”[i] = (pgli], pi[i], p3[i]). Hence, hocpets requires splitting them into a multiple Bf— N +
at time+, the generated codeword is, 1 symbols. On the other hand, achieving the tradeoff in (2)
c'[i] = (vo[i], pyli + 1], pV[i + 2], p3[i + 3]) (35) reguires that th_e _ratio between the sizeudf] to v[-] to be
) ) . 7=5- Thus, splitting theu[-] sub-packets t@3(T' — N + 1)
and is shown using the shaded boxes in Table IV. symbols and splitting the[-] sub-packets int67’'— N+1)(T—

« Combineu[] with p"[-] packets and generaigl/] = pB) symbols fulfills all the previous constraints. The followin
p'[t] +ult - T]. _ example illustrates this case.

« Applya(T+1,T—N+1) = (5,3) MDS code diagonally  2) Example - MIDAS(N, B,T) = (2,3,5) and W >
to the u[-] sub-packets generatiny = 2 parity-check 7 4 1 — 6. Table V illustrates a MIDAS construction

using MDS as constituent codes. The rate of this code is

9This can be a simple repetition code, i.py[i + 1] = p¥[i + 2] = T 10 .
p8[i + 3] = volil. R= BT, 5, — 19" The encoding steps are as follows.

Proposition 3. For the channelC(N, B, W) and delayT,




TABLE IV: MiDAS code construction fo( IV, B) = (2

code.
(4] [i +1] [i + 2] [i + 3] [i +4]
’ Iuo_[z]l uoli + 1] uoli + 2] uoli + 3 uoli + 4]
k=3 ] wli + 1] wli+2] wili+ 3] i+ 4]
uali] usli+ 1] [uali +2]] usli + 3] usli + 4]
k=1 vold] voli + 1] voli + 2] voli + 3] voli + 4]

k* =3

uoli — 4] + pgi]
ufi — 4] + pi[i]
uzli — 4] + py[i]

uli — 3]+ pgli +1]
up[i — 3] + pi[i + 1]
uafi — 1] + pyfi 4 1]

ugli — 2] + p§fi + 2]
urli — 2]+ pYfi + 2]
uali — 2] + pyfi + 2]

[
uoli — 1] + pg[i + 3]
ui[i — 1]+ pY[i + 3]
ugi — 1]+ psfi + 3]

ugli] + pgli + 4]
u[i] + pifi 4 4]
ugi] + pyi 4 4]

s — 9 pili] pyli +1] pyli+2] |p3 [i +3] | pyli +4]
pi[i] pili+1] pili+2] pili+3] pili+4]
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,3), a delay ofT" = 4 and rateR = 4/9 with a block MDS constituent

TABLE V: MIDAS code construction fof N, B) = (2, 3), a delay ofl" = 5 and rateR = 10/19 with a block MDS constituent
code. We note that each of the parity-check sub-sympifit$ is combined withu;[t — 5] for j = {0,1,..., 11} but the latter

are omitted in the above table for simplicity.

[q] [i +1] [i +2] [i + 3] [i +4] [i + 5]

) [’L] ’lto[i + 1] uo[i + 2} uo[i + 3] ’uo[i + 4] uo[i + 5}

U2 [’L] U2 [Z + 1] UQ[i + 2} UQ[?: + 3] U2 [Z + 4} UQ[i + 5}

usli] usli + 2] usli + 3] ugli + 4] usli + 5]

B wgld) | wali +1] | wali+2] | wali+3] | wali+4] | wali +5]
R =12 i) | wsli+1] | wus[i+2] | ws[i+3] | usli+4] | usli+5]
Ug [L] ’UG[i + 1] ll,@[l’ + 2} Ue [L + 3] ’LLG[i + 4] ug[L + 5}

uz[i] ur[i +1] urli + 2] urli + 3] ur[i + 4] ur[i + 5]

ugli] uglt + 1] ugli + 2] ugli + 3] uglt + 4] ugli + 5]

woli] | woli+1] | woli+2] ugli+4] | ugli+ 5]

’ltm[’i] um[i + 1] ’Uq()[i + 2} U]()[’i + 3] ’u10[i + 4] ’ltm[i + 5}

Uu[l] uu[z+ 1] 7J,11[Z+2] U11[7,+3] uu[z+4] U11[l+5]

voli] | woli+1] | woli+2] | woli+3] | wli+4] | wvoli+5]

v1i] vifi + 1] vii + 2] vifi + 3] vi[i + 4] vifi + 5]

V2 [l] V2 [l + 1} V2 [Z + 2] Vo [Z + 3} Vo [Z + 4] V2 [l + 5]

ogli] | wali 1] | owali +2] | wa[i+3] | wali+4] | vafi+5]

vsi] vsli + 1] vsi + 2] vsi + 3] vt + 4] vs[i + 5]

vg 1] veli + 1] veli + 2] vt + 3] ve[t + 4] veli + 5]

vr[i] vrli + 1] vri + 2] vrli + 3] vrli + 4] vrli + 5]

ool | poli+1] | pgli+2] | pgli+3] | pgli+4] | pili+ 5]

PPl | pili+1) | pili+2] | pili+3] | pili+4] | pili+ 5]

psld | psli+1] | pili+2] | pili+3] | phli+4] | phli+ 5]

psld | psli+1] | pili+2] | pSli+3] | pili+4] | pili+ 5]

pild | pili+1) | pili+2] | pili+3] | pili+4] | pili+ 5]

k=121 pefa] | pili+1] | psli+2] | psli+3] | pili+4] | pili+5)
pgld | pgli+1] | pgli+2] | pgli+3] | pgli+4] | pgli+ 5]

prldd | prli+1] | prli+2] | pPli+3] | pPli+4] | phli+ 5]

peld] | pEli+1] | pgli+2] | pgli+3] | pEli+4] | pgli+ 5]

poldd | peli+1] | pgli+2] | pgli+3] | pili+4] | pili+ 5]

ploli] | Ploli +1] | ploli +2] | pioli+3] | ploli+4] | pioli + 5]

piald] | pili+1] | pYifi+2] | pi[i+3] | piili+4] | pii[i+ 5]

pelil | poli+1] | peli+2] | pyli+3] |%ﬁ+4| poli + 5]

pifd] | ptli+1] | pi[i+2] | pY[E+3] | pili+4] | pili + 5]

k=6 | pslil | pali+1] | psli+2] | psli+3] | pili+4] | pili+5]
Pyl | pyli+1] | py[i+2] | py[i+3] | pyli+4] | [p§li + 5]

Pyl | pili+1] | p§li+2] | pi[i+3] | pili+4] | pili +5)

pelil | peli+1] | peli+2] | pyli+3] | pyli+4] | pgli+ 5]
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« Split each source packefi] intok = (T—N+1)T = 20 i+ 5. Hence, they;[i + 1] andwv;4[i + 2] symbols

symbols. The firsk" = (T'— N+1)B = 12 of which are are recovered by timé+ 4.
(uoli], . .., u11[7]) while the lastk” = (T'— N + 1)(T — = ci[i+2] = (vj[i + 2], vjpali + 3], p3[i + 4], 0} 4[i +
B) =8 are(wli], . .., vr[d]). 5], pY, s[i+6]) has3 erasures at+2, i+5 andi+6.
e Apply a (T,T — B) = (5,2) MDS code diagonally to Hence, thev;[i + 2] symbols are recovered by time
the symbols in thev[-] sub-packets with an interleaving i+ 4.
factor of '— N +1 = 4. Hence, at time, four codewords In other words, all the erased:] sub-packets are recov-
are generated as follows, ered by timei + 4.
culi] = (voli], vali + 1), p3[i + 2], pli + 3], p3[i + 4]) . Cqmputg the parity-check packejs_’[t] fort e {i +
eVli] = (va[il, vs[i + 1], p%[i + 2], p2Ji + 3], pili + 4]) 5,14+ 6,1 + 7} as they only comblna_r[~] sub-pa_ckets
! HH TS L s 9 that are either unerased or recovered in the previous step.
cy[i] = (vali], veli + 1], p3[i + 2], pgli + 3], pioli + 4]) These parity-check packets can be subtracted from the
cyli] = (vsli], vz[i + 1], ph[i + 2], py[i + 3], p7;[¢ + 4]) corresponding|t] packets to recovai[;—T'] sub-packets
(38) within a delay ofT" = 5. In other words, we recovai(i]
The codeworcep|i] is shown using the shaded boxes in  at timet = i + 5, ufi + 1] at timet = i + 6 andu[i + 2]
Table V. According to (38)(T' — N + 1) B = 12 parity- at timet =i + 7.
check symbols are generated, nameljlil, ..., pi,[i]). In the case of isolated erasures, we assume a channel

» Combine theu[-]usub-packets withp®[] packets and introducing N = 2 isolated erasures in a the interval 5]
generateq[t] = p°[t] + uft — T]. For simplicity we do length T + 1 = 6. Note that the codewords![] in (38)
not show these in Table V. terminate at timet = ¢ + 4. Thus, there are no more than

« Apply a(T+ 1’T._N+ 1). = (6,4) MDS code to thgu N = 2 erasures on either of them and thus the recovery of
packets with an interleaving factor & = 3 generating v;li] is guaranteed at timét 4. Likewise the codeworde i]
BN = 6 parity-check symbolgpg[i],...,ps[i]). The ;3 (39) terminate at time = i+ 5 and there are no more than
resulting codewords are as follows, N = 2 erasures on any of them. Thus, the recovery:gi]
et li] = (uoli), usfi + 1, ucli + 2], usli + 3], pifi + 4], IS Quaranteed at time=i + 5. o

pU[i + 5)) 3) Code ConstructionThe general construction achieving
Prop. 3 is as follows.

h +1 +2 +3 +4 ",
erli] = (wnld], uali + 1], urli + 2], wiofi + 3], prfi + 4] « Source Splitting: We assume that each source packet

pili+5]) sli] € F% and partition thek symbols into two sub-

cy[i] = (uzld], us[i + 1], ugli + 2], w11 [i + 3], py[i + 4], packetsuvec[ ] € F¥" andv.ec[i] € FX as follows,
i+ 5 39 .

p5li+5)) (39) Sli] = (so[il, - - . sw_1[i])
The codeword:j[i] is marked by the unshaded boxes in = (ug[i], ..., upu_1[i],voli], ..., v _1[i])  (41)
Table V for convenience. " "

The channel packet at timeis given by, where we select
. . . qwrs kY = (Teg — N + 1)B,
x[i] = (uli], v[il, ali], p"[i]) (40) (Ten ) (42)

k' = (Teg — N +1)(Teg — B).

whose rate iR = 128 = 10,
12Ee A 19 « MDS Parity-Checks for v[-] sub-packets: Construct

For decoding, first assume that an erasure burst spans the 77 . _ n 4 1 systematic MDS codes of parameters
interval [i, i + 2]. The decoding steps are as follows, (T, Teg — B) starting at timei whose associated code-
words are,
« Recoverp®[t] = (pg[t], ..., p¥[t]) for t = {i+ 3,7+ 4} _
by subtractingu[t — 5] from q[t].
« Recoverv|i], v[i + 1] andv[i + 2] using the underlying

vild]
Vj+(Tege —N+1) [Z_"" 1]

(5,2) MDS codes as follows. Fof € {0,...,3}, Uj”(chf‘]_V*l)[Z +2

= cjli = 1] = (v;[i — 1], UJ+4[]pJ[Z+1]pJ+4[Z+ i — | v, B B _ i+Tg—B—1
2],pY, g[i + 3]) has3 erasures at, i + 1 andi + 2. ;1 7 (Tese NHZ))%F[?;? ;)[_ B ! H
Hence, thev; 4[i] symbols are recovered by time v / -
i+ 3. i s g P (N + Ten = B+ 1]

= ] = (vl vyl + 100+ 2p 0+ |
3], pY,sli + 4]) has 3 erasures ati, i + 1 and L Pt (o — N1y (B—1) [ T Ter — 1] |
i + 2. Hence, they;[i] andv;4[i 4+ 1] symbols are (43)

recovered by time + 4.

- cj [i + 1] = (v;[i + 1], vja[i +2], Dy [i + 3],p}’+4[i + 10We note that the parity-check symbal$, ¢[i+5] for j € {0,...,3} are
4],p§+8[i + 5]) has3 erasures at + 1, i + 2 and counted as erasures since they are combined jth [¢] which are erased.
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for j € {0,1,...,Teg — N}. Notice that each codewordsensitive compared to the construction in Section IV-C when
cjli] spans the intervali,i + T — 1] and the adjacent non-ideal erasure patterns are considered. To illusthégente
symbols have an interleaving factor fifs — N + 1. The focus on the case wheN =2, B=3,T =5andW > 6
resulting parity-check packets at timere expressed as:in our discussion. The MIiDAS construction with block MDS
p°[il = W8lil, - - P{r N1y B li]) constituent code for these parameters is illustrated ineTeb

« Repetition of u[] sub-packets: Combine theu|-] sub- The MIDAS codes using:-MDS codes has a similar structure
packets with the parity-check packet¥|-] after applying except that the parity-check$[-] andp -] are generated using
a shift of Teg, i.e., q[i] = p*[i] + ufi — Teal. the m-MDS code.

o MDS Parity-Checks for u[-] sub-packets:ConstructB We consider an erasure pattern that introduces a burst of
systematic MDS codes of parametéfsg +1, 7. — N+ length 2 in the interval[i,i + 1] and an additional isolated
1) at time¢ whose associated codewords are, erasure at timeé -+ 3. Clearly such a pattern violatesCd N =

- 2,B = 3,W = 6). Nonetheless, we argue that the MiDAS

" u-j[EZ]JF 1] codes are able to completely recover from this erasurerpatte
A 9 but the alternative construction using block MDS codes in
ujt2nli + 2] Table V cannot.
: In particular, note that the the parity packets + 2] and
ctli] = | WitB(Tu—N) li+Teg — N] |, (44) pli + 4] contribute a total of24 symbols which suffice to
' pyli+Teg — N +1] recovervli], v[i + 1] and v[i 4+ 3|, each of which involves
p;.”+B[i +Tog — N + 2] symbols. Thus, by timé + 4 all the symbols in the erased
. v|[-] sub-packets are recovered and we can proceed to recover
C ufi],ufi + 1] and uf[i + 3] at time ¢ + 5,7 + 6 andi + 8,
L pﬁB(Nfl)[l + Tert] A respectively, i.e., a delay df = 5 packets.

for j € {0,1,...,B — 1}. Notice that each codeword In the MiDAS construction with MDS constituent codes,

c![i] spans the intervali,i + Ter] and consists of illustrated in Table V, we either us&*[-] or c”[-] codewords

symbols with an interleaving factor d8. The resulting t0 recoveru(d.

parity-check packets at time are denoted byp“[:] = « Using c“[-] codewords: Here, &'+ 1,7 — N + 1) =
(Py[d], .- PN _1[8])- (6, 4) block MDS code is applied to each of té] sub-
« Concatenation of Parity-Checks: Concatenate the packets. Each of the codeword$[:] for j € {0,1,2}
parity-check packetp[-] andq][], i.e., the channel input in (39) has3 erasures at, i + 1 andi + 3 and hence the
at times is given by, recovery ofu[0] is impossible.
_ 1w « Using c’[] codewords: Also, thev|[-] sub-packets are
x[d] = (uli], vldl, ald, p“[d) - (45) protected using 47,7 — B) = (5,2) MDS codes. Let
Note that the rate of the code equals us consider the codeword$[i + 3] = (v;[i+ 3], vj1ali +

(Tt — N+ 1)Tog 4], p;li + 5, pjyali + 6], pjsi + 7)) for j € {0,1,2,3}

R= in (38). Each of these codewords has an erasure at time
(Tesg = N+ DTest + B(Test + 1) i+3 and the parity-check packets[i+5] andp; , 4[i+6]
_ Tefr (46) are combined withu;[¢] andw;4[i+ 1] which are erased
Tog + 2ol by the channel. Thus, a total 8ferasures at times+ 3,

L . i+ 5 and i + 6, which implies thatv;[i + 3] can be
which is |.dent|cal to the e.xp.ressmn n (29)' _ recovered at timeé + 7. Now, the decoder can compute
The decoding steps are S|mllar to that d|_scussed in the p;li+5) andp;4[i+ 6] and subtract them fromp;[i 4 5]
previous examples and is provided in Appendix C. andg;4[i + 6] to recoveru;[i] andu;[i+ 1] with a delay
4) Field-Size ComputationTO compute the required field- of 7 and®6, respective|y, i.e., exceeds the de|ay1bf: 5.
size, note that splitting each source packet ififoy — N + 1,5 ynjike the case of MIDAS codes basedrofMDS | it
1)T.s symbols requires that each source packet consqatef_ is not possible to recovarli] with a delay of T’ = 5 when a
(Teg — N +1)Teqr symbols. We therefore need to OletermlnEonstituent block code is used. We will also see performance

the field-size of each symbol. Using the well-known fact th%ss from using MDS block codes instead @tMDS codes
an (n, k) MDS code exists for any field-size greater than in our simulation results

we note that the field-size needed for b¢thg, T — B) and
(Teg + 1, Teg — N + 1) MDS codes to simultaneously exist is
g2 = ©(Teg). Thus, a field-size of = ¢1 - g2 which is of the
orderO(T?%) is sufficient. In this section, we study the case when the source and
channel inter-arrival rates are unequal, iMd.,> 1. We start by
revisting the capacity expression in Theorem 3 in Sectigh V-
In Section V-B, we provide the code construction achieving
Even though the construction in Section IV-D attains theuch capacity. The decoding analysis is discussed in Sec-
same optimal tradeoff over the deterministic erasure chlantion V-C. We illustrate both the encoding and decoding steps
model with a smaller field-size, their performance is morhirough a numerical example in Section V-D. We then provide

V. UNEQUAL SOURCE-CHANNEL INTER-ARRIVAL RATES

E. Non-ldeal Erasure Patterns
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c!li +3] - (5,2) MDS Code

¢ fet+1lli+2 i +3|i+4li+5|i+6)e+T|e+8 e +9|i+10]i+11}¢+12]---

| !

ufi] ufi + 1] ufi + 3]

Fig. 10: A non-ideal erasure pattern in Section IV-E.

the converse proof of Theorem 3 in Section V-E. Finally, w

present constructions that are robust against isolatesiligrs A 1
in Section V-F. = = by an
" I--IU I—-Iu |—-|° e
kel g |8 : :
= Bl..... = S I - [P
A. Capacity Expression

We note thatC = 0, if T < b.1! This follows since an
erasure burst of lengtB can span all underlying channel
packets in macro-packets ¢ + 7] thus making the recovery kv
of s[¢] by macro-packet+ T impossible. This trivial case will
therefore not be discussed further in the paper. WHea b,

o0l
Nl

Vol

1 Vool T+ Juy PP+

the capacity in Theorem 3 is given by: wwAvrv AT vr AT A0 AT
A
1 I« M F—
5 0<B' <&, T=b f L
c=<2 . -2 ’ (47) el | | el =y | [Ex
{MM% Y <B<M-1,T=b k| T8 T8 3 5 |
In this special case of minimum delay, during the recovel v ]

of s[i] we can only use the unerased packetsYifi,:] and
Y[i+b,:] as all the intermediate macro-packets are completey
erased. It turns out that a simple repetition code that udelg. 11: Construction of Parity-Check Packets. As in the MS
min (M — B, &) information packets and an identical numeode, each source packst] is divided into two sub-packets,
ber of parity-check packets in each macro-packet achidwes tiye.[t] and vec[t]. A m-MDS code is applied to the.[]

capacity wherl” = b. sub-packets and a repetition code is applied touthe|] sub-
When T > b the capacity in Theorem 3 reduces to th@ackets. The resulting parities are then combined to genera
following. the parity-check packei§ec[t] = Pvec[t] + Uvec|t — T
T b
C= T 5 o2 STaM 48) u :
M 0 M < B <M -1 packetsuye[i] € FX* and vy [i] € F£ as follows,

We propose the associated code construction below.

sli] = (sold], . - -, sk—1]7])
= (UQ[i], ey Uku 1 [l], ’Uo[i], ey Ukv—1 [Z]) (50)
B. Code Construction Uyecld] Vvecli]

As illustrated in Fig. 11 we split each source packetinto two  WNere we select
packets as was the case in the generalized MS construction in E* = Mb, k¥ = M(T —b). (51)
Section IV-B. However, our construction involves an adudigl ) ) T
step of reshapingas illustrated in Fig. 12 to re-arrange the * ™-MDS Parity-Checks: Apply a (k" + k*,k",T)

symbols in each macro-packet. We separately consider three 7-MDS code of rateku’i—k_u to the sub-stream of
cases below. Vyec|] SUb-packets generatinkf* parity-check packets,
1) Encoding:T > b and B’ < 2> M: We let (polil, -, pre—1lil) = Precli] € F§" for each macro-
- = T+b packet. In particular, we have that
n=T+b, k=MT, (49) ;
T
throughout this case. Note that the rdte= - reduces to Precli] = | > vie[i — 4] - H; (52)
the first case in both (47) and (48). j=0

« Source Splitting: We assume that each source packet

e _ whereH; € F&"**" are the matrices associated with the
sli] € F% and partition thek symbols into two sub-

m-MDS code (12).
« Parity-Check Generation: Combine theuy.[-] sub-
lRecall from (8) that we expresB = bM + B’ whereB’ € [0, M — 1]. packets with thep...[-] parity-checks after applying a
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r+1 Note that in the minimum delay case, i.€.,= b we have

= thatk” = M (T —b) = 0., This construction degenerates into
H M. Oril ] || a repetition code, and the corresponding rate of such tepeti
‘ code isR = L= = 1, which meets the capacity expression in
] Channel Macro-Packet the first case in (47). The construction achieving the second
o é« Xl case withT = b and B’ > % also involves a repetition code
é and is discussed later in this section.
% * Comtemnie | Pli] [VDEY]QUE This completes the description of the encoding function for
] the first case in (9) and (10). Fig. 13 illustrates the overall
. % M channel packets encoder structure.
=\ . _
=y 2) Encodlng:T > b and B’ > TLH)M: We begin by
7 annl choosing the following values of and &,
ku
L n=T+b+1, k=MT+b+1)—B (60)
and note that the rat® = % reduces to the second case

Fig. 12: Reshaping of Channel Packets. The three groufis(48).

Uyec[t], Vvec[t] and qyec[t] are reshaped intdJ|i,:], Vi,

and Q[i,:] which are denoted by vertically, diagonally and « Split each sourceli] € ]Ff; into £ symbols and divide
grid hatched boxes, respectively. These reshaped paalets a them into two sub-packeta,..[:] € ]F’; and vyec[i] €

then concatenated to form the channel macro-pakket:|. IF’; as in (50). This time we select
k*=B=Mb+B', k'=M(T+b+1)—2B
(61)
shift of T to the former, i.e., e Apply a (k¥ + k*, k¥, T) m-MDS code of rateﬁ
L . - to the sub-stream of..[] sub-packets generating*
Qveclt] = Precli] + tvecli — 7], (53) parity-check packets(po i), ..., pre—1[i]) = Pvecli] €
whereque.[i] € FA". Fk" for each macro-packet as in (52).

« Re-shaping:In order to construct the macro-packet, we « Combine theu,..[-] sub-packets with th@...[:] parity-
reshapeuyec[i], vvec[i] and qyec[i] into groups each of checks after applying a shift df' to the former, i.e.,
n symbols generating the matrice§[i,:], Vi, :] and Qveclt] = Pvec[i] + Uyec[t — T
Qli, ], respectively, as shown in (54). » Reshape theuyec[i], Vvec[i] and queci] vectors into
In (54), we definer € N° andr’ € {0,1,...,n— 1} via matricesU[z, :|, Vi, :] andQ[s, :] as in (54). In particular,

we letr andr’ be such thak“ = r - n ++' as in (57).

kKe=rontr (57) As in (55) we splituyec[] into {uli, j]}1<;< (1) Where
Note thatu[i,l] € F; for each! e {1,...,r} and ufi,j] € F? for 1 < j < r andufi,r + 1] € FV
ufi,7+1] € F7'. The splitting ofqye.[] into q[i, 5] in (54) holds. In a similar manner, we splif.c.[i] into vectors
follows in an analogous manner. We can express {ali, jl}1<j<(r+1) Whereqli,j] € Fy for 1 < j <r

o . , L andqli,” + 1] € F?" holds. Finally we splitv,c.[i] into

af.j]=uf =Tl +pljl, j=12...,r+1 (Vli- 1} 1< j< 2y Wherev[i, 1], v[i, M — 2r] € F1"
(58) andvl[i,j] € Fy for 2 < j < (M —2r —1).

where p[i, j] is a sub-sequence gf...[:] defined in a « Generate the Macro-PackE{:, :] by concatenatin@J|i, :

similar manner. In the splitting of..[¢] into v[i, j], we ], V[i,:] andQ[i,:] as in (56).

note thatv(i, 1], v[i, M — 2r] € F»~"" whereasvli, j] €

Fy for 2 < j < M —2r—1. It can be easily verified 3) Encoding:7" = b and B’ > %: A simple repetition

that M — 2r > 0 for our selected code parameters. Whescheme is used. We split each source packet iite- B’

M — 2r =1 the structure oV [i,:] is as follows, packets, i.e.s[i] = (soli],...,sm—p—1/[{]) and assign the

channel packets as follows,

0
Vi, = | vli,1] |, (59) sj_1[i] jE,M— B
0 x[i,j]=4{ 0 jeM—B +1,B] (62)

! sj_p—1[i—=T] je€[B +1,M].
wherevl[i, 1] € Fr=2"", j-p—li—=T] jel ]
M-B’

« Macro-Packet Generation: ConcatenatdJ[i,:], V[i,:] The rate of such code is clearly = ~3~ as stated in the
and Q[i, :] to construct the channel macro-packefi,:] second case in (47). In this case, by inspection we can check
as in (56). Note that the channel macro-packet at tinse that the code described above is decodable within the degodi
denoted byX[i,:] € ]FgXM and thej-th channel packet delayT = b. Thus, we will only focus on the previous two
in X[3,:] by x[i,j] € Fyy for j € {1,...,M}. cases in our decoding analysis.



18

Ul = | i 1] ‘ uli, 7] “[i’t)* 1 ] € Frxrtl
Vil = | —2 | viig ‘ vii, M — 2r — 1] ‘ _0 € FrxM-2r (54)
’ v[i, 1] ' ’ vi[i, M — 2r] a
QU] = | BT i | |l | e e,
where
uli, 1] v(i, 1] qli, 1]
ul, 2] v(i, 2] qli, 2]
Uvec [Z] = ) Vvec [Z] ) Qvec [2] (55)
uli, r| vii, M —2r — 1] qli, 7]
uli,r + 1] vi[i, M — 27 qlé,r + 1]
X (i) = [xli, 1] xfi, M) =
| uli, 1] uli, ] “[i’[:j] U g VE[ZA;t ;]T] ali, 7] qli, 1] 1 L M-—2r>1
i ufi,r + 1] (56)
uli, 1] uli, 7] vii, 1] qlé, ] qli, 1] M-2r=1
i qli,r + 1]
i i+b Repeat U] in the i+T-1 i+T
| 1] (i+T)th Macro-packet | [ [ EEEN

=

Ul[t,:] symbols and its repeated version

VI[t,:] symbols and m-MDS parity check symbols, P[t,:]

=

Overall channel macro-packet X[t,:] consisting of U[t,:], V[t,:] and Q[t,:]

Fig. 13: Encoding of source packets into macro-packetshBacirce packet is split into two groups. A repetition code is
applied to theU]Jt,:] group with a delay ofl’ macro-packets and is denoted by vertically hatched boxeshawn in the
first figure. A m-MDS code is applied to th&/[t,:] group which is denoted by diagonally hatched boxes to gémehe
parity-checksP[i, :] denoted by the horizontally hatched boxes as shown in thensefigure. The combination of the resulting
parity-checks of the two groups is indicated in the last fgwith grid hatched boxes.

C. Decoding Analysis

Consider a channel that introduces a burst of length-
bM + B’ starting fromx[i, j] for j € {1,...,M}. We first
show how to recoves[i] by the macro-packet+ 7. Note that
since our code is time invariant, it suffices to consider onlyz)
the recovery of]i]. Onces]i| is recovered, we can compute
X[i,:] and repeat the same procedure with the smaller burst
that starts ak|[: + 1, 1] to recovers[i + 1] and so on.

The decoding steps are as follows,

1) Step 1: In each macro-pack¥t,:], for ¢t € [i + b,i +
T — 1], recover all the unerased symbols pf..[t] by

3)

subtracting outi..[t—T'] from the correspondingye[t]

as the former are not erased. Sinagi, 1],...,ufi,j —

1] are not erased, we can subtract these packets from
the corresponding...[: + T] to recover the respective
Pvec|t + T packets.

Step 2: Recover all erased,..[-] sub-packets by the
macro-packet+ 7" using the underlyingk + k", k¥, T)
m-MDS code. This step will be justified later in the
sequel.

Step 3: Comput@...[i + T] as it combines/,..[] sub-
packets that are either not erased or recovered in the
previous step.
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i i+b i+T-1 i+T

Erasure burst erasing x[i,1],....x[itb,B']

Actual macro-packets under the erasure burst

Decoding window for the recovery of erased V[i,:],...,V[i+b,:] symbols o A

QIi+T,:] contains Ul[i,:] which is erased and hence cross hatched

= = =

All erased V[i,:],...,V[i+b,:] symbols are recovered, thus P[i+T,:] can be computed b 4
Uli,:] can then be decoded by cancelling P[i+T,:] symbols from Q[i+T,:]

A

Fig. 14: Decoding for the burst pattern starting fraf, 1]. The grey boxes denote an erasure burst of lefythhe horizontally
hatched parity-checks in the second figure are used to rettwveraseV|[i,:],..., V[i+b,:] packets. The third figure shows
the recovery ofufi] using the parity-checks in macro-packet 7.

4) Step 4: Subtragbyec[i + T] from qyec[i + T'] to recover from Lemma 3, we are guaranteed that all the erased
Uyec[?] within a delay ofT” macro-packets. At this point Vyec|t] are recovered at the end of macro-packetT.
both uy..[i] andv,..[i] have been recovered (and hence « If j € {M—r+1,..., M—1} then none of the symbols in
s[i]) with a delay ofT" macro-packets as required. eitheruy..[i] or vye.[i] are erased. Thus, we can proceed
It only remains to show the sufficiency of the-MDS code to blocki + 1 and apply the first step.
in Step 2. To do that we use the following lemma. Finally as mentioned in Step 4 above, once all the erased

sub-packetsv,..[t] have been recovered by macro-packet
1+ T, their effect can be canceled and..[t], for ¢t €
élz;si—i— 1,...,i+b} can be sequentially recovered from macro-
packett + T by computing and subtracting...[t + 7
from quec[t + T. Thus, eachs[t] = (uyec[t], Vvec[t]) Can be
recovered by the end of macro-packet 7. This completes
Proof: See Appendix D. B the decoding analysis.
We next claim that the decoder can recover all the erased

Remark 4. We discuss intuition on the fact that the capacity
Vyec[t] SUb-packets by the end of macro-packefl". To prove ; . . .

: : ) + function does not decrease wiB}l in the first case in48) de-
this, we recall tha(Vyec|t], Pvecl]) is am-MDS code with fined byB’ < M. Recall that for this case the parameters
parametergk” + k", k¥, T'). We consider the following cases: = T+b ,

that are selected aré“ = Mb andn = T + b. Consider an

* .If the burst starts af € {1,...., 7+ 1} then all the symbols erasure burst that starts at[i, 1] and terminates ak[i+b, B’].
iN {(Vvec[t], Pveclt]) }i<t<i+v—1 are erased whereas a por; Mb

o f e Syl (v, 1)) are cased % ST L[ s e urt a0
until the termination of the erasure burst. Furthermor y P P >

Ti particular, the number of symbols that are erased in marco
{Pvecli + T, 1]} j<i<r+1 are also considered to be eraseori ] . , ,

H ey . = < = ’u,.
since they are interfered by the erased..[i,!] sub- pgcketX[z—i—b, | is equal tonB (T +b)B' < Mb=k .
packets from macro-packet Note that all the erased Since theu[-] sub-packets appears before any other packets in
symbols involvingvve[t] will occur in a single erasure each macro-packet only these packets are erased. Thusgduri
burst. Thus applyinvgecproperty L3 in Lemma 1 with- T the recovery process, the number of parity-checks availabl

andc — 0 and usingB+1 < k“(T+1) = (n—k)(j+1), for recoveringv|-] sub-packets does not decrease 5 is

; increased fron® to 245 . Thus, the same code parameters can
which follows from Lemma 3, we are guaranteed th T+b

e used. The above argument assumes that the burst starts at
all the erasedr,..[t] are recovered at the end of macro:

) the beginning of a macro-packet. In Appendix D, in the prdof o
packeti + T Lemma 3, we show that this is indeed the worst case pattern. If
o Ifthe burst starts af € {r+2,..., M —r} then none of ! '

the sub-packets,..[:] are erased and can be subtractetcheeggsrsctosjzrtgnﬁmmr:s;sIﬁ_eﬁi;hsxn:Jar::]bse\:vﬁf a;/ee:gglrall(etly)al ; "
out fromqyec[i + 7] to recoverp,..[i+T]. All the erased y ’ P Y, ’

symbols thus occur in a burst. Thus, using property L2 icnapacny Is not a strictly decreasing function 5t

Lemma 1, and using? < (n — k)(T + 1) which follows As a final remark, note that the above construction achieves

Lemma 3. Consider any erasure burst of lengthstarting at
x[i, 7] for somej € {1,..., M —r}. After Step 1 of cancelling
Uyec[t] SUb-packets, the total number of unrecovered symb
in the sequencé(vyec[t], Pvec|t]) }i<t<i+r IS at mostk™ (T +
1).
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the capacity in Theorem 3 fdV > M (T + 1). For the case first period with the burst starting a0, 1]. By definition we
whenW < M (T'+1), the same construction can be used wittequire thats[0] be recovered by the end of macro-packet
replacing the dela§” with the effective delay ¢ = {%J —1. s[1] by macro-packeT’ +1 and likewise the last erased source
packets[b] by macro-packef” + b. Thus, all the lost source
packets are recovered by macro-padketT + b. Once these
erased packets are recovered, we can treat these erasures as
§&ving never happened and simply repeat the argument for the
next period and so on. Therefore, our proposed streaming cod

D. Example

In this section, we show a code construction for paramet
M =2,B=3,T =3.Note thath = 1 andB’ = 1 > 75 M.

Thus, the capacity is given iy = %%ﬁgf’g = 15, Which  must be a feasible code for the periodic erasure chann@eSin
can be achieved using the code illustrated in Table VI.  the capacity of the erasure channel is simply the fraction of
Encoding: the non-erased channel packets, it follows that
1) Split each source packet infl (T'+b+1) — B =7 . M(T+b+1)— (bM+B)
packets, i.e.s[i] = (so[i], - , 56]]). RT = MT b+ 1) (64)
2) Divide these into two sub-packets,ec[i] and vyec[i] _ _
with k* = B = 3 and kv = M(T + b+ 1) — iSanupper bound on the rate of any feasible streaming code.
2B = 4 symbols, respectively, as in (50). We let To establish the other inequality in (63) we consider a
Weeeli] = (uoli],--- ,uafi]) = (so[i],---,s2[i]) and periodic erasure channel consisting 9f = 7'+ b macro-
Vveeli] = (Woli], -+, vsi]) = (ssi], ..., se[i]). packets and assume that in each period thefirst Mb < B
3) We place B = 3 parity packets qu.[ij = channelpackets are erased. Thus, in the proposed chammnel, t

(qo[i], 1[i], g2[i]) into the last channel packet of eacHirstb macro-packets are completely erased in each period and
macro-packet. These parities consist of two componeniide remainingl” macro-packets are not erased. In particular,
Qvee [i]=Pvec|i]tuvec[i — 3]. The parity packetpl[i] are in the first periods[0], ..., s[b— 1] must be recovered at the
generated using a-MDS code. end of macro-packet$,...,T + b — 1 respectively. At this
Decoding: Since M = 2, there are two burst patterns thapoint all the erased source packets have been recovered and
need to be checked. we can proceed to the recovery of the second burst starting
1) Burst that erases]0, 1], x[0,2] andx[1, 1]. at macro-packef” + b. Thus, the streaming code must also

Recovery ofv packets: We first subtractuyec[t — 7T b? fez;ﬁgktehgg ttff}\(lesu(;rs:?rbeoﬁggr}gﬁxvv:ose capacity is ylearl

from quec[t] for ¢t = {1,2} to recover the corresponding7+b’ B
Pvec[t]. These are a total @3 symbols and thus can be WhenT = b we show that )

used to recover[0], - - -, v3[0] as well asvp[1],v1[1]. In C < min <M -B }) (65)
other words, all erased symbols are recovered by the - M 2

end of the ri‘rjacrolgpa§ké_(h[2,|:l].h 4 pack When B’ < M/2, the second conditiod’ < 1 dominates.
Recovery of: packetsWith all the erased packets Now ;g b0\ nd immediately follows from (63) by substitutifig—

reczvereg, WE can %omp?te tpeec[t] packets fort = i ihe second expression in (63). Thus, we only need to show
{3,4} and su tract them r_orqvcc[t] to recoveruyec(0] ot whenB’ > M andT = b the upper bound < M=
anduy..[1] at their respective deadlines. is valid

2) ggisc:v?ratoirazag’s%]s’i;{ge’ 1, X[([)1]7i2].not erased. we can We start by considering a channel that erases the first
yovp Uvee ' bM + B’ channel packetx|[i, 1],...,x[i + b, B’]. Since the

sqbtract It frqmq"“[?’] 0 recoVerpy.c[3]. This together delay constraint fog[é] isi+T = i+, the following equation
with pyec[2] is a total of6 symbols. Thus, they can be .
should be satisfied,

used to recover the erasedpackets(v2[0],v3]0]) and

(vo[1],-- - ,w3[1]). H(s[i]|x[i + b, B' +1],...,x[i + b, M]) =0
Recovery ofu packets: Similar to the previous burst = H(s) < (M — B')H(x), (66)
pattern, we compute the value of the parity-check packets -
Pvec|4] and subtract it fromy,c.[4] to recoveru[1] by its  which implies thatR = Jfﬁ&) < M;IB' as required. This
deadline. completes the proof of the upper bound.

E. Converse

. . ) F. Robust Extensions
In order to establish the converse, we first consider the case

whenT > b. We show that any feasible rate satisfies In Section V-B, we provided capacity achieving codes for
M(T+b+1)—B T c(1,B,W > M(T + 1)). In order to extend the code_s
, ) . (63) for channels withN > 1, we apply the approach used in
M(T+b+1) "T+b the MIDAS construction in Section IV-C. In particular, we
Consider a periodic erasure channel as shown in Figuwenstruct an optimal burst erasure code and then append
15. Each period consists of> = T+ b + 1 macro-packets. additional parity-checks for tha[-] sub-packets to deal with
In each such period, the firdd channel packets are erasedsolated losses. In particular, we extend the macro-packet
and the subsequedt/ (b + T + 1) — B are not. Consider the construction in (56) as follows,

R§R+—min<
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TABLE VI: Code construction foM = 2, B = 3,T = 3) achieving a rate oRR = -~

X0, :] X[1,:] X[2,:] X3, ]

x[0,1] x[0, 2] x[1,1] x[1, 2] x[2,1] x[2, 2] x[3,1] x[3, 2]
uo[0] v2[0] uo(1] v2[1] uo[2] v2[2] uo[3] v2(3]
u1[0] v3[0] uy (1] vs[1] uy[2] vs[2] uy (3] vs[3]
u2[0] uo[—3]+po[0] uz[1] uo[—2]+pol1] uz[2] up[—1]+po[2] uz[3] uo[0] + po|3]
vo[0] u1[—3]+p1[0] vo[1] uy [—2]+p1[1] vo[2] w1 [—1]4+p1[2] vo[3] u1[0] + p1[3]
v1[0] us[—3]+p2[0] v1[1] u2[—2]+pa[1] v1[2] ug[—1]+p2[2] v1[3] u2[0] + p2[3]
X0, 1] X[b, 1] X[T, XO4T ) XDHT L] XPTH1] Xpe2rel] o XRO+T) 41

> <

DD B0 000 0-000 |l D""DD D--"DD D"—'DD L]

x[+.1] x[+.2] x[+, x[-,1] x[-,2] x[-,M] X[, 1] x[1,2] x[;, M]| ===

x[0,2] [0, M] x[i,1] x[i,2] x[i,M] x[T,1] x[T,2] x[T,M x[%,1] x[,2] x[*,M] A\
Burst 1 (Length=>bM + Bi\ Deadline for s[0] Deadline for s[b] Deadline for s[b + 7"+ 1]| Deadline for s[2b+ T 1]
L 1 ‘l\

Burst 2 (Length=bM + B’ )

Period 1 (Tperioa =T +b+1) Period 2 (Tperioa =T +b+1)
x=b+T
+=0+T+1
?7=204+T+1
—=b+2T+1
=200+T)+1

Fig. 15: Periodic Erasure Channel used in the Converse Rfobheorem 3. We assume that the burst starts in macro-block
0 at the first packet and terminates in macro-blécKhe period of the channel spafis+ b + 1 macro-blocks as shown.

code is applied toy..[-] sSub-packets to generate parity-checks
DPvec|] @nd Quec[t] = Pvec(t] + uvec[t — T are transmitted.

Xli ] = [x[i 1] [x[i, M]] = Furthermore, dk* + Mk*, k*, T) m-MDS code is applied to

uli, 1] uli, 7] uli, 7 + 1] the uy..[] sub-packets to generate parity-chegks.[-].

’ ’ v[i, 1] Let us consider the window of lengti consisting of
p“[i,1] pUli,r] | P [i,r+1] the macro-packetX[i,:],...,X[i + T — 1,:] and assume
qli,r + 1] that there areV erasures in arbitrary positions. Note that in

vii, M — 21 alt, 7] SR R veelt] = Pecelt] + Uveelt — T] for ¢ € [i,i + T — 1], the
p“[i, M — ] p“[i, M —r + 1] p“[i, M] Uycc[-] are from timei — 1 or before, and can be canceled

(67) to recoverpye[t]. The (k* + k¥, k¥, T) m-MDS code can
recovervy.|i] if no more thank“T symbols are erased among
(Vvec[t]s Qvec[]s - - - Vyee[t + T — 1], Qvec[t + T — 1]). Since
these symbols are reshaped into columns each having no more
thann symbols, the number of erasures that are guaranteed to
be corrected is given by,

whereu[i, 5], v[i,j] sub-packets and[i, j] packets are ob-
tained from the optimal code for th€(N = 1,B,W)
channel. We apply anothét™+ Mk*, k*,T') m-MDS code to
the uy..[-] sub-packets generating k* parity-check symbols
(Y1), - - Plgpe[i]) = P[] € FY*. We then concatenate
the generated parities after spl|tt|ng them idtbequal groups
to each channel packepl.[i] = (p“[i,1],...,p"[i, M]) as v _ VUTJ
shown in (67). The corresponding rate of such code is clearly n
R = 35, wherek", k¥ andn are based on the optimal . (L(bM " B/)TJ

{MbTJ
code for the burst-only channel. BQLM’ T+

B'<zty bM)

T+b+1 b
Proposition 4. Consider the layered code design for re- (69)
covering from isolated erasures. To recover from awy< | MbT N (70)
{szMbJ isolated erasures whelv > M (T+1)andT >b,  |T+b
it suffices to select where we use
Nn /
B — [—] . (68) o _[BTvbr1), B

M(T+1) =N F=Yamr1v). B < < M (1)
where[-] and |-| denote the ceil and floor functions respec- ) )
tively. to get (69) and substitute faB’ > T+bM in the first term

in (69) to get (70).
Proof: We recall that there are twg-MDS codes un-  Next we consider the number of erased packets that can
derlying our construction in (67). Ak“ + kv, k”,T) m-MDS  be corrected by thék" + Mk* k™, T) m-MDS code. Using
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Lemma 1, one can see that this code can recover from
ME*(T + 1) erasures in the window of interest. Since each 1@@@315
channel input can have up to+ k° symbols belonging to 3

this code, the total number of erasures that can be corrected
is given by,

(72)

N VV[/{ (T + 1)J
n+ ks

which upon re-arranging gives (68). [ ]

Remark 5. Unlike the case of MiDAS codes, we do not claim
the optimality of the proposed robust codes. Nevertheless i
the simulation results we observe that in some cases these Fig. 17: Fritchman Channel Model
codes outperform baseline schemes.

of different schemes over significant portions of packes los

rates between(0—3 to 1076,
In this section, we study the validity of our proposed code

constructions over statistical channel models. We conside
classes of channels that introduce both burst and isolaé‘d
erasures. A Gilbert-Elliott channel is a two-state Markov In Fig. 18(a) and Fig. 19(a), we study the performance
model. In the “good state”, each channel packet is lost witho4 various streaming codes over the Gilbert-Elliott chdnne
probability ofe whereas in the “bad state” each channel packéhe channel parameters and code parameters are shown in

is lost with a probability ofl. We note that the average lossfable VIl and VIl respectively. Fig. 18(b) and 19(b) indiea
rate of the Gilbert-Elliott channel is given by the histogram of the burst lengths observed for the two

channels. The channel parameters for The= 12 case are

= p ) (73) the same as those used in [2, Section 4-B, Fig. 5]. We remark

Bta a+p that for this choice ofw, the contribution from failures due
wherea and 8 denote the transition probability from the goodo small guard periods between bursts is not dominant. When
state to the bad state and vice versa. As long as the charthel inter-burst gaps are smaller we believe that an extensio
stays in the bad state the channel behaves as a burst-erastidiDAS codes that control the number of losses in such
channel. The length of each burst is a Geometric randawents may be necessary and is left for a future investigatio
variable with mean of:. When the channel is in the good All codes in Fig. 18(a) are selected to have a rateRof
state it behaves as an i.i.d. erasure channel with an eraslgg23 ~ 0.52 and the delay isI" = 12. For reference the
probability of . The gap between two successive bursts imcoded loss-rate is also shown by the upper-most dotted blu
also a geometric random variable with a meanlofFinally line marked with triangles. The black horizontal line is the
note thate = 0 results in a Gilbert Channel [34], which onlyloss rate of then-MDS code. It achieve®? = N = 6. Thus,
results in burst losses. its performance is limited by its burst-correction capiapil

Fig. 17 shows a Fritchman channel model [35] with a totand thus is consistent with the probability of observingskair
of N+ 1 states. One of the states is the good state and tbager than6 which is given by~ 2 x 10~5. The red-curve
remaining\” states are bad states. We again let the transitiarhich deteriorates rapidly as we increase the Maximally
probability from the good state to the first bad stdfe to Short code (MS). It achieve® = 11 and N = 1. Thus,
be oo whereas the transition probability from each of the bad general it cannot recover from even two losses occurring
states equal®. Let ¢ be the probability of a packet loss inin a window of lengthT + 1. The remaining curve marked
good state. We lose packets in any bad state with probabilitywith squares shows the MiDAS code which achig®e= 9
The burst length distribution in a Fritchman model is a hypeand N = 2. The loss probability also deteriorates withbut
geometric random variable instead of a geometric randa a much lower rate. Thus, a slight decreaseBinwhile
variable. Fritchman and related higher order Markov modelsproving N from 1 to 2 exhibits noticeable gains over both
are commonly used to model fade-durations in mobile linkaMS andm-MDS codes. At the left most point, i.e., when=

In a conferencing application withMbps video and packet 1072, the loss probability is dominated by burst losses, while
of size512 bytes, the inter-packet time is abdumillisecond. asce is increased, the effect of isolated losses becomes more
A moderate decoding delay d00 ms would correspond to significant. In Fig. 19(a), the rate of all codes is setito=
T = 50 packets. With this in mind, our results in this Sectios0/83 ~ 0.6. The delay is set t@ = 50. The m-MDS code
will adopt different values ofl” from 12 to 80. Furthermore, (black horizontal plot) achieveB = N = 20 whereas the MS
we note that a benign playback disruption of once ewry code (red plot) achieve¥ = 1 and B = 33. Both codes suffer
minutes corresponds to a packet loss rate10f%, while from the same phenomenon discussed in the previous case.
an unacceptable disruption every two seconds correspondife also consider the MIDAS code (blue plot) witfi = 4
packet loss rate of0~3. In our simulations, we would vary and B = 30. We observe that its performance deteriorates
channel parameters over a wide range to provide comparis®e is increased and eventually crosses theMIDS codes.

VI. SIMULATION RESULTS

Equal Source-Channel Inter-arrival Rates

Pr(&)
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(a) Simulation results. All codes are evaluated using a diagodelay of (b) The actual burst histogram (in bars) follows a geometiigtribution
T = 12 packets and a rate dt = 12/23 ~ 0.52. (dotted line) with a success probability gf= 0.5.
Fig. 18: Simulation Experiments for Gilbert-Elliott ChagirModel with (o, 3) = (5 x 10~%,0.5).
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(a) Simulation results. All codes are evaluated using a diegodelay of (b) The actual burst histogram (in bars) follows a geometiigtribution
T = 50 packets and a rate d¢ = 50/83 ~ 0.6. (dotted line) with a success probability gf= 0.2.

Fig. 19: Simulation Experiments for Gilbert-Elliott ChagirModel with (o, 3) = (5 x 107°,0.2).

We believe that despite the relatively large valueof this of the burst lengths observed for the two channels.
performance deterioration is due to burst and isolatediezas In Fia. 20 and Fia. 21. th ded | te is sh
being observed in theamedecoding window. Such patterns, n Hg. and Fg. 22, € uncoded loss rate 1S shown
which occur during the transition period between good amtl b y the upper-most plot while the black horizontal line is the
states, are not covered in our sliding window erasure CHanrfﬁgrformange Ofm'MPS cpde. Note that the performance of
We refer the reader to our follow-up work [30], [36], wheré is code is essentially independent ofin the interval of

the layered construction is exploited further to handleme'mereSt' As in the case of GE channels, W.DS cpdes
patterns. recover all the losses in the good state and fail against burs

lengths longer than its burst erasure correction capgbilit
In Fig. 20 and Fig. 21, we evaluate streaming codes ovEhus, their loss rate is consistent with the probability of
the Fritchman channel in Fig. 17. The channel parameters astiserving bursts longer th& and16 which can be calculated
code parameters are shown in Table IX and X respectively.be~ 10~° and~ 3 x 10~°, respectively. The performance
We let the transition probability from the good state to thef the MS codes is shown by the red-plot in both figures. We
first bad stateF; to be a whereas the transition probabilitynote that it is better than the:-MDS codes fors = 1073,
from each of the bad states equglsLet ¢ be the probability but deteriorates quickly as we increaseThe performance
of a packet loss in good state. We lose packets in any bad sigééns from MIDAS codes are significantly more noticeable
with probability 1. Fig. 20(b) and 21(b) indicate the histogranfor the Fritchman channel because the hyper-geometri¢-burs
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TABLE VII: Gilbert-Elliott Channel Parameters TABLE VIII: Achievable N andB for different streaming codes

Fig. 18(a) Fig. 19(a) Fig. 18(a)| Fig. 19(a)
Delay T 12 50 Code N B N B
(o, B) (5x107%,0.5) | (5 x107°,0.2) MiDAS Code | 2 | 9 41 30
Channel Length 107 108 m-MDS 6 6 20| 20
Rate R 12/23 50/83 MS Codes 1 11 1 33
107 A
=& Uncoded =y
______ A - —=—m-MDS Code (N,B) = (20,20) 0.4
_ar_\,\—\" -e-MS Code (N,B) = (1,39) 9
o 10 -a- MiDAS Code (N,B) = (8,31) § 0.08
= =
S 3
g @]
Q
[e) —4_ « 0.06-
& 10 ;
: -
S © 0.04-
o
o
0.0
10 - - y . . . ' :
1 2 3 4 5 6 7 8 10 15 20 25 30 35
€ x 10° Burst Length
(a) Simulation over aVv' + 1 = 9-States Fritchman Channel witly, 3) = (b) The actual burst histogram (in bars) follows a negativeoiial
(107%,0.5). All codes are evaluated using a decoding delayl'of= 40 distribution (dotted line) with\VV = 8 failures and a success probability
packets and a rate @@ = 40/79 = 0.5. of B =0.5.

Fig. 20: Simulation Experiments for Fritthman Channel Moalith (N, a, 8) = (8,107°,0.5).

TABLE IX: Fritchman Channel Parameters TABLE X: Achievable N and B for different streaming codes
Fig. 20 Fig. 21 Fig. 20 | Fig. 21
Channel States 9 12 Code N | B|N|B
Delay T 40 40 MIDAS Codes| 8 | 31| 4 | 24
(o, B) (1075,0.5) | (2 x 107°,0.75) m-MDS 20| 20| 16| 16
Channel Length 108 108 MS Codes 1139|127
Rate R 40/79 ~ 0.5 40/67 = 0.6

TABLE XI: Unequal Source Channel Inter-arrival RatesTABLE XlI: Achievable N and B for different streaming codes

Fig. 23 Fig. 24 Fig. 23 Fig. 24
Channel States 2 20 Code N B N | B
M 20 40 Reshaped Code 1 50 | 1 |58
T 4 2 Robust Reshaped CodeN/A | N/A | 5 | 53
(o, B) (107°,[0.05,0.15]) | (107°,0.5) MiDAS Code N/A | NJA | 5 | 42
Channel Length 109 10° m-MDS Code 35 | 35 | 43| 43
Rate R 9/14 ~ 0.64 40/63 ~ 0.63 MS Codes 1 44 | 1 | 45

length distribution favors longer bursts over shorter oes a solid line whereas the codes involving block MDS codes are
in the case of GE Channels, we expect further performanslgown by the dotted lines of the same color. We note that in
gains to be possible by considering more sophisticatedierasall cases there is a noticeable increase in the loss rate when
patterns, such as burst plus isolated losses, but leaveasucta block MDS code is used despite the fact that these codes
investigation for a future work. achieve the saméN, B) values over deterministic channels.

In Fig. 22, we compare the performance of MiDAS and M$his loss in performance is due to their sensitivity to ndeall
codes obtained by replacing theMDS constituent code with erasure patterns as discussed in Section IV-E.
a diagonally interleaved block MDS code (cf. Section IV-D).
We consider the same GE channel in Fig. 18(a) and delay
T = 12. The codes involvingn-MDS codes are plotted using
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(a) Simulation over aV' 41 = 12-States Fritchman Channel witlx, 3) = (b) The actual burst histogram (in bars) follows a negativeoial
(2x1075,0.75). All codes are evaluated using a decoding dela¥ 6f 40 distribution (dotted line) with\/ = 11 failures and a success probability of
packets and a rate @@ = 40/67 = 0.6. B =0.75.
Fig. 21: Simulation Experiments for Fritchman Channel Moaligh (N, o, 8) = (11,2 x 1075,0.75).
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Fig. 22: Simulation over a Gilbert-Elliott Channel with Fig. 23: Simulation over a Gilbert Channel with= 10—
(o, 8) = (5 x 107%,0.5). All codes are evaluated using andg varied on the x-axis. All codes are of ralie= 2 and

a decoding delay of" = 12 packets and a rate ak = evaluated using a decoding delay Bf= 4 macro-packets.
12/23 ~ 0.52. Each macro-packet consists df = 20 channel packets.
B. Unequal Source-Channel Inter-arrival Rates reflected in Fig. 23 as one can see that codes designed for

unequal source-channel inter-arrival rates, which arerred

In our simulations in Fig. 23, we consider a Gilbert channé® asreshaped codesichieve a lower loss probability. We note
model which is the same as a Gilbert-Elliott channel witthat the code parameters in Fig. 23 correspond to the second
e =0, i.e., the loss probability i in the good state. We fix case in (9).

a = 107" and vary3 on the x-axis in the intervdD.05, 0.15] In Fig. 24, we consider a Fritchman channel with §) =
which in turn changes the burst length distribution. Wetfart (10~°,0.5) and V' + 1 = 20 states. The corresponding burst
select M = 20, i.e., 20 channel packets are generated fadistribution is illustrated in Fig. 24(b). In Fig. 24(a), vebow
every source packet received at the encoder. We fix the rtte performance of different streaming codes in the case of
R =9/14 and the delayl’ = 4 macro-packets. Under theseunequal source-channel inter-arrival rates on such chafine
conditions, them-MDS code can correct burst erasures afate for all codes is fixed t& = 0.64 and the delay constraint
length up to B = 35, whereas a Maximally Short codeis T = 2 macro-packets where each macro-packet¥fas 40
achievesB = 44. In contrast, for the optimal code we havepackets. As the probability of erasure in the good state
B = 50. This gain in terms of correctable burst-length isncreases, the performancerafMDS code (black curve) does
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(a) Simulation results. All codes are evaluated using a diegodelay of (b) The actual burst histogram (in bars) follows a negativeoial
T = 2 macro-packets and a rate &f ~ 0.63. Each macro-packet consists  distribution (dotted line) with\/ = 20 failures and a success probability of
of M = 40 channel packets. B =0.5.

Fig. 24: Simulation Experiments for Fritchman Channel Moalith A + 1 = 20 states anda, 3) = (1075,0.5).

not change. The loss rate of this code~is10~* which is nel, and establish a fundamental tradeoff between thegicset
dominated by the fraction of erasures introduced by bursthich could be of independent interest.

longer thard3. On the other hand, both Maximally Short and

reshaped codes achiede= 1 and thus deteriorate as quickly For the case when the source-packet arrival rate and the
as 2. For the left most point corresponding to= 0, the channel-packet transmission rates are unequal, we cheizct
probability of loss of the Maximally Short code is 10-* the capacity for the burst erasure channel. Our proposed
which reflects the number of erasures introduced by bur§@des are a non-trivial extension of the MiDAS codes and
longer thard5. Similarly, the loss probability of the reshapedequire a careful re-arrangement of the source symbols into
code is~ 3 x 10~% which matches the fraction of losseghe channel packets. We also present an achievable rate for
introduced due to bursts longer thas. The performance the sliding window erasure channel with both burst and
of the robust versions of these codes, namely MiDAS argplated erasures. Extensive numerical simulations atdithat
robust reshaped codes does not deteriorate as fast. Howe®éf proposed constructions outperform traditional codess o
the robust reshaped code outperforms the MiDAS code as ffatistical models.

former achieve3 = 53 versusB = 42 achieved by the latter, ) ) S
whenN =5, R = 0.63 andT = 2. We believe that the results in the paper are a promising first

step towards construction of explicit error correction €ad
for real-time streaming applications over practical chenn
models. A number of further topics can be pursued, both
In this paper, we introduce a systematic approach fémrom a theoretical viewpoint as well as practical viewpoint
constructing low-delay error correction codes for realdi On the theoretical side, the tradeoff between column digtan
streaming communication over packet erasure channels thatl column span discovered in our analysis of the sliding-
introduce both burst and isolated erasures. We introducevandow erasure channel appears intriguing. It will be inter
class of sliding window erasure channels where the erasasting to revisit it, perhaps using systems theoretic témis
sequences are constrained locally. Such models lead t@omvolutional codes [29], [37]. Furthermore, provable hdsi
tractable analysis of the capacity and the resulting codes an the achievable error probability over the Gilbert-Etliand
observed to provide substantial gains in simulations oler tFritchman channels, when using codes for the sliding-windo
Gilbert-Elliott and Fritchman channel models. erasure channel can be developed. In other directionsnapti
When the source-packet arrival rate and the channel-packgeaming codes for the case when the source and channel
transmission rates are equal, we propose a near-optimal coates are unequal and the channel introduces both burst and
construction, MiDAS Codes, using a layered coding approasolated erasures remain to be found. Furthermore, as noted
that usesm-MDS codes and repetition codes as constituentir simulations, improvements can be attained by consigeri
codes. We also propose another class of codes that use blatkeaming codes that correct both burst and isolated losses
MDS codes as constituent codes and require a considerablthin the same decoding the window of interest. Finally
smaller field size. We establish the necessary and sufficientr constructions are tuned to specific channel paraméters.
conditions on the column distance and column span of apyactice, it is very desirable to extend such constructibas
feasible streaming code for the sliding-window erasurenehaadapt to varying channel parameters with little or no feellba

VII. CONCLUSION
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APPENDIXA
COLUMN DISTANCE AND COLUMN SPAN OF
CONVOLUTIONAL CODES

In this section, we show that the error correction capabilit
of a streaming code can be expressed in terms of its column
distance and column span. In our discussion, we view thetinpu
packetss[i] as a lengtht vector overF, andx[i] as a length
n vector overF,. We restrict our attention to time-invariant

linear (7, k,m) convolutional codes specified by
i

xfi] = | Yos'li-le | .

whereGy, ..., G, are generator matrices OVEEX’?
The firstT + 1 output packets can be expressed as,
(x[0], x[1],....x[T]] = [s[0],s[1],...,s[T]] - GF. ~ (74)
where
Gy Gy Gr
0 Go Gr_1
G5 = . (75)
0 .. Gy

is the truncated generator matrix to the fitst- 1 columns.

Note thatG; =0 if j > m.

Definition 3 (Column Distance) The column distance d&s
in (75) is defined as

dr = min wt([x[0],...,x[T 76
T gy VO Ty e
s[0]#0

where wt([x[0], . ..
elements in th€" + 1 length vector.

Intuitively, the column distance of the convolutional code

Fig. 25: Trellis diagram showing a streaming code. Since the
delay constraint isI" packets, the corresponding generator
matrix is truncated at tim& (cf. (74)) and hence nodes after
time T are irrelevant. Also, according to the column distance
and column span definitions in Def. 3 and Def. 4, only paths
diverging from all zero path at the starting point are coasd

to calculate these metrics. The red solid path is one example
of these paths while the dashed line is not considered.

sequence. Thus|0] is recovered uniquely at tim&. Once

s[0] is recovered we can cancel its contribution from all the
future packets and repeat the same argument for the interval
[1,T + 1] to recovers[1] and proceed.

Conversely there exists at-least one output sequence whose
Hamming weight equalgé; and the input packet]0] # 0. By
erasing all the non-zer@, positions for this output sequence,
we cannot distinguish it from the all-zero sequence. &

To the best of our knowledge the column span of a con-
volutional code was first introduced in [2] in the context of
low-delay codes for burst erasure channels.

Definition 4 (Column Span) The column span d&%. in (75)

,x[T]]) counts the number of non-zerois defined as

span([x[0],...,x[T]]) (77)

min
s=[s(0],s[1],...,s[T]]
s[0]#0

finds the codeword sequence of minimum Hamming weight

in the interval[0, T'] that diverges from the all zero state aW_hereSpaﬂ([?_([OL -
time ¢ = 0. We refer the reader to [29, Chapter 3] for som&ing vector, i.e.span([x[0], ...

properties ofdr.

,x[T]]) equals the support of the under-
,x[T)]) =7 — i+ 1, wherej

is the last index where is non-zero and is the first such
index.

Fact 1. A convolutional code with a column distancelgfcan

recover every information packet with a delay®fprovided act 2. Consider a channel that introduces no more than
the channel introduces no more thah= dr — 1 erasures in - 5 gingle erasure burst of maximum lengthin any sliding
any sliding window of length” +- 1. Conversely there exists yindow of lengthl” + 1. A necessary and sufficient condition

at-least one erasure pattern witihy erasures in @ window ¢, 5 convolutional code to recover every erased packet with
of lengthT + 1 where the decoder fails to recover all source, delay ofT" is that ey > B.

packets.

The justification is virtually identical to the proof of Fatt
and is omitted.

It follows from Facts 1 and 2 that a necessary and sufficient
condition for any convolutional code to recover each source
acket with a delay df over a channaf(N, B,W = T+1) is
Rat bothdr > N andcr > B. Thus, specializing Theorem 1
and 2 toW =T+ 1 we are now able to prove Prop. 1, which
is stated below for convenience.

Proof: Consider the interval0,7] and consider two
input sequencegs|0],...,s[T]) and (s'[0],...,s'[T]) with
s[0] # s’[0]. Let the corresponding output k&[0], ..., x[T])
and (x'[0],...,x/[T]). Note that the output sequences diffe
in at-leastdr indices since otherwise the output sequen
(x[0] = x’[0],...,x[T] —x[T]) which corresponds t¢s[0] —
s’[0],...,s[T] — s'[T]) has a Hamming weight less thah-
while the inputs[0] — s’[0] # 0, which is a contradiction.
Thus, if (s[0],...,s[T]) is the input source sequence, for anyProposition (A Fundamental Tradeoff between Column Dis-
sequence oflr — 1 or fewer erasures, there will be at-leastance and Column Span}or any (7, k,m) convolutional
one packet wheréx’[0],...,x'[T]) differs from the received code and an integef’ > 0 we have that the column distance
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dr and column spam; must satisfy [i -7, (i + )i — 1] (see Fig. 26). We show that the entire
erasure burst can be recovered through the following steps.

R 1
1_RcT+dT <T+1+ 1-¢h (78) o Inthe windowWy(j+1) = [0, (j +1)n—1], the channel
_ introducesB < (n—k)(j+1) erasures. Hence, we use L1
whereR = % denotes the rate of the code. Furthermore, for g recovers0] = (so[0], ..., sz_,[0]) at time(j+1)n—1
any T' > 0 there exists an, k,m) convolutional code with among which only the last — ¢ symbols are erased.
column distancelr and column span, over a sufficiently At this point we can also compute the— k symbols
large field-size such that, of p[0] = (po[0],...,ps_z_1[0]). Thus, all the symbols
1 until time t = 7 — 1 have now been recovered by the
T—prtdrzT+—F (79) decoder.

o« The next windowW, (j) = [n,(j + 1)n — 1] has B —
(n —¢) < j(n — k) erasures since < k. Hence, L1 can
Proof: To establish (78), consider any convolutional code  be used to recoves{1] at time (j + 1)7 — 1 andp[1] can
with a column distancelr and column spamy. From the be computed consequently.
sufficiency parts of Facts 1 and 2 such a code is feasible ovet Similarly, W, (j—1) = [27, (j+1)i—1] hasB—(n—¢)—
the channeC(N = dr — 1,B = cr — 1,W = T + 1) with i < (7 — k)(j — 1) erasures which implies the recovery
delayT'. Thus, it must satisfy the upper bound (1). Substituting  of s[2] at time (j 4+ 1) — 1.
N =dr —1 and B = ¢y — 1 immediately gives (78). « Repeating the previous step fV; (j —i+1) = [i-7, (j+
To establish (79), consider the code that satisfies the lower Da—1]andi-n < c+ B —1, one can recover all erased
bound in (2) in Theorem 2. From the necessity parts of Facts 1 packets in the erasure burst at tire+ 1)n — 1.
and 2 such a code must satisfy > B+1anddr > N+1. The proof of L2 is thus complete. The claim in L3 is
Substituting in (2) immediately leads to (79). a generalization of L2, as it permits the erasure pattern to
] ] B have both burst and isolated erasures, but only guararitees t
As a final remark we note Facts 1 and 2 also immediatel¥covery of the burst erasure. To establish L3 we can proceed

apply to any channel withV’ > T + 1. In particular, any i, 3 similar fashion as above and stop when the recovery of
erasure pattern for th&{ N, B, W) channel withi’ > T+11iS  he erasure burst is complete.

also feasible foC (IV, B, W = T'+1) and thus the sufficiency

follows. Furthermore, note that whenevidf > T+ 1, any APPENDIX C
erasure pattern in the intervil, T'] used in the proof of the DECODING ANALYSIS OF MIDAS CODE WITH MDS
necessity part can also be used for the chadgal, B, W). CONSTITUENT CODES

In the decoding analysis, it is sufficient to show that each
source packet[i] can be recovered at tinie= i + T, if there

_ _ is either an erasure burst of length or up to N isolated
In order to establish L1, we use the following propertgrasures in the interval, i + T.g].

regarding systematie:-MDS codes [5, Corollary 2.5]. Con-
sider the window of the firsi + 1 packets of a(ii,k,m) A Byrst Erasure
convolutional code and let the truncated codeword asstiat )
First consider the case when a burst erasure spans

with the input sequencés|0],...,s[j]) be (x[0],...,x[j]), ; )
where eachx[i] is expressed as in (14). Then tjith (symbol B — 1]. Following this burst, we are guaraqteed t_hat for the
C(N, B,W) channel, there are no erasures in the intefisal

level) column distancé is defined as ) .
B, i+Tes+ B—1]. We argue that the decoder can first recover

APPENDIXB
PROOF OFLEMMA 1

dj = min  wt(x[0],...,x[j]), (80) wlil,...,v[i+B—1] simultaneously by timé = i+T.¢—1 and
s=(s[0],...,s[4]) . . . . ol
s[0]£0 then recovenli] at timet = i+ Tog by computingp? i + Tos]
and themu[i] = q[i+T.x] —p"[i +Ten]. TO Show the recovery

where recall that each channel pack@i hasn symbols, i.e.,
x[i] = (xo[i], ..., za-1[i]) andwt®(v) counts the number of
non-zerosymbolsin the codewordv.

It is well-known that for any(n, k,m) convolutional code
ds < (n—k)(j+1)+1 forall j > 0. A special class of
convolutional codes — systematie-MDS codes — satisfy this
bound with equality forj = {0,...,m} [5, Corollary 2.5].

The proof of property L1 follows by using an argumen
similar to that in the proof of Fact 1 in Appendix A. We will

of v[i],...,v[i+ B —1], note that there are no erasures in the
interval spanningi + B, i + Teg — 1] and the interferinga[']
sub-packets iry[t] = u[t — Tog] + p?[t] can be subtracted out
to recoverp®[t]. The diagonal codewordéc?[r]} spanning
v(i],...,v[i+B—1] startatr € {i — (Tex — B) +1,...,i+
B — 1}. Each such codeword belongs to(B.s, Tesr — B)
MDS code. Hence, if no more thaB erasures take place in
éach codeword, the erased packets can be recovered. However
omit it as the argument is completely analogous we still need to take the delay into account. We first note that
) ; ) the v[-] sub-packets in the intervad,i + B — 1] are erased.

_To establish L2, vye use the n(_)tatlfwi(l)_ to denoteAa Also,[t]heq[~]ppackets in the intervgi+Tcﬁ-,z‘+]Tcﬁ'+B—1]
window of lengthi - 7 starting at time: - 7, i.e., Wi(l) = combineul[-] which are erased and thus the correspongifg

12This differs from (76) in that we measure the Hamming weigrsymbols Packets must also be treated as erased. We split the diagonal
rather than the packets|;]. codewords of interest into two groups,
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Wa(j—1)

W)

Wo(j+1)

2n 3n—1 c+B-1

(= Dn jn—1|jn

x[2]

B

x[j —1]

Fig. 26: An erasure channel witB erasures in a burst starting at timeused in proving L2 in Lemma 1. Grey and white

squares resemble erased and unerased sub-symbols redpecti

e r € {i—(Tew — B)+1,...,i}: These codewords endi + T, i.e., in the following sequence,

before time: + T,z where there are onlyB erased
columns in the intervali,i + B — 1].

e € {i+1,...,i+ B —1}: Each of these codewords has
Tox — B symbols in the intervdli+ B, i+ T — 1] which
are not erased. Since the length of each codewdfiis
then the number of erasures are at Mggt— (Tog— B)
B.

We note that all the considered diagonal codewdjdg/r] }
forr e {i — (Tog — B) +1,...,7+ B — 1} end before time
i+ Tes + B. Also, thep|-] parities in the intervali + Teg, i +

{chc [t] s Pvec [t] }i§t§i+T =

(UOm, e opo 1l polil - pre [,
voli + 1], ..., vpe 1 i + 1], poli + 1], .. ., pru—1i + 1]
voli + T, vpe—1[i +T],poli + T, ..., pru—1[i +T]),
(81)

T + B — 1] cannot be used as discussed earlier. Thus,aiter the cancellation ofa[-] sub-packets does not exceed
follows that the corresponding[-] sub-packets are recovered:"(T" + 1). We start by considering that the burst begins at

1 and subsequently consider other cases in Table XIII.

For the case when = 1 we consider two cases.

B. Isolated Erasures

Next we show that when there afé erasures in arbitrary
locations in the intervali, i + T.q], thenu[i] is guaranteed
to be recovered by time = i + Tog, andv][i] is guaranteed
to be recovered by timé = i + T,z — 1. For the recovery
of u[i] we note that the codewordg:¥[r]} that includeul]
start atr € {i — (Teg — N),...,i}. Since eachc}[r] is a
(Tegr + 1,Texg — N 4+ 1) MDS code, and there are no more
than N erasures on each such sequence, it follows that all
the erased packets are guaranteed to be recovered by time
i+ Ter. The recovery ofa[i] by timet¢ = i+ T, now follows.
For recoveringv[i], we consider the non-erased parity-check
packetsp®[¢] for ¢ € [i,i + Teq — 1], which can be obtained
by cancelling the interferina|[t — T.s] sub-packets frong]t]
as discussed in the case of burst erasure above. Notice that
the diagonal codeword$c?[r]} spanningvli] start atr e
{i—(Tog—B)+1,...,i} and terminate by timé+ T, —1. It
follows that each such sequence has no more ffia@rasures
and hence all the erased] sub-packets are recovered by time
t=1+Teg — 1.

APPENDIXD
PROOF OFLEMMA 3 o

We need to show that the total erased symbols
(Vvec|]; Pvec|]) between macro-packets to macro-packet

B > TLH)M: We first show that the total number
symbols erased ivy..[-] and pyec[-] due to the burst in

the macro-packetsi+1,...,i+b equalsk*T = B-T.
Furthermore, in macro-packet+ 7', the parity-checks
Pvec|t + T'] combine withuy.[i] which are also erased.
Hence, these symbols contribute to additioktakerasures
leading to a total ok (7" + 1) erased symbols.

Note that the erasure burst spans the entire macro-packets
X[, ], ..., X[i+b—1,:] as well asx[i + b,1],...,x[i +

b, B']. The total number of symbols i [t] andpyec|t]

in each macro-packet s’ +k* = M(T'+b+1)— B. In

the b-th macro-packet, we only have the fil8t columns
erased. Out of these, the firgt symbols are from the
Uyec|-] sub-packets whereas the remainiBg, — k*
B'(T + b+ 1) — B symbols come fromv.[i + b] and
Pvecli + 8] . It can be easily verified thas’(T'+b+1) —

B > 0. Hence, the total number of erased symbols of
Vyec[t] @Nd pyec|t] IS

b(k" + k') + B'n — k"
=bM(T+b+1)—B)+B(T+b+1)— k"
=B(T+b+1)—bB—k"
=B(T+1)—k"=Tk"

(82)

B in our code

where we use the fact that“
construction andB = bM + B’.
B < TLH)M: Again the macro-packeX[i, ], ..., X[i+

b — 1,:] are completely erased and each contributes to
b(kV+k") = b(M (T+b)—Mb) erasures. In thX[i+D, :],
only the symbols inu.[i + b] are erased as it can be
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TABLE XIlII: Different erasure patterns considered in theabysis of the decoder. The indegxat the left of each row, indicates
the starting location of each burst in macro-black he shaded blocks shows the symbols that are erased.

i=1 i ‘ ufi, 2] ‘ ‘ g “[f;[”lfi]” ‘ vii, 2] ‘ vii, 3] ‘ oo | Vi M —2r 1] v([lz[zl\;t;]r] ‘ alisr] | - ‘ ali, 1]
j=2 uli 1] | afi,2] | - | uli,r] H[Q[Z,J{]” vii, 2] | Vi3] | - | v, M —2r—1) VE[,”}\;J:;L] aii,r] | - | ali 1) 3
j=r+1 wli,1] | uli,2] | - | ufi,r] “[i,’[;J{]l] v[i,2] | v[i,3] | - | v, M —2r 1] VE[,Z}\;JiéL] qfi,r] | - | ali 1]
j—rt2 wi 1] | ufi,2) |- | ufir] “[3['1’,"5” Vi 2] | Vi3] | o | v M —2r 1] VEEZ}\;J:;]T] alir] | - | 1]
j=r+3 wfi, 1] | uli,2] | -+ | uli,7) “[C[:’J{]” vii.2) | v[i,3] | - | v[i,M —2r —1] VEEZ}\;S]T] ali, ] | - | i, 1] i
j=M-—r uli,1] | ufi,2] |- | i) ““V’[’ZT’J{]” v[i,2] | v[i,3] | - | v[i, M —2r — 1] V‘[’;El}\;fgr] afir] | - | dlis1]
G=M—r+1 | w1 | w2 || ufir] “[ZV’[:’J{]” v[i,2) | v[i,3) | - | v, M —2r 1] VEEZ&f% i) | o | alis1]
easily verified thatB’n < k*. Finally, as in the previous n symbols. Thus, it compensates for theextra erased
case all the symbols in..[i + T] in macro-packet + symbols.
T that combine withuy..[:] must be considered erased. « j = r+1: Ther’ symbols ofu[i, r+1] helps in recovering
Thus, the total number of erased symbol9(3/(T + ther’ symbols ofp[i + T, 7 + 1] € pvec|-]. This together
b) — Mb) + k* = bMT + k" = E*(T + 1). with the revealedn — v’ symbols of v[i, 1] € vyec[]
To establish the claim fof = 2,3, ..., M — r it suffices to compensates for the extra erasures.
show the following lemma e j={r+2,...,M —r—1}: In this case, the revealed

channel packet ix[i, j] = v[i,j — r] € Vyec[:] @and has
n symbols which are now available at the decoder.

e j = M — r: As shown in Table XIII, the decoder can
subtractu[i — T, r + 1] from q[i, r + 1] to recover the”’
symbolsp[i, 7+1] € pyec[-]. This together with the,—
Lemma 4 establishes that the worst case erasure sequence issymbols ofv[i, j — r] € vyec[-] add up ton symbols and

the one that begins gt= 1. Since we have already established  the claim follows.

that the total number of erasures {Rec[t], pvec[t]} In this  This establishes Lemma 4 and in turn the proof of Lemma 3

case does not exceéd (7' + 1), this will complete our claim. js complete.
To establish Lemma 4, we note that going from the burst

pattern that starts atfi, j] to the pattern that start afi, j + 1]

results in one extra erased channel packet at the end. Also, i

results in revealing the first channel packet whichx[s j]. [1l létli;l;;EQBZ QHggngénl;i-CCSTSg, ﬁ??hzlzvé%nﬁ%ecigﬁligmsﬁp; rt_::temor

We assume (as a wors_t case) that. @he extra erased channelscale VO?I-D systemlEEE Netwo?’k 24(2):42-48, Feb 2010.

packet at the end contributes toadditional erased symbols [2] E. Martinian and C. W. Sundberg. Burst erasure correctimdes

of eithervvcc[.] or pvcc[.]_ We consider the effect of revealing with low decoding delay.IEEE Transactions on Information Theery

the channel packet[s, j| and show that I.t always Compensates[3] EO(I\%I?rtfrﬁz: :r?c?zlvlz'lqr%it Delay-optimal burst erasurede construc-
exactly n new unerased packets of eithefc.[-] or pyec[]. tion. In Proc. International Symposium on Information Theory ()SIT

Thus, we do not increase the total number of erased packets Nice, France, July 2007.
in such a transition [4] E. M. Gabidulin. Convolutional codes over large alphabe In

Proc. International Workshop on Algebraic CombinatorialcaCoding

Lemma 4. Let N; denote the total number of erased symbols
in {vyec[t], Pvec[t]} after the cancellation of non-erased...|]
sub-packets when the erasure burst beging[atj]. Then we
have thatNV; < N;_, for eachj =2,3,..., M —r.
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