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Abstract—We study error correction codes for multimedia
streaming applications where a stream of source packets must
be transmitted in real-time, with in-order decoding, and strict
delay constraints. In our setup, the encoder observes a stream of
source packets in a sequential fashion, and M channel packets
must be transmitted between the arrival of successive source
packets. Each channel packet can depend on all the source
packets observed up to and including that time, but not on any
future source packets. The decoder must reconstruct the source
stream with a delay of T packets.

We consider a class of packet erasure channels with burst
and isolated erasures, where the erasure patterns are locally
constrained. Our proposed model provides a tractable approxi-
mation to statistical models, such as the Gilbert-Elliott channel,
for capacity analysis. When M = 1, i.e., when the source-packet
arrival and channel-packet transmission rates are the equal, we
establish upper and lower bounds on the capacity, that are within
one unit of the decoding delay T . We also establish necessary and
sufficient conditions on the column distance and column span of
a code to be feasible, and in turn establish a fundamental tradeoff
between these. Our proposed codes — Maximum Distance And
Span (MiDAS) codes — achieve a near-optimal tradeoff between
the column distance and column span, and involve a layered
construction. When M > 1, we establish the capacity for the
burst-erasure channel and an achievable rate in the general
case. Extensive numerical simulations over Gilbert-Elliott and
Fritchman channel models suggest that our codes also achieve
significant gains in the residual loss probability over statistical
channel models.

Index Terms—Delay Constrained Capacity, Application Layer
Error Correction, Packet Erasure Channels, Real-Time Stream-
ing Communication, Deterministic Channel Models

I. INTRODUCTION

MULTIMEDIA applications such as interactive au-
dio/video conferencing, mobile gaming, and cloud-

computing require the transmission of a stream of source
packets in real time, and under strict delay constraints. The
transmitter must encode a source-stream sequentially, and
the receiver must decode each source packet within a fixed
playback deadline. In this paper, we investigate a systematic
approach for constructing streaming codes for such appli-
cations. Classical error correction codes such as Maximum
Distance Separable (MDS) and rateless codes are not ideal
streaming codes. Their encoders operate on the source-stream
in blocks, and introduce buffering delays. The decoders can
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only recover missing source packets simultaneously, without
considering the different decoding deadlines.

Classical results in information theory provide little insights
into real-time communication. Naturally the Shannon capacity
is no longer the fundamental limit under delay constraints.
A recent empirical study [1] notes that in the Skype confer-
encing application, the overhead used in the error correction
codes far exceeds the Shannon limit without delay constraints.
Furthermore, the performance degradation due to burst losses
is far more detrimental than random losses. This is again
fundamentally different from classical systems without delay
constraints where one can use interleaving or codes with long
block-lengths to average out the effect of local burst erasures.
In practice, channels introduce both burst and isolated losses
often captured by statistical models such as the Gilbert-Elliott
(GE) channel. Thus, burst losses are unavoidable and it is of
practical interest to study the optimal coding schemes over
such channels.

In the present paper, we study a class of packet-erasure
channels that introduce both burst and isolated losses. Since
the direct analysis of the GE channel under delay constraints
appears intractable, we introduce a simplified channel that
provides a useful approximation. We propose a sliding-window
erasure channel model — C(N,B,W ) — where in any sliding
window of size W , the channel can introduce either an erasure
burst of maximum length B or up to N erasures in arbitrary
locations. Thus, error correction codes over such channels
must correct both burst erasures and isolated erasures. We
show that our proposed model is not only amenable to a
tractable capacity analysis under delay constraints, but that
the resulting streaming codes also provide significant gains in
simulations over the GE and related channel models.

We model our streaming setup as follows. The encoder
observes a stream of source packets in a sequential fashion.
Between the arrival of two consecutive source packets, the
encoder transmits M channel packets. Each channel packet can
depend on all the source packets observed up to and including
that time, but not on any future source packets. The decoder
is required to reconstruct each source packet with a delay of
T packets. In practice, M is a parameter determined by the
application. For example, in high definition video streaming,
each source frame may arrive every 40 ms, whereas each
channel packet may be transmitted every millisecond, resulting
in M = 40. On the other hand in low-rate VoIP applications,
M can be as small as 1.

In the first part of the paper, we treat the case when
M = 1, i.e., the source-packet arrival rate and the channel-
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packet transmission rate are equal. A special case of this setup,
involving the burst-erasure channel, was previously studied by
Martinian et. al. [2], [3]. The authors establish the capacity,
as well as the optimal code, for the C(N = 1, B,W ≥ T +1)
channel1. These codes were called Maximally Short Code
(MS) and involved constructing a block code with certain
properties, and then converting it into a convolutional code.
In the present paper, we revisit this construction and propose
a modification that has certain advantages. First it does not
require construction of a block code, but directly constructs the
streaming code using a strongly-MDS convolutional code [4],
[5], and a repetition code as constituent codes. We believe
that our approach provides a more transparent viewpoint on
how classical codes can be modified to achieve sequential
recovery of source packets over the burst erasure channel.
Furthermore, our construction for the burst erasure channel can
be naturally extended to the sliding window erasure channel
when N > 1. This is achieved by simply concatenating an
additional layer of parity-checks to the burst-erasure code. We
call this approach a layered code design. For any C(N,B,W )
channel, our proposed layered code achieves within one unit
of the optimal decoding delay. We note that our construction
provides the first family of streaming codes that can correct
both burst and isolated erasures in the streaming setup. The
importance of studying such robust codes was also discussed
in [2], and some specific examples were obtained using a
computer search, but these do not appear to immediately lead
to a general constructions.

The streaming codes by construction are convolutional
codes, and hence it is natural to study their underlying distance
properties. We show that any feasible streaming code over
the C(N,B,W ) channel must simultaneously have a certain
minimum column distance and column span. The column dis-
tance is associated with isolated erasures, whereas the column
span is associated with the recovery from burst erasures. As
a corollary to our capacity bound, we characterize a new
tradeoff between the column distance and column span for any
convolutional code, which could be of independent interest.
Furthermore, our proposed codes attain a near optimal tradeoff.
Hence, we call them Maximum Distance and Span (MiDAS)
codes.

In the second part of the paper, we consider the general
case when M > 1, i.e., the source-packet arrival and channel-
packet transmission rates are unequal. We propose an optimal
construction for the burst erasure channel, and an achievable
rate for the general case. Both the construction as well as
the decoding analysis are a non-trivial extension of the case
when M = 1. Finally we present extensive simulation results
over the GE and Fritchman channels that suggest substantial
performance gains over baseline codes for a wide range of
channel parameters. We also discuss how the parameters of
the sliding-window erasure channel can be selected based on
the underlying statistical models of interest.

In other related works, references [6]–[10] study a multicast
extension of [2], [3] to the case of two users and a common

1The setup in [2], [3], only considers a single burst-erasure channel. But
their construction also applies to the sliding window erasure channel when
W ≥ T + 1.

source stream. The stronger receiver’s channel introduces
shorter bursts and in turn, the decoding delay is required to
be smaller. The weaker receiver’s channel introduces longer
bursts and the decoding delay can be longer. Such codes can
also be used in applications where the decoding delay can
vary based on channel conditions. The construction of these
codes involves embedding the parity-checks of two single-user
MS codes in a careful manner to simultaneously satisfy the
constraints of both the receivers. References [11]–[13] study
an extension of MS codes to parallel channels with burst
erasures where the constructions involve a modification of
MS codes to exploit the diversity across the parallel channels.
In [14], streaming codes that can correct multiple bursts are
proposed using an interleaving-type approach. We note that
these references do not consider channels with burst and
isolated erasure as in the present work. References [15]–
[17] study streaming codes motivated by connections between
streaming and unicast network coding and study channels with
either burst erasures or i.i.d. erasures. However, to the best of
our knowledge, these papers do not consider channels with
both burst and isolated erasures, or the layered approach for
coding, which is the focus of the present work. In the broader
literature, problems involving real-time coding and compres-
sion have been studied from many different perspectives. Some
structural properties of optimal codes have been studied in
e.g., [18]–[20], and a dynamic programming based formulation
is proposed. However, to the best of our knowledge, these
papers do not consider explicit codes as considered here.
Tree codes for streaming over i.i.d. channels are studied
in [21]–[23]. There is also a significant body of literature on
adapting various coding techniques for streaming systems, see
e.g., [24]–[28] and references therein.

II. SYSTEM MODEL AND MAIN RESULTS

In this section, we introduce the streaming setup and sum-
marize the main results of the paper.

A. Sliding-Window Erasure Channel Model

We consider a class of packet erasure channels where the
erasure patterns are locally constrained. In any sliding window
of length W , the channel can introduce one of the following
patterns: (i) a single erasure burst of maximum length B, or
(ii) a maximum of N erasures in arbitrary locations. Note that
the condition N ≤ B follows since a burst erasure is a special
type of erasure pattern. We will assume throughout the paper
that B+1 ≤ W , so that in any window of length W there is at-
least one non-erased packet2. We use the notation C(N,B,W )
for such a channel. Note that the special case when N = 1
reduces the above model to a burst-only channel model. In
this case, the guard separation between successive bursts is
at-least W − 1.

In practice, we can view C(N,B,W ) as an approximation
of statistical models such as the Gilbert-Elliott (GE) channel
model. A GE channel is in one of two states. In the good
state, it behaves as an i.i.d. erasure channel, while in the

2If this condition is violated, it follows that the capacity is zero.
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Fig. 1: An example of the sliding-window erasure channel
C(N = 2, B = 3,W = 5). In any sliding window of length
W = 5, there is either a single erasure burst of length no
greater than B = 3, or no more than N = 2 isolated erasures.

bad state, it behaves as a burst-erasure channel. Thus, the
interval consisting of a burst loss corresponds to the bad
state, whereas a window comprising of isolated erasures
corresponds to the good state. Fig. 1 provides an example
of C(N = 2, B = 3,W = 5). The intervals [0, 2] and
[12, 14] of burst erasures correspond to the bad state of the
GE channel, whereas the interval [3, 11] corresponds to the
good state of the GE channel. The advantage of studying
the C(N,B,W ) is that it is a tractable model for capacity
analysis. Furthermore, streaming codes developed using this
model with suitable parameters can provide significant gains
over statistical models. This will be verified in our simulation
results over the Gilbert-Elliott and Fritchman channel models.

We separately treat the cases when the source-packet inter-
arrival rates and channel-packet transmission rates are equal
and when they are not. For convenience we refer to these as
source-channel inter-arrival rates.

B. Equal Source-Channel Inter-arrival Rates

At each time-slot i ≥ 0, the encoder observes a source
packet s[i], and transmits a channel packet x[i] as shown in
Fig. 2. We will assume throughout that the source packet
consists of k symbols, while the channel packet consists
of n symbols over a common finite field Fq . The rate of
the code equals R = k

n . The channel input at time i can
depend causally on all the source packets observed up to
and including time i, but not on any future packets, i.e.,
x[i] = fi(s[0], . . . , s[i]). The channel output at time i is
denoted by the packet y[i]. Note that either y[i] = x[i], or
y[i] = ⋆, when the channel introduces an erasure. The decoder
is required to reconstruct each source packet with a delay of
T , i.e., for each i ≥ 0 we must have a decoding function,
s[i] = gi(y[0], . . . ,y[i + T ]). Such a collection of encoding
and decoding functions constitutes the streaming code.

Definition 1 (Streaming Capacity - Equal Source-Channel
Inter-arrival Rates). A rate R is achievable with a delay of
T over the C(N,B,W ) channel, if there exists a streaming
code of this rate over some field of size q such that every
source packet s[i] can be decoded at the destination with a
delay of T packets. The supremum of all achievable rates is
the streaming capacity.

We establish the following upper and lower bounds on the
streaming capacity.

Theorem 1 (Upper Bound). For the sliding-window erasure
channel, C(N,B,W ), an achievable rate R with delay T ≥ B
must satisfy the following upper bound:(

R

1−R

)
B +N ≤ Teff + 1, (1)

where Teff ≜ min(T,W − 1). □

Theorem 1 provides an upper bound on the rate for any
code, linear or not, and any field size q. Alternatively, when
the rate R and delay T are fixed, Eq. (1) illustrates a tradeoff
between the achievable values of B and N . We cannot have
a streaming code that can simultaneously correct long erasure
bursts and many isolated erasures. The proof of Theorem 1 is
provided in Section IV-A.

Note that Teff + 1 = min(T + 1,W ), where T + 1 denotes
the active duration of each source packet, i.e., each source
packet s[i] arrives at time t = i and must be decoded by
time t = i+ T . When W ≥ T + 1 the right hand side in
the upper bound in (1) depends on the decoding delay T
and not on the window W ; otherwise it depends on W . In
the latter case, the upper bound corresponds to the capacity
of a certain periodic erasure channel with T = ∞. The
intuition here is that the C(N,B,W ) channel only controls
the allowable erasure patterns in a local window of length W .
If W < T + 1, one can construct an erasure pattern such that
the channel packets received after time i+W − 1 cannot be
useful for the decoding of source packet s[i]. Thus the effective
delay reduces to W − 1. Indeed our lower bound involves the
construction of a streaming code the delay of W − 1, instead
of T .

Theorem 2 (Lower Bound). For any channel C(N,B,W ) and
delay T ≥ B, there exists a code of rate R that satisfies(

R

1−R

)
B +N > Teff , (2)

where Teff ≜ min(T,W − 1). □

The proof of Theorem 2 is presented in Section IV-C. Upon
examining the upper bound (1) and the lower bound (2) we
note that the right hand side only differs by one. Thus, the
proposed codes are optimal within one unit of Teff .

The streaming codes proposed in Theorem 2 is a new
family of codes and will be called Maximum Distance And
Span tradeoff (MiDAS) codes. Their construction is based on
a two-step, layered coding approach. In the first step, we
construct an optimal streaming code for C(N ′ = 1, B,W )
channel. Then we append an additional layer of parity-check
packets that enables the recovery from the N isolated erasures.
While the recovery from the burst erasure does not use the
parity-checks generated in the second step, the recovery from
isolated erasures uses parity-checks from both the steps. To
our knowledge MiDAS codes constitute the first family of
streaming codes that can recover from both burst and isolated
erasures and demonstrate significant gains over the Gilbert-
Elliott channel and Fritchman channel over a wide range of
parameters.

Note that Theorem 2 does not explicitly state the field-
size q. The underlying constructions are based on systematic
Strongly-MDS convolutional codes [4], [5] and their vari-
ants, which are known to exist for field-sizes that increase
exponentially in Teff . However, we also provide an alternate
construction in Section IV-D, that satisfies (2), and whose
field-size increases as O(T 3

eff).
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Fig. 2: The source stream s[t] for t ≥ 0 is causally encoded to a channel stream x[t] which is transmitted over the sliding
window erasure channel C(N,B,W ). The decoder tolerates a maximum delay of T packets.

Remark 1 (Column Distance and Column Span Property). By
definition the streaming code is a (n, k) convolutional code,
where the source stream s[i] ∈ Fk

q is the input and x[i] ∈ Fn
q is

the output. Traditional constructions for convolutional codes
maximize the underlying free distance [29]. However, in the
present setup, the column distance and column span (see Def. 3
and 4 in Appendix A) determine the error correction prop-
erties. In Appendix A, we establish necessary and sufficient
conditions on the column distance and column span of any
feasible convolutional code for the C(N,B,W ) channel.

The following result, which is a consequence of Theorem 1
and Theorem 2, appears new and could be of independent
interest.

Proposition 1 (A Fundamental Tradeoff between Column
Distance and Column Span). For any (n, k) convolutional
code with rate R = k

n , and an integer T > 0, the column
distance dT and the column span cT must satisfy the upper
following bound:(

R

1−R

)
cT + dT ≤ T + 1 +

1

1−R
. (3)

Furthermore, there exists a convolutional code with column
distance dT and column span cT , over a sufficiently large
field-size that satisfy:(

R

1−R

)
cT + dT ≥ T +

1

1−R
. (4)

□

Proof. See Appendix A.

C. Unequal Source-Channel Inter-arrival Rates

We discuss a generalization of the setup in Section II-B
where one source packet arrives every M channel uses. As
before each source packet consists of k symbols and channel
packets consists of n symbols, each over a finite field Fq . For
convenience, the collection of M channel packets is termed as
a macro-packet. The index of each macro-packet is denoted
using the letter i, i.e.,

X[i, :] = [x[i, 1] | . . . | x[i,M ]] ∈ Fn×M
q (5)

denotes the macro-packet i consisting of M channel packets.
At the start of macro-packet i, the encoder observes the source
packet s[i] ∈ Fk

q and generates M packets x[i, j] ∈ Fn
q , for

j ∈ {1, . . . ,M} which can depend on all the observed source
packets up to that time, i.e.,

x[i, j] = fi,j(s[0], s[1], · · · , s[i]). (6)

These packets are transmitted in the M time-slots correspond-
ing to the macro-packet i. Fig. 3 shows the system model.
Note that for the case when M = 1 the setup reduces to that
in Section II-B.

The jth channel output packet in the macro-packet i is
denoted by y[i, j]. When the channel input is not erased,
we have, y[i, j] = x[i, j], whereas when the channel input
is erased, y[i, j] = ⋆. The channel output macro-packets are
expressed as Y[i, :] = [y[i, 1] | . . . | y[i,M ]]. The decoder is
required to decode each source packet with a maximum delay
of T macro-packets, i.e.,

s[i] = gi(Y[0, :],Y[1, :], · · · ,Y[i+ T, :]). (7)

We define the rate of this code by R = k
Mn . In the above

definition, we are normalizing the size of each source packet
with the size of each macro-packet. This is due to the fact
that in our proposed setup, a total of Mn channel symbols
are transmitted for each k source symbols.

Definition 2 (Streaming Capacity - Unequal Source-Channel
Inter-arrival Rates). A rate R is achievable with a delay of
T macro-packets over C(N,B,W ) if there exists a streaming
code of this rate over some field of size q such that every
source packet s[i] can be decoded with a delay of T macro-
packets. The supremum of all achievable rates is the streaming
capacity.

For the above setup, the capacity has been obtained when
N = 1 and W ≥ M(T + 1).

Theorem 3. For the channel C(N = 1, B,W ), and any M
and delay T , such that W ≥ M(T + 1) the capacity is
expressed as follows. Let b and B′ be defined via

B = bM +B′, B′ ∈ {0, . . . ,M − 1}, b ∈ N0. (8)

The capacity C for T > b is given by:

C =

{
T

T+b , 0 ≤ B′ ≤ b
T+bM,

M(T+b+1)−B
M(T+b+1) , b

T+bM < B′ ≤ M − 1.
(9)
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Fig. 3: Each source symbol s[i] arrives just before the transmission of X[i, :] and needs to be reconstructed at the destination
after a delay of T macro-packets.

For the minimum delay case, T = b, we have:

C =

{
1
2 , 0 ≤ B′ ≤ M

2 ,
M−B′

M , M
2 < B′ ≤ M − 1,

(10)

Finally, C = 0 for T < b. □

The proof of Theorem 3 is divided into two main parts.
The code construction is illustrated in Section V-B while the
converse appears in Section V-E.

We make several remarks pertaining to Theorem 3. Recall
that since the delay T is expressed in terms of the macro-
packets (see Fig. 1), the case when T = b corresponds to
the minimum possible delay. In this special case, the capacity
can be attained using a repetition code. When T > b the
optimal codes, as well as the decoding analysis, are a non-
trivial extension of the case when M = 1. Secondly note that
the capacity expression in (9) involves two cases. In the first
case, which corresponds to bM ≤ B ≤ bM + b

T+bM , the
capacity stays constant at C = T

T+b even as B is increased in
this range. To explain this, note that the threshold b

T+bM =
(1 − C)M , equals the number of parity-check packets in a
given macro-packet. This observation can be used to construct
a code such that up to B′ erasures in the last macro-packet
do not reduce the capacity. This will be further explained in
Section V-A.

We remark that the capacity result in Theorem 3 can be
used to obtain bounds on the symbol-level column span of
a convolutional code. This is in contrast to our treatment
in section II-B where the packet-level column span was
considered. We do not discuss the associated results in this
paper, but refer the reader to [30].

Finally note that the constructions in Theorem 3 only apply
to the burst-erasure channel. Based on the layered approach
in Theorem 2 we also propose a robust construction for the
case when N > 1 in Section V-F. However, the optimal
construction is left for future work.

This completes the discussion of the main results in the
paper. The rest of the paper is organized as follows. In
Section III, we review some previously proposed codes. We
treat the case of when source channel inter-arrival rates are
equal in Section IV and propose our MiDAS codes. The case
of unequal rates is treated in Section V. Simulation results
are presented in Section VI and Conclusions are presented in
section VII.

III. PERFORMANCE ANALYSIS OF BASELINE SCHEMES

We review two constructions — m-MDS codes and Maxi-
mally Short codes — that have been proposed in earlier works.
While these codes are optimal only in some special cases,
they constitute important building blocks in our proposed
constructions.

A. m-MDS Codes

In the traditional approach to erasure correction, the decoder
must wait till sufficiently many parity-check symbols are
collected so that all the source symbols can be recovered
simultaneously by inverting a full-rank system of equations. In
random-linear codes, see e.g., [24], [31], [32], the coefficients
of the linear code are selected at random to guarantee near
optimal recovery with high probability. However, instead of
random codes, we consider a class of deterministic code
constructions with optimal distance properties [4], [5] in this
section.

Consider a (n̄, k̄, m̄) convolutional code that maps an input
source stream s[i] = (s0[i], . . . , sk̄−1[i])

† ∈ Fk̄
q to an output

x[i] = (x0[i], . . . , xn̄−1[i])
† ∈ Fn̄

q using a memory m̄ en-
coder3. In particular, let

x[i] =

(
m̄∑
t=0

s†[i− t] ·Gt

)†

, (11)

where G0, . . . ,Gm̄ are k̄ × n̄ matrices with elements in Fq .
Furthermore, the convolutional code is systematic4 if we can
express each generator matrix in the following form,

G0 = [Ik̄×k̄ H0], Gt = [0k̄×k̄ Ht], t = 1, . . . , m̄ (12)

where Ik̄×k̄ denotes the k̄ × k̄ identity matrix, 0k̄×k̄ de-
notes the k̄ × k̄ zero matrix, and Ht ∈ Fk̄×(n̄−k̄)

q for t =
0, 1, . . . , m̄. For a systematic convolutional code, (11) reduces
to

x[i] =

[
s[i]
p[i]

]
, p[i] =

(
m̄∑
t=0

s†[i− t] ·Ht

)†

. (13)

The m-MDS codes (see e.g. [5, Corollary 2.5]), correspond
to a certain choice of Ht that result in the maximum column

3We use † to denote the vector/matrix transpose operation. Throughout this
paper, we will treat s[i] and x[j] as column vectors and therefore s†[i] and
x†[j] denote the associated row vectors. For convenience, we will not use the
† notation when the dimensions are clear.

4Throughout the paper, we only consider systematic m-MDS codes and
thus the word systematic is dropped for convenience
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distance (see Appendix B). This in turn results in following
error correction properties in the streaming setup.

Lemma 1. Consider a systematic (n̄, k̄, m̄) m-MDS code and
suppose that the symbols in each packet x[i], i.e.,

x[i] =
(
s0[i], . . . , sk̄−1[i], p0[i], . . . , pn̄−k̄−1[i]

)
(14)

are transmitted sequentially in the time interval [i · n̄, (i+1) ·
n̄ − 1] over the channel5. The following properties hold for
each j = 0, 1, . . . , m̄.
L1. If N̂ transmitted symbols are erased in the interval

[0, (j + 1)n̄ − 1] where N̂ ≤ (n̄ − k̄)(j + 1), then
s[0] = (s0[0], . . . , sk̄−1[0]) can be recovered by time
(j + 1)n̄− 1.

L2. If the channel introduces an erasure-burst of length B̂
symbols in the interval [c, c + B̂ − 1], where B̂ ≤ (n̄ −
k̄)(j + 1) and 0 ≤ c ≤ k̄ − 1, then all erased source
packets are recovered by time (j + 1)n̄− 1.

L3. If the channel introduces an erasure burst of length B̂
symbols in the interval [c, c+B̂−1], where 0 ≤ c ≤ k̄−1,
followed by a total of no more than Î isolated erasures
such that B̂ + Î ≤ (n̄ − k̄)(j + 1), then all the erased
packets in the burst are recovered by time (j + 1)n̄− 1.

Proof. See Appendix B.

We now discuss how the properties in Lemma 1 can be
applied to our system model. In the case in Section II-B, when
the source and channel inter-arrival rates are equal, Lemma 1
immediately yields the following.

Corollary 1. Consider a systematic (n̄, k̄, m̄) m-MDS code
of rate R = k̄

n̄ which transmits the entire channel packet
x[i] = (x0[i], . . . , xn̄−1[i]) ∈ Fn̄

q in time-slot i. For each
j = 0, 1, . . . , m̄, we have the following,
P1. Suppose that in the window [0, j], the channel introduces

N ≤ (1−R)(j+1) erasures in arbitrary locations, then
s[0] is recovered by time t = j.

P2. Suppose an erasure burst happens in the interval [0, B−
1], where B ≤ (1 − R)(j + 1), then all the packets
s[0], . . . , s[B − 1] are simultaneously recovered by time
t = j.

□

Proof. To establish property P1 we invoke property L1 in
Lemma 1. Note that in P1 we consider the transmission
of channel packets whereas in Lemma 1 we consider the
transmission of symbols. Note that N packet erasures leads
to N̂ = nN symbol erasures. Thus, N ≤ (1 − R)(j + 1)
is equivalent to N̂ ≤ (n − k)(j + 1) symbol erasures.
Furthermore, the interval [0, j] in P1 associated with the
transmission of the first j + 1 packets maps to the interval
[0, (j+1)n−1] in L1. Thus, the entire packet s[0] is guaranteed
to be recovered.

Property P2 follows in an analogous fashion upon using
property L2 in Lemma 1 with c = 0.

5Note that in this statement we are only transmitting symbols over Fq over
the channel. Subsequently, we will adapt these properties for transmitting
packets over Fn̄

q

From Corollary 1, it follows that any (N,B) pair that
satisfies

N ≤ (1−R)(T + 1), B ≤ (1−R)(T + 1) (15)

is achieved using a (n, k, T ) m-MDS code of rate R = k
n with

delay T and W ≥ T+1. In particular, if the channel introduces
up to (1−R)(T +1) erasures in the window [0, T ], it follows
from Property P1 in Corollary 1 that s[0] is recovered at t = T .
Once s[0] has been recovered, its effect can be subtracted out
from all parity-checks involving s[0]. By the same property,
s[1] is guaranteed to be recovered at time t = T + 1. This
argument can be successively repeated until all the erased
packets are recovered. Furthermore, upon substituting B = N
in (1), we note that the m-MDS attain one extreme point on
the tradeoff, namely when N = B. This is clearly the largest
feasible value of N in (1).

In a similar fashion, it can be shown that for the case
of unequal source-channel inter-arrival rates in Section II-C
, when W ≥ M(T + 1), any (N,B) is that satisfies

N ≤ M(1−R)(T + 1), B ≤ M(1−R)(T + 1) (16)

is achieved using a (Mn, k, T ) m-MDS code with rate R =
k

Mn .

B. Maximally Short (MS) Codes

While the m-MDS codes achieve the extreme point of the
upper bound (1) corresponding to N = B, the Maximally
Short (MS) codes [2], [3] achieve the other extreme point,
corresponding to N = 1. In particular, the maximum value of
B with N = 1 is given in the following result.

Lemma 2 (Martinian and Sundberg [2], Martinian and
Trott [3]). Consider the channel C(N = 1, B,W ) with
W ≥ T + 1 and M = 1. There exists an MS code of rate
R satisfying

R =

{
T

T+B , B ≤ T,

0, else.
(17)

Furthermore, R in (17) is the maximum achievable rate for
C(N = 1, B,W ≥ T + 1) channel. □

The construction of MS codes presented in [2], [3] involves
first constructing a specific low-delay block code and then con-
verting it into a streaming code using a diagonal interleaving
technique. Thus, the problem of constructing a streaming code
is reduced to the problem of constructing a block code with
certain properties. While such a simplification is appealing,
unfortunately it does not appear to easily generalize when
seeking extensions of MS codes. Note that the above MS
codes can only achieve N = 1 and are highly sensitive to
isolated losses over the channel. In [2], some examples of
codes with higher N were reported using a numerical search
but a general approach for constructing robust streaming codes
remained elusive. In Section IV-B, we present an alternative
perspective that easily extends to achieve a near optimal rate
for any (N,B).
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x[i, 1] x[i, 2] . . . . . . x[i,M ]

w[i, 1] w[i, 2] . . . . . . w[i,M ]

s[i]

x[i+ 1, 1] x[i+ 1, 2] . . . . . . x[i+ 1,M ]

w[i+ 1, 1] w[i+ 1, 2] . . . . . . w[i+ 1,M ]

s[i + 1]

x[i+ T, 1] x[i+ T, 2] . . . . . . x[i+ T,M ]

w[i+ T, 1] w[i+ T, 2] . . . . . . w[i+ T,M ]

s[i + T ]

w[i, 1] w[i, 2] . . . . . . w[i,M ]

s[i]

· · ·

Source Stream

Expanded Source Stream

Channel Packets

Source Recovery

Expanded Source Recovery

X[i, :] X[i+ 1, :] X[i+ T, :]

Fig. 4: Each source symbol s[i] is split into M sub-packets i.e., s[i] = (w[i, 1],w[i, 2], . . . ,w[i,M ]). The expanded source
stream is then encoded using a Maximally-Short code. The decoder recovers each w[i, j] once y[i + T, j] is received which
ensures that s[i] is recovered by the end of the macro-packet i+ T .

For the case of unequal source-channel inter-arrival rates,
a straightforward adaptation of the MS codes is as follows.
We split each packet s[i] into M sub-packets, one for each
time-slot in the macro-packet and then apply a MS code in
Lemma 2 to this expanded source stream with delay T ′ = MT
(cf. Fig. 4). In particular, we assume that s[i] ∈ (Fq)

kM and
proceed as follows.

• Split each s[i] = (w[i, 1], . . . ,w[i,M ]) where w[i, j] ∈
Fk
q .

• Apply a MS code in Lemma 2 for the C(N = 1, B,W )
channel with delay T ′ = MT (channel packets) and W ≥
M(T + 1).

• Transmit the associated channel packet x[i, j] ∈ Fn
q in

slot j of the macro-packet i.
From (17) we have that

R =
MT

MT +B
=

T

T + b+ B′

M

(18)

is achievable when B ≤ MT . Note that in the second
equality in (18), we use (8). Note that the delay of T ′ =
M · T channel packets in the expanded stream, implies that
w[i, j] is recovered when y[i + T, j] is received for each
j ∈ {1, 2, . . . ,M}. Thus, the entire source packet s[i] is
guaranteed to be recovered at the end of macro-packet i+ T ,
thus satisfying the delay constraint. We note that the rate
in (18) is only positive if B ≤ MT and attains the capacity
in Theorem 3 in the special case when B′ = 0. If B > MT
the above construction is not feasible and the rate attained is
zero.

C. Numerical Comparisons

1) Equal Source-Channel Inter-arrival Rates: Table I sum-
marizes the feasible values of N and B for different codes6.
For a fixed rate R and delay T we indicate the values of N
and B achieved by various codes in the case of equal source-
channel inter-arrival rates. The first row corresponds to the
m-MDS in Section III-A, while the second row corresponds
to the MS codes in Section III-B. The third row corresponds to
our proposed construction — MiDAS codes — in Theorem 2.
In contrast to the m-MDS codes and MS codes, that only
attain specific values of N and B, the family of MiDAS

6We note that the floor of the values given in Table I should be considered
as the values might not be integers

TABLE I: Achievable (N,B) for channel C(N,B,W ≥ T+1)
for equal source-channel inter-arrival rates. Similar Tradeoffs
for the first three codes can be achieved for W < T + 1 by
replacing T with W − 1.

Code N B

m-MDS Codes (1−R)(T + 1) (1−R)(T + 1)

Maximally Short Codes 1 T ·min
(
1
R − 1, 1

)
MiDAS Codes min

(
B, T− R

1−RB
)

B ∈ [1, T ]

E-RLC Codes [33]
∆ ∈ [R(T + 1), T − 1], 1−R

R (T −∆) + 1 1−R
R ∆

R ≥ 1/2

codes can attain a range of (N,B) for a given R and T . The
last row corresponds to another family of codes – Embedded
Random Linear Codes (E-RLC) – proposed in [33]. While
such constructions are optimal for R = 1/2, they are far from
optimal in general and will not be discussed in this paper.

We further numerically illustrate the achievable (N,B) pairs
for various codes in Fig. 5. We fix the rate to R = 0.6. As
stated before, the m-MDS and MS codes in Sections III-A
and III-B respectively only achieve the extreme points on the
tradeoff. The MiDAS codes achieve a tradeoff, very close to
the upper bound for all rates. The E-RLC codes, illustrated
with the red plot, are generally far from optimal except for
R = 0.5 which is not the case in this figure.

2) Unequal Source-Channel Inter-arrival Rates: Fig. 6
illustrates the capacity and rates achieved with baseline
schemes for the case of unequal source-channel inter-arrival
rates. In this example, we consider M = 20 and a de-
lay of T = 5 macro-packets and plot the rate vs. cor-
rectable burst length. The capacity is shown by the blue-
curve marked with squares. Note that it is constant in the
intervals B ∈ [40, 45], [60, 67], [80, 88], [100, 110]. The red
curve marked with circles denotes the rate achieved by a
suitable modification of the MS code (18). We note that the
curves intersect whenever B is an integer multiple of M ,
indicating the optimality of the MS codes for these special
values: B ∈ {40, 60, 80, 100}. Furthermore, for burst lengths
B > MT = 100, the MS codes are no longer feasible and
the associated rate is zero. The dotted black line shows the
performance of the m-MDS codes in (16). Since these codes
do not perform sequential recovery, their achievable rate is
significantly lower than the capacity.
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Fig. 5: Achievable tradeoff between N and B for equal
source-channel inter-arrival rates. The rate is fixed to R =
0.6 and the delay is fixed to T = 40 and W = T + 1. The
uppermost curve (solid black lines with ‘o’) is the upper
bound in (1). The MiDAS codes are shown with broken
green lines with ‘×’ and are very close to the upper bound.
The E-RLC codes in [33] are shown with broken red lines
with ‘△’.
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Fig. 6: Achievable rates for different code constructions for
the case of unequal source-channel inter-arrival rates for the
C(N = 1, B,W = M(T + 1)) channel. We fix the delay to
T = 5 macro-packets and let M = 20. The blue plot (marked
with squares) corresponds to the capacity in Theorem 3.
The red curve (marked with circles) corresponds to the rate
achieved by the adapted MS code (18) whereas the black
line corresponds to the rate of the m-MDS code (16).

IV. EQUAL SOURCE-CHANNEL INTER-ARRIVAL RATES

In this section, we consider the case when source and
channel inter-arrival rates are equal, i.e., M = 1. We start by
establishing the upper-bound in Theorem 1 in Section IV-A.
In Section IV-B, we revisit the Maximally Short codes for the
C(N = 1, B,W ) channel and propose a modification that uses
m-MDS and the repetition code as its constituent codes. We
then extend these constructions to the C(N,B,W ) channel in
Section IV-C to construct MiDAS codes. In Section IV-D, we
provide an alternative construction of MiDAS codes achieving
the same tradeoff in Theorem 2 but with a smaller field-size.
Finally, we compare the performance of the two constructions
through an example in Section IV-E.

A. Upper-bound

To establish the upper bound in Theorem 1, we separately
consider the cases where W ≥ T + 1 and W < T + 1.
When W ≥ T + 1, consider a periodic erasure channel with
a period of τP = T +B −N + 1 and suppose that in every
such period the first B packets are erased (see Fig. 7). While
such a channel is not included in C(N,B,W ), we nonetheless
show that any code for C(N,B,W ) and delay T is also
feasible for the proposed periodic erasure channel.7

Consider the first period that spans the interval [0, τP − 1].
We note the following

7A similar converse argument involving periodic erasure channel for the
burst-erasure channel is also presented in [2], [7], [8]. For a rigorous
information theoretic argument, we refer the reader to [9], [10], [13] for the
case of burst erasure channel. A similar approach can be used in the present
setup, but it will not be presented.

• The first B − N + 1 packets, {s[i]}0≤i≤B−N , must be
all recovered with delay T since the recovery window
[i, i+T ] of each such packet only have a burst of length
B or smaller. Thus, all these packets are recovered by
time t = τP − 1.

• The recovery window of each of the N − 1 packets,
{s[i]}B−N+1≤i≤B−1 is [i, i+ T ] which sees two bursts.
The first burst spans [i, B − 1] and is of length B − i.
The second burst spans [T + B − N + 1, i + T ] and is
of length i + N − B. Thus, the total number of erased
packets in each recovery period is exactly N . Thus, any
feasible code over the C(N,B,W ) channels guarantees
that each such packet is also recovered at time i+ T .

• The recovery window of each of the remaining packets in
the first period, s[B], . . . , s[τP − 1], again sees a single-
erasure burst of length B at the end of the window. Hence,
each of these packets is also guaranteed to be recovered
with delay no more than T , in particular, by time τP −1.

We have thus shown that all the packets in the first period
spanning [0, τP − 1] can be recovered with delay T . We can
repeat the same argument for all the remaining periods and
thus the claim follows. Thus, using the capacity of the periodic
erasure channel, we have

R ≤ 1− B

T +B −N + 1
. (19)

For the case when W < T + 1, we consider a periodic
erasure channel with a period of τP = W +B −N where in
each period the first B packets are erased and the remaining
W−N packets are not erased. Such a channel by construction
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Link: · · ·

B

B −N + 1

T −N + 1 B

B −N + 1

T −N + 1 B

B −N + 1

T −N + 1

Fig. 7: The periodic erasure channel in the proof Theorem 1. The shaded symbols are erased while the remaining ones are
received by the destination.

Fig. 8: A block diagram illustrating the encoding steps of a
Generalized MS code. The source packet is first split into two
packets and a different code is applied to each packet. The
resulting parity-checks are then combined to form the overall
parity-check packet. Finally, the parity-check packet and the
source packet are concatenated to generate the channel packet.

is a C(N,B,W ) channel. In any window Wi = [i, i+W − 1]
of length W , there exists either a single burst of maximum
length B, or up to N isolated erasures. Thus, every erased
packet on such a channel must be recovered, i.e., we have
that

R ≤ 1− B

W +B −N
. (20)

Rearranging (19) and (20) and using Teff = min(W−1, T ),
we easily recover (1). This completes the proof of the upper
bound.

B. Generalized MS Codes

In this section, we present a generalization of the MS codes
introduced in Section III-B. The proposed construction applies
to any W ≥ B + 1, and eliminates the intermediate step of
constructing a block code in [2], [3]. This method can be then
generalized to correct both burst and isolated erasures for the
C(N,B,W ) channel.

Proposition 2. Let Teff ≜ min(W − 1, T ). For the C(N =
1, B,W ) channel, there exists a streaming code with delay T
and rate

R =

{
Teff

Teff+B , Teff ≥ B

0, else.
(21)

□

The encoding steps, illustrated in Fig. 8, are as follows:

• Source Splitting: Split each source packet s[i] ∈ Fk
q into

two sub-packets8 u[i] ∈ Fku

q and v[i] ∈ Fkv

q as follows,

s[i] = (u0[i], . . . , uku−1[i]︸ ︷︷ ︸
=u[i]

, v0[i], . . . , vkv−1[i]︸ ︷︷ ︸
=v[i]

), (22)

where ku + kv = k, i.e., u[i] constitutes the first ku

symbols in s[i] whereas v[i] constitutes the remaining kv

symbols.
• m-MDS Parity-Checks: Apply a (ku + kv, kv, Teff) m-

MDS code of rate Rv = kv

ku+kv on the sub-packets v[i]
and generate parity-check packets

pv[i] =

Teff∑
j=0

v†[i− j] ·Hv
j

†

, pv[i] ∈ Fku

q , (23)

where the matrices Hv
j ∈ Fkv×ku

q are associated with a
m-MDS code (12).

• Repetition Code: Superimpose the u[·] sub-packets onto
pv[·] and let

q[i] = pv[i] + u[i− Teff ]. (24)

• Channel Packet Generation: Concatenate the generated
parity-checks to the source packets so that the channel
input at time i is given by x[i] = (u[i],v[i],q[i]) ∈ Fn

q ,
where n = 2ku + kv .

In our construction discussed above, we select k = Teff ,
ku = B, kv = Teff −B and n = Teff +B. Clearly the rate of
the proposed code R = k

n matches the expression in (21).
For decoding, we suppose that the first erasure burst of

length B spans the interval [0, B − 1]. Since the code is
time-invariant a completely analogous argument applies when
the erasure burst spans the interval [i, i + B − 1] for any
i > 0 and the source packets upto time i − 1 have been
already recovered. By the definition of the sliding window
erasure channel, there can be no other erasures for Teff packets
following the erasure burst and in particular all the channel
packets s[i] for i ∈ [B, Teff + B − 1] are recovered. We
claim that each s[0], s[1], . . . , s[B − 1] is recovered by time
t = Teff , Teff + 1, . . . , Teff +B − 1 respectively.

The decoder proceeds in two steps as illustrated in Table II:
• Simultaneously recover v[0], . . . ,v[B − 1] by time t =

Teff − 1. In this step, the decoder proceeds as follows.
For each j ∈ {B, . . . , Teff − 1}, the decoder recovers the
parity-check packets pv[j], by subtracting the unerased
u[j−Teff ] from the associated q[j] = pv[j]+u[j−Teff ]
packets. These recovered parity-checks can then be used
to recover v[0], . . . ,v[B − 1].

8Throughout the paper, we will use packets to denote a vector of source,
parity and channel symbols, respectively, whereas we use sub-packets for u[·]
and v[·].
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TABLE II: An illustration of the decoding steps in a Generalized MS code. Each column denotes a channel packet transmitted
at the time index shown in the first row. In each interval, the parity check packets used for recovery are highlighted in red,
whereas the parities that are computed and cancelled are crossed out.

0 . . . B − 1 B . . . Teff − 1 Teff . . . Teff +B − 1
ku u[0] . . . u[B − 1] u[B] . . . u[Teff − 1] u[Teff ] . . . u[Teff +B − 1]
kv v[0] . . . v[B − 1] v[B] . . . v[Teff − 1] v[Teff ] . . . v[Teff +B − 1]

ku
u[−Teff ] . . . u[B − Teff − 1] u[B − Teff ] . . . u[−1]+ u[0]+ . . . u[B − 1]+
+p[0] . . . +p[B − 1] +p[B] . . . p[Teff − 1] p[Teff ] . . . p[Teff +B − 1]︸ ︷︷ ︸ ︸ ︷︷ ︸ ⇓ ⇓

Burst Erasure Simultaneously Recover u[0] . . . u[B − 1]
v[0], . . . ,v[B − 1] Sequentially

Note that using property P2 in Corollary 1 and substitut-
ing R = Rv and j = Teff − 1 we get,

(1−Rv)Teff = B, (25)

and hence the recovery of v[0], . . . ,v[B − 1] by time
t = Teff − 1 is guaranteed.

• Sequentially recover u[0], . . . ,u[B − 1] at times
Teff , . . . , Teff +B − 1, respectively. Consider the parity-
checks q[j] = u[j−Teff ]+pv[j] for j ∈ {Teff , . . . , Teff+
B − 1}, which are available to the decoder. Upon the
recovery of v[0], . . . ,v[B − 1] in the previous step, the
required pv[j] can be computed, subtracted from q[j],
and the underlying u[·] sub-packets can be sequentially
recovered by their deadlines.

Upon completion of the two steps stated above, the recovery
of s[i] for i ∈ {0, . . . , B − 1} follows. Any subsequent burst,
starting at time t ≥ Teff + B, can be corrected in a similar
fashion. Since the rate of the code is clearly given by (21),
the proof of Prop. 2 is complete.

Remark 2. The generalized MS code construction makes the
structure of the optimal streaming code for the burst erasure
channel more transparent. Note that m-MDS is an inter-packet
code that combines the sub-packets, v[·], across different time
instants. Such a code can only simultaneously recover all the
erased v[·] sub-packets and does not provide the sequential
recovery. The repetition code applied to u[·] sub-packets
is a simple intra-packet code. It does not combine packets
across different time and can be sequentially recovered. The
proposed construction splits each source packet into two parts,
applies the inter-packet code to one group, the intra-packet
repetition code to the other group, and then superimposes
the resulting parity-check packets. Thus, the optimal code
involves balancing the contributions of the inter-packet and
intra-packet codes through an appropriate sub-packetization.

The Generalized MS code is no longer feasible when N >
1. To see this consider two isolated erasures one at t = 0 and
the other at t = Teff . In this case, both u[0] as well as its
repeated copy are erased. We propose a modification to these
codes that can deal with any value of N in Theorem 2.

C. MiDAS: Code Construction

Our proposed construction is based on a layered approach.
We first construct a Generalized MS code for C(N = 1, B,W )

Fig. 9: A block diagram illustrating the encoding steps of
a MiDAS code. The top part is equivalent to that of a
Generalized MS code (cf. Fig. 8). The lower part shows
the extra layer of parity-checks added which is generated by
applying a m-MDS code to the u[·] sub-packets.

channel and then concatenate an additional layer of parity
packets when N > 1. We again assume that s[i] ∈ Fk

q and split
it into two sub-packets u[i] and v[i] as in (22) and generate
the parity-checks q[i] as in (24). The resulting code up to
this point can only correct burst erasures. We further apply a
(ku + ks, ku, Teff) m-MDS code of rate Ru = ku

ku+ks to the
u[i] sub-packets and generate additional parity-check packets,

pu[i] =

Teff∑
j=0

u†[i− j] ·Hu
j

†

, pu[i] ∈ Fks

q , (26)

where Hu
j ∈ Fku×ks

q are matrices associated with a
m-MDS code (12). We simply concatenate the parity-
checks q[i] and pu[i] with the source packets, i.e.,
x[i] = (u[i],v[i],q[i],pu[i]). Fig. 9 illustrates the layered ap-
proach in our code construction. Note that x[i] ∈ Fn

q , where
n = 2ku+kv+ks and the associated rate is given by R = k

n .
In our construction, we select ku = B, kv = Teff − B,

k = ku + kv = Teff and,

ks =
N

Teff −N + 1
ku. (27)

Remark 3. We note that if the value of ks in (27) is non-
integer, extra source splitting by a certain factor of m is
needed. In particular, we set ku = mB, kv = m(Teff − B),
k = ku+kv = mTeff and ks = N

Teff−N+1k
u = N

Teff−N+1mB.
It can be clearly seen that choosing m = Teff − N + 1 is
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sufficient for ks to be an integer.

Decoder Analysis: In the analysis of the decoder, we
consider the interval [0, Teff ] and show that the decoder can
recover s[0] by time t = Teff if there is either an erasure burst
of length B or smaller, or up to N isolated erasures in this
interval. Once we show the recovery of s[0] by time t = Teff ,
we can cancel its effect from all future parity-check packets if
necessary. The same argument can then be used to show that
s[1] can be recovered by time Teff + 1 if there are no more
than N isolated erasures or a single burst erasure of maximum
length B in the interval [1, Teff + 1]. Recursively continuing
this argument we are guaranteed the recovery of each s[i] by
time i+ Teff .

If there is a burst of length B in the interval [0, Teff ] our
construction of q[·] already guarantees the recovery of s[0]
by time t = Teff (cf. Section IV-B). Thus, we only need to
consider the case when there are N isolated erasures in the
interval [0, Teff ]. We show that the decoder is guaranteed to
recover v[0] at time t = Teff − 1 using the parity-checks q[·]
and u[0] at time t = Teff using the parity-checks pu[·].

The recovery of v[0] by time Teff − 1 follows in a fashion
similar to the simultaneous recovery step above (25) in the
previous section. However, we use P1 in corollary 1 instead.
Recall from (24) that q[i] = pv[i] + u[i − Teff ], where pv[i]
are the parity-checks of the m-MDS code (23). Since the
interfering u[i−Teff ] sub-packets in the interval i ∈ [0, Teff−1]
are not erased, they can be canceled out from q[i] and
the corresponding parity-checks pv[i] are recovered at the
decoder. Since the code (v[i],pv[i]) is a m-MDS code of
rate Rv = Teff−B

Teff
, applying property P1 in Corollary 1 the

number of isolated erasures under which the recovery of v[0]
is possible is given by Nv = (1−Rv)Teff = B. Since N ≤ B
holds, the recovery of v[0] by time t = Teff − 1 is guaranteed
by the code construction.

For recovering u[0] at time t = Teff , we use the pu[·] parity-
checks in the interval [0, Teff ]. Note that the associated code
(u[i],pu[i]) is a m-MDS code with rate Ru = ku

ku+ks and
hence it follows from P1 in Corollary 1 that the number of
isolated erasures under which the recovery of u[0] is possible
is given by

(1−Ru)(Teff + 1) =
ks

ks + ku
(Teff + 1) = N, (28)

where we substitute (27) in the last equality. This completes
the proof that s[0] = (u[0],v[0]) can be recovered at time
t = Teff when there are N isolated erasures in the interval
[0, Teff ]. ■

It remains to show that our proposed code parameter satisfy
the lower bound in Theorem 2.

R =
ku + kv

2ku + kv + ks
=

Teff

Teff +B +B N
Teff−N+1

(29)

>
Teff

Teff +B +B N
Teff−N

=
Teff −N

Teff −N +B
(30)

where (29) follows by substituting in (27). Rearranging (30)

we have that
R

1−R
B +N > Teff . (31)

The proof of Theorem 2 is thus completed.

Example - MiDAS (N,B, T ) = (2, 3, 4) and W ≥ T +
1 = 5: Table III illustrates a MiDAS construction for
(N,B) = (2, 3) and T = 4 and Teff = T . The encoding steps
are as follows:

• Split each source packet s[i] into k = T = 4 sym-
bols. The first ku = B = 3 symbols are u[i] =
(u0[i], u1[i], u2[i]) while the last kv = T−B = 1 symbol
is v0[i].

• Apply a (ku + kv, kv, T ) = (4, 1, 4) m-MDS code of
rate Rv = 1

4 to the v[·] sub-packets generating the parity-
check packets,

pv[i] = (pv0[i], p
v
1[i], p

v
2[i]) =

4∑
j=0

v0[i− j]Hv
j . (32)

• Combine the u[·] with pv[·] and generate q[i] = pv[i] +
u[i− T ].

• Apply a (ku+ks, ku, T ) = (5, 3, 4) m-MDS code of rate
Ru = 3

5 to the u[·] sub-packets generating parity-check
packets each with ks = N

T−N+1k
u = 2 symbols,

pu[i] = (pu0 [i], p
u
1 [i])

=

4∑
j=0

[
u0[i− j] u1[i− j] u2[i− j]

]
Hu

j . (33)

.

The channel packet at time i is given by,

x[i] = (u[i],v[i],q[i],pu[i]) , (34)

whose rate is R = ku+kv

2ku+kv+ks = T
T+B+ NB

T−N+1

= 4
9 .

For decoding, first assume that an erasure burst spans the
interval [i, i+2]. We first recover pv0[i+3], pv1[i+3], pv2[i+3]
by subtracting u0[i − 1], u1[i − 1], u2[i − 1] from the parity-
check symbols q0[i + 3], q1[i + 3], q2[i + 3] respectively. In
the interval [i, i + T − 1] = [i, i + 3], the channel introduces
a burst of length 3. Thus, the (4, 1, 4) m-MDS code suffices
for recovering the three erased packets v0[i], v0[i + 1] and
v0[i + 2] by time i + 3 since (1 − Rv)T = 3. Once all the
erased v[t] are recovered, we can compute the parity-check
packets pv[t] for t ∈ {i + 4, i + 5, i + 6} and subtract them
from the corresponding q[t] to recover u[i],u[i+ 1],u[i+ 2]
at time i + 4, i + 5, i + 6 respectively, i.e., within a delay of
T = 4.

In the case of isolated erasures, we consider a channel
introducing N = 2 isolated erasures in the interval [i, i + 4]
of length T + 1 = 5. We first recover the unerased parity-
check packets pv[·] in the interval [i, i + 3] by subtracting
the corresponding u[·] sub-packets. The (4, 1, 4) suffices for
recovering v0[i] by time i+T − 1 = i+3 since (1−Rv)T =
3 > 2 = N . Also, u[0] can be recovered by time i + 4
using the (5, 3, 4) m-MDS code in the interval [i, i+4] since
(1−Ru)(T + 1) = 2 = N .
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TABLE III: MiDAS code construction for (N,B) = (2, 3), a delay of T = 4 and rate R = 4/9.

[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4]

ku = 3
u0[i] u0[i+ 1] u0[i+ 2] u0[i+ 3] u0[i+ 4]
u1[i] u1[i+ 1] u1[i+ 2] u1[i+ 3] u1[i+ 4]
u2[i] u2[i+ 1] u2[i+ 2] u2[i+ 3] u2[i+ 4]

kv = 1 v0[i] v0[i+ 1] v0[i+ 2] v0[i+ 3] v0[i+ 4]

ku = 3
u0[i− 4] + pv0[i] u0[i− 3] + pv0[i+ 1] u0[i− 2] + pv0[i+ 2] u0[i− 1] + pv0[i+ 3] u0[i] + pv0[i+ 4]
u1[i− 4] + pv1[i] u1[i− 3] + pv1[i+ 1] u1[i− 2] + pv1[i+ 2] u1[i− 1] + pv1[i+ 3] u1[i] + pv1[i+ 4]
u2[i− 4] + pv2[i] u2[i− 1] + pv2[i+ 1] u2[i− 2] + pv2[i+ 2] u2[i− 1] + pv2[i+ 3] u2[i] + pv2[i+ 4]

ks = 2
pu0 [i] pu0 [i+ 1] pu0 [i+ 2] pu0 [i+ 3] pu0 [i+ 4]
pu1 [i] pu1 [i+ 1] pu1 [i+ 2] pu1 [i+ 3] pu1 [i+ 4]

D. MiDAS Codes with Improved Field-Size

Our constructions in Section IV-C are based on m-MDS
codes [4], [5]. Such codes are guaranteed to exist only when
the underlying field-sizes are very large. In particular, the field-
size must increase exponentially in Teff except in some special
cases [5]. In this section, we suggest an alternative construc-
tion that uses block-MDS codes instead of m-MDS codes.
This construction requires a field-size that only increases as
O(T 3

eff). While this alternate construction also attains the
tradeoff in Theorem 2, it does come at a price. It incurs some
performance loss in simulations and is less robust to non-ideal
erasure patterns as discussed in Section IV-E.

Proposition 3. For the channel C(N,B,W ) and delay T ,
there exists a streaming code of rate R that satisfies (2) in
Theorem 2 with a field-size that increases as O(T 3

eff). □

We start by giving two examples and then discuss the
general code construction. The key step is to replace the m-
MDS code in (23) and (26) by two block MDS codes applied
diagonally to the v[·] and u[·] sub-packets.

1) Example - MiDAS (N,B, T ) = (2, 3, 4) and W ≥
T + 1 = 5: Table IV illustrates a MiDAS construction
using MDS as constituent codes. The rate of this code is
R = T

T+B+ NB
T−N+1

= 4
9 from (29). Note that this code has the

same parameters as in Table III in Section IV-C. The encoding
steps, stated below, are also similar except that the m-MDS
codes are replaced with block MDS codes.

• Split each source packet s[i] into k = T = 4 sym-
bols. The first ku = B = 3 symbols are u[i] =
(u0[i], u1[i], u2[i]), while the last kv = T−B = 1 symbol
is v0[i].

• Apply a (T, T −B) = (4, 1) MDS code9 to the v[·] sub-
packets generating parity-check packets pv[·] each with
B = 3 symbols, i.e., pv[i] = (pv0[i], p

v
1[i], p

v
2[i]). Hence,

at time i, the generated codeword is,

cv[i] = (v0[i], p
v
0[i+ 1], pv1[i+ 2], pv2[i+ 3]) (35)

and is shown using the shaded boxes in Table IV.
• Combine u[·] with pv[·] packets and generate q[t] =

pv[t] + u[t− T ].
• Apply a (T+1, T−N+1) = (5, 3) MDS code diagonally

to the u[·] sub-packets generating N = 2 parity-check

9This can be a simple repetition code, i.e., pv0 [i + 1] = pv1 [i + 2] =
pv2 [i+ 3] = v0[i].

symbols pu[i] = (pu0 [i], p
u
1 [i]). The codeword starting at

time i is given by,

cu[i] = (u0[i], u1[i+ 1], u2[i+ 2], pu0 [i+ 3], pu1 [i+ 4])
(36)

and is marked by the unshaded boxes in Table IV for
convenience.

The channel packet at time i is given by,

x[i] = (u[i],v[i],q[i],pu[i]) , (37)

whose rate is R = 3+1
3+1+3+2 = 4

9 which is consistent with (29).
For decoding, first assume that an erasure burst spans the

interval [i, i+2]. We first recover pv0[i+3], pv1[i+3], pv2[i+3]
at time t = i+3 from the parity-check packets q0[i+3], q1[i+
3], q2[i+3]. We can use the underlying MDS codes to recover
v0[i], v1[i + 1], v2[i + 2] at time t = i + 3 by considering
cv[i], cv[i+ 1], cv[i+ 2] respectively (see (35)). Once all the
erased v[t] are recovered, we recover u[i] at time t = i + 4,
u[i+ 1] at time t = i+ 5 and u[i+ 2] at time t = i+ 6.

In the case of isolated erasures, we assume a channel
introducing N = 2 isolated erasures in the interval [0, 4]
of length T + 1 = 5. Note that the codeword cv[i] in (35)
terminates at time t = i + 3. Thus, there are no more
than N = 2 erasures on it and thus the recovery of v0[i]
is guaranteed at time t = i + 3. Likewise the codewords
cu[i− 2], cu[i− 1], cu[i] in (36) combining u2[i], u1[i], u0[i],
respectively, terminate at time t = i+4 and there are no more
than N = 2 erasures on any of them. Thus, the recovery of
uj [i] for j = 0, 1, 2 is guaranteed at time t = i+ 4.

However, splitting each source packet into k = T symbols
is not enough in general. In particular, applying a (T, T −B)
MDS code to the v[·] sub-packets requires that the v[·] sub-
packets are split into a multiple of T −B symbols. Similarly,
applying a (T + 1, T − N + 1) MDS code to the u[·] sub-
packets requires splitting them into a multiple of T − N +
1 symbols. On the other hand, achieving the tradeoff in (2)
requires that the ratio between the size of u[·] to v[·] to be

B
T−B . Thus, splitting the u[·] sub-packets to B(T − N + 1)
symbols and splitting the v[·] sub-packets into (T−N+1)(T−
B) symbols fulfills all the previous constraints. The following
example illustrates this case.

2) Example - MiDAS (N,B, T ) = (2, 3, 5) and W ≥
T + 1 = 6: Table V illustrates a MiDAS construction
using MDS as constituent codes. The rate of this code is
R = T

T+B+ NB
T−N+1

= 10
19 . The encoding steps are as follows.
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TABLE IV: MiDAS code construction for (N,B) = (2, 3), a delay of T = 4 and rate R = 4/9 with a block MDS constituent
code.

[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4]

ku = 3
u0[i] u0[i+ 1] u0[i+ 2] u0[i+ 3] u0[i+ 4]

u1[i] u1[i+ 1] u1[i+ 2] u1[i+ 3] u1[i+ 4]

u2[i] u2[i+ 1] u2[i+ 2] u2[i+ 3] u2[i+ 4]

kv = 1 v0[i] v0[i+ 1] v0[i+ 2] v0[i+ 3] v0[i+ 4]

ku = 3
u0[i− 4] + pv0[i] u0[i− 3]+ pv0[i+ 1] u0[i− 2] + pv0[i+ 2] u0[i− 1] + pv0[i+ 3] u0[i] + pv0[i+ 4]

u1[i− 4] + pv1[i] u1[i− 3] + pv1[i+ 1] u1[i− 2]+ pv1[i+ 2] u1[i− 1] + pv1[i+ 3] u1[i] + pv1[i+ 4]

u2[i− 4] + pv2[i] u2[i− 1] + pv2[i+ 1] u2[i− 2] + pv2[i+ 2] u2[i− 1]+ pv2[i+ 3] u2[i] + pv2[i+ 4]

ks = 2
pu0 [i] pu0 [i+ 1] pu0 [i+ 2] pu0 [i+ 3] pu0 [i+ 4]

pu1 [i] pu1 [i+ 1] pu1 [i+ 2] pu1 [i+ 3] pu1 [i+ 4]

TABLE V: MiDAS code construction for (N,B) = (2, 3), a delay of T = 5 and rate R = 10/19 with a block MDS constituent
code. We note that each of the parity-check sub-symbols pvj [t] is combined with uj [t− 5] for j = {0, 1, . . . , 11} but the latter
are omitted in the above table for simplicity.

[i] [i+ 1] [i+ 2] [i+ 3] [i+ 4] [i+ 5]

ku = 12

u0[i] u0[i+ 1] u0[i+ 2] u0[i+ 3] u0[i+ 4] u0[i+ 5]

u1[i] u1[i+ 1] u1[i+ 2] u1[i+ 3] u1[i+ 4] u1[i+ 5]
u2[i] u2[i+ 1] u2[i+ 2] u2[i+ 3] u2[i+ 4] u2[i+ 5]

u3[i] u3[i+ 1] u3[i+ 2] u3[i+ 3] u3[i+ 4] u3[i+ 5]

u4[i] u4[i+ 1] u4[i+ 2] u4[i+ 3] u4[i+ 4] u4[i+ 5]
u5[i] u5[i+ 1] u5[i+ 2] u5[i+ 3] u5[i+ 4] u5[i+ 5]

u6[i] u6[i+ 1] u6[i+ 2] u6[i+ 3] u6[i+ 4] u6[i+ 5]

u7[i] u7[i+ 1] u7[i+ 2] u7[i+ 3] u7[i+ 4] u7[i+ 5]
u8[i] u8[i+ 1] u8[i+ 2] u8[i+ 3] u8[i+ 4] u8[i+ 5]

u9[i] u9[i+ 1] u9[i+ 2] u9[i+ 3] u9[i+ 4] u9[i+ 5]

u10[i] u10[i+ 1] u10[i+ 2] u10[i+ 3] u10[i+ 4] u10[i+ 5]
u11[i] u11[i+ 1] u11[i+ 2] u11[i+ 3] u11[i+ 4] u11[i+ 5]

kv = 8

v0[i] v0[i+ 1] v0[i+ 2] v0[i+ 3] v0[i+ 4] v0[i+ 5]

v1[i] v1[i+ 1] v1[i+ 2] v1[i+ 3] v1[i+ 4] v1[i+ 5]
v2[i] v2[i+ 1] v2[i+ 2] v2[i+ 3] v2[i+ 4] v2[i+ 5]
v3[i] v3[i+ 1] v3[i+ 2] v3[i+ 3] v3[i+ 4] v3[i+ 5]

v4[i] v4[i+ 1] v4[i+ 2] v4[i+ 3] v4[i+ 4] v4[i+ 5]

v5[i] v5[i+ 1] v5[i+ 2] v5[i+ 3] v5[i+ 4] v5[i+ 5]
v6[i] v6[i+ 1] v6[i+ 2] v6[i+ 3] v6[i+ 4] v6[i+ 5]
v7[i] v7[i+ 1] v7[i+ 2] v7[i+ 3] v7[i+ 4] v7[i+ 5]

ku = 12

pv0[i] pv0[i+ 1] pv0[i+ 2] pv0[i+ 3] pv0[i+ 4] pv0[i+ 5]

pv1[i] pv1[i+ 1] pv1[i+ 2] pv1[i+ 3] pv1[i+ 4] pv1[i+ 5]
pv2[i] pv2[i+ 1] pv2[i+ 2] pv2[i+ 3] pv2[i+ 4] pv2[i+ 5]
pv3[i] pv3[i+ 1] pv3[i+ 2] pv3[i+ 3] pv3[i+ 4] pv3[i+ 5]

pv4[i] pv4[i+ 1] pv4[i+ 2] pv4[i+ 3] pv4[i+ 4] pv4[i+ 5]

pv5[i] pv5[i+ 1] pv5[i+ 2] pv5[i+ 3] pv5[i+ 4] pv5[i+ 5]
pv6[i] pv6[i+ 1] pv6[i+ 2] pv6[i+ 3] pv6[i+ 4] pv6[i+ 5]
pv7[i] pv7[i+ 1] pv7[i+ 2] pv7[i+ 3] pv7[i+ 4] pv7[i+ 5]

pv8[i] pv8[i+ 1] pv8[i+ 2] pv8[i+ 3] pv8[i+ 4] pv8[i+ 5]

pv9[i] pv9[i+ 1] pv9[i+ 2] pv9[i+ 3] pv9[i+ 4] pv9[i+ 5]
pv10[i] pv10[i+ 1] pv10[i+ 2] pv10[i+ 3] pv10[i+ 4] pv10[i+ 5]
pv11[i] pv11[i+ 1] pv11[i+ 2] pv11[i+ 3] pv11[i+ 4] pv11[i+ 5]

ks = 6

pu0 [i] pu0 [i+ 1] pu0 [i+ 2] pu0 [i+ 3] pu0 [i+ 4] pu0 [i+ 5]

pu1 [i] pu1 [i+ 1] pu1 [i+ 2] pu1 [i+ 3] pu1 [i+ 4] pu1 [i+ 5]
pu2 [i] pu2 [i+ 1] pu2 [i+ 2] pu2 [i+ 3] pu2 [i+ 4] pu2 [i+ 5]

pu3 [i] pu3 [i+ 1] pu3 [i+ 2] pu3 [i+ 3] pu3 [i+ 4] pu3 [i+ 5]

pu4 [i] pu4 [i+ 1] pu4 [i+ 2] pu4 [i+ 3] pu4 [i+ 4] pu4 [i+ 5]
pu5 [i] pu5 [i+ 1] pu5 [i+ 2] pu5 [i+ 3] pu5 [i+ 4] pu5 [i+ 5]
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• Split each source packet s[i] into k = (T−N+1)T = 20
symbols. The first ku = (T−N+1)B = 12 of which are
(u0[i], . . . , u11[i]) while the last kv = (T −N + 1)(T −
B) = 8 are (v0[i], . . . , v7[i]).

• Apply a (T, T − B) = (5, 2) MDS code diagonally to
the symbols in the v[·] sub-packets with an interleaving
factor of T−N+1 = 4. Hence, at time i, four codewords
are generated as follows,

cv0[i] = (v0[i], v4[i+ 1], pv0[i+ 2], pv4[i+ 3], pv8[i+ 4])

cv1[i] = (v1[i], v5[i+ 1], pv1[i+ 2], pv5[i+ 3], pv9[i+ 4])

cv2[i] = (v2[i], v6[i+ 1], pv2[i+ 2], pv6[i+ 3], pv10[i+ 4])

cv3[i] = (v3[i], v7[i+ 1], pv3[i+ 2], pv7[i+ 3], pv11[i+ 4])
(38)

The codeword cv0[i] is shown using the shaded boxes in
Table V. According to (38), (T −N + 1)B = 12 parity-
check symbols are generated, namely (pv0[i], . . . , p

v
11[i]).

• Combine the u[·] sub-packets with pv[·] packets and
generate q[t] = pv[t] + u[t − T ]. For simplicity we do
not show these in Table V.

• Apply a (T +1, T −N +1) = (6, 4) MDS code to the u
packets with an interleaving factor of B = 3 generating
BN = 6 parity-check symbols (pu0 [i], . . . , p

u
5 [i]). The

resulting codewords are as follows,

cu0 [i] = (u0[i], u3[i+ 1], u6[i+ 2], u9[i+ 3], pu0 [i+ 4],

pu3 [i+ 5])

cu1 [i] = (u1[i], u4[i+ 1], u7[i+ 2], u10[i+ 3], pu1 [i+ 4],

pu4 [i+ 5])

cu2 [i] = (u2[i], u5[i+ 1], u8[i+ 2], u11[i+ 3], pu2 [i+ 4],

pu5 [i+ 5]) (39)

The codeword cu0 [i] is marked by the unshaded boxes in
Table V for convenience.

The channel packet at time i is given by,

x[i] = (u[i],v[i],q[i],pu[i]) , (40)

whose rate is R = 12+8
12+8+12+6 = 10

19 .

For decoding, first assume that an erasure burst spans the
interval [i, i+ 2]. The decoding steps are as follows,

• Recover pv[t] = (pv0[t], . . . , p
v
11[t]) for t = {i+ 3, i+ 4}

by subtracting u[t− 5] from q[t].
• Recover v[i], v[i+ 1] and v[i+ 2] using the underlying

(5, 2) MDS codes as follows. For j ∈ {0, . . . , 3},

– cvj [i − 1] = (vj [i − 1], vj+4[i], p
v
j [i + 1], pvj+4[i +

2], pvj+8[i+ 3]) has 3 erasures at i, i+ 1 and i+ 2.
Hence, the vj+4[i] symbols are recovered by time
i+ 3.

– cvj [i] = (vj [i], vj+4[i + 1], pvj [i + 2], pvj+4[i +
3], pvj+8[i + 4]) has 3 erasures at i, i + 1 and
i + 2. Hence, the vj [i] and vj+4[i + 1] symbols are
recovered by time i+ 4.

– cvj [i+1] = (vj [i+1], vj+4[i+2], pvj [i+3], pvj+4[i+
4], pvj+8[i + 5]) has 3 erasures at i + 1, i + 2 and

i+510. Hence, the vj [i+1] and vj+4[i+2] symbols
are recovered by time i+ 4.

– cvj [i+2] = (vj [i+2], vj+4[i+3], pvj [i+4], pvj+4[i+
5], pvj+8[i+6]) has 3 erasures at i+2, i+5 and i+6.
Hence, the vj [i+ 2] symbols are recovered by time
i+ 4.

In other words, all the erased v[·] sub-packets are recov-
ered by time i+ 4.

• Compute the parity-check packets pv[t] for t ∈ {i +
5, i + 6, i + 7} as they only combine v[·] sub-packets
that are either unerased or recovered in the previous step.
These parity-check packets can be subtracted from the
corresponding p[t] packets to recover u[i−T ] sub-packets
within a delay of T = 5. In other words, we recover u[i]
at time t = i+ 5, u[i+ 1] at time t = i+ 6 and u[i+ 2]
at time t = i+ 7.

In the case of isolated erasures, we assume a channel
introducing N = 2 isolated erasures in a the interval [0, 5]
of length T + 1 = 6. Note that the codewords cvj [i] in (38)
terminate at time t = i + 4. Thus, there are no more than
N = 2 erasures on either of them and thus the recovery of
vj [i] is guaranteed at time i+4. Likewise the codewords cuj [i]
in (39) terminate at time t = i+5 and there are no more than
N = 2 erasures on any of them. Thus, the recovery of uj [i]
is guaranteed at time t = i+ 5.

3) Code Construction: The general construction achieving
Prop. 3 is as follows.

• Source Splitting: We assume that each source packet
s[i] ∈ Fk

q and partition the k symbols into two sub-
packets uvec[i] ∈ Fku

q and vvec[i] ∈ Fkv

q as follows,

s[i] = (s0[i], . . . , sk−1[i])

= (u0[i], . . . , uku−1[i]︸ ︷︷ ︸
uvec[i]

, v0[i], . . . , vkv−1[i]︸ ︷︷ ︸
vvec[i]

) (41)

where we select

ku = (Teff −N + 1)B,

kv = (Teff −N + 1)(Teff −B).
(42)

• MDS Parity-Checks for v[·] sub-packets: Construct
Teff − N + 1 systematic MDS codes of parameters
(Teff , Teff −B) starting at time i whose associated code-
words are,

cvj [i] =



vj [i]
vj+(Teff−N+1)[i+ 1]
vj+2(Teff−N+1)[i+ 2]

...
vj+(Teff−N+1)(Teff−B−1)[i+ Teff −B − 1]

pvj [i+ Teff −B]
pvj+(Teff−N+1)[i+ Teff −B + 1]

...
pvj+(Teff−N+1)(B−1)[i+ Teff − 1]


,

(43)

10We note that the parity-check symbols pvj+8[i+5] for j ∈ {0, . . . , 3} are
counted as erasures since they are combined with uj+8[i] which are erased.
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for j ∈ {0, 1, . . . , Teff −N}. Notice that each codeword
cvj [i] spans the interval [i, i + Teff − 1] and the adjacent
symbols have an interleaving factor of Teff −N + 1. The
resulting parity-check packets at time i are expressed as:
pv[i] = (pv0[i], . . . , p

v
(Teff−N+1)B−1[i])

• Repetition of u[·] sub-packets: Combine the u[·] sub-
packets with the parity-check packets pv[·] after applying
a shift of Teff , i.e., q[i] = pv[i] + u[i− Teff ].

• MDS Parity-Checks for u[·] sub-packets: Construct B
systematic MDS codes of parameters (Teff+1, Teff−N+
1) at time i whose associated codewords are,

cuj [i] =



uj [i]
uj+B [i+ 1]
uj+2B [i+ 2]

...
uj+B(Teff−N)[i+ Teff −N ]

puj [i+ Teff −N + 1]
puj+B [i+ Teff −N + 2]

...
puj+B(N−1)[i+ Teff ]


, (44)

for j ∈ {0, 1, . . . , B − 1}. Notice that each codeword
cuj [i] spans the interval [i, i + Teff ] and consists of
symbols with an interleaving factor of B. The resulting
parity-check packets at time i are denoted by pu[i] =
(pu0 [i], . . . , p

u
BN−1[i]).

• Concatenation of Parity-Checks: Concatenate the
parity-check packets pu[·] and q[·], i.e., the channel input
at time i is given by,

x[i] = (u[i],v[i],q[i],pu[i]) . (45)

Note that the rate of the code equals

R =
(Teff −N + 1)Teff

(Teff −N + 1)Teff +B(Teff + 1)

=
Teff

Teff + B(Teff+1)
Teff−N+1

(46)

which is identical to the expression in (29).
The decoding steps are similar to that discussed in the

previous examples and is provided in Appendix C.
4) Field-Size Computation: To compute the required field-

size, note that splitting each source packet into (Teff − N +
1)Teff symbols requires that each source packet consist of q1 =
(Teff − N + 1)Teff symbols. We therefore need to determine
the field-size of each symbol. Using the well-known fact that
an (n, k) MDS code exists for any field-size greater than n,
we note that the field-size needed for both (Teff , Teff −B) and
(Teff +1, Teff −N +1) MDS codes to simultaneously exist is
q2 = Θ(Teff). Thus, a field-size of q = q1 · q2 which is of the
order O(T 3

eff) is sufficient.

E. Non-Ideal Erasure Patterns

Even though the construction in Section IV-D attains the
same optimal tradeoff over the deterministic erasure channel
model with a smaller field-size, their performance is more

sensitive compared to the construction in Section IV-C when
non-ideal erasure patterns are considered. To illustrate this we
focus on the case when N = 2, B = 3, T = 5 and W ≥ 6
in our discussion. The MiDAS construction with block MDS
constituent code for these parameters is illustrated in Table V.
The MiDAS codes using m-MDS codes has a similar structure
except that the parity-checks pvj [·] and puj [·] are generated using
the m-MDS code.

We consider an erasure pattern that introduces a burst of
length 2 in the interval [i, i + 1] and an additional isolated
erasure at time i+3. Clearly such a pattern violates a C(N =
2, B = 3,W = 6). Nonetheless, we argue that the MiDAS
codes are able to completely recover from this erasure pattern
but the alternative construction using block MDS codes in
Table V cannot.

In particular, note that the the parity packets p[i + 2] and
p[i + 4] contribute a total of 24 symbols which suffice to
recover v[i],v[i + 1] and v[i + 3], each of which involves 8
symbols. Thus, by time i + 4 all the symbols in the erased
v[·] sub-packets are recovered and we can proceed to recover
u[i],u[i + 1] and u[i + 3] at time i + 5, i + 6 and i + 8,
respectively, i.e., a delay of T = 5 packets.

In the MiDAS construction with MDS constituent codes,
illustrated in Table V, we either use cu[·] or cv[·] codewords
to recover u[i].

• Using cu[·] codewords: Here, a (T + 1, T − N + 1) =
(6, 4) block MDS code is applied to each of the u[·] sub-
packets. Each of the codewords cuj [i] for j ∈ {0, 1, 2}
in (39) has 3 erasures at i, i+1 and i+3 and hence the
recovery of u[0] is impossible.

• Using cv[·] codewords: Also, the v[·] sub-packets are
protected using a (T, T − B) = (5, 2) MDS codes. Let
us consider the codewords cvj [i+3] = (vj [i+3], vj+4[i+
4], pj [i+ 5], pj+4[i+ 6], pj+8[i+ 7]) for j ∈ {0, 1, 2, 3}
in (38). Each of these codewords has an erasure at time
i+3 and the parity-check packets pj [i+5] and pj+4[i+6]
are combined with uj [i] and uj+4[i+1] which are erased
by the channel. Thus, a total of 3 erasures at times i+3,
i + 5 and i + 6, which implies that vj [i + 3] can be
recovered at time i + 7. Now, the decoder can compute
pj [i+5] and pj+4[i+6] and subtract them from qj [i+5]
and qj+4[i+6] to recover uj [i] and uj [i+1] with a delay
of 7 and 6, respectively, i.e., exceeds the delay of T = 5.

Thus, unlike the case of MiDAS codes based on m-MDS , it
is not possible to recover u[i] with a delay of T = 5 when a
constituent block code is used. We will also see performance
loss from using MDS block codes instead of m-MDS codes
in our simulation results.

V. UNEQUAL SOURCE-CHANNEL INTER-ARRIVAL RATES

In this section, we study the case when the source and
channel inter-arrival rates are unequal, i.e., M > 1. We start by
revisting the capacity expression in Theorem 3 in Section V-A.
In Section V-B, we provide the code construction achieving
such capacity. The decoding analysis is discussed in Sec-
tion V-C. We illustrate both the encoding and decoding steps
through a numerical example in Section V-D. We then provide



16

i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6 i+ 7 i+ 8 i+ 9 i+ 10 i+ 11 i+ 12

u[i] u[i+ 1] u[i+ 3]

· · ·

cvj [i+ 3]− (5, 2) MDS Code

Fig. 10: A non-ideal erasure pattern in Section IV-E.

the converse proof of Theorem 3 in Section V-E. Finally, we
present constructions that are robust against isolated erasures
in Section V-F.

A. Capacity Expression

We note that C = 0, if T < b.11 This follows since an
erasure burst of length B can span all underlying channel
packets in macro-packets [i, i + T ] thus making the recovery
of s[i] by macro-packet i+T impossible. This trivial case will
therefore not be discussed further in the paper. When T = b,
the capacity in Theorem 3 is given by:

C =

{
1
2 , 0 ≤ B′ ≤ M

2 , T = b,
M−B′

M , M
2 < B′ ≤ M − 1, T = b.

(47)

In this special case of minimum delay, during the recovery
of s[i] we can only use the unerased packets in Y[i, :] and
Y[i+b, :] as all the intermediate macro-packets are completely
erased. It turns out that a simple repetition code that uses
min

(
M −B′, M

2

)
information packets and an identical num-

ber of parity-check packets in each macro-packet achieves the
capacity when T = b.

When T > b the capacity in Theorem 3 reduces to the
following.

C =

{
T

T+b , 0 ≤ B′ ≤ b
T+bM,

M(T+b+1)−B
M(T+b+1) , b

T+bM < B′ ≤ M − 1.
(48)

We propose the associated code construction below.

B. Code Construction

As illustrated in Fig. 11 we split each source packet into two
packets as was the case in the generalized MS construction in
Section IV-B. However, our construction involves an additional
step of reshaping as illustrated in Fig. 12 to re-arrange the
symbols in each macro-packet. We separately consider three
cases below.

1) Encoding: T ≥ b and B′ ≤ b
T+bM : We let

n = T + b, k = MT, (49)

throughout this case. Note that the rate R = k
Mn reduces to

the first case in both (47) and (48).

11Recall from (8) that we express B = bM +B′ where B′ ∈ [0,M − 1].
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Fig. 11: Construction of Parity-Check Packets. As in the MS
code, each source packet s[t] is divided into two sub-packets,
uvec[t] and vvec[t]. A m-MDS code is applied to the vvec[·]
sub-packets and a repetition code is applied to the uvec[·] sub-
packets. The resulting parities are then combined to generate
the parity-check packets qvec[t] = pvec[t] + uvec[t− T ].

• Source Splitting: We assume that each source packet
s[i] ∈ Fk

q and partition the k symbols into two sub-
packets uvec[i] ∈ Fku

q and vvec[i] ∈ Fkv

q as follows,

s[i] = (s0[i], . . . , sk−1[i])

= (u0[i], . . . , uku−1[i]︸ ︷︷ ︸
uvec[i]

, v0[i], . . . , vkv−1[i]︸ ︷︷ ︸
vvec[i]

) (50)

where we select

ku = Mb, kv = M(T − b). (51)

• m-MDS Parity-Checks: Apply a (kv + ku, kv, T )
m-MDS code of rate kv

kv+ku to the sub-stream of
vvec[·] sub-packets generating ku parity-check packets,
(p0[i], . . . , pku−1[i]) = pvec[i] ∈ Fku

q for each macro-
packet. In particular, we have that

pvec[i] =

 T∑
j=0

v†
vec[i− j] ·Hj

†

(52)

where Hj ∈ Fkv×ku

q are the matrices associated with the
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Fig. 12: Reshaping of Channel Packets. The three groups,
uvec[i], vvec[i] and qvec[i] are reshaped into U[i, :], V[i, :]
and Q[i, :] which are denoted by vertically, diagonally and
grid hatched boxes, respectively. These reshaped packets are
then concatenated to form the channel macro-packet X[i, :].

m-MDS code (12).
• Parity-Check Generation: Combine the uvec[·] sub-

packets with the pvec[·] parity-checks after applying a
shift of T to the former, i.e.,

qvec[i] = pvec[i] + uvec[i− T ], (53)

where qvec[i] ∈ Fku

q .
• Re-shaping: In order to construct the macro-packet, we

reshape uvec[i], vvec[i] and qvec[i] into groups each of
n symbols generating the matrices, U[i, :], V[i, :] and
Q[i, :], respectively, as shown in (54).
In (54), we define r ∈ N0 and r′ ∈ {0, 1, . . . , n− 1} via

ku = r · n+ r′. (57)

Note that u[i, l] ∈ Fn
q for each l ∈ {1, . . . , r} and

u[i, r+1] ∈ Fr′

q . The splitting of qvec[i] into q[i, j] in (54)
follows in an analogous manner. We can express

q[i, j] = u[i− T, j] + p[i, j], j = 1, 2, . . . , r + 1
(58)

where p[i, j] is a sub-sequence of pvec[i] defined in a
similar manner. In the splitting of vvec[i] into v[i, j], we
note that v[i, 1],v[i,M − 2r] ∈ Fn−r′

q whereas v[i, j] ∈
Fn
q for 2 ≤ j ≤ M − 2r − 1. It can be easily verified

that M −2r > 0 for our selected code parameters. When
M − 2r = 1 the structure of V[i, :] is as follows,

V[i, :] =

 0
v[i, 1]
0

 , (59)

where v[i, 1] ∈ Fn−2r′

q .
• Macro-Packet Generation: Concatenate U[i, :], V[i, :]

and Q[i, :] to construct the channel macro-packet X[i, :]
as in (56). Note that the channel macro-packet at time i is

denoted by X[i, :] ∈ Fn×M
q and the j-th channel packet

in X[i, :] by x[i, j] ∈ Fn
q for j ∈ {1, . . . ,M}.

Note that in the minimum delay case, i.e., T = b we have
that kv = M(T − b) = 0. , This construction degenerates into
a repetition code, and the corresponding rate of such repetition
code is R = ku

2ku = 1
2 , which meets the capacity expression in

the first case in (47). The construction achieving the second
case with T = b and B′ > M

2 also involves a repetition code
and is discussed later in this section.

This completes the description of the encoding function for
the first case in (9) and (10). Fig. 13 illustrates the overall
encoder structure.

2) Encoding: T > b and B′ > b
T+bM : We begin by

choosing the following values of n and k,

n = T + b+ 1, k = M(T + b+ 1)−B (60)

and note that the rate R = k
Mn reduces to the second case

in (48).

• Split each source s[i] ∈ Fk
q into k symbols and divide

them into two sub-packets uvec[i] ∈ Fku

q and vvec[i] ∈
Fkv

q as in (50). This time we select

ku = B = Mb+B′, kv = M(T + b+ 1)− 2B
(61)

• Apply a (kv + ku, kv, T ) m-MDS code of rate kv

kv+ku

to the sub-stream of vvec[·] sub-packets generating ku

parity-check packets, (p0[i], . . . , pku−1[i]) = pvec[i] ∈
Fku

q for each macro-packet as in (52).
• Combine the uvec[·] sub-packets with the pvec[·] parity-

checks after applying a shift of T to the former, i.e.,
qvec[i] = pvec[i] + uvec[i− T ].

• Reshape the uvec[i], vvec[i] and qvec[i] vectors into
matrices U[i, :],V[i, :] and Q[i, :] as in (54). In particular,
we let r and r′ be such that ku = r · n + r′ as in (57).
As in (55) we split uvec[i] into {u[i, j]}1≤j≤(r+1) where
u[i, j] ∈ Fn

q for 1 ≤ j ≤ r and u[i, r + 1] ∈ Fr′

q

holds. In a similar manner, we split qvec[i] into vectors
{q[i, j]}1≤j≤(r+1) where q[i, j] ∈ Fn

q for 1 ≤ j ≤ r

and q[i, r + 1] ∈ Fr′

q holds. Finally we split vvec[i] into
{v[i, j]}1≤j≤(M−2r) where v[i, 1],v[i,M − 2r] ∈ Fn−r′

q

and v[i, j] ∈ Fn
q for 2 ≤ j ≤ (M − 2r − 1).

• Generate the Macro-Packet X[i, :] by concatenating U[i, :
], V[i, :] and Q[i, :] as in (56).

3) Encoding: T = b and B′ > M
2 : A simple repetition

scheme is used. We split each source packet into M − B′

packets, i.e., s[i] = (s0[i], . . . , sM−B−1′ [i]) and assign the
channel packets as follows,

x[i, j] =

 sj−1[i] j ∈ [1,M −B′]
0 j ∈ [M −B′ + 1, B′]
sj−B′−1[i− T ] j ∈ [B′ + 1,M ].

(62)

The rate of such code is clearly R = M−B′

M as stated in the
second case in (47). In this case, by inspection we can check
that the code described above is decodable within the decoding
delay T = b. Thus, we will only focus on the previous two
cases in our decoding analysis.
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U[i, :] =

[
u[i, 1] · · · u[i, r]

u[i, r + 1]
0

]
∈ Fn×r+1

q

V[i, :] =

[
0

v[i, 1]
v[i, 2] · · · v[i,M − 2r − 1]

0
v[i,M − 2r]

]
∈ Fn×M−2r

q

Q[i, :] =

[
q[i, r + 1]

0
q[i, r] · · · q[i, 1]

]
∈ Fn×r+1

q ,

(54)

where

uvec[i] =


u[i, 1]
u[i, 2]

...
u[i, r]

u[i, r + 1]

 , vvec[i] =


v[i, 1]
v[i, 2]

...
v[i,M − 2r − 1]
v[i,M − 2r]

 , qvec[i] =


q[i, 1]
q[i, 2]

...
q[i, r]

q[i, r + 1]

 (55)

X[i, :] = [x[i, 1]| . . . |x[i,M ]] =

[
u[i, 1] · · · u[i, r]

u[i, r + 1]

v[i, 1]
v[i, 2] · · · q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

]
, M − 2r > 1 u[i, 1] · · · u[i, r]

u[i, r + 1]

v[i, 1]

q[i, r + 1]

q[i, r] · · · q[i, 1]

 M − 2r = 1

(56)
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Fig. 13: Encoding of source packets into macro-packets. Each source packet is split into two groups. A repetition code is
applied to the U[t, :] group with a delay of T macro-packets and is denoted by vertically hatched boxes as shown in the
first figure. A m-MDS code is applied to the V[t, :] group which is denoted by diagonally hatched boxes to generate the
parity-checks P[i, :] denoted by the horizontally hatched boxes as shown in the second figure. The combination of the resulting
parity-checks of the two groups is indicated in the last figure with grid hatched boxes.

C. Decoding Analysis

Consider a channel that introduces a burst of length B =
bM + B′ starting from x[i, j] for j ∈ {1, . . . ,M}. We first
show how to recover s[i] by the macro-packet i+T . Note that
since our code is time invariant, it suffices to consider only
the recovery of s[i]. Once s[i] is recovered, we can compute
X[i, :] and repeat the same procedure with the smaller burst
that starts at x[i+ 1, 1] to recover s[i+ 1] and so on.

The decoding steps are as follows,

1) Step 1: In each macro-packet X[t, :], for t ∈ [i + b, i +
T − 1], recover all the unerased symbols of pvec[t] by

subtracting out uvec[t−T ] from the corresponding qvec[t]
as the former are not erased. Since, u[i, 1], . . . ,u[i, j −
1] are not erased, we can subtract these packets from
the corresponding qvec[i + T ] to recover the respective
pvec[i+ T ] packets.

2) Step 2: Recover all erased vvec[·] sub-packets by the
macro-packet i+T using the underlying (ku+kv, kv, T )
m-MDS code. This step will be justified later in the
sequel.

3) Step 3: Compute pvec[i+ T ] as it combines vvec[·] sub-
packets that are either not erased or recovered in the
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Fig. 14: Decoding for the burst pattern starting from x[i, 1]. The grey boxes denote an erasure burst of length B. The horizontally
hatched parity-checks in the second figure are used to recover the erased V[i, :], . . . ,V[i+ b, :] packets. The third figure shows
the recovery of u[i] using the parity-checks in macro-packet i+ T .

previous step.
4) Step 4: Subtract pvec[i+ T ] from qvec[i+ T ] to recover

uvec[i] within a delay of T macro-packets. At this point
both uvec[i] and vvec[i] have been recovered (and hence
s[i]) with a delay of T macro-packets as required.

It only remains to show the sufficiency of the m-MDS code
in Step 2. To do that we use the following lemma.

Lemma 3. Consider any erasure burst of length B starting at
x[i, j] for some j ∈ {1, . . . ,M−r}. After Step 1 of cancelling
uvec[t] sub-packets, the total number of unrecovered symbols
in the sequence {(vvec[t],pvec[t])}i≤t≤i+T is at most ku(T +
1).

Proof. See Appendix D.

We next claim that the decoder can recover all the erased
vvec[t] sub-packets by the end of macro-packet i+T . To prove
this, we recall that (vvec[t],pvec[t]) is a m-MDS code with
parameters (kv+ku, kv, T ). We consider the following cases:

• If the burst starts at j ∈ {1, ..., r+1} then all the symbols
in {(vvec[t],pvec[t])}i≤t≤i+b−1 are erased whereas a por-
tion of the symbols in {(vvec[i+b],pvec[i+b])} are erased
until the termination of the erasure burst. Furthermore,
{pvec[i+ T, l]}j≤l≤r+1 are also considered to be erased
since they are interfered by the erased uvec[i, l] sub-
packets from macro-packet i. Note that all the erased
symbols involving vvec[t] will occur in a single erasure
burst. Thus, applying property L3 in Lemma 1 with j = T
and c = 0 and using B̂+ Î ≤ ku(T+1) = (n−k)(j+1),
which follows from Lemma 3, we are guaranteed that
all the erased vvec[t] are recovered at the end of macro-
packet i+ T .

• If the burst starts at j ∈ {r+2, . . . ,M − r} then none of
the sub-packets uvec[i] are erased and can be subtracted
out from qvec[i+T ] to recover pvec[i+T ]. All the erased

symbols thus occur in a burst. Thus, using property L2 in
Lemma 1, and using B̂ ≤ (n− k)(T +1) which follows
from Lemma 3, we are guaranteed that all the erased
vvec[t] are recovered at the end of macro-packet i+ T .

• If j ∈ {M−r+1, . . . ,M−1} then none of the symbols in
either uvec[i] or vvec[i] are erased. Thus, we can proceed
to block i+ 1 and apply the first step.

Finally as mentioned in Step 4 above, once all the erased
sub-packets vvec[t] have been recovered by macro-packet
i+ T , their effect can be canceled and uvec[t], for t ∈
{i, i+1, . . . , i+b} can be sequentially recovered from macro-
packet t + T by computing and subtracting pvec[t + T ]
from qvec[t + T ]. Thus, each s[t] = (uvec[t],vvec[t]) can be
recovered by the end of macro-packet t+ T . This completes
the decoding analysis.

Remark 4. We discuss intuition on the fact that the capacity
function does not decrease with B′ in the first case in (48) de-
fined by B′ ≤ b

T+bM . Recall that for this case the parameters
that are selected are ku = Mb and n = T + b. Consider an
erasure burst that starts at x[i, 1] and terminates at x[i+b, B′].
We claim that for such an erasure burst, as long as B′ ≤ Mb

T+b ,
only the u[·] sub-packets are erased in macro-packet X[i+b, :].
In particular, the number of symbols that are erased in marco-
packet X[i + b, :] is equal to nB′ = (T + b)B′ ≤ Mb = ku.
Since the u[·] sub-packets appears before any other packets in
each macro-packet only these packets are erased. Thus, during
the recovery process, the number of parity-checks available
for recovering v[·] sub-packets does not decrease as B′ is
increased from 0 to Mb

T+b . Thus, the same code parameters can
be used. The above argument assumes that the burst starts at
the beginning of a macro-packet. In Appendix D, in the proof of
Lemma 3, we show that this is indeed the worst case pattern. If
the burst starts anywhere else, the number of available parity-
checks could only increase. This explains why, remarkably, the
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capacity is not a strictly decreasing function of B.

As a final remark, note that the above construction achieves
the capacity in Theorem 3 for W ≥ M(T + 1). For the case
when W < M(T+1), the same construction can be used with
replacing the delay T with the effective delay Teff =

⌊
W
M

⌋
−1.

D. Example

In this section, we show a code construction for parameters
M = 2, B = 3, T = 3. Note that b = 1 and B′ = 1 > b

T+bM .
Thus, the capacity is given by C = M(T+b+1)−B

M(T+b+1) = 7
10 , which

can be achieved using the code illustrated in Table VI.
Encoding:

1) Split each source packet into M(T + b + 1) − B = 7
packets, i.e., s[i] = (s0[i], · · · , s6[i]).

2) Divide these into two sub-packets, uvec[i] and vvec[i]
with ku = B = 3 and kv = M(T + b + 1) −
2B = 4 symbols, respectively, as in (50). We let
uvec[i] = (u0[i], · · · , u2[i]) = (s0[i], · · · , s2[i]) and
vvec[i] = (v0[i], · · · , v3[i]) = (s3[i], . . . , s6[i]).

3) We place B = 3 parity packets qvec[i] =
(q0[i], q1[i], q2[i]) into the last channel packet of each
macro-packet. These parities consist of two components,
qvec[i]=pvec[i]+uvec[i − 3]. The parity packets p[i] are
generated using a m-MDS code.

Decoding: Since M = 2, there are two burst patterns that
need to be checked.

1) Burst that erases x[0, 1], x[0, 2] and x[1, 1].
Recovery of v packets: We first subtract uvec[t − T ]
from qvec[t] for t = {1, 2} to recover the corresponding
pvec[t]. These are a total of 6 symbols and thus can be
used to recover v0[0], · · · , v3[0] as well as v0[1], v1[1]. In
other words, all erased v symbols are recovered by the
end of the macro-packet X[2, :].
Recovery of u packets: With all the erased v packets now
recovered, we can compute the pvec[t] packets for t =
{3, 4} and subtract them from qvec[t] to recover uvec[0]
and uvec[1] at their respective deadlines.

2) Burst that erases x[0, 2],x[1, 1],x[1, 2].
Recovery of v packets: Since uvec[0] is not erased, we can
subtract it from qvec[3] to recover pvec[3]. This together
with pvec[2] is a total of 6 symbols. Thus, they can be
used to recover the erased v packets (v2[0], v3[0]) and
(v0[1], · · · , v3[1]).
Recovery of u packets: Similar to the previous burst
pattern, we compute the value of the parity-check packets
pvec[4] and subtract it from qvec[4] to recover u[1] by its
deadline.

E. Converse

In order to establish the converse, we first consider the case
when T > b. We show that any feasible rate satisfies

R ≤ R+ = min

(
M(T + b+ 1)−B

M(T + b+ 1)
,

T

T + b

)
. (63)

Consider a periodic erasure channel as shown in Figure
15. Each period consists of τP = T + b + 1 macro-packets.

In each such period, the first B channel packets are erased
and the subsequent M(b+ T + 1)−B are not. Consider the
first period with the burst starting at x[0, 1]. By definition we
require that s[0] be recovered by the end of macro-packet T ,
s[1] by macro-packet T +1 and likewise the last erased source
packet s[b] by macro-packet T + b. Thus, all the lost source
packets are recovered by macro-packet t = T + b. Once these
erased packets are recovered, we can treat these erasures as
having never happened and simply repeat the argument for the
next period and so on. Therefore, our proposed streaming code
must be a feasible code for the periodic erasure channel. Since
the capacity of the erasure channel is simply the fraction of
the non-erased channel packets, it follows that

R+ =
M(T + b+ 1)− (bM +B′)

M(T + b+ 1)
. (64)

is an upper bound on the rate of any feasible streaming code.
To establish the other inequality in (63) we consider a

periodic erasure channel consisting of τP = T + b macro-
packets and assume that in each period the first B̂ = Mb ≤ B
channel packets are erased. Thus, in the proposed channel, the
first b macro-packets are completely erased in each period and
the remaining T macro-packets are not erased. In particular,
in the first period, s[0], . . . , s[b− 1] must be recovered at the
end of macro-packets T, . . . , T + b − 1 respectively. At this
point all the erased source packets have been recovered and
we can proceed to the recovery of the second burst starting
at macro-packet T + b. Thus, the streaming code must also
be feasible on this erasure channel whose capacity is clearly
T

T+b , and thus the upper bound follows.
When T = b we show that

C ≤ min

(
M −B′

M
,
1

2

)
. (65)

When B′ ≤ M/2, the second condition C ≤ 1
2 dominates.

This bound immediately follows from (63) by substituting T =
b in the second expression in (63). Thus, we only need to show
that when B′ > M

2 and T = b the upper bound C ≤ M−B′

M
is valid.

We start by considering a channel that erases the first B =
bM + B′ channel packets x[i, 1], . . . ,x[i + b, B′]. Since the
delay constraint for s[i] is i+T = i+b, the following equation
should be satisfied,

H(s[i]
∣∣x[i+ b, B′ + 1], . . . ,x[i+ b,M ]) = 0

⇒ H(s) ≤ (M −B′)H(x), (66)

which implies that R = H(s)
MH(x) ≤ M−B′

M as required. This
completes the proof of the upper bound.

F. Robust Extensions

In Section V-B, we provided capacity achieving codes for
C(1, B,W ≥ M(T + 1)). In order to extend the codes
for channels with N > 1, we apply the approach used in
the MiDAS construction in Section IV-C. In particular, we
construct an optimal burst erasure code and then append
additional parity-checks for the u[·] sub-packets to deal with
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TABLE VI: Code construction for (M = 2, B = 3, T = 3) achieving a rate of R = 7
10 .

X[0, :] X[1, :] X[2, :] X[3, :]
x[0, 1] x[0, 2] x[1, 1] x[1, 2] x[2, 1] x[2, 2] x[3, 1] x[3, 2]
u0[0] v2[0] u0[1] v2[1] u0[2] v2[2] u0[3] v2[3]
u1[0] v3[0] u1[1] v3[1] u1[2] v3[2] u1[3] v3[3]
u2[0] u0[−3]+p0[0] u2[1] u0[−2]+p0[1] u2[2] u0[−1]+p0[2] u2[3] u0[0] + p0[3]
v0[0] u1[−3]+p1[0] v0[1] u1[−2]+p1[1] v0[2] u1[−1]+p1[2] v0[3] u1[0] + p1[3]
v1[0] u2[−3]+p2[0] v1[1] u2[−2]+p2[1] v1[2] u2[−1]+p2[2] v1[3] u2[0] + p2[3]

Fig. 15: Periodic Erasure Channel used in the Converse Proof of Theorem 3. We assume that the burst starts in macro-block
0 at the first packet and terminates in macro-block b. The period of the channel spans T + b+ 1 macro-blocks as shown.

isolated losses. In particular, we extend the macro-packet
construction in (56) as follows,

X[i, :] = [x[i, 1]| . . . |x[i,M ]] = u[i, 1]

pu[i, 1]
· · · u[i, r]

pu[i, r]

u[i, r + 1]
v[i, 1]

pu[i, r + 1]
· · ·

q[i, r + 1]
v[i,M − 2r]
pu[i,M − r]

q[i, r]

pu[i,M − r + 1]
· · · q[i, 1]

pu[i,M ]


(67)

where u[i, j], v[i, j] sub-packets and q[i, j] packets are ob-
tained from the optimal code for the C(N = 1, B,W )
channel. We apply another (ku+Mks, ku, T ) m-MDS code to
the uvec[·] sub-packets generating Mks parity-check symbols
(pu1 [i], . . . , p

u
Mks [i]) = pu

vec[i] ∈ FMks

q . We then concatenate
the generated parities after splitting them into M equal groups
to each channel packet, pu

vec[i] = (pu[i, 1], . . . ,pu[i,M ]) as
shown in (67). The corresponding rate of such code is clearly
R = ku+kv

M(n+ks) , where ku, kv and n are based on the optimal
code for the burst-only channel.

Proposition 4. Consider the layered code design for re-
covering from isolated erasures. To recover from any N ≤⌊

T
T+bMb

⌋
isolated erasures when W ≥ M(T+1) and T > b,

it suffices to select

ks =

⌈
Nn

M(T + 1)−N

⌉
. (68)

where ⌈·⌉ and ⌊·⌋ denote the ceil and floor functions respec-
tively.

Proof. We recall that there are two m-MDS codes underlying
our construction in (67). A (ku + kv, kv, T ) m-MDS code
is applied to vvec[·] sub-packets to generate parity-checks
pvec[·] and qvec[t] = pvec[t] + uvec[t− T ] are transmitted.
Furthermore, a (ku+Mks, ku, T ) m-MDS code is applied to
the uvec[·] sub-packets to generate parity-checks pu

vec[·].
Let us consider the window of length T consisting of

the macro-packets X[i, :], . . . ,X[i + T − 1, :] and assume
that there are N erasures in arbitrary positions. Note that in
qvec[t] = pvec[t] + uvec[t − T ] for t ∈ [i, i + T − 1], the
uvec[·] are from time i − 1 or before, and can be canceled
to recover pvec[t]. The (ku + kv, kv, T ) m-MDS code can
recover vvec[i] if no more than kuT symbols are erased among
(vvec[i],qvec[i], . . . ,vvec[i + T − 1],qvec[i + T − 1]). Since
these symbols are reshaped into columns each having no more
than n symbols, the number of erasures that are guaranteed to
be corrected is given by,

Nv =

⌊
kuT

n

⌋
≥ min

(⌊
(bM +B′)T

T + b+ 1

⌋ ∣∣∣∣
B′≥ b

T+bM

,

⌊
MbT

T + b

⌋ ∣∣∣∣
B′< b

T+bM

)
(69)

=

⌊
MbT

T + b

⌋
≥ N, (70)

where we use

(ku, n) =

{
(B, T + b+ 1), B′ ≥ b

T+bM

(Mb, T + b), B′ < b
T+bM

(71)

to get (69) and substitute for B′ ≥ b
T+bM in the first term

in (69) to get (70).
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Next we consider the number of erased packets that can
be corrected by the (ku +Mks, ku, T ) m-MDS code. Using
Lemma 1, one can see that this code can recover from
Mks(T + 1) erasures in the window of interest. Since each
channel input can have up to n + ks symbols belonging to
this code, the total number of erasures that can be corrected
is given by,

Nu =

⌊
Mks(T + 1)

n+ ks

⌋
(72)

which upon re-arranging gives (68).

Remark 5. Unlike the case of MiDAS codes, we do not claim
the optimality of the proposed robust codes. Nevertheless in
the simulation results we observe that in some cases these
codes outperform baseline schemes.

VI. SIMULATION RESULTS

In this section, we study the validity of our proposed code
constructions over statistical channel models. We consider two
classes of channels that introduce both burst and isolated
erasures. A Gilbert-Elliott channel is a two-state Markov
model. In the “good state”, each channel packet is lost with a
probability of ε whereas in the “bad state” each channel packet
is lost with a probability of 1. We note that the average loss
rate of the Gilbert-Elliott channel is given by

Pr(E) = β

β + α
ε+

α

α+ β
. (73)

where α and β denote the transition probability from the good
state to the bad state and vice versa. As long as the channel
stays in the bad state the channel behaves as a burst-erasure
channel. The length of each burst is a Geometric random
variable with mean of 1

β . When the channel is in the good
state it behaves as an i.i.d. erasure channel with an erasure
probability of ε. The gap between two successive bursts is
also a geometric random variable with a mean of 1

α . Finally
note that ε = 0 results in a Gilbert Channel [34], which only
results in burst losses.

Fig. 17 shows a Fritchman channel model [35] with a total
of N + 1 states. One of the states is the good state and the
remaining N states are bad states. We again let the transition
probability from the good state to the first bad state E1 to
be α whereas the transition probability from each of the bad
states equals β. Let ε be the probability of a packet loss in
good state. We lose packets in any bad state with probability 1.
The burst length distribution in a Fritchman model is a hyper-
geometric random variable instead of a geometric random
variable. Fritchman and related higher order Markov models
are commonly used to model fade-durations in mobile links.

In a conferencing application with 2 Mbps video and packet
of size 512 bytes, the inter-packet time is about 2 millisecond.
A moderate decoding delay of 100 ms would correspond to
T = 50 packets. With this in mind, our results in this Section
will adopt different values of T from 12 to 80. Furthermore,
we note that a benign playback disruption of once every 30
minutes corresponds to a packet loss rate of 10−6, while
an unacceptable disruption every two seconds correspond to

G E1− α

α

1− β

β

Fig. 16: Gilbert-Elliott Channel Model

G E1 E2
. . . EN1− α

α

1− β

β

1− β

1− β

β

Fig. 17: Fritchman Channel Model

packet loss rate of 10−3. In our simulations, we would vary
channel parameters over a wide range to provide comparison
of different schemes over significant portions of packet loss
rates between 10−3 to 10−6.

A. Equal Source-Channel Inter-arrival Rates

In Fig. 18(a) and Fig. 19(a), we study the performance
of various streaming codes over the Gilbert-Elliott channel.
The channel parameters and code parameters are shown in
Table VII and VIII respectively. Fig. 18(b) and 19(b) indicate
the histogram of the burst lengths observed for the two
channels. The channel parameters for the T = 12 case are
the same as those used in [2, Section 4-B, Fig. 5]. We remark
that for this choice of α, the contribution from failures due
to small guard periods between bursts is not dominant. When
the inter-burst gaps are smaller we believe that an extension
of MiDAS codes that control the number of losses in such
events may be necessary and is left for a future investigation.

All codes in Fig. 18(a) are selected to have a rate of R =
12/23 ≈ 0.52 and the delay is T = 12. For reference the
uncoded loss-rate is also shown by the upper-most dotted blue
line marked with triangles. The black horizontal line is the
loss rate of the m-MDS code. It achieves B = N = 6. Thus,
its performance is limited by its burst-correction capability
and thus is consistent with the probability of observing bursts
longer than 6 which is given by ≈ 2 × 10−5. The red-curve
which deteriorates rapidly as we increase ε is the Maximally
Short code (MS). It achieves B = 11 and N = 1. Thus,
in general it cannot recover from even two losses occurring
in a window of length T + 1. The remaining curve marked
with squares shows the MiDAS code which achieve B = 9
and N = 2. The loss probability also deteriorates with ε but
at a much lower rate. Thus, a slight decrease in B, while
improving N from 1 to 2 exhibits noticeable gains over both
MS and m-MDS codes. At the left most point, i.e., when ε =
10−3, the loss probability is dominated by burst losses, while
as ε is increased, the effect of isolated losses becomes more
significant. In Fig. 19(a), the rate of all codes is set to R =
50/83 ≈ 0.6. The delay is set to T = 50. The m-MDS code
(black horizontal plot) achieves B = N = 20 whereas the MS
code (red plot) achieves N = 1 and B = 33. Both codes suffer
from the same phenomenon discussed in the previous case.
We also consider the MiDAS code (blue plot) with N = 4
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Uncoded

MS Code (N,B) = (1,11)

m−MDS Code (N,B) = (6,6)

MiDAS Code (N,B) = (2,9)

(a) Simulation results. All codes are evaluated using a decoding delay of
T = 12 packets and a rate of R = 12/23 ≈ 0.52.
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(b) The actual burst histogram (in bars) follows a geometric distribution
(dotted line) with a success probability of β = 0.5.

Fig. 18: Simulation Experiments for Gilbert-Elliott Channel Model with (α, β) = (5× 10−4, 0.5).
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Uncoded

m−MDS Code (N,B) = (20,20)

MiDAS Code (N,B) = (4,30)

MS Code (N,B) = (1,33)

(a) Simulation results. All codes are evaluated using a decoding delay of
T = 50 packets and a rate of R = 50/83 ≈ 0.6.
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(b) The actual burst histogram (in bars) follows a geometric distribution
(dotted line) with a success probability of β = 0.2.

Fig. 19: Simulation Experiments for Gilbert-Elliott Channel Model with (α, β) = (5× 10−5, 0.2).

and B = 30. We observe that its performance deteriorates
as ε is increased and eventually crosses the m-MDS codes.
We believe that despite the relatively large value of N , this
performance deterioration is due to burst and isolated erasures
being observed in the same decoding window. Such patterns,
which occur during the transition period between good and bad
states, are not covered in our sliding window erasure channel.
We refer the reader to our follow-up work [30], [36], where
the layered construction is exploited further to handle these
patterns.

In Fig. 20 and Fig. 21, we evaluate streaming codes over
the Fritchman channel in Fig. 17. The channel parameters and
code parameters are shown in Table IX and X respectively.
We let the transition probability from the good state to the
first bad state E1 to be α whereas the transition probability
from each of the bad states equals β. Let ε be the probability

of a packet loss in good state. We lose packets in any bad state
with probability 1. Fig. 20(b) and 21(b) indicate the histogram
of the burst lengths observed for the two channels.

In Fig. 20 and Fig. 21, the uncoded loss rate is shown
by the upper-most plot while the black horizontal line is the
performance of m-MDS code. Note that the performance of
this code is essentially independent of ε in the interval of
interest. As in the case of GE channels, the m-MDS codes
recover all the losses in the good state and fail against burst
lengths longer than its burst erasure correction capability.
Thus, their loss rate is consistent with the probability of
observing bursts longer than 20 and 16 which can be calculated
to be ≈ 10−5 and ≈ 3× 10−5, respectively. The performance
of the MS codes is shown by the red-plot in both figures. We
note that it is better than the m-MDS codes for ε = 10−3,
but deteriorates quickly as we increase ε. The performance



24

TABLE VII: Gilbert-Elliott Channel Parameters

Fig. 18(a) Fig. 19(a)
Delay T 12 50
(α, β) (5× 10−4, 0.5) (5× 10−5, 0.2)
Channel Length 107 108

Rate R 12/23 50/83

TABLE VIII: Achievable N and B for different streaming codes

Fig. 18(a) Fig. 19(a)
Code N B N B
MiDAS Code 2 9 4 30
m-MDS 6 6 20 20
MS Codes 1 11 1 33
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Uncoded

m−MDS Code (N,B) = (20,20)

MS Code (N,B) = (1,39)

MiDAS Code (N,B) = (8,31)

(a) Simulation over a N +1 = 9-States Fritchman Channel with (α, β) =
(10−5, 0.5). All codes are evaluated using a decoding delay of T = 40
packets and a rate of R = 40/79 ≈ 0.5.
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(b) The actual burst histogram (in bars) follows a negative binomial
distribution (dotted line) with N = 8 failures and a success probability
of β = 0.5.

Fig. 20: Simulation Experiments for Fritchman Channel Model with (N , α, β) = (8, 10−5, 0.5).

TABLE IX: Fritchman Channel Parameters

Fig. 20 Fig. 21
Channel States 9 12
Delay T 40 40
(α, β) (10−5, 0.5) (2× 10−5, 0.75)
Channel Length 108 108

Rate R 40/79 ≈ 0.5 40/67 ≈ 0.6

TABLE X: Achievable N and B for different streaming codes

Fig. 20 Fig. 21
Code N B N B
MiDAS Codes 8 31 4 24
m-MDS 20 20 16 16
MS Codes 1 39 1 27

TABLE XI: Unequal Source Channel Inter-arrival Rates

Fig. 23 Fig. 24
Channel States 2 20
M 20 40
T 4 2
(α, β) (10−5, [0.05, 0.15]) (10−5, 0.5)
Channel Length 109 109

Rate R 9/14 ≈ 0.64 40/63 ≈ 0.63

TABLE XII: Achievable N and B for different streaming codes

Fig. 23 Fig. 24
Code N B N B
Reshaped Code 1 50 1 58
Robust Reshaped Code N/A N/A 5 53
MiDAS Code N/A N/A 5 42
m-MDS Code 35 35 43 43
MS Codes 1 44 1 45

gains from MiDAS codes are significantly more noticeable
for the Fritchman channel because the hyper-geometric burst-
length distribution favors longer bursts over shorter ones. As
in the case of GE Channels, we expect further performance
gains to be possible by considering more sophisticated erasure
patterns, such as burst plus isolated losses, but leave such an
investigation for a future work.

In Fig. 22, we compare the performance of MiDAS and MS
codes obtained by replacing the m-MDS constituent code with
a diagonally interleaved block MDS code (cf. Section IV-D).

We consider the same GE channel in Fig. 18(a) and delay
T = 12. The codes involving m-MDS codes are plotted using
a solid line whereas the codes involving block MDS codes are
shown by the dotted lines of the same color. We note that in
all cases there is a noticeable increase in the loss rate when
a block MDS code is used despite the fact that these codes
achieve the same (N,B) values over deterministic channels.
This loss in performance is due to their sensitivity to non-ideal
erasure patterns as discussed in Section IV-E.
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Uncoded

m−MDS Code (N,B) = (16,16)

MiDAS Code (N,B) = (4,24)

MS Code (N,B) = (1,27)

(a) Simulation over a N +1 = 12-States Fritchman Channel with (α, β) =
(2×10−5, 0.75). All codes are evaluated using a decoding delay of T = 40
packets and a rate of R = 40/67 ≈ 0.6.
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(b) The actual burst histogram (in bars) follows a negative binomial
distribution (dotted line) with N = 11 failures and a success probability of
β = 0.75.

Fig. 21: Simulation Experiments for Fritchman Channel Model with (N , α, β) = (11, 2× 10−5, 0.75).
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Uncoded

MS−mMDS (N,B) = (1,11)

MS−MDS (N,B) = (1,11)

MiDAS−mMDS (N,B) = (2,9)

MiDAS−MDS (N,B) = (2,9)

Fig. 22: Simulation over a Gilbert-Elliott Channel with
(α, β) = (5 × 10−4, 0.5). All codes are evaluated using
a decoding delay of T = 12 packets and a rate of R =
12/23 ≈ 0.52.
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Uncoded

Reshaped Code (N,B) = (1,50)

m−MDS Code (N,B) = (35,35)

MS Code (N,B) = (1,44)

Fig. 23: Simulation over a Gilbert Channel with α = 10−5

and β varied on the x-axis. All codes are of rate R = 9
14 and

evaluated using a decoding delay of T = 4 macro-packets.
Each macro-packet consists of M = 20 channel packets.

B. Unequal Source-Channel Inter-arrival Rates

In our simulations in Fig. 23, we consider a Gilbert channel
model which is the same as a Gilbert-Elliott channel with
ε = 0, i.e., the loss probability is 0 in the good state. We fix
α = 10−5 and vary β on the x-axis in the interval [0.05, 0.15]
which in turn changes the burst length distribution. We further
select M = 20, i.e., 20 channel packets are generated for
every source packet received at the encoder. We fix the rate
R = 9/14 and the delay T = 4 macro-packets. Under these
conditions, the m-MDS code can correct burst erasures of
length up to B = 35, whereas a Maximally Short code
achieves B = 44. In contrast, for the optimal code we have
B = 50. This gain in terms of correctable burst-length is

reflected in Fig. 23 as one can see that codes designed for
unequal source-channel inter-arrival rates, which are referred
to as reshaped codes, achieve a lower loss probability. We note
that the code parameters in Fig. 23 correspond to the second
case in (9).

In Fig. 24, we consider a Fritchman channel with (α, β) =
(10−5, 0.5) and N + 1 = 20 states. The corresponding burst
distribution is illustrated in Fig. 24(b). In Fig. 24(a), we show
the performance of different streaming codes in the case of
unequal source-channel inter-arrival rates on such channel. The
rate for all codes is fixed to R = 0.64 and the delay constraint
is T = 2 macro-packets where each macro-packet has M = 40
packets. As the probability of erasure in the good state ε
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MiDAS Code (N,B) = (5,42)

(a) Simulation results. All codes are evaluated using a decoding delay of
T = 2 macro-packets and a rate of R ≈ 0.63. Each macro-packet consists
of M = 40 channel packets.
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(b) The actual burst histogram (in bars) follows a negative binomial
distribution (dotted line) with N = 20 failures and a success probability of
β = 0.5.

Fig. 24: Simulation Experiments for Fritchman Channel Model with N + 1 = 20 states and (α, β) = (10−5, 0.5).

increases, the performance of m-MDS code (black curve) does
not change. The loss rate of this code is ≈ 10−4 which is
dominated by the fraction of erasures introduced by bursts
longer than 43. On the other hand, both Maximally Short and
reshaped codes achieve N = 1 and thus deteriorate as quickly
as ε2. For the left most point corresponding to ε = 0, the
probability of loss of the Maximally Short code is ≈ 10−4

which reflects the number of erasures introduced by bursts
longer than 45. Similarly, the loss probability of the reshaped
code is ≈ 3 × 10−6 which matches the fraction of losses
introduced due to bursts longer than 58. The performance
of the robust versions of these codes, namely MiDAS and
robust reshaped codes does not deteriorate as fast. However,
the robust reshaped code outperforms the MiDAS code as the
former achieves B = 53 versus B = 42 achieved by the latter,
when N = 5, R = 0.63 and T = 2.

VII. CONCLUSION

In this paper, we introduce a systematic approach for
constructing low-delay error correction codes for real-time
streaming communication over packet erasure channels that
introduce both burst and isolated erasures. We introduce a
class of sliding window erasure channels where the erasure
sequences are constrained locally. Such models lead to a
tractable analysis of the capacity and the resulting codes are
observed to provide substantial gains in simulations over the
Gilbert-Elliott and Fritchman channel models.

When the source-packet arrival rate and the channel-packet
transmission rates are equal, we propose a near-optimal code
construction, MiDAS Codes, using a layered coding approach
that uses m-MDS codes and repetition codes as constituent
codes. We also propose another class of codes that use block-
MDS codes as constituent codes and require a considerably
smaller field size. We establish the necessary and sufficient
conditions on the column distance and column span of any

feasible streaming code for the sliding-window erasure chan-
nel, and establish a fundamental tradeoff between these metrics
which could be of independent interest.

For the case when the source-packet arrival rate and the
channel-packet transmission rates are unequal, we characterize
the capacity for the burst erasure channel. Our proposed
codes are a non-trivial extension of the MiDAS codes and
require a careful re-arrangement of the source symbols into
the channel packets. We also present an achievable rate for
the sliding window erasure channel with both burst and
isolated erasures. Extensive numerical simulations indicate that
our proposed constructions outperform traditional codes over
statistical models.

We believe that the results in the paper are a promising first
step towards construction of explicit error correction codes
for real-time streaming applications over practical channel
models. A number of further topics can be pursued, both
from a theoretical viewpoint as well as practical viewpoint.
On the theoretical side, the tradeoff between column distance
and column span discovered in our analysis of the sliding-
window erasure channel appears intriguing. It will be inter-
esting to revisit it, perhaps using systems theoretic tools for
convolutional codes [29], [37]. Furthermore, provable bounds
on the achievable error probability over the Gilbert-Elliott and
Fritchman channels, when using codes for the sliding-window
erasure channel can be developed. In other directions, optimal
streaming codes for the case when the source and channel
rates are unequal and the channel introduces both burst and
isolated erasures remain to be found. Furthermore, as noted in
our simulations, improvements can be attained by considering
streaming codes that correct both burst and isolated losses
within the same decoding the window of interest. Finally
our constructions are tuned to specific channel parameters. In
practice, it is very desirable to extend such constructions that
adapt to varying channel parameters with little or no feedback.
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APPENDIX A
COLUMN DISTANCE AND COLUMN SPAN OF

CONVOLUTIONAL CODES

In this section, we show that the error correction capability
of a streaming code can be expressed in terms of its column
distance and column span. In our discussion, we view the input
packets s[i] as a length k̄ vector over Fq and x[i] as a length
n̄ vector over Fq . We restrict our attention to time-invariant
linear (n̄, k̄, m̄) convolutional codes specified by

x[i] =

 m̄∑
j=0

s†[i− j]Gj

†

,

where G0, . . . ,Gm̄ are generator matrices over Fk̄×n̄
q .

The first T + 1 output packets can be expressed as,

[x[0],x[1], . . . ,x[T ]] = [s[0], s[1], . . . , s[T ]] ·Gs
T . (74)

where

Gs
T =


G0 G1 . . . GT

0 G0 GT−1

...
. . .

...
0 . . . G0

 (75)

is the truncated generator matrix to the first T + 1 columns.
Note that Gj = 0 if j > m.

Definition 3 (Column Distance). The column distance of Gs
T

in (75) is defined as

dT = min
s≡[s[0],s[1],...,s[T ]]

s[0]̸=0

wt([x[0], . . . ,x[T ]]) (76)

where wt([x[0], . . . ,x[T ]]) counts the number of non-zero
elements in the T + 1 length vector.

Intuitively, the column distance of the convolutional code
finds the codeword sequence of minimum Hamming weight
in the interval [0, T ] that diverges from the all zero state at
time t = 0. We refer the reader to [29, Chapter 3] for some
properties of dT .

Fact 1. A convolutional code with a column distance of dT can
recover every information packet with a delay of T provided
the channel introduces no more than N = dT − 1 erasures in
any sliding window of length T + 1. Conversely there exists
at-least one erasure pattern with dT erasures in a window
of length T + 1 where the decoder fails to recover all source
packets.

Proof. Consider the interval [0, T ] and consider two input
sequences (s[0], . . . , s[T ]) and (s′[0], . . . , s′[T ]) with s[0] ̸=
s′[0]. Let the corresponding output be (x[0], . . . ,x[T ]) and
(x′[0], . . . ,x′[T ]). Note that the output sequences differ in
at-least dT indices since otherwise the output sequence
(x[0]− x′[0], . . . ,x[T ]− x′[T ]) which corresponds to (s[0]−
s′[0], . . . , s[T ] − s′[T ]) has a Hamming weight less than dT
while the input s[0] − s′[0] ̸= 0, which is a contradiction.
Thus, if (s[0], . . . , s[T ]) is the input source sequence, for any
sequence of dT − 1 or fewer erasures, there will be at-least
one packet where (x′[0], . . . ,x′[T ]) differs from the received

Fig. 25: Trellis diagram showing a streaming code. Since the
delay constraint is T packets, the corresponding generator
matrix is truncated at time T (cf. (74)) and hence nodes after
time T are irrelevant. Also, according to the column distance
and column span definitions in Def. 3 and Def. 4, only paths
diverging from all zero path at the starting point are considered
to calculate these metrics. The red solid path is one example
of these paths while the dashed line is not considered.

sequence. Thus, s[0] is recovered uniquely at time T . Once
s[0] is recovered we can cancel its contribution from all the
future packets and repeat the same argument for the interval
[1, T + 1] to recover s[1] and proceed.

Conversely there exists at-least one output sequence whose
Hamming weight equals dT and the input packet s[0] ̸= 0. By
erasing all the non-zero dT positions for this output sequence,
we cannot distinguish it from the all-zero sequence.

To the best of our knowledge the column span of a con-
volutional code was first introduced in [2] in the context of
low-delay codes for burst erasure channels.

Definition 4 (Column Span). The column span of Gs
T in (75)

is defined as

cT = min
s≡[s[0],s[1],...,s[T ]]

s[0]̸=0

span([x[0], . . . ,x[T ]]) (77)

where span([x[0], . . . ,x[T ]]) equals the support of the under-
lying vector, i.e., span([x[0], . . . ,x[T ]]) = j − i+ 1, where j
is the last index where x is non-zero and i is the first such
index.

Fact 2. Consider a channel that introduces no more than
a single erasure burst of maximum length B in any sliding
window of length T + 1. A necessary and sufficient condition
for a convolutional code to recover every erased packet with
a delay of T is that cT > B.

The justification is virtually identical to the proof of Fact 1
and is omitted.

It follows from Facts 1 and 2 that a necessary and sufficient
condition for any convolutional code to recover each source
packet with a delay of T over a channel C(N,B,W = T+1) is
that both dT > N and cT > B. Thus, specializing Theorem 1
and 2 to W = T +1 we are now able to prove Prop. 1, which
is stated below for convenience.

Proposition (A Fundamental Tradeoff between Column Dis-
tance and Column Span). For any (n̄, k̄, m̄) convolutional
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code and an integer T > 0 we have that the column distance
dT and column span cT must satisfy

R

1−R
cT + dT ≤ T + 1 +

1

1−R
(78)

where R = k̄
n̄ denotes the rate of the code. Furthermore, for

any T > 0 there exists a (n̄, k̄, m̄) convolutional code with
column distance dT and column span cT , over a sufficiently
large field-size such that,

R

1−R
cT + dT ≥ T +

1

1−R
(79)

□

Proof. To establish (78), consider any convolutional code
with a column distance dT and column span cT . From the
sufficiency parts of Facts 1 and 2 such a code is feasible over
the channel C(N = dT − 1, B = cT − 1,W = T + 1) with
delay T . Thus, it must satisfy the upper bound (1). Substituting
N = dT − 1 and B = cT − 1 immediately gives (78).

To establish (79), consider the code that satisfies the lower
bound in (2) in Theorem 2. From the necessity parts of Facts 1
and 2 such a code must satisfy cT ≥ B+1 and dT ≥ N +1.
Substituting in (2) immediately leads to (79).

As a final remark we note Facts 1 and 2 also immediately
apply to any channel with W ≥ T + 1. In particular, any
erasure pattern for the C(N,B,W ) channel with W ≥ T+1 is
also feasible for C(N,B,W = T +1) and thus the sufficiency
follows. Furthermore, note that whenever W ≥ T + 1, any
erasure pattern in the interval [0, T ] used in the proof of the
necessity part can also be used for the channel C(N,B,W ).

APPENDIX B
PROOF OF LEMMA 1

In order to establish L1, we use the following property
regarding systematic m-MDS codes [5, Corollary 2.5]. Con-
sider the window of the first j + 1 packets of a (n̄, k̄, m̄)
convolutional code and let the truncated codeword associated
with the input sequence (s[0], . . . , s[j]) be (x[0], . . . ,x[j]),
where each x[i] is expressed as in (14). Then the j-th (symbol
level) column distance12 is defined as

dcj = min
s≡(s[0],...,s[j])

s[0]̸=0

wtc(x[0], . . . ,x[j]), (80)

where recall that each channel packet x[i] has n̄ symbols, i.e.,
x[i] = (x0[i], . . . , xn̄−1[i]) and wtc(v) counts the number of
non-zero symbols in the codeword v.

It is well-known that for any (n̄, k̄, m̄) convolutional code
dcj ≤ (n̄ − k̄)(j + 1) + 1 for all j ≥ 0. A special class of
convolutional codes – systematic m-MDS codes – satisfy this
bound with equality for j = {0, . . . , m̄} [5, Corollary 2.5].

The proof of property L1 follows by using an argument
similar to that in the proof of Fact 1 in Appendix A. We will
omit it as the argument is completely analogous.

12This differs from (76) in that we measure the Hamming weight of symbols
rather than the packets x[j].

To establish L2, we use the notation Wi(l) to denote a
window of length l · n̄ starting at time i · n̄, i.e., Wi(l) ≜
[i · n̄, (i + l)n̄ − 1] (see Fig. 26). We show that the entire
erasure burst can be recovered through the following steps.

• In the window W0(j+1) = [0, (j+1)n̄−1], the channel
introduces B̂ ≤ (n̄−k̄)(j+1) erasures. Hence, we use L1
to recover s[0] = (s0[0], . . . , sk̄−1[0]) at time (j+1)n−1
among which only the last k̄ − c symbols are erased.
At this point we can also compute the n̄ − k̄ symbols
of p[0] = (p0[0], . . . , pn̄−k̄−1[0]). Thus, all the symbols
until time t = n̄ − 1 have now been recovered by the
decoder.

• The next window W1(j) = [n̄, (j + 1)n̄ − 1] has B̂ −
(n̄− c) < j(n̄− k̄) erasures since c < k̄. Hence, L1 can
be used to recover s[1] at time (j+1)n̄− 1 and p[1] can
be computed consequently.

• Similarly, W2(j−1) = [2n̄, (j+1)n̄−1] has B̂−(n̄−c)−
n̄ < (n̄− k̄)(j − 1) erasures which implies the recovery
of s[2] at time (j + 1)n̄− 1.

• Repeating the previous step for Wi(j−i+1) = [i·n̄, (j+
1)n̄−1] and i · n̄ ≤ c+ B̂−1, one can recover all erased
packets in the erasure burst at time (j + 1)n̄− 1.

The proof of L2 is thus complete. The claim in L3 is
a generalization of L2, as it permits the erasure pattern to
have both burst and isolated erasures, but only guarantees the
recovery of the burst erasure. To establish L3 we can proceed
in a similar fashion as above and stop when the recovery of
the erasure burst is complete.

APPENDIX C
DECODING ANALYSIS OF MIDAS CODE WITH MDS

CONSTITUENT CODES

In the decoding analysis, it is sufficient to show that each
source packet s[i] can be recovered at time t = i+ Teff if there
is either an erasure burst of length B or up to N isolated
erasures in the interval [i, i+ Teff ].

A. Burst Erasure

First consider the case when a burst erasure spans [i, i +
B − 1]. Following this burst, we are guaranteed that for the
C(N,B,W ) channel, there are no erasures in the interval [i+
B, i+Teff+B−1]. We argue that the decoder can first recover
v[i], . . . ,v[i+B−1] simultaneously by time t = i+Teff−1 and
then recover u[i] at time t = i+Teff by computing pv[i+Teff ]
and then u[i] = q[i+Teff ]−pv[i+Teff ]. To show the recovery
of v[i], . . . ,v[i+B−1], note that there are no erasures in the
interval spanning [i+B, i+ Teff − 1] and the interfering u[·]
sub-packets in q[t] = u[t−Teff ]+pv[t] can be subtracted out
to recover pv[t]. The diagonal codewords

{
cvj [r]

}
spanning

v[i], . . . ,v[i+B− 1] start at r ∈ {i− (Teff −B)+ 1, . . . , i+
B − 1}. Each such codeword belongs to a (Teff , Teff − B)
MDS code. Hence, if no more than B erasures take place in
each codeword, the erased packets can be recovered. However,
we still need to take the delay into account. We first note that
the v[·] sub-packets in the interval [i, i + B − 1] are erased.
Also, the q[·] packets in the interval [i+Teff , i+Teff +B−1]
combine u[·] which are erased and thus the corresponding p[·]
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Fig. 26: An erasure channel with B̂ erasures in a burst starting at time c used in proving L2 in Lemma 1. Grey and white
squares resemble erased and unerased sub-symbols respectively.

packets must also be treated as erased. We split the diagonal
codewords of interest into two groups,

• r ∈ {i − (Teff − B) + 1, . . . , i}: These codewords end
before time i + Teff where there are only B erased
columns in the interval [i, i+B − 1].

• r ∈ {i+1, . . . , i+B− 1}: Each of these codewords has
Teff −B symbols in the interval [i+B, i+Teff−1] which
are not erased. Since the length of each codeword is Teff ,
then the number of erasures are at most Teff−(Teff−B) =
B.

We note that all the considered diagonal codewords
{
cvj [r]

}
for r ∈ {i− (Teff − B) + 1, . . . , i+ B − 1} end before time
i+Teff +B. Also, the p[·] parities in the interval [i+Teff , i+
Teff + B − 1] cannot be used as discussed earlier. Thus, it
follows that the corresponding v[·] sub-packets are recovered
by i+ Teff − 1.

B. Isolated Erasures

Next we show that when there are N erasures in arbitrary
locations in the interval [i, i + Teff ], then u[i] is guaranteed
to be recovered by time t = i + Teff , and v[i] is guaranteed
to be recovered by time t = i + Teff − 1. For the recovery
of u[i] we note that the codewords

{
cuj [r]

}
that include u[i]

start at r ∈ {i − (Teff − N), . . . , i}. Since each cuj [r] is a
(Teff + 1, Teff − N + 1) MDS code, and there are no more
than N erasures on each such sequence, it follows that all
the erased packets are guaranteed to be recovered by time
i+Teff . The recovery of u[i] by time t = i+Teff now follows.
For recovering v[i], we consider the non-erased parity-check
packets pv[t] for t ∈ [i, i + Teff − 1], which can be obtained
by cancelling the interfering u[t−Teff ] sub-packets from q[t]
as discussed in the case of burst erasure above. Notice that
the diagonal codewords

{
cvj [r]

}
spanning v[i] start at r ∈

{i−(Teff−B)+1, . . . , i} and terminate by time i+Teff−1. It
follows that each such sequence has no more than N erasures
and hence all the erased v[i] sub-packets are recovered by time
t = i+ Teff − 1.

APPENDIX D
PROOF OF LEMMA 3

We need to show that the total erased symbols
(vvec[·],pvec[·]) between macro-packets i to macro-packet

i+ T , i.e., in the following sequence,{
vvec[t],pvec[t]

}
i≤t≤i+T

=(
v0[i], . . . , vkv−1[i], p0[i], . . . , pku−1[i],

v0[i+ 1], . . . , vkv−1[i+ 1], p0[i+ 1], . . . , pku−1[i+ 1]

, . . . ,

v0[i+ T ], . . . , vkv−1[i+ T ], p0[i+ T ], . . . , pku−1[i+ T ]

)
,

(81)

after the cancellation of u[·] sub-packets does not exceed
ku(T + 1). We start by considering that the burst begins at
j = 1 and subsequently consider other cases in Table XIII.
For the case when j = 1 we consider two cases.

• B′ > b
T+bM : We first show that the total number

symbols erased in vvec[·] and pvec[·] due to the burst in
the macro-packets i, i+1, . . . , i+ b equals kuT = B ·T .
Furthermore, in macro-packet i + T , the parity-checks
pvec[i+ T ] combine with uvec[i] which are also erased.
Hence, these symbols contribute to additional ku erasures
leading to a total of ku(T + 1) erased symbols.
Note that the erasure burst spans the entire macro-packets
X[i, :], . . . ,X[i+ b−1, :] as well as x[i+ b, 1], . . . ,x[i+
b, B′]. The total number of symbols in vvec[t] and pvec[t]
in each macro-packet is kv+ku = M(T + b+1)−B. In
the b-th macro-packet, we only have the first B′ columns
erased. Out of these, the first ku symbols are from the
uvec[·] sub-packets whereas the remaining B′n − ku =
B′(T + b + 1) − B symbols come from vvec[i + b] and
pvec[i+ b] . It can be easily verified that B′(T + b+1)−
B ≥ 0. Hence, the total number of erased symbols of
vvec[t] and pvec[t] is

b(ku + kv) +B′n− ku

= b(M(T + b+ 1)−B) +B′(T + b+ 1)− ku

= B(T + b+ 1)− bB − ku

= B(T + 1)− ku = Tku (82)

where we use the fact that ku = B in our code
construction and B = bM +B′.

• B′ ≤ b
T+bM : Again the macro-packets X[i, :], . . . ,X[i+

b − 1, :] are completely erased and each contributes to
b(kv+ku) = b(M(T+b)−Mb) erasures. In the X[i+b, :],
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TABLE XIII: Different erasure patterns considered in the analysis of the decoder. The index j at the left of each row, indicates
the starting location of each burst in macro-block i. The shaded blocks shows the symbols that are erased.

j = 1 u[i, 1]. u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = 2 u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = r + 1 u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = r + 2 u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = r + 3 u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = M − r u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

j = M − r + 1 u[i, 1] u[i, 2] · · · u[i, r]
u[i, r + 1]
v[i, 1]

v[i, 2] v[i, 3] · · · v[i,M − 2r − 1]
q[i, r + 1]

v[i,M − 2r]
q[i, r] · · · q[i, 1]

only the symbols in uvec[i + b] are erased as it can be
easily verified that B′n ≤ ku. Finally, as in the previous
case all the symbols in vvec[i + T ] in macro-packet i +
T that combine with uvec[i] must be considered erased.
Thus, the total number of erased symbols is b(M(T +
b)−Mb) + ku = bMT + ku = ku(T + 1).

To establish the claim for j = 2, 3, . . . ,M − r it suffices to
show the following lemma

Lemma 4. Let Nj denote the total number of erased symbols
in {vvec[t],pvec[t]} after the cancellation of non-erased uvec[·]
sub-packets when the erasure burst begins at x[i, j]. Then we
have that Nj ≤ Nj−1 for each j = 2, 3, . . . ,M − r.

Lemma 4 establishes that the worst case erasure sequence is
the one that begins at j = 1. Since we have already established
that the total number of erasures in {vvec[t],pvec[t]} in this
case does not exceed ku(T +1), this will complete our claim.

To establish Lemma 4, we note that going from the burst
pattern that starts at x[i, j] to the pattern that start at x[i, j+1]
results in one extra erased channel packet at the end. Also, it
results in revealing the first channel packet which is x[i, j].
We assume (as a worst case) that the extra erased channel
packet at the end contributes to n additional erased symbols
of either vvec[·] or pvec[·]. We consider the effect of revealing
the channel packet x[i, j] and show that it always compensates
exactly n new unerased packets of either vvec[·] or pvec[·].
Thus, we do not increase the total number of erased packets
in such a transition.

Recall that x[i, j] can be one of the following (cf. Ta-
ble XIII),

x[i, j] =



u[i, j] j = {1, . . . , r}[
u[i, r + 1]

v[i, 1]

]
j = r + 1

v[i, j − r] j = {r + 2, . . . ,M − r − 1}[
q[i, r + 1]

v[i, j − r]

]
j = M − r

q[i,M − j + 1] j = {M − r + 1, . . . ,M}.
(83)

• j = {1, · · · , r}: In the case under consideration, the
revealed x[i, j] is always u[i, j] . It can be subtracted

from q[i + T, j] to recover p[i + T, j] ∈ pvec[·] having
n symbols. Thus, it compensates for the n extra erased
symbols.

• j = r+1: The r′ symbols of u[i, r+1] helps in recovering
the r′ symbols of p[i+ T, r+1] ∈ pvec[·]. This together
with the revealed n − r′ symbols of v[i, 1] ∈ vvec[·]
compensates for the n extra erasures.

• j = {r + 2, . . . ,M − r − 1}: In this case, the revealed
channel packet is x[i, j] = v[i, j − r] ∈ vvec[·] and has
n symbols which are now available at the decoder.

• j = M − r: As shown in Table XIII, the decoder can
subtract u[i− T, r+1] from q[i, r+1] to recover the r′

symbols p[i, r+1] ∈ pvec[·]. This together with the n−r′

symbols of v[i, j− r] ∈ vvec[·] add up to n symbols and
the claim follows.

This establishes Lemma 4 and in turn the proof of Lemma 3
is complete.
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