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Abstract

We establish precise structural and risk equivalences between subsampling and
ridge regularization for ensemble ridge estimators. Specifically, we prove that linear
and quadratic functionals of subsample ridge estimators, when fitted with different
ridge regularization levels λ and subsample aspect ratios ψ, are asymptotically
equivalent along specific paths in the (λ, ψ)-plane (where ψ is the ratio of the
feature dimension to the subsample size). Our results only require bounded moment
assumptions on feature and response distributions and allow for arbitrary joint
distributions. Furthermore, we provide a data-dependent method to determine
the equivalent paths of (λ, ψ). An indirect implication of our equivalences is that
optimally-tuned ridge regression exhibits a monotonic prediction risk in the data
aspect ratio. This resolves a recent open problem raised by Nakkiran et al. [1]
under general data distributions and mild regularity conditions.

1 Introduction

Ensemble methods, such as bagging [2, 3], are powerful tools that combine weak predictors to
improve predictive stability and accuracy. This paper focuses on sampling-based ensembles, which
exhibit an implicit regularization effect [4–6]. Specifically, we investigate subsample ridge ensembles,
where the ridge predictors are fitted on independently subsampled datasets [7–9]. Recent work has
demonstrated that a full ensemble (that is fitted on all possible subsampled datasets) of ridgeless [10]
predictors achieves the same squared prediction risk as a ridge predictor fitted on full data [11–13].

To be precise, let ϕ be the limiting dataset aspect ratio p/n, where p is the feature dimension, and
n is the number of observations. For a given ϕ, the limiting prediction risk of subsample ridge
ensembles is parameterized by (λ, ψ), where λ ≥ 0 is the ridge regularization parameter and ψ ≥ ϕ
is the limiting subsample aspect ratio p/k, with k being the subsample size [11, 12]. Under isotropic
features and a well-specified linear model, [11, 12] show that the squared prediction risk at (0, ψ∗)
(the optimal ridgeless ensemble) is the same as the risk at (λ∗, ϕ) (the optimal ridge), where ψ∗

and λ∗ are the optimal subsample aspect ratio and ridge penalty, respectively. Furthermore, this
equivalence of prediction risk between subsampling and ridge regularization is extended in [13] to
anisotropic linear models. As an application, [13] also demonstrates how generalized cross-validation
for ridge regression can be naturally transferred to subsample ridge ensembles. In essence, these
results suggest that subsampling a smaller number of observations has the same effect as adding an
appropriately larger level of ridge penalty. These findings prompt two important open questions:

(a) The extent of equivalences. The previous works all focus on equivalences of the squared
prediction risk when the test distribution matches the train distribution. In real-world scenarios,
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Table 1: Comparison with related work. The marker “✓◦” indicates a partial equivalence result
connecting the optimal prediction risk of the ridge predictor and the full ridgeless ensemble predictor.

Type of equivalence results Type of data assumptions
pred. risk gen. risk estimator response feature lim. spectrum

LeJeune et al. [11] ✓◦ linear isotropic
Gaussian exists

Patil et al. [12] ✓◦ linear isotropic
RMT exists

Du et al. [13] ✓ linear anisotropic
RMT exists

This work ✓ ✓ ✓ arbitrary anisotropic
RMT need not exist

however, there are often covariate and label shifts, making it crucial to consider prediction risks
under such shifts. In addition, other risk measures, such as training error, estimation risk, coefficient
errors, and more, are also of interest in various inferential tasks. A natural question is then whether
similar equivalences hold for such “generalized” risk measures. At a basic level, the question boils
down to whether any equivalences exist at the “estimator level”. Answering this question would
establish a connection between the ensemble and the ridge estimators, facilitating the exchange of
various downstream inferential statements between the two sets of estimators.

(b) The role of linear model. All previous works assume a well-specified linear model between the
responses and the features, which rarely holds in practical applications. A natural question is
whether the equivalences hold for arbitrary joint distributions of the response and the features or
whether they are merely an artifact of the linear model. Addressing this question broadens the
applicability of such equivalences beyond simplistic models to real-world scenarios, where the
relationship between the response and the features is typically intricate and unknown.

We provide answers to questions raised in both directions. We demonstrate that the equivalences hold
for the generalized squared risks in the full ensemble. Further, these equivalences fundamentally
occur at the estimator level for any arbitrary ensemble size. Importantly, these results are not limited
to linear models of the data-generating process. Below we provide a summary of our main results.

1.1 Summary of contributions

(1) Risk equivalences. We establish asymptotic equivalences of the full-ensemble ridge estimators
at different ridge penalties λ and subsample ratios ψ along specific paths in the (λ, ψ)-plane
for a variety of generalized risk functionals. This class of functionals includes commonly used
risk measures (see Table 2), and our results hold for both independent and dependent coefficient
matrices that define these risk functionals (see Theorem 1 and Proposition 2). In addition, we
demonstrate that the equivalence path remains unchanged across all the functionals examined.

(2) Structural equivalences. We establish structural equivalences in the form of linear functionals of
the ensemble ridge estimators, which hold for arbitrary ensemble sizes (see Theorem 3). Our proofs
for both structural and risk equivalences exploit properties of certain fixed equations that arise in
our analysis, enabling us to explicitly characterize paths that yield equivalent estimators in the
(λ, ψ)-plane (see Equation (5)). In addition, we provide an entirely data-driven construction of this
path using certain companion Stieltjes transform relations of random matrices (see Proposition 4).

(3) Equivalence implications. As an implication of our equivalences, we show that the prediction
risk of an optimally-tuned ridge estimator is monotonically increasing in the data aspect ratio
under mild regularity conditions (see Theorem 6). This is an indirect consequence of our general
equivalence results that leverages the provable monotonicity of the subsample-optimized estimator.
Under proportional asymptotics, our result settles a recent open question raised by Nakkiran
et al. [1, Conjecture 1] concerning the monotonicity of optimal ridge regression under anisotropic
features and general data models while maintaining a regularity condition that preserves the
linearized signal-to-noise ratios across regression problems.

(4) Generality of equivalences. Our main results apply to arbitrary responses with bounded 4 + µ
moments for some µ > 0, as well as features with similar bounded moments and general
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covariance structures. We demonstrate the practical implications of our findings on real-world
datasets (see Section 6). On the technical side, we extend the tools developed in [14] to handle the
dependency between the linear and the non-linear components and obtain model-free equivalences.
Furthermore, we extend our analysis to include generalized ridge regression (see Corollary 5).
Through experiments, we demonstrate the universality of the equivalences for random and kernel
features and conjecture the associated data-driven prediction risk equivalence paths (see Section 6).

1.2 Related work

Ensemble learning. Ensemble methods yield strong predictors by combining weak predictors [15].
The most common strategy for building ensembles is based on subsampling observations, which
includes bagging [2, 3], random forests [16], neural network ensembles [17–19], among the others.
The effect of sampling-based ensembles has been studied in the statistical physics literature [20–22]
as well as statistical learning literature [2, 3]. Recent works have attempted to explain the success
of ensemble learning by suggesting that subsampling induces a regularizing effect [4, 6]. Under
proportional asymptotics, the effect of ensemble random feature models has been investigated in
[23–25]. There has been growing interest in connecting the effect of ensemble learning to explicit
regularization: see [26] for related experimental evidence under the umbrella of “mini-patch” learning.
Towards making these connections precise, some work has been done in the context of the ridge and
ridgeless ensembles: [11–13] investigate the relationship between subsampling and regularization for
ridge ensembles in the overparameterized regime. We will delve into these works in detail next.

Ensembles and ridge equivalences. In the study of ridge ensembles, LeJeune et al. [11] show that
the optimal ridge predictor has the same prediction risk as the ridgeless ensemble under the Gaussian
isotropic design, which has been extended in [12] for RMT features (see Assumption 2 for definition).
Specifically, these works establish the prediction risk equivalences for a specific pair of (λ∗, ϕ) and
(0, ψ∗). The results are then extended to the entire range of (λ, ψ) using deterministic asymptotic
risk formulas [13], assuming a well-specified linear model, RMT features, and the existence of a
fixed limiting spectral distribution of the covariance matrix. Our work significantly broadens the
scope of results connecting subsampling and ridge regularization. In particular, we allow for arbitrary
joint distributions of the data, anisotropic features with only bounded moments, and do not assume
the convergence of the spectrum of the population covariance matrix. Furthermore, we expand the
applicability of equivalences to encompass both the estimators and various generalized squared risk
functionals. See Table 1 for an explicit comparison and Section 3 for additional related comparisons.

Other ridge connections. Beyond the connection connections between implicit regularization
induced by subsampling and explicit ridge regularization examined in this paper, ridge regression
shares ties with various other forms of regularization. For example, ridge regression has been
linked to dropout regularization [27, 28], variable splitting in random forests [2], noisy training
[29, 30], random sketched regression [31–33], various forms of data augmentation [34], feature
augmentation [9, 35], early stopping in gradient descent and its variants [36–39], among others.
These connections highlight the pervasiveness and the significance of understanding various “facets”
of ridge regularization. In that direction, our work contributes to expand the equivalences between
subsampling and ridge regularization.

2 Notation and preliminaries

Ensemble estimators. Let Dn = {(xi, yi) : i ∈ [n]} be a dataset containing i.i.d. samples in Rp×R.
Let X ∈ Rn×p and y ∈ Rn be the feature matrix and response vector with x⊤

i and yi in i-th rows.
For an index set I ⊆ [n] of size k, let DI = {(xi, yi) : i ∈ I} be the associated subsampled dataset.
Let LI ∈ Rn×n be a diagonal matrix such that its i-th diagonal entry is 1 if i ∈ I and 0 otherwise.
Note that the feature matrix and response vector associated with DI respectively are LIX and LIy.
Given a ridge penalty λ > 0, the ridge estimator fitted on DI consisting of k samples is given by:

β̂λk (DI) = argmin
β∈Rp

1

k

∑
i∈I

(yi − x⊤
i β)

2 + λ∥β∥22 =

(
1

k
X⊤LIX + λIp

)−1
X⊤LIy

k
. (1)

The ridgeless estimator β̂0
k(DI) = (X⊤LIX/k)+X⊤LIy/k is obtained by sending λ → 0+,

where M+ denotes the Moore-Penrose inverse of matrix M . To define the ensemble estimator, denote
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Table 2: Summary of various generalized risks and their corresponding statistical learning problems.
The asymptotic equivalences between subsampling and ridge regularization are analyzed in Theorem 1
and Proposition 2 for generalized risks (3) defined through functionals LA,b for various A and b.

Statistical learning problem LA,b(β̂ − β0) A b nrow(A)

vector coefficient estimation β̂ − β0 Ip 0 p

projected coefficient estimation a⊤(β̂ − β0) a⊤ 0 1

training error estimation Xβ̂ − y X −fNL n

in-sample prediction X(β̂ − β0) X 0 n

out-of-sample prediction x⊤
0 β̂ − y0 x⊤

0 −ε0 1

the set of all k distinct elements from [n] by Ik = {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n}.
For λ ≥ 0, the M -ensemble and the full-ensemble estimators are respectively defined as follows:

β̂λk,M (Dn; {Iℓ}Mℓ=1) =
1

M

∑
ℓ∈[M ]

β̂λk (DIℓ), and β̂λk,∞(Dn) = E[β̂λk (DI) | Dn]. (2)

Here {Iℓ}Mℓ=1 and I are simple random samples from Ik. In (2), the full-ensemble ridge estimator
β̂λk,∞(Dn) is the average of predictors fitted on all possible subsampled datasets. It is shown in Lemma
A.1 of [13] that β̂λk,∞(Dn) is also asymptotically equivalent to the limit of β̂λk,M (Dn; {Iℓ}Mℓ=1) as
the ensemble size M → ∞ (conditioning on the full dataset Dn). This also justifies using ∞ in the
subscript to denote the full-ensemble estimator. For brevity, we simply write the estimators as β̂λk,M ,
β̂λk,∞, and drop the dependency on Dn, {Iℓ}Mℓ=1. We will show certain structural equivalences in
terms of linear projections in the family of estimators β̂λk,M along certain paths in the (λ, p/k)-plane
for arbitrary ensemble size M ∈ N ∪ {∞} (in Theorem 3). Apart from connecting the estimators,
we will also show equivalences of various notions of risks (in Theorem 1), which we describe next.

Generalized risks. Since the ensemble ridge estimators are linear estimators, we evaluate their
performance relative to the oracle parameter: β0 = E[xx⊤]−1E[xy], which is the best (population)
linear projection of y onto x and minimizes the linear regression error (see, e.g., [40–42]). Note that
we can decompose any response y into: y = fLI(x) + fNL(x), where fLI(x) = β⊤

0 x is the oracle
linear predictor, and fNL(x) = y − fLI(x) is the nonlinear component that is not explained by fLI(x).
The best linear projection has the useful property that fLI(x) is (linearly) uncorrelated with fNL(x),
although they are generally dependent. It is worth mentioning that this does not imply that y and x
follow a linear regression model. Indeed, our framework allows any nonlinear dependence structure
between them and is model-free for the joint distribution of (x, y). Relative to β0, we measure the
performance of an estimator β̂ via the generalized mean squared risk defined compactly as follows:

R(β̂;A, b,β0) =
1

nrow(A)
∥LA,b(β̂ − β0)∥22, (3)

whereLA,b(β) = Aβ + b is a linear functional. Note that A and b can potentially depend on the data,
and their dimensions can vary depending on the statistical learning problem at hand. This framework
includes various important statistical learning problems, as summarized in Table 2. Observe that the
framework also includes various notions of prediction risks. One can use the test error formulation
in Table 2 to obtain the prediction risk at any test point (x0, y0), where y0 = x⊤

0 β0 + ε0, and ε0
may depend on x0 and have non-zero mean. This also permits the test point to be drawn from a
distribution that differs from the training distribution. Specifically, when ε0 = fNL(x0) but x0 has a
distribution different from x, we obtain the prediction error under covariate shift. Similarly, when
ε0 ̸= fNL(x0) but x0 and x have the same distribution, we get the prediction error under label shift.

Asymptotic equivalence. For our theoretical analysis, we consider the proportional asymptotics
regime, where the ratio of the feature size p to the sample size n tends to a fixed limiting data
aspect ratio ϕ ∈ (0,∞). To concisely present our results, we will use the elegant framework of
asymptotic equivalence [12, 43, 44]. Let Ap and Bp be sequences of (additively) conformable
matrices of arbitrary dimensions (including vectors and scalars). We say that Ap and Bp are asymp-
totically equivalent, denoted as Ap ≃ Bp, if limp→∞ | tr[Cp(Ap −Bp)]| = 0 almost surely for any
sequence of random matrices Cp with bounded trace norm that are (multiplicatively) conformable
and independent of Ap and Bp. Note that for sequences of scalar random variables, the definition
simply reduces to the typical almost sure convergence of sequences of random variables involved.
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Figure 1: Heat map of the various generalized risks (estimation risk, training error, prediction risk,
out-of-distribution (OOD) prediction risk) of full-ensemble ridge estimators (approximated with
M = 100), for varying ridge penalties λ and subsample aspect ratios ψ = p/k on the log-log scale.
The data model is described in Appendix F.2 with p = 500, n = 5000, and ϕ = p/n = 0.1. Observe
that along the same path the values match well for all risks, in line with Theorem 1 and Proposition 2.

3 Generalized risk equivalences of ensemble estimators

We begin by examining the risk equivalences among different ensemble ridge estimators for various
generalized risks defined as in (3). To prepare for our upcoming results, we impose two structural
and moment assumptions on the distributions of the response variable and the feature vector.
Assumption 1 (Response variable distribution). Each response variable yi for i ∈ [n] has mean 0
and satisfies E[|yi|4+µ] ≤Mµ <∞ for some µ > 0 and a constant Mµ.
Assumption 2 (Feature vector distribution). Each feature vector xi for i ∈ [n] can be decomposed as
xi = Σ1/2zi, where zi ∈ Rp contains i.i.d. entries zij for j ∈ [p] with mean 0, variance 1, and satisfy
E[|zij |4+ν ] ≤ Mν < ∞ for some ν > 0 and a constant Mν , and Σ ∈ Rp×p is a deterministic and
symmetric matrix with eigenvalues uniformly bounded between constants rmin > 0 and rmax <∞.

Note that we do not impose any specific model assumptions on the response variable y in relation to
the feature vector x. We only assume bounded moments as stated in Assumption 1, making all of our
subsequent results model-free. The zero-mean assumption for y is for simplicity since, in practice,
centering can always be done by subtracting the sample mean. The bounded moment condition
can also be satisfied if one imposes a stronger distributional assumption (e.g., sub-Gaussianity).
Assumption 2 on the feature vector is common in the study of random matrix theory [45, 46] and the
analysis of ridge and ridgeless regression [10, 47–49], which we refer to as RMT features for brevity.

Given a limiting data aspect ratio ϕ ∈ (0,∞) and a limiting subsample aspect ratio ψ ∈ [ϕ,∞], our
statement of equivalences between different ensemble estimators is defined through certain paths char-
acterized by two endpoints (0, ψ) and (λ, ϕ). These endpoints correspond to the subsample ridgeless
ensemble and the (non-ensemble) ridge predictor, respectively, with λ being the ridge penalty to be de-
fined next. For that, let Hp be the empirical spectral distribution of Σ: Hp(r) = p−1

∑p
i=1 1{ri≤r},

where ri’s are the eigenvalues of Σ. Consider the following system of equations in λ and v:
1

v
= λ+ ϕ

∫
r

1 + vr
dHp(r), and

1

v
= ψ

∫
r

1 + vr
dHp(r). (4)

Existence and uniqueness of the solution (λ, v) ∈ [0,∞]2 to the above equations are guaranteed by
Corollary E.4. Now, define a path P(λ;ϕ, ψ) that passes through the endpoints (0, ψ) and (λ, ϕ):

P(λ;ϕ, ψ) =
{
(1− θ) · (λ, ϕ) + θ · (0, ψ) | θ ∈ [0, 1]

}
. (5)

We are ready to state our results. We consider two cases for the generalized risk (3) depending on
the relationships between (A, b) and X . In the first case, when both A and b are independent of the
data, Theorem 1 shows that the generalized risks are equivalent along the path (5).
Theorem 1 (Risk equivalences when (A, b) ⊥⊥ (X,y)). Suppose Assumptions 1–2 hold. Let (A, b)
be independent of (X,y) such that nrow(A)−1/2∥A∥op and ∥b∥2 are almost surely bounded. Let
n, p → ∞ such that p/n → ϕ ∈ (0,∞). For any ψ ∈ [ϕ,+∞], let λ be as defined in (4). Then,
for any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ;ϕ, ψ) as defined in (5), the generalized risk
functionals (3) of the full-ensemble estimator are asymptotically equivalent:

R
(
β̂λ1

⌊p/ψ1⌋,∞;A, b,β0

)
≃ R

(
β̂λ2

⌊p/ψ2⌋,∞;A, b,β0

)
. (6)

In other words, Theorem 1 establishes the equivalences of subsampling and ridge regularization in
terms of generalized risk for many statistical learning problems, encompassing coefficient estimation,
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coefficient confidence interval, and test error estimation. All of these problems fall in the category
when (A, b) are independent of X . However, there are other statistical learning problems not covered
in Theorem 1, such as the in-sample prediction risk and the training error, which correspond to the
case when A = X . Fortunately, the equivalences also apply to them, as summarized in Proposition 2.
Proposition 2 (Risk equivalences when A = X). Under Assumptions 1–2, when A = X , the
conclusion in Theorem 1 continue to hold for the cases of in-sample prediction risk (b = 0) and
training error (b = −fNL).

Both Theorem 1 and Proposition 2 provide specific second-order equivalences for the full-ensemble
ridge estimators, in the sense that the quadratic functionals of the estimators associated with (A, b)
are asymptotically the same. See Figure 1 for visual illustrations of both equivalences. These
statements are presented separately because their proofs differ, with the proof for the dependent case
being more intricate. We note that by combining the risk functionals in Table 2, it is possible to
further extend the equivalences to other types of functionals not directly covered by statements above,
using composition and continuous mapping. For example, it is not difficult to show that similar
equivalences hold for the generalized cross-validation in the full ensembles [13]. This follows by
combining the result for training error from Proposition 2 and for denominator concentration proved
in Lemma 3.4 of [13].

Theorem 1 generalizes the existing equivalence results for the prediction risk [11–13] to include
general risk functionals under milder assumptions. As summarized in Table 1, we allow for a general
response model and feature covariance without assuming convergence of the spectral distributions
Hp to a fixed distribution H . This flexibility is achieved by showing equivalences of the underlying
resolvents in the estimators rather than deriving the limiting functionals as done in previous works.
To extend results allowing for a general response, we generalize certain concentration results by
leveraging tools from [14] to handle the dependency between the linear and non-linear components.

As alluded to earlier, it is worth noting that the generalized risk equivalences only hold in the
full ensemble. However, by using the risk decomposition obtained from Lemma S.1.1 of [12]
for finite ensembles, one can obtain the following relationship along the path in Theorem 3:
R
(
β̂λ1

⌊p/ψ1⌋,M ;A, b,β0

)
− R

(
β̂λ2

⌊p/ψ2⌋,M ;A, b,β0

)
≃ ∆/M, for some ∆ (independent of M )

that is eventually almost surely bounded. In other words, the difference between any two estimators
on the same path scales as 1/M when n is sufficiently large, as numerically verified in Figure F5.

4 Structural equivalences of ensemble estimators

The equivalences established in the previous section only hold for the full-ensemble estimators in a
second-order sense. We can go a step further and ask if there exist any equivalences for the finite
ensemble and if there are any equivalences at the estimator coordinate level between the estimators.
Specifically, we aim to inspect whether each coordinate of the p-dimensional estimated coefficients
asymptotically equals. This section establishes structural relationships between the estimators in a
first-order sense that any bounded linear functionals of them are asymptotically the same.
Theorem 3 (Structural equivalences). Suppose Assumptions 1–2 hold. Let n, p→ ∞ with p/n→
ϕ ∈ (0,∞). For any ψ ∈ [ϕ,+∞], let λ be as in (4). Then, for any M ∈ N ∪ {∞} and any pair of
(λ1, ψ1) and (λ2, ψ2) on the path (5), the M -ensemble estimators are asymptotically equivalent:

β̂λ1

⌊p/ψ1⌋,M ≃ β̂λ2

⌊p/ψ2⌋,M . (7)

Put another way, Theorem 3 implies that for any fixed ensemble size M , the M -ensemble ridgeless
estimator at the limiting aspect ratio ψ is equivalent to ridge regression at the regularization level λ.
This equivalence is visually illustrated in Figure 2, where the data is simulated from an anisotropic
and nonlinear model (see Appendix F.2 for more details). Furthermore, the contour path P(λ;ϕ, ψ)
connecting the endpoints (0, ψ) and (λ, ϕ) is a straight line, although it may have varying slopes.
Along any path, all M -ensemble estimators at the limiting aspect ratio ψ and ridge penalty λ are
equivalent for all (λ, ψ) ∈ P(λ;ϕ, ψ). The equivalences here are for any arbitrary linear combinations
of the estimators. In particular, this implies that the predicted values (or even any continuous function
applied to them due to the continuous mapping theorem) of any test point will eventually be the same,
almost surely, with respect to the training data. Finally, we remark that in the statement of Theorem 3,
the equivalence is defined on extended reals in order to incorporate the ridgeless case when ψ = 1.
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Figure 2: Heat map of the values of various linear functionals of ensemble ridge estimators a⊤β̂λk,M ,
for varying ridge penalties λ, subsample aspect ratios ψ = p/k, and ensemble size M on the log-log
scale. The data model is described in Appendix F.2 with p = 1000, n = 10000, and ϕ = p/n = 0.1.
(a) The values of the uniformly weighted projection for varying ensemble sizes (M = 1, 5, and 50). (b)
The values of M = 100 for varying projection vectors (uniformly weighted, random Gaussian, and
random student’s t). The black dashed line is estimated based on Proposition 4 with ψ = 2. Observe
that the values along the data-dependent paths are indeed very similar, in line with Proposition 4.

The paths (5) in Theorem 3 are defined via the spectral distribution Hp, which requires knowledge of
Σ. This is often difficult to obtain in practice from the observed data. Fortunately, we can provide an
alternative characterization for the path (5) solely through the data, as summarized in Proposition 4.
Proposition 4 (Data-dependent equivalence path characterization). Suppose Assumptions 1–2 hold.
Define ϕn = p/n. Let k ≤ n be the subsample size and denote by ψn = p/k. For anyM ∈ N∪{∞},
let λn be the value that satisfies the following equation in ensemble ridgeless and ridge gram matrices:

1

M

M∑
ℓ=1

1

k
tr

[(
1

k
LIℓXX⊤LIℓ

)+
]
=

1

n
tr

[(
1

n
XX⊤ + λnIn

)−1
]
. (8)

Define the data-dependent path Pn = P(λn;ϕn, ψn). Then, the conclusion in Theorem 3 continues
to hold if we replace the (population) path P by the (data-dependent) path Pn.

The term “data-dependent path” signifies that we can estimate the level of implicit regularization
induced by subsampling solely based on the observed data by solving (8). We remark that (8) always
has at least one solution for a given triplet of (n, k, p). This is because the right-hand side of (8) is
monotonically decreasing in λ, and the left-hand side always lies within the range of the right-hand
side. The powerful implication of the characterization in Proposition 4 is that it enables practical
computation of the path using real-world data. In Section 6, we will demonstrate this approach on
various real-world datasets, allowing us to predict an equivalent amount of explicit regularization
matching the implicit regularization due to subsampling.

One natural extension of the results is to consider the generalized ridge as a base estimator (1):

β̂λ,Gk (DI) = argmin
β∈Rp

1

k

∑
i∈I

(yi − x⊤
i β)

2 + λ∥G 1
2β∥22, (9)

where G ∈ Rp×p is a positive definite matrix. The equivalences still hold, albeit on different paths:
Corollary 5 (Equivalences for generalized ridge regression). Suppose Assumptions 1–2 hold. Let
G ∈ Rp×p be a deterministic and symmetric matrix with eigenvalues uniformly bounded between
constants gmin > 0 and gmax < ∞. Let n, p → ∞ such that p/n → ϕ ∈ (0,∞). For any
ψ ∈ [ϕ,+∞], let λ be as defined in (4) with Hp replaced H̃p, the empirical spectral distribution of
G−1/2ΣG−1/2. Then, the conclusions in Theorems 1 and 3 continue to hold for the generalized
ridge ensemble predictors.

Another extension of our results is to incorporate subquadratic risk functionals in Theorem 1 to derive
equivalences of the cumulative distribution functions of the predictive error distributions associated
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with the estimators along the equivalence paths. One can use such equivalences for downstream
inference questions. Finally, while our statements are asymptotic in nature, we expect a similar
analysis as done in [50] can yield finite-sample statements. We leave these extensions for the future.

5 Implications of equivalences

The generalized risk equivalences establish a connection between the risks of different ridge ensem-
bles, including the ridge predictors on full data and the full-ensemble ridgeless predictors. These
connections enable us to transfer properties from one estimator to the other. For example, by exam-
ining the impact of subsampling on the estimator’s performance, we can better understand how to
optimize the ridge penalty. We will next provide an example of this. Many common methods, such as
ridgeless or lassoless predictors, have been recently shown to exhibit non-monotonic behavior in the
sample size or the limiting aspect ratio. An open problem raised by Nakkiran et al. [1, Conjecture 1]
asks whether the prediction risk of the ridge regression with optimal ridge penalty λ∗ is monotonically
increasing in the data aspect ratio ϕ = p/n. The non-monotonicity risk behavior implies that more
data can hurt performance, and it’s important to investigate whether optimal ridge regression also
suffers from this issue. Our equivalence results provide a surprising (even to us) indirect way to
answer this question affirmatively under proportional asymptotics.

To analyze the monotonicity of the risk, we will need to impose two additional regularity assumptions.
Let Σ =

∑p
j=1 rjwjw

⊤
j denote the eigenvalue decomposition, where (rj ,wj)’s are pairs of associ-

ated eigenvalue and normalized eigenvector. The following assumptions ensure that the hardness of
the underlying regression problems across different limiting data aspect ratios is comparable.
Assumption 3 (Spectral convergence). We assume there exists a deterministic distribution H such
that the empirical spectral distribution of Σ, Hp(r) = p−1

∑p
i=1 1{ri≤r}, weakly converges to H ,

almost surely (with respect to x).
Assumption 4 (Limiting signal and noise energies). We assume there exists a deterministic distribu-
tion G such that the empirical distribution of β0’s (squared) projection onto Σ’s eigenspace, Gp(r) =
∥β0∥−2

2

∑p
i=1(β

⊤
0 wi)

2 1{ri≤r}, weakly converges to G. As n, p→ ∞ and p/n→ ϕ ∈ (0,∞), the
limiting linearized energy ρ2 = lim ∥β0∥22 and the limiting nonlinearized energy σ2 = lim ∥fNL∥2L2

are finite.

Assumption 3 is commonly used in random matrix theory and overparameterized learning [10, 12, 13]
and ensures that the limiting spectral distribution of the sample covariance matrix converges to a
fixed distribution. Under these assumptions, we show in Appendix C that there exists a deterministic
function R(λ;ϕ, ψ), such that R(β̂λk,∞;A, b,β0) ≃ R(λ;ϕ, ψ). Notably, the deterministic profile
on the right-hand side is a monotonically increasing and a continuous function in the first parameter
ϕ when limiting values of ∥β0∥22 and ∥fNL∥2L2

are fixed (i.e., when Assumption 4 holds). Moreover,
the deterministic risk equivalent of the optimal ridge predictor matches that of the optimal full-
ensemble ridgeless predictor; in other words, minλ≥0 R(λ;ϕ, ϕ) = minψ≥ϕ R(0;ϕ, ψ). The same
monotonicity property of the two optimized functions leads to the following result.
Theorem 6 (Monotonicity of prediction risk with optimal ridge regularization). Suppose the con-
ditions of Theorem 1 and Assumptions 3–4 hold. Let k, n, p → ∞ such that p/n → ϕ ∈ (0,∞)
and p/k → ψ ∈ [ϕ,∞]. Then, for A = Σ and b = 0, the optimal risk of the ridgeless ensemble,
minψ≥ϕ R(0;ϕ, ψ), is monotonically increasing in ϕ. Consequently, the optimal risk of the ridge
predictor, minλ≥0 R(λ;ϕ, ϕ), is also monotonically increasing in ϕ.

Under Assumptions 3 and 4, the linearized signal-to-noise ratio (SNR) is maintained at the same level
across varying distributions as ϕ changes. The key message of Theorem 6 is then that, for a sequence
of problems with the same SNR (indicating the same level of regression hardness), the asymptotic
prediction risk of optimized ridge risk gets monotonically worse as the aspect ratio of the problem
increases. This is intuitive because a smaller ϕ corresponds to more samples than features. In this
sense, Theorem 6 certifies that optimal ridge uses the available data effectively, avoiding sample-wise
non-monotonicity. Moreover, as the null risk is finite, this also shows that the optimal ridge estimator
mitigates the “double or multiple descents” behaviors in the generalization error [1, 5, 51].

Attempting to prove Theorem 6 directly is challenging due to the lack of a closed-form expression
for the optimal risk of ridge regression in general. Moreover, the risk profile of ridge regression,
R(λ;ϕ, ϕ), does not exhibit any particular structure as a function of λ. On the other hand, the risk
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Figure 3: Comparison of various linear functionals (Theorem 3) and generalized risk functionals
(Theorem 1) on different paths evaluated on CIFAR-10. The aspect ratios ϕ = p/n and ψ = 4ϕ are
estimated from the dataset and fixed. For different values of λψ (different colors), we estimate λ from
Proposition 4, which gives a path between (λψ, ψ) and (λ, ϕ). For each path, we uniformly sample 5
points and compute the functionals of the ridge ensemble using M = 100. The values of different
paths are then normalized by subtracting the mean value in the first path and dividing by the mean
difference of values on the last and first paths.

profile of the full-ensemble ridgeless, R(0;ϕ, ψ), has a very nice structure in terms of ψ. This,
coupled with our equivalence result, allows one to prove quite non-trivial behavior of optimal ridge.

6 Discussion

Motivated by the recent subsampling and ridge equivalences for the prediction risk [11–13], this paper
establishes generalized risk equivalences (Section 3) and structural equivalences (Section 4) within
the family of ensemble ridge estimators. Our results precisely link the implicit regularization of
subsampling to explicit ridge penalization via a path P defined in (5), which connects two endpoints
(0, ψ) and (λ, ϕ) regardless of the risk functionals. Furthermore, we provide a data-dependent method
(Proposition 4) to estimate this path. Our results do not assume any specific relationship between the
response variable y and the feature vector x. We next explore some extensions of these equivalences.

Real data. While our theoretical results assume RMT features (Assumption 2), we anticipate that
the equivalences will very likely hold under more general features [50]. To verify this, we examine
the equivalences in Proposition 4 with M = 100 on real-world datasets. Figure 3 depicts both the
linear functionals in Theorem 3 and the generalized quadratic functionals in Theorem 1 computed
along four paths, shown in different colors. We observe that the variation within each path is small,
while different paths have different functional values. This suggests that the theoretical finding in the
previous sections also hold quite well on real-world datasets. We investigate this further by varying ψ
on the three image datasets, CIFAR-10, MNIST, and USPS. Figure F6 shows similar values and trends
at the two points. These experiments demonstrate that the amount of explicit regularization induced
by subsampling can indeed be accurately predicted based on the observed data using Proposition 4.

Random features. Closely related to two-layer neural networks [52], we can consider the random
feature model, f(x;β,F ) = β⊤φ(Fx), where F ∈ Rd×p is some randomly initialized weight
matrix, and φ : R → R is a nonlinear activation function applied element-wise to Fx. As from
“universality/invariance”, certain random feature models are asymptotically equivalent to a surrogate
linear Gaussian model with a matching covariance matrix [53], we expect the theoretical results
in Theorems 3–1 to likely hold, although the relationship (4) will now depend on the non-linear
activation functions. Empirically, we indeed observe similar equivalence phenomena of the prediction
risks with random features ridge regression using sigmoid, ReLU, and tanh activation functions, as
shown in Figure 4. Analogous to Proposition 4, we conjecture a similar data-driven relationship
between (λn, ϕn) and (0, ψn) for random features X̃ = φ(XF⊤):

Conjecture 7 (Data-dependent equivalences for random features (informal)). Suppose Assumptions 1–
2 hold. Define ϕn = p/n. Let k ≤ n be the subsample size and denote by ψn = p/k. Suppose φ
satisfies certain regularity conditions. For any M ∈ N ∪ {∞}, let λn be the value that satisfies

1

M

M∑
ℓ=1

1

k
tr

[(
1

k
φ(LIℓXF⊤)φ(LIℓXF⊤)⊤

)+
]
=

1

n
tr

[(
1

n
φ(XF⊤)φ(XF⊤)⊤ + λnIn

)−1
]
.

9



0.1 1 10

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 Sigmoid

0.1 1 10
Subsample aspect ratio 

RuLU

0.1 1 10

Tanh

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.06

1.08

1.10

1.12

1.14

Figure 4: Heat map of prediction risks of full-ensemble ridge estimators (approximated with M =
100) using random features, for varying ridge penalties λ, subsample aspect ratios ψ = p/d on the
log-log scale. We consider random features φ(Fxi) ∈ Rd, where φ is an activation function (sigmoid,
ReLU, or tanh). The data model is described in Appendix F.5 with p = 250, d = 500, n = 5000, and
ϕ = d/n = 0.1. As in Theorem 1, we see clear risk equivalence paths across activations.

Define the data-dependent path Pn = P(λn;ϕn, ψn). Then, the conclusions in Theorem 1, Proposi-
tion 2, and Theorem 3 continue to hold on (φ(XF⊤),y) with P replaced by Pn.

Kernel features. We can also consider kernel ridge regression. For a given feature map Φ : Rp → Rd,
the kernel ridge estimator (in the primal form) is defined as:

β̂λk (DI) = argmin
β∈Rp

∑
i∈I

(k−1/2yi − k−1/2Φ(xi)
⊤β)2 + λ∥β∥22

∑
i∈I

(yi − Φ(xi)
⊤β)2 +

k

p
λ∥β∥22.

Leveraging the kernel trick, the preceding optimization problem translates to solving the follow-
ing problem (in the dual domain): α̂λk(DI) = argminα∈Rk α⊤ (KI + kλIk)α+α⊤yI , where
KI = ΦIΦ

⊤
I ∈ Rk×k is the kernel matrix and ΦI = (Φ(xi))i∈I ∈ Rn×d is the feature matrix. The

correspondence between the dual and primal solutions is simply given by: β̂λk (DI) = Φ⊤
I α̂

λ
k(DI).

Figure F7 illustrate results for kernel ridge regression using the same data-generating process as in the
previous subsection. The figure shows the prediction risk of kernel ridge ensembles for polynomial,
Gaussian, and Laplace kernels exhibit similar equivalence patterns, leading us to formulate an
analogous conjecture for kernel ridge regression (which when Φ(x) = x gives back Proposition 4
with appropriate rescaling of features):

Conjecture 8 (Data-dependent equivalences for kernel features (informal)). Suppose Assumptions 1–
2 hold. Define ϕn = p/n. Suppose the kernel K satisfies certain regularity conditions. Let k ≤ n be
the subsample size and denote by ψn = p/k. For any M ∈ N ∪ {∞}, let λn be a solution to

1

M

M∑
ℓ=1

tr
[
K+
Iℓ

]
= tr

[(
K[n] +

n

p
λnIn

)−1
]
.

Define the data-dependent path Pn = P(λn;ϕn, ψn). Then, the conclusions in Theorem 1, Proposi-
tion 2, and Theorem 3 continue to hold for kernel ridge ensembles with P replaced by Pn.

The empirical evidence here strongly suggests that the relationship between subsampling and ridge
regression, which we have proved for ridge regression, holds true at least when the gram matrix
“linearizes” in the sense of asymptotic equivalence [14, 54, 55]. This intriguing observation opens
up a whole host of avenues towards fully understanding the universality of this relationship and
establishing precise connections for a broader range of models [17, 18, 20, 21]. We hope to share
more on these compelling directions in the near future.

Tying other implicit regularizations. Finally, as noted in related work, the equivalences between
ridge regularization and subsampling established in this paper naturally offer opportunities to interpret
and understand the other implicit regularization effects such as dropout regularization [27, 28], early
stopping in gradient descent variants [36, 38, 39]. Furthermore, these equivalences provide avenues
to understand the combined effects of these forms of implicit regularization, such as the effects of
both subsample aggregating and gradient descent in mini-batch gradient descent, and contrast them
to explicit regularization. Whether the explicit regularization can always be cleanly expressed as
ridge-like regularization or takes a more generic form is an intriguing question. Exploring this is
exciting, and we hope our readers also share this excitement!
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Supplementary material for
“Generalized equivalences between

subsampling and ridge regularization”
This document serves as a supplement to the paper “Generalized equivalences betweensubsampling
and ridge regularization.” The initial (unnumbered) section of the supplement provides a summary of
the notation used in both the paper and supplement, followed by an organization for the supplement.

Notation. Below we provide an overview of the notation used throughout.

General notation:

Notation Description

Non-bold Denotes univariates (scalars, functions, distributions, etc.) (e.g., λ, f , H).
Bold lower case Denotes vectors (e.g., x, β).
Bold upper case Denotes matrices (e.g., X).
Calligraphic font Denotes sets (e.g., D).
Script font Denotes certain limiting functions (e.g., R in (27)).

N Set of positive integers.
R, R+ Set of real numbers and positive real numbers.
C, C+ Set of complex numbers and complex numbers with positive imaginary part.
[n] Set {1, . . . , n} for natural number n.

(x)+ The positive part of real number x.
⌊x⌋, ⌈x⌉ The floor and ceiling of real number x.
∥f∥L2 The L2 norm of function f , ∥f∥L2

= Ex[f
2(x)].

∥β∥2 The ℓ2 norm of vector β.
⟨v,w⟩ The inner product of vectors v and w.
X⊤, X+ The transpose and Moore-Penrose inverse of matrix X ∈ Rn×p.
tr[A], A−1 The trace and inverse (if invertible) of a square matrix A ∈ Rp×p.
Σ1/2 The principal square root of positive semi-definite matrix Σ.
Ip or I The p× p identity matrix.
∥X∥op The operator norm (spectral norm) of real matrix X .
∥X∥tr The trace norm (nuclear norm) tr[(X⊤X)1/2] of real matrix X .

f(A)
The matrix V f(R)V −1 where A = V RV −1 is eigenvalue decomposition,
and f(R) is f applied (elementwise) to the diagonals of R.

A ⪯ B The Loewner ordering for symmetric matrices A and B.
p−→, a.s.−−→, d−→ Almost sure convergence, convergence in probability, and weak convergence.

Specific notation:

Notation Description

(x, y) The population random vector in Rp × R.
Dn A dataset containing i.i.d. samples of (x, y): Dn = {(xi, yi) : i ∈ [n]}.
X,y The feature matrix in Rn×p and the response vector in Rn
DI A subsampled dataset DI = {(xi, yi) : i ∈ I}.
β̂λk (DI) A ridge estimator fitted on DI with |I| = k observations and ridge penalty λ.

β̂λk,M (Dn; {Iℓ}Mℓ=1)
An M -ensemble ridge estimator fitted on {DIℓ}Mℓ=1 with subsample size k
and ridge penalty λ.

β0
The best (population) linear projection coefficient of y onto x:
E[xx⊤]−1E[xy].

fLI(x) The best (population) linear projection of y onto x: x⊤β0.
fNL(x) The component of y that is not explained by x: y − x⊤β0.
fLI, fNL fLI = Xβ0, fNL = [fNL(xi)]i∈[n].
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A note on indexing of sequences:

In the subsequent sections, we will prove the results for n, k, p being a sequence of integers {nm}∞m=1,
{km}∞m=1, {pm}∞m=1. Alternatively, one can also view k and p as sequences kn and pn that are
indexed by n. For notational brevity, we drop the subscript when it is clear from the context.

Organization. Below we outline the structure of the rest of the supplement. The technical lemmas
refer to the main ingredients that we use to prove results in the corresponding sections.

Table 3: Outline of the supplement.

Section Description Technical lemmas

Appendix A Proof of Theorem 1, Proposition 2 (from Section 3) Lemma A.1, Lemma A.2,
Lemma A.3

Appendix B Proof of Theorem 3, Proposition 4, Corollary 5 (from
Section 4) Lemma B.1, Lemma B.2

Appendix C Proof of Theorem 6 (from Section 5) Lemma C.1

Appendix D New asymptotic equivalents, concentration results and
other useful lemmas (used in Appendices A–C)

Lemma D.1, Lemma D.2,
Lemma D.3, Lemma D.5

Appendix E Asymptotic equivalents: background and known
results (used in Appendices A–D)

Appendix F Additional details for all the experiments

A Proofs of results in Section 3

A.1 Proof of Theorem 1

Given an observation (x, y), recall the decomposition y = fLI(x)+fNL(x) explained in Section 2. For
n i.i.d. samples from the same distribution as (x, y), we define analogously the vector decomposition:

y = fLI + fNL, (10)

where fLI = Xβ0 and fNL = [fNL(xi)]i∈[n]. Let nA = nrow(A). Note that

R(β̂λk,∞;A, b,β0) = R(β̂λk,∞;A,0,β0) + 2n−1
A b⊤A(β̂λk,∞ − β0) + n−1

A ∥b∥22.

By Theorem 3, the cross term vanishes, i.e., n−1
A b⊤A(β̂λk,∞ − β0)

a.s.−−→ 0. We then have

|R(β̂λ1

k1,∞;A, b,β0)−R(β̂λ2

k2,∞;A, b,β0)|
a.s.−−→ |R(β̂λ1

k1,∞;A,0,β0)−R(β̂λ2

k2,∞;A,0,β0)|.

It suffices to analyze R(β̂λk,∞;A,0,β0).

For simplicity, we treat A as the normalized matrix n−1/2
A A to avoid the notation of nrow(A). Note

that y = Xβ0 + fNL + ε, where β0 is the best linear projection of y on X , fNL is the nonlinear
residual and ε is the independent noise. Let Aλ

k = EI∼Ik
[(X⊤LIX/k + λIp)

−1X⊤LI/k] and
Bλ
k = Ip −Aλ

kX = EI∼Ik
[λ(X⊤LIX/k + λIp)

−1]. We begin by decomposing the generalized
risk for arbitrary (λ, k) into different terms:

R(β̂λk,∞;A,0,β0) = ∥A(β̂λk,∞ − β0)∥22
= ∥A(Aλ

ky − β0)∥22
= ∥AAλ

k(Xβ0 + fNL)−Aβ0∥22
= β⊤

0 (A
λ
kX − Ip)

⊤A⊤A(Aλ
kX − Ip)β0 + fNL

⊤(Aλ
k)

⊤A⊤AAλ
kfNL

+ 2fNL
⊤(Aλ

k)
⊤A⊤A(Aλ

kX − Ip)β0

= β⊤
0 B

λ
kA

⊤ABλ
kβ0 + fNL

⊤(Aλ
k)

⊤A⊤AAλ
kfNL − 2fNL

⊤(Aλ
k)

⊤A⊤ABλ
kβ0.
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When λ > 0, from Lemma A.3, we know that the cross terms 2fNL
⊤(Aλ

k)
⊤A⊤ABλ

kβ0 vanishes as
p tends to infinity. Further, by Lemma A.1 and Lemma A.2, it follows that when A ⊥⊥ (X,y), as
p/n→ ϕ and p/k → ψ,

|R(β̂λk,∞;A,0,β0)−Rp(λ;ϕ, ψ)|
a.s.−−→ 0,

where the function Rp is defined as

Rp(λ;ϕ, ψ) = c̃p(−λ;ϕ, ψ,A⊤A) + ∥fNL∥2L2
ṽp(−λ;ϕ, ψ,A⊤A), (11)

and the nonnegative constants c̃p(−λ;ϕ, ψ,A⊤A) and ṽp(−λ;ϕ, ψ,A⊤A) are as defined in
Lemma A.1.

When λ = 0, as in the proof of Theorem 3, we again show that Pn,λ −Qn,λ is equivcontinuous over
Λ = [0, λmax] for any λmax ∈ (0,∞) fixed, where we define

Pn,λ = R(β̂λk,∞;A,0,β0), and Qn,λ = Rp(λ;ϕ, ψ).

When ψ ̸= 1, it can be verified that |Pn,λ|, |∂Pn,λ/∂λ|, |Qn,λ|, |∂Qn,λ/∂λ| are bounded almost
surely. Thus, by the Moore-Osgood theorem, it follows that, with probability one,

lim
n→∞

|R(β̂0
k,∞;A,0,β0)−Rp(0;ϕ, ψ)| = lim

λ→0+
lim
n→∞

|R(β̂λk,∞;A,0,β0)−Rp(λ;ϕ, ψ)| = 0.

Note that c̃p(−λ;ϕ, ψ,A⊤A) and ṽp(−λ;ϕ, ψ,A⊤A) are functions of the fixed-point solution
vp(−λ;ψ). By Lemma C.1 we have that for ψ ∈ [ϕ,∞] there exists a segment P such that for all
(λ1, ψ1), (λ2, ψ2) ∈ P , it holds that v(−λ1;ψ1) = v(−λ2;ψ2) as p/k1 → ψ1 and p/k2 → ψ2. This
implies that

Rp(λ1;ϕ, ψ1) = Rp(λ2;ϕ, ψ2).

Thus, by triangle inequality, we have

|R(β̂λ1

k1,∞;A,0,β0)−R(β̂λ2

k2,∞;A,0,β0)|
a.s.−−→ 0,

which completes the proof.

A.2 Proof of Proposition 2

When A = X and b = fNL, the generalized risk reduces to

R(β̂λk,∞;A, b,β0) =
1

n
∥X(β̂λk,∞ − β0)− fNL∥22

=
1

n
∥Xβ̂λk,∞ − (Xβ0 + fNL)∥22

=
1

n
∥XAλ

k(Xβ0 + fNL)− (Xβ0 + fNL)∥22

= β⊤
0 B

λ
k Σ̂Bλ

kβ0 +
1

n
fNL

⊤(Ip −XAλ
k)

⊤(Ip −XAλ
k)fNL

+
2

n
fNL

⊤(Ip −XAλ
k)

⊤XBλ
kβ0.

The proof then follows analogously as in Theorem 1 by involving Lemma A.1 and Lemma A.2 with
A = n−1/2X .

When A = X and b = 0, we have

R(β̂λk,∞;A, b,β0) = β⊤
0 B

λ
k Σ̂Bλ

kβ0 + fNL
⊤(Aλ

k)
⊤Σ̂Aλ

kfNL − 2fNL
⊤(Aλ

k)
⊤Σ̂Bλ

kβ0.

Invoking Lemma A.2 for fNL
⊤(Aλ

k)
⊤Σ̂Aλ

kfNL instead of fNL
⊤(Ip −XAλ

k)
⊤(Ip −XAλ

k)fNL, the
proof follows analogously.
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A.3 Technical lemmas

Lemma A.1 (Bias of generalized risk). Suppose the same assumptions in Theorem 1 hold with λ > 0.
Let Bλ

k = Ip−Aλ
kX = EI∼Ik

[λ(X⊤LIX/k+λIp)
−1]. For any A with lim sup ∥A∥op bounded

almost surely, the following statements hold:

(1) If A ⊥⊥ (X,y), then

β⊤
0 B

λ
kA

⊤ABλ
kβ0 − c̃p(−λ;ϕ, ψ,A⊤A)

a.s.−−→ 0.

(2) If A = n−1/2X , then

β⊤
0 B

λ
kA

⊤ABλ
kβ0 −

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

c̃p(−λ;ϕ, ψ,Σ)
a.s.−−→ 0.

Here the nonnegative constants vp(−λ;ψ), ṽp(−λ;ϕ, ψ,A⊤A) and c̃p(−λ;ϕ, ψ,A⊤A) are defined
through the following equations:

1

vp(−λ;ψ)
= λ+ ψ

∫
r

1 + vp(−λ;ψ)r
dHp(r),

ṽp(−λ;ϕ, ψ,A⊤A) =
ϕ tr[A⊤AΣ(vp(−λ;ψ)Σ+ Ip)

−2]/p

vp(−λ;ψ)−2 − ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

,

c̃p(−λ;ϕ, ψ,A⊤A) = β⊤
0 (vp(−λ;ψ)Σ+ Ip)

−1(ṽp(−λ;ϕ, ψ,A⊤A)Σ+A⊤A)(vp(−λ;ψ)Σ+ Ip)
−1β0.

Proof. Note that β0 is independent of

Bλ
kA

⊤ABλ
k = λ2EI1,I2∼Ik

[M1A
⊤AM2],

where Σ̂1∩2 = X⊤LI1∩I2X/|I1∩I2| and Mj = (X⊤LI1X/k+λIp)
−1 for j = 1, 2. We analyze

the deterministic equivalents of the latter for the two cases.

(1) A ⊥⊥ (X,y).

From Lemma D.1 (2), we know that when A is independent to (X,y), it follows that

λ2EI1,I2∼Ik
[M1A

⊤AM2]

≃ (vp(−λ;ψ)Σ+ Ip)
−1

(ṽp(−λ;ϕ, ψ,A⊤A)Σ+A⊤A) (vp(−λ;ψ)Σ+ Ip)
−1
.

Then, by the trace property of deterministic equivalents in Lemma E.3 (4), we have

β⊤
0 B

λ
kA

⊤ABλ
kβ0

a.s.
===β⊤

0 (vp(−λ;ψ)Σ+ Ip)
−1

(ṽp(−λ;ϕ, ψ,A⊤A)Σ+A⊤A) (vp(−λ;ψ)Σ+ Ip)
−1

β0

a.s.
===c̃p(−λ;ϕ, ψ,A⊤A).

(2) A = n−1/2X .

From Lemma D.1 (4), it follows that

λ2EI1,I2∼Ik
[M1Σ̂M2] ≃

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)
· (1 + ṽp(−λ;ϕ, ψ))(vp(−λ;ψ)Σ+ Ip)

−2Σ.

Then, by the trace property of deterministic equivalents in Lemma E.3 (4), we have

β⊤
0 B

λ
k Σ̂Bλ

kβ0
a.s.
===

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)
(1 + ṽp(−λ;ϕ, ψ))·

β⊤
0 (vp(−λ;ψ)Σ+ Ip)

−1
Σ (vp(−λ;ψ)Σ+ Ip)

−1
β0

a.s.
===

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

c̃p(−λ;ϕ, ψ,Σ).
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Lemma A.2 (Variance term of generalized risk). Suppose the same assumptions in Theorem 1
hold with λ > 0. Let Aλ

k = EI∼Ik
[(X⊤LIX/k + λIp)

−1X⊤LI/k] and Bλ
k = Ip − Aλ

kX =
EI∼Ik

[λ(X⊤LIX/k+ λIp)
−1]. For any A with lim sup ∥A∥op bounded almost surely, the follow-

ing statements hold:

(1) If A ⊥⊥ (X,y), then

fNL
⊤(Aλ

k)
⊤A⊤AAλ

kfNL − ∥fNL∥2L2(1 + ṽp(−λ;ϕ, ψ,Σ))
a.s.−−→ 0.

(2) If A = n−1/2X , then

fNL
⊤(Aλ

k)
⊤A⊤AAλ

kfNL

a.s.−−→∥fNL∥2L2

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

· (1 + ṽp(−λ;ϕ, ψ,Σ))

+ ∥fNL∥2L2

(
2ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)− 1

)
.

1

n
fNL

⊤(XAλ
k − In)

⊤(XAλ
k − In)fNL

a.s.−−→∥fNL∥2L2

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

· σ2(1 + ṽp(−λ;ϕ, ψ,Σ)),

Here the nonnegative constants vp(−λ;ψ) and ṽp(−λ;ϕ, ψ,A⊤A) are defined through the following
equations:

1

vp(−λ;ψ)
= λ+ ψ

∫
r

1 + vp(−λ;ψ)r
dHp(r),

ṽp(−λ;ϕ, ψ,A⊤A) =
ϕ tr[A⊤AΣ(vp(−λ;ψ)Σ+ Ip)

−2]/p

vp(−λ;ψ)−2 − ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

.

Proof. The two cases are treated separately below.

(1) A ⊥⊥ (X,y).

We split the proof into three different parts.

Part (1) Intersection concentration. Let fNL = LI1∩I2fNL + LI1\I2fNL + LI2\I1fNL =:
f0 + f1 + f2. Note that

fNL
⊤Aλ1⊤

k A⊤AAλ1

k fNL = EI1,I2∼Ik

[
(f0 + f1)

⊤X

k
M1A

⊤AM2
X⊤

k
(f0 + f2)

]
.

where Mj = (X⊤LI2X/k + λIp)
−1. By conditional independence and Lemma S.8.5 of [51],

the cross terms vanish

f⊤
1

X

k
M1A

⊤AM2
X⊤L2

k
fNL

a.s.−−→ 0, and fNL
⊤L1X

k
M1A

⊤AM2
X⊤

k
f2

a.s.−−→ 0.

(12)

It remains to analyze the quadratic term of f0:

f⊤
0

LI1∩I2X

k
M1A

⊤AM2
X⊤LI1∩I2

k
f0.

By conditioning on LI1∩I2X , from Lemma S.7.10 (1) of [12], we have

Mj ≃ Mdet :=
k

i0
(Σ̂0 + λIp + λC)−1,
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where Σ̂0 = X⊤
0 X0/i0, X0 = LI1∩I2X , C = (k − i0)/i0 · (v(−λ; γ1,ΣC1)Σ + Ip),

C1 = i0(λ(k − i0))
−1(Σ̂0 + λIp) and i0 = |I1 ∩ I2|. Then we have

X0

k
M1A

⊤AM2
X⊤

0

k
≃ k2

i20

X0

k
MdetA⊤AMdetX

⊤
0

k

=
k2

i20

X ′
0

k
M ′A′M ′X

′⊤
0

k
(13)

where X ′
0 = X0(Ip + C)−1/2, A′ = (Ip + C)−1/2A⊤A(Ip + C)−1/2, and M ′ = ((Ip +

C)−1/2Σ̂0(Ip +C)−1/2 + λIp)
−1.

Part (2) Diagonal concentration. We next use a similar strategy as in the proof of Lemma A.16
in [14] by showing that the off-diagonal summation vanishes. Let Σ′ = (Ip +C)−1/2Σ(Ip +

C)−1/2. Since X0 = Z0Σ
1/2, we have X ′

0 = Z0Σ
′1/2. Then, the quadratic form becomes:

1

k2
f⊤
0 X ′

0M
′A′M ′X

′⊤
0 f0

=
i0
k2

f⊤
0

(
Z0Σ

′Z⊤
0

i0
+ λIn

)−1
Z0√
i0
Σ′ 12A′Σ′ 12

Z⊤
0√
i0

(
Z0Σ

′Z⊤
0

i0
+ λIn

)−1

f0

=:
i0
k2

f⊤
0 B−1

1 B2B
−1
1 f0. (14)

Note that from Lemma D.4, we have for any t > 0,

B−1
1 B2B

−1
1 =

1

t
(B−1

1 − (B1 + tB2)
−1) + tB−1

1 B2(B1 + tB2)
−1B2B

−1
1 .

Let U ∈ Rn×n with Uij = [f0]i[f0]j 1{i ̸= j}. We then have∣∣∣∣∣∣
∑

1≤i̸=j≤n

[B−1
1 B2B

−1
1 ]ij [f0]i[f0]j

∣∣∣∣∣∣
= |⟨B−1

1 B2B
−1
1 ,U⟩|

≤ 1

t
|⟨B−1

1 ,U⟩| − 1

t
|⟨(B1 + tB2)

−1,U⟩|+ t∥B−1
1 ∥2op∥B2∥2op∥(B1 + tB2)

−1∥op∥U∥tr.
(15)

For the first two terms, Lemma D.3 implies that

1

k
|⟨B−1

1 ,U⟩| a.s.−−→ 0, and
1

k
|⟨(B1 + tB2)

−1,U⟩| a.s.−−→ 0.

For the last term, note that ∥B2∥op ≤ ∥A∥2op∥Σ̂0∥op, where ∥A∥op is almost surely bounded
as assumed, and ∥Σ̂0∥op ≤ rmax(1 +

√
ψ2/ϕ)2 almost surely as k, n, p→ ∞ and p/n→ ϕ ∈

(0,∞), p/k → ψ ∈ [ϕ,∞] (see, e.g., [45]). Also, ∥U∥∗ ≤ 2∥fNL∥22
a.s.−−→ 2∥fNL∥2L2

<∞ from
the strong law of large numbers, Lemma D.5, and ∥B1∥op ≤ λ−1. Thus, the last term is almost
surely bounded. It then follows that k−1|⟨B−1

1 B2B
−1
1 ,U⟩| a.s.−−→ 0. Therefore,∣∣∣∣∣1kf⊤

0 B−1
1 B2B

−1
1 f0 −

1

k

n∑
i=1

[B−1
1 B2B

−1
1 ]ii[f0]

2
i

∣∣∣∣∣ a.s.−−→ 0.

Part (3) Trace concentration. From the results in [56], it holds that

max
1≤i≤n

∣∣∣∣[B−1
1 B2B

−1
1 ]ii −

1

n
tr[B−1

1 B2B
−1
1 ]

∣∣∣∣ a.s.−−→ 0.

Further, n−1
∑n
i=1 f

2
i

a.s.−−→ ∥fNL∥2L2 by strong law of large number and Lemma D.5. Therefore,
we have

1

k
|f⊤B−1

1 B2B
−1
1 f − tr[B−1

1 B2B
−1
1 ]∥fNL∥2L2 | a.s.−−→ 0. (16)
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Combining (12), (13), and (16) yields that∣∣f⊤(Aλ
k)

⊤A⊤AAλ
kf − tr[(Aλ

k)
⊤A⊤AAλ

k ] · ∥fNL∥2L2

∣∣ a.s.−−→ 0.

By the trace property tr[(Aλ
k)

⊤A⊤AAλ
k ] = tr[Aλ

k(A
λ
k)

⊤A⊤A], it remains to derive the
deterministic equivalents of Aλ

k(A
λ
k)

⊤A⊤A. Note that

Aλ
k(A

λ
k)

⊤A⊤A =
|I1 ∩ I2|
k2

EI1,I2∼Ik
[M1Σ̂1∩2M2]A

⊤A

where Σ̂1∩2 = X⊤LI1∩I2X/|I1 ∩ I2| and Mj = (X⊤LI1X/k + λIp)
−1 for j = 1, 2. The

above quantity is well-defined almost surely because |I1∩I2| converges to some positive quantity
almost surely. Next, we analyze the trace term for the two cases.

From Lemma D.1 (3) we know that when A is independent to (X,y), it follows that

EI1,I2∼Ik
[M1Σ̂1∩2M2]A

⊤A ≃ ϕ−1ṽv(−λ;ϕ, ψ)(vp(−λ;ψ)Σ+ Ip)
−2ΣA⊤A.

We now have

fNL
⊤(Aλ

k)
⊤A⊤AAλ

kfNL
a.s.
=== ∥fNL∥2L2

p

k
· |I1 ∩ I2|

k
· 1
p
tr[EI1,I2∼Ik

[M1Σ̂1∩2M2]A
⊤A]

a.s.
=== ∥fNL∥2L2ψ · ϕ

ψ
· 1
ϕ
ṽp(−λ;ϕ, ψ,A⊤A)

= ∥fNL∥2L2 ṽp(−λ;ϕ, ψ,A⊤A),

where the second convergence is from Lemma S.8.3 of [12] and the trace property in
Lemma E.3 (4).

(2) A = n−1/2X .

Instead of working on (13), we use the following decomposition:

M1Σ̂M2 = M1Σ̂1M2 + Σ̂2M2 −M1Σ̂1∩2M2 +M1Σ̂(1∪2)cM2

=

2∑
j=1

Mj − 2λM1M2 −M1Σ̂1∩2M2 +M1Σ̂(1∪2)cM2

Then, repeating Part (2) and (3) as above, it suffices to derive the deterministic equivalents of
(Aλ

k)
⊤Σ̂Aλ

k . We decompose this term into:

(Aλ
k)

⊤A⊤AAλ
k =

1

n
(XAλ

k − In)
⊤(XAλ

k − In) +
1

n
(XAλ

k +X⊤(Aλ
k)

⊤)− 1

n
In. (17)

For the last two terms of the right hand side, following the similar argument as in Part (1), it
holds that

2

n
tr[XAλ

k ]− 2ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

a.s.−−→ 0, and
1

n
tr[In] = 1. (18)

For the first term of the right hand side, notice that it is the variance term of the mean squared
error computed on all samples, which is the variance term of the numerator of the generalized
cross-validation (GCV) estimator in [13]. It has been shown in Proposition 3.6 of [13] that in
the full ensemble, the GCV estimator is consistent with the prediction risk, which is also true for
the variance term:

1

n
tr[(XAλ

k − In)
⊤(XAλ

k − In)] (19)

a.s.−−→
(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

· σ2(1 + ṽp(−λ;ϕ, ψ,Σ))., (20)

Finally, combining (14)-(16) with the above finishes the proof for the first convergence result of
A = n−1/2X .
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Analogously, from (20), we also have

1

n
fNL

⊤(XAλ
k − In)

⊤(XAλ
k − In)fNL

a.s.−−→∥fNL∥2L2

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

· σ2(1 + ṽp(−λ;ϕ, ψ,Σ)),

which finishes the proof for the second convergence result of A = n−1/2X .

Lemma A.3 (Cross terms of generalized risk). Suppose the same assumptions in Theorem 1 hold
with λ > 0. Let Aλ

k = EI∼Ik
[(X⊤LIX/k + λIp)

−1X⊤LI/k] and Bλ
k = Ip − Aλ

kX =
EI∼Ik

[λ(X⊤LIX/k+λIp)
−1]. For any A with lim sup ∥A∥op bounded almost surely, it holds that

fNL
⊤(Aλ

k)
⊤A⊤ABλ

kβ0
a.s.−−→ 0.

Proof. Note that

n∥(Aλ
k)

⊤A⊤ABλ
kβ0∥22 ≤ n

k
∥Aλ

k∥2op∥A∥4op∥Bλ
k∥2op∥β0∥22

≤ n

k
EI∼Ik

[∥Σ̂I∥
1
2
op∥λ(X⊤LIX/k + λIp)

−1∥op]2 · ∥Bλ
k∥2op∥A∥4op∥β0∥22

≤ n

k
EI∼Ik

[∥Σ̂I∥
1
2
op]

2 · ∥A∥4op∥β0∥22.

Let s2j be the singular value of Σ̂j . From the results in [45], we have lim sup ∥Σ̂I∥op ≤
lim supmax1≤i≤p s

2
i ≤ rmax(1 +

√
ψ)2 almost surely as k, p → ∞ and p/k → ψ ∈ (0,∞].

On the other hand, n/k a.s.−−→ ψ/ϕ and ∥A∥2 is uniformly bounded as assumed. Thus, we have
lim supn∥(Aλ

k)
⊤A⊤ABλ

kβ0∥22 is bounded almost surely.

Similar to the proof of Theorem 1, we decompose fNL as fNL = LI1∩I2fNL + LI1\I2fNL +
LI2\I1fNL =: f0 + f1 + f2. We then have

fNL
⊤LI1∩I2X

k
M1A

⊤AM2
X⊤LI1∩I2X

k
β0

a.s.−−→ f⊤
0

LI1∩I2X

k
M1A

⊤AM2
X⊤LI1∩I2X

k
β0

a.s.−−→ i0
k
f⊤
0 LI1∩I2

k2

i20

X ′
0

k
M ′A′M ′Σ̂′

0β0

=
i0
k
f⊤
0 LI1∩I2

k2

i20

X ′
0

k
M ′A′β0 − λ

i0
k
f⊤
0 LI1∩I2

k2

i20

X ′
0

k
M ′A′M ′β0,

where the first convergence is from Lemma S.8.5 of [51] and the second convergence is from (13),
with X ′

0 = X0(Ip +C)−1/2, A′ = (Ip +C)−1/2A⊤A(Ip +C)−1/2, and M ′ = (Σ̂′
0 + λIp)

−1

and Σ̂′
0 = (Ip + C)−1/2Σ̂0(Ip + C)−1/2. From Lemma D.2, the first term in the above display

vanishes. Analogous to (15), the second term also vanishes by splitting and applying Lemma D.2.
Thus, we have for I1, I2 ∼ Ik,

fNL
⊤LI1∩I2X

k
M1A

⊤AM2
X⊤LI1∩I2X

k
β0

a.s.−−→ 0.

Finally, by Lemma G.5 (2) of [13], the conclusion follows.

B Proofs of results in Section 4

B.1 Proof of Theorem 3

We consider two cases.

22



(1) λ1, λ2 > 0.
We begin to prove for the full ensemble when M = ∞. For j = 1, 2 and Ij ∼ Ikj , define
Σ̂j = X⊤LIjX/n and Mj = (X⊤LIjX/k + λjIp)

+. Recall that y = Xβ0 + fNL and

β̂
λj

kj ,∞ = EIj∼Ikj

[(
1

kj
X⊤LIjX + λjIp

)−1 X⊤LIjy

kj

]
= EIj∼Ikj

[MjΣ̂j ]β0 + EIj∼Ikj
[MjX

⊤LIj/kj ]fNL.

Then, for a ∈ Rp with bounded l2 norm, we have

a⊤(β̂λ1

k1,∞ − β̂λ2

k2,∞) = a⊤(EI1∼Ik1
[M1Σ̂1]− EI2∼Ik2

[M2Σ̂2])β0︸ ︷︷ ︸
T1

+ a⊤(EI1∼Ik1
[M1X

⊤LI1 ]/k1 − EI2∼Ik2
[M2X

⊤LI ]/k2)fNL︸ ︷︷ ︸
T2

.

(21)

Next, we analyze the three terms separately.
For the first term, from Lemma D.1 (1) we have for λj > 0,

EIj∼Ikj
[MjΣ̂j ] = Ip − EIj∼Ikj

[λjMj ] ≃ Ip − (v(−λj ;ψj)Σ+ Ip)
−1,

where v(−λj ;ψj) is as defined in (40). By Lemma C.1 we have that for ψ ∈ [ϕ,∞] there exists
a segment P such that for all (λ1, ψ1), (λ2, ψ2) ∈ P , it holds that v(−λ1;ψ1) = v(−λ1;ψ2) as
p/k1 → ψ1 and p/k2 → ψ2. By the definition of deterministic equivalents (Definition E.1), it
follows that

T1 = tr[β0a
⊤EI1∼Ik1

[M1Σ̂1]]− tr[β0a
⊤EI2∼Ik2

[M2Σ̂2]]
a.s.−−→ lim

p→∞
tr[β0a

⊤(Ip − (v(−λ1;ψ1)Σ+ Ip)
−1)]− tr[β0a

⊤(Ip − (v(−λ2;ψ2)Σ+ Ip)
−1)]

= 0.

For the second term, notice that by Lemma D.2,

1

kj
a⊤MjX

⊤LIkj
fNL = a⊤ZΣ

1
2

kj

(
ZΣZ⊤

kj
+ λjIp

)−1

fNL
a.s.−−→ 0.

From Lemma G.5 (2) of [13], it follows that

a⊤EIj∼Ikj
[MjX

⊤LIj ]/kjfNL
a.s.−−→ 0, j = 1, 2,

and T2
a.s.−−→ 0.

Combining the above results and applying triangle inequality on (21) yields that

|a⊤(β̂λ1

k1,∞ − β̂λ2

k2,∞)| ≤ |T1|+ |T2|
a.s.−−→ 0,

which completes the proof when M = ∞. When M ∈ N, replacing the above expectation by
the average over M simple random samples I1, I2 ∼ Ik completes the proof.

(2) λ1λ2 = 0.
When λ1 = λ2 = 0, it is trivially true as k1 = k2. Otherwise, without loss of generality, we
assume λ1 = 0 and λ2 > 0. We use the same decomposition (21) and first analyze T1. From
part one we have that for λ > 0, Pn,λ −Qn,λ

a.s.−−→ 0 where

Pn,λ : = tr[β0a
⊤EI1∼Ik1

[(X⊤LI1X/k1 + λIp)
+Σ̂1]],

Qn,λ : = tr[β0a
⊤(Ip − (v(−λ;ψ1)Σ+ Ip)

−1)].

We next show that

lim
n→∞

lim
λ→0+

Pn,λ = lim
λ→0+

lim
n→∞

Pn,λ = 0, (22)
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by proving that the function Pn,λ is equicontinuous family in λ over Λ = [0, λmax] for any
λmax ∈ (0,∞) fixed. Note that for all λ ∈ Λ,

|Pn,λ| ≤ EI1∼Ik1
[∥(X⊤LI1X/k1 + λIp)

+Σ̂1∥op]∥β0a
⊤∥tr ≤ ∥β0∥22∥a∥22

and its derivative∣∣∣∣ ∂∂λPn,λ
∣∣∣∣ = ∣∣∣EI1∼Ik1

[tr[(X⊤LI1X/k1 + λIp)
−2Σ̂1β0a

⊤]]
∣∣∣

≤ EI1∼Ik1
[∥(X⊤LI1X/k1 + λIp)

−2Σ̂1∥op]∥β0a
⊤∥tr

≤ ∥β0∥22∥a∥22
are uniformly bounded in λ almost surely. In the above inequalities, the operator norm is
bounded because ∥(X⊤LI1X/k1 + λIp)

−1Σ̂1∥op ≤ si/(si + λ) ≤ 1 and ∥(X⊤LI1X/k1 +

λIp)
−2Σ̂1∥op ≤ si/(si + λ)2 ≤ 1/(si + λ) ≤ 1, by noting that lim sup ∥Σ̂j∥op ≤

lim supmax1≤i≤p s
2
i ≤ rmax(1 +

√
ψ1)

2 and lim inf ∥Σ̂j∥op ≥ lim inf min1≤i≤p s
2
i ≥

rmin(1 −
√
ψ1)

2 almost surely as k1, p → ∞ and p/k1 → ψ1 ∈ (0,∞) \ {1} [45]. On
the other hand, since Qn,λ is a continuous function of v(−λ;ψ1), we have

|Qn,λ| ≤ ∥v(−λ1;ψ1)Σ(v(−λ1;ψ1)Σ+ Ip)
−1∥op∥β0a

⊤∥tr ≤ ∥β0∥22∥a∥22∣∣∣∣ ∂∂λQn,λ
∣∣∣∣ = ∣∣∣∣tr[β0a

⊤(v(−λ;ψ1)Σ+ Ip)
−2Σ]

∂v(−λ;ψ1)

∂λ

∣∣∣∣
≤ ∥β0a

⊤∥op
∣∣∣∣∂v(−λ;ψ1)

∂λ

∣∣∣∣ ∫ r

(1 + v(−λ;ψ1)r)2
dHp(r).

When ψ1 > 1, ∂v(−λ;ψ1)/∂λ is bounded over Λ [13, Lemma E.10 and Lemma E.11] and thus
|∂Qn,λ/∂λ| is also bounded almost surely. When ψ1 < 1, from Lemma E.12 of [13] we have∣∣∣∣∂v(−λ;ψ1)

∂λ

∣∣∣∣ ∫ r

(1 + v(−λ;ψ1)r)2
dHp(r) = −∂v(−λ;ψ1)

∂λ

∫
r

(1 + v(−λ;ψ1)r)2
dHp(r)

=

∫
r

(1 + v(−λ;ψ1)r)2
dHp(r)

1

v(−λ;ψ1)2
− ψ1

∫
r2

(1 + v(−λ;ψ1)r)2
dHp(r)

≤ 1

1− ψ1
,

since v(−λ;ψ1) ≤ v(0;ψ1) = +∞. Therefore, |∂Qn,λ/∂λ| is uniformly bounded over Λ for
ψ1 ∈ (0,∞) \ {1}. Thus, by the Moore-Osgood theorem, the convergence is uniform in λ and
(22) follows. Finally, since T2 is bounded analogously as in Part (1), the equivalence holds when
λ1 = 0.

B.2 Proof of Proposition 4

From Lemma B.2, it follows that

v(−λ;ϕn) ≃
1

n
tr

[(
1

n
XX⊤ + λIp

)−1
]
. (23)

By the continuity of function ϕ 7→ v(−λ;ϕ) from Lemma F.10 and F.11 of [13], we have
v(−λ;ϕn) ≃ v(−λ;ϕ) as ϕn = p/n→ ϕ. From Lemma C.1, there exists λn such that

v(0;ψn) = v(−λn;ϕn),

as ψn → ψ and ϕn → ϕ. Involving (23) on the both sides yields that

1

n
tr

[(
1

n
XX⊤ + λnIp

)−1
]
≃ 1

k
tr

[(
1

k
XLI1X

⊤
)+
]
≃ 1

Mk

M∑
ℓ=1

tr

[(
1

k
XLIℓX

⊤
)+
]

where {I1, . . . , IM} is a simple random sample from Ik.
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B.3 Proof of Corollary 5

We will use a structural equivalence (much more direct than the first-order equivalence considered in
the paper) between generalized ridge predictor and the isotropic ridge predictor to prove the result.

The generalized ridge predictor (9), trained on the subsampled dataset DI , can be expressed as:

β̂λ,Gk (DI) =
(
1

k
X⊤LIX + λG

)−1
X⊤LIy

k
.

Observe that we can equivalently manipulate the generalized ridge estimator into:

β̂λ,Gk (DI) = G−1/2

(
1

k
G−1/2X⊤LIXG−1/2 + λIp

)−1

G−1/2X
⊤LIy

k
.

Recalling from Assumption 2 that X = ZΣ1/2, where Z ∈ Rn×p contains z⊤
i in the i-th row for

i ∈ [n], we obtain

β̂λ,Gk (DI) = G−1/2

(
1

k
G−1/2Σ1/2Z⊤LIZΣ1/2G−1/2 + λIp

)−1
G−1/2Σ1/2Z⊤LIy

k
. (24)

We now define ΣG = G−1/2ΣG−1/2 and consider a transformed feature matrix XG = ZΣ
1/2
G .

Denote the transformed dataset corresponding to the new feature matrix by DG (where we keep the
response vector as is). Using (24), we can write relate the generalized ridge estimator fitted on the
dataset D to the standard ridge estimator fitted on the data DG (both at the same scalar regularization
level λ) by:

β̂λ,Gk (DI) = G−1/2β̂λk (DG
I ).

Observe that the transformed dataset DG satisfies Assumption 2 as the eigenvalues of G are bounded
away from 0 and ∞. Further, note that both Theorem 1 and Theorem 3 are invariant to linear
transformations of the estimator. Thus, we conclude that the results of both the theorems continue to
hold. The equivalence path now use the modified ΣG, which in turn changes the spectral distribution
Hp to that of ΣG, in defining the end points via (4), given by:

H̃p =
1

p

p∑
i=1

1{r̃i≤r},

where r̃i for i ∈ [p] are eigenvalues of ΣG. This completes the proof.

B.4 Technical lemmas

Lemma B.1 (Relationship between m̂ and v̂). For X ∈ Rn×p and ϕn = p/n, define

m̂(z;ϕn) =
1

p
tr

[(
1

n
X⊤X − zIp

)−1
]
, and v̂(z;ϕn) =

1

n
tr

[(
1

n
XX⊤ − zIp

)−1
]
.

It holds that

ϕnzm̂(z;ϕn) + ϕn − 1 = zv̂(z;ϕn). (25)

Proof. Let r be the rank of the matrix X . Denote by si, i = 1, . . . , r, the non-zero eigenvalues of
the matrix X⊤X . Note that these are the same non-zero eigenvalues of the matrix XX⊤. Define
function S such that for z ̸= 0,

S(z) =

r∑
i=1

1

si − z
.

For z ̸= 0, write out v̂ and m̂ in terms of S(z) as:

v̂(z;ϕn) =
1

n

r∑
i=1

1

si − z
− 1

n

n− r

z
=

1

n
S(z)− 1

n

n− r

z
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m̂(z;ϕn) =
1

p

r∑
i=1

1

si − z
− 1

p

p− r

z
=

1

p
S(z)− 1

p

p− r

z
.

We now expand the left-hand side of (25):

ϕnzm̂(z;ϕn) + ϕn − 1 =
p

n
z

(
1

p
S(z)− 1

p

p− r

z

)
+
p

n
− 1

=
1

n
zS(z)− p− r

n
+
p

n
− 1

=
1

n
zS(z)− n− r

n
+
n− r

n
− p− r

n
+
p

n
− 1

= zv̂(z;ϕn) +
n− p

n
+
p

n
− 1

= zv̂(z;ϕn),

which finishes the proof.

Lemma B.2 (Equivalence of v̂ and v). Suppose Assumptions 1–2 hold. Then it holds that

v(−λ;ϕn) ≃
1

n
tr

[(
1

n
XX⊤ + λIp

)−1
]
.

Proof. From Lemma B.1, we have

zv̂(z;ϕn) + (1− ϕn) = ϕnzm̂(z;ϕn).

Substituting z = −λ yields that

λ
1

n
tr

[(
1

n
XX⊤ + λIp

)−1
]
+ (ϕn − 1) = ϕnλ

1

p
tr

[(
1

n
X⊤X + λIp

)−1
]
. (26)

From Corollary E.4, we have

1

v(−λ;ϕn)
= λ+ ϕ tr[Σ(v(−λ;ϕn)Σ + Ip)

−1]/p,

1

p
tr[(v(−λ;ϕn)Σ + Ip)

−1] ≃ 1

p
λ tr

[(
1

n
X⊤X + λIp

)−1
]
.

This implies

1 = λv(−λ;ϕn) + ϕn tr[v(−λ;ϕn)Σ(v(−λ;ϕn)Σ + Ip)
−1]/p

= λv(−λ;ϕn) + ϕn − ϕn tr[(v(−λ;ϕn)Σ + Ip)
−1])/p

≃ λv(−λ;ϕn) + ϕn − ϕnλ tr

[(
1

n
X⊤X + λIp

)−1
]
/p

= 1 + λv(−λ;ϕn)−
1

n
λ tr

[(
1

n
XX⊤ + λIp

)−1
]
,

where the last equality follows from (26). This concludes the proof.

C Proof of results in Section 5

C.1 Proof of Theorem 6

By Assumption 4, Rp(λ;ϕ, ψ), as defined in (11), converges to

Rp(λ;ϕ, ψ)
a.s.−−→ ρ2c̃(−λ;ϕ, ψ) + σ2ṽ(−λ;ϕ, ψ) =: R(λ;ϕ, ψ) (27)
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where the nonnegative constants c̃(−λ;ϕ, ψ) and ṽ(−λ;ϕ, ψ) are defined through the following
equations:

ṽ(−λ;ϕ, ψ) =
ϕ

∫
r2

(1 + v(−λ;ψ)r)2
dH(r)

v(−λ;ψ)−2 − ϕ

∫
r2

(1 + v(−λ;ψ)r)2
dH(r)

,

c̃(−λ;ϕ, ψ) = (ṽ(−λ;ϕ, ψ) + 1)

∫
r

1 + v(−λ;ψ)r
dG(r),

1

v(−λ;ψ)
= λ+ ψ

∫
r

1 + v(−λ;ψ)r
dH(r).

From the proof of Theorem 1, we also have that R(λ;ϕ, ψ) ≃ Rp(λ;ϕ, ψ) ≃ R(β̂λk,∞;Σ,0,β0).

Since R(0;ϕ, ψ) is a continuous function of ϕ and v(0;ψ) and is increasing in ϕ for any fixed ψ, it
follows that for 0 < ϕ1 ≤ ϕ2 <∞,

min
ψ≥ϕ1

R(0;ϕ1, ψ) ≤ min
ψ≥ϕ2

R(0;ϕ1, ψ) ≤ min
ψ≥ϕ2

R(0;ϕ2, ψ),

where the first inequality follows because {ψ : ψ ≥ ϕ1} ⊇ {ψ : ψ ≥ ϕ2}, and the second inequality
follows because R(0;ϕ, ψ) is increasing in ϕ for a fixed ψ. Thus, minψ≥ϕ R(0;ϕ, ψ) is a continuous
and monotonically increasing function in ϕ.

Finally, note that from Lemma C.1, for any λ, there exists ψ such that v(0;ϕ, ψ) = v(−λ;ϕ, ϕ). This
implies that R(0;ϕ, ψ) = R(λ;ϕ, ϕ). Then we have minψ≥ϕ R(0;ϕ, ψ) ≤ minλ≥0 R(λ;ϕ, ϕ).
Conversely, since for any ψ, there exists λ such that v(0;ϕ, ψ) = v(−λ;ϕ, ϕ), we also have
minψ≥ϕ R(0;ϕ, ψ) ≥ minλ≥0 R(λ;ϕ, ϕ). Combining the two inequalities yields the conclusion.

C.2 Technical lemmas

In this section, we gather results on certain analytic properties of the fixed-point solution v(−λ;ϕ)
defined in (40).

Lemma C.1 (Contour of fixed-point solutions). As n, p→ ∞ such that p/n→ ϕ ∈ (0,∞), for any
ψ ∈ [ϕ,+∞], there exists a unique value λ ≥ 0 (or conversely for λ ∈ [0,∞], there exists a unique
value ψ ∈ [ϕ ∨ 1,∞]) such that for all (λ, ψ) on the path

P = {(1− θ) · (λ, ϕ) + θ · (0, ψ) | θ ∈ [0, 1]},

it holds that

vp(−λ;ψ) = v(−λ;ϕ) = v(−0;ψ).

where vp(−λ;ψ) is as defined in (40).

Proof. Since when ϕ < 1, v(0;ψ) = +∞ for all ψ ∈ [ϕ, 1], we can restrict ourselves to ψ ∈
[ϕ ∨ 1,+∞]. From Lemma E.11 (1) of [13], the function ψ 7→ v(0;ψ) is strictly decreasing over
ψ ∈ [ϕ ∨ 1,∞] with range

v(0;ϕ ∨ 1) =

{
v(0;ϕ), ϕ ∈ (1,∞)

limψ→1+ v(0;ψ) = +∞, ϕ ∈ (0, 1]
, v(0;+∞) := lim

ψ→+∞
v(0;ψ) = 0.

From Lemma E.12 (3) of [13], the function λ 7→ v(−λ;ϕ) is strictly decreasing over λ ∈ [0,∞] with
range

v(0;ϕ) =

{
v(0;ϕ), ϕ ∈ (1,∞)

limλ→0+ v(−λ;ϕ) = +∞, ϕ ∈ (0, 1]
, v(−∞;ϕ) := lim

λ→+∞
v(−λ;ϕ) = 0.

Note that v(0;ϕ ∨ 1) = v(0;ϕ). For ψ ∈ [ϕ ∨ 1,∞], by the intermediate value theorem, there exists
unique λ ∈ [0,∞] such that v(−λ;ϕ) = v(0;ψ). Furthermore, when ψ ≤ 1, λ = 0 is also the unique
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value such that v(0;ψ) = v(−λ;ϕ). Conversely, for λ ∈ [0,∞], there also exists ψ ∈ [ϕ ∨ 1,∞]
such that v(−λ;ϕ) = v(0;ψ).

Based on the definition of fixed-point solutions, it follows that

1

v(−λ;ϕ)
= λ+ ϕ

∫
r

1 + v(−λ;ϕ)r
dHp(r) = ψ

∫
r

1 + v(0;ψ)r
dHp(r) =

1

v(0;ψ)
.

Then, for any (λ, ψ) = (1− θ)(λ, ϕ) + θ(0, ψ) on the path P , we have

1

v(−λ;ϕ)
= (1− θ)

1

v(−λ;ϕ)
+ θ

1

v(0;ψ)

= (1− θ)λ+ (1− θ)ϕ

∫
r

1 + v(−λ;ϕ)r
dHp(r) + θψ

∫
r

1 + v(0;ψ)r
dHp(r)

= λ+ ψ

∫
r

1 + v(−λ;ϕ)r
dHp(r).

Because vp(−λ;ψ) is the unique solution to the fixed-point equation:

1

vp(−λ;ψ)
= λ+ ψ

∫
r

1 + vp(−λ;ψ)
dHp(r),

it then follows that vp(−λ;ψ) = v(−λ;ϕ) = v(0;ψ).

D Asymptotic equivalents, concentration results, and other useful lemmas

D.1 Full-ensemble resolvents

Lemma D.1 (Full-ensemble resolvents). Let Σ̂ = X⊤X/n, Σ̂j = X⊤LIjX/k where Ij ∼ Ik.
Let Σ1∩2 = X⊤LI1∩I2X/|I1 ∩ I2| and C ∈ Rp×p with bounded operator norm almost surely. As
n, p, k → ∞, p/n→ ϕ, p/k → ψ, the following asymptotic equivalences hold:

(1) Basic ridge resolvent:

λEI1∼Ik
[(Σ̂1 + λIp)

−1] ≃ (vp(−λ;ψ)Σ+ Ip)
−1.

(2) Bias resolvent with C ⊥⊥ X:

EI1,I2∼Ik
[λ2(Σ̂1 + λIp)

−1C(Σ̂2 + λIp)
−1]

≃ (vp(−λ;ψ)Σ+ Ip)
−1

(ṽp(−λ;ϕ, ψ,C)Σ+C) (vp(−λ;ψ)Σ+ Ip)
−1
.

(3) Variance resolvent with C ⊥⊥ X:

EI1,I2∼Ik

[
(Σ̂1 + λIp)

−1Σ̂1∩2(Σ̂2 + λIp)
−1C

]
≃ ϕ−1ṽv(−λ;ϕ, ψ)(vp(−λ;ψ)Σ+ Ip)

−2ΣC.

(4) Bias resolvent with C = Σ̂:

EI1,I2∼Ik

[
λ2(Σ̂1 + λIp)

−1Σ̂(Σ̂2 + λIp)
−1
]

≃ d̃(−λ;ϕ, ψ)(1 + ṽp(−λ;ϕ, ψ))(vp(−λ;ψ)Σ+ Ip)
−2Σ.

Here v(−λ;ϕ) is as defined in (41), and we let ṽp(−λ;ϕ, ψ) = ṽp(−λ;ϕ, ψ,Σ),

ṽp(−λ;ϕ, ψ,C) =
lim
k,n,p

ϕ tr[CΣ(vp(−λ;ψ)Σ+ Ip)
−2]/p

vp(−λ;ψ)−2 − ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

,
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ṽv(−λ;ϕ, ψ) = 1

vp(−λ;ψ)−2 − ϕ

∫
r2

(1 + vp(−λ;ψ)r)2
dHp(r)

,

d̃(−λ;ϕ, ψ) =
(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

.

The empirical distribution Hn of eigenvalues can be replaced by the limiting distribution H whenever
it exists.

Proof. The proofs for different parts is separated below.

(1) Basic ridge resolvent.

From Definition E.2, we know that λ(Σ̂j + λIp)
−1 ≃ (vp(−λ;ψ)Σ+ Ip)

−1. By the definition
of deterministic equivalents in Definition E.1, for any A ∈ Rp×p that has bounded trace norm
and is independent to X , we have

tr[A(λ(Σ̂j + λIp)
−1 − (vp(−λ;ψ)Σ+ Ip)

−1)]
a.s.−−→ 0.

From Lemma G.5 (2) of [13], it follows that

tr[A(λEI1∼Ik
[(Σ̂j + λIp)

−1]− (vp(−λ;ψ)Σ+ Ip)
−1)]

= EI1∼Ik
[tr[A(λ(Σ̂j + λIp)

−1 − (vp(−λ;ψ)Σ+ Ip)
−1)]]

a.s.−−→ 0, (28)

which implies that

λEI1∼Ik
[(Σ̂1 + λIp)

−1] ≃ (vp(−λ;ψ)Σ+ Ip)
−1.

(2) Bias resolvent with C ⊥⊥ X .

Denote Mj = (Σ̂j + λIp)
−1 for j = 1, 2. From Part (c) of the proof for Lemma S.2.4 in [12],

it follows that for I1, I2 ∼ Ik,

λ2M1CM2 ≃ (vp(−λ;ψ)Σ+ Ip)
−1

(ṽp(−λ;ϕ, ψ,C)Σ+C) (vp(−λ;ψ)Σ+ Ip)
−1
.

By the same argument as in (28), the conclusion follows.

(3) Variance resolvent with C ⊥⊥ X .

From Lemma E.8 (3) of [13], it follows that for I1, I2 ∼ Ik,

M1Σ̂1∩2M2C ≃ ϕ−1ṽv(−λ;ϕ, ψ)(vp(−λ;ψ)Σ+ Ip)
−2ΣC.

By the same argument as in (28), the conclusion follows.

(4) Bias resolvent with C = Σ̂.

We begin by decomposing the object inside expectation into two terms:

λ2M1Σ̂M2 =
|I1 ∪ I2|

n
λ2M1Σ̂1∪2M2 +

n− |I1 ∪ I2|
n

λ2M1Σ̂(1∪2)cM2 (29)

where Σ̂1∪2 = X⊤LI1∪I2X/|I1 ∪ I2| and Σ̂(1∪2)c = X⊤(I − LI1∪I2)X/(n − |I1 ∪ I2|).
Next, we analyze each of them.

For the first term, from Lemma D.6 (3) of [13] we have

M1Σ̂1∪2M2 ≃ vp(−λ;ψ)2(1 + ṽp(−λ;ϕ, ψ))(
2(ψ − ϕ)

2ψ − ϕ

1

λvp(−λ;ψ)
+

ϕ

2ψ − ϕ

)
(vp(−λ;ψ)Σ+ Ip)

−2Σ
(30)

where ṽp(−λ;ϕ, ψ) = ṽp(−λ;ϕ, ψ,Σ).

For the second term, from Lemma E.8 (1) of [13] and the product rule of calculus in
Lemma E.3 (3), we have

λ2M1Σ̂(1∪2)cM2 ≃ λ2M1ΣM2.

29



From Part (2) and Lemma E.3 (1), it follows that

λ2M1Σ̂(1∪2)cM2 ≃ λ2M1ΣM2 ≃ (1 + ṽp(−λ;ϕ, ψ)) (vp(−λ;ψ)Σ+ Ip)
−2

Σ. (31)

Finally, for the coefficients of the two terms, from Lemma S.8.3 of [12], we have that

|I1 ∪ I2|
n

=
|I1|+ |I2| − |I1 ∩ I2|

n

a.s.−−→ ϕ(2ψ − ϕ)

ψ2
,

n− |I1 ∪ I2|
n

a.s.−−→ (ψ − ϕ)2

ψ2
. (32)

Combining (29)-(32) yields that

λ2M1Σ̂M2

≃ 1

ψ2

(
2(ψ − ϕ)ϕλvp(−λ;ψ) + ϕ2λ2vp(−λ;ψ)2 + (ψ − ϕ)2

)
(1 + ṽp(−λ;ϕ, ψ))(vp(−λ;ψ)Σ+ Ip)

−2Σ

=
(ϕλvp(−λ;ψ) + ψ − ϕ)2

ψ2
(1 + ṽp(−λ;ϕ, ψ))(vp(−λ;ψ)Σ+ Ip)

−2Σ

=

(
1− ϕ

∫
vp(−λ;ψ)r

1 + vp(−λ;ψ)r
dHp(r)

)2

(1 + ṽp(−λ;ϕ, ψ))(vp(−λ;ψ)Σ+ Ip)
−2Σ

where the last equality follows by substituting

λ = vp(−λ;ψ)−1 − ψ

∫
r(1 + vp(−λ;ψ)r)−1 dHp(r)

based on the fixed-point equation.

D.2 Convergence of random linear and quadratic forms

Lemma D.2 (Concentration of linear form with independent components and varying coefficients).
Let zi ∈ Rp for i = 1, . . . , n be a sequence of random vectors with i.i.d. entries zij , j = 1, . . . , p
such that for each i, j, E[zij ] = 0, E[z2ij ] = 1, E[|zij |4+α] ≤ Mα for some α > 0 and constant
Mα < ∞. Let Z = [z1, . . . ,zn]

⊤ ∈ Rn×p be the random matrix formed by concatenating
zi’s. Let g : Rp → R be any measurable function such that E[g(zi)] = 0 and E[zig(zi)] = 0
for i = 1, . . . , n. Let ap ∈ Rp be a sequence of random vectors independent of zp such that
lim supp ∥ap∥2/p ≤ M0 almost surely for a constant M0 < ∞. Let D be a positive semidefinite
matrix such that lim sup ∥D∥op ≤M0 almost surely as p→ ∞ for some constant M0 <∞. Then,
as n, p→ ∞ such that p/n→ ϕ ∈ (0,∞), we have∣∣∣∣∣∣ 1n

n∑
i=1

a⊤

(
D

1
2Z⊤ZD

1
2

n
+ λIp

)−1

D
1
2Z⊤


i

g(zi)

∣∣∣∣∣∣ a.s.−−→ 0. (33)

Proof. We will use the standard leave-one-out trick to break the dependence between the i-th
component multiplier in the summation in (33) and g(zi) for each i = 1, . . . , n. To that end, using
the Woodbury matrix identity, first observe that(

D
1
2Z⊤ZD

1
2

n
+ λIp

)−1

=

(
D

1
2Z⊤

−iZ−iD
1
2

n
+

D
1
2 ziz

⊤
i D

1
2

n
+ λIp

)−1

=

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1
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−

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1
D

1
2 ziz

⊤
i D

1
2

n

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1

1 +

z⊤
i D

1
2

(
D

1
2 Z⊤

−iZ−iD
1
2

n + λIp

)−1

D
1
2 zi

n

. (34)

Plugging (34) back into (33), we expand the desired sum into:

1

n

n∑
i=1

a⊤

(
D

1
2Z⊤ZD

1
2

n
+ λIp

)−1

D
1
2Z⊤


i

g(zi)

=
1

n

n∑
i=1

a⊤

(
D

1
2Z⊤ZD

1
2

n
+ λIp

)−1

D
1
2 zig(zi)

=
1

n

n∑
i=1

a⊤

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1

D
1
2 zig(zi)

− 1

n

n∑
i=1

a⊤

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1
D

1
2 ziz

⊤
i D

1
2

n

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1

D
1
2 zig(zi)

1 +

z⊤
i D

1
2

(
D

1
2 Z⊤

−iZ−iD
1
2

n + λIp

)−1

D
1
2 zi

n

=
1

n

n∑
i=1

b⊤i zig(zi)−
1

n

n∑
i=1

b⊤i dizig(zi)

1 + di
(35)

≤ 1

n

n∑
i=1

(1 + di)b
⊤
i zig(zi), (36)

where in step (35), we denote by:

bi = D
1
2

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1

a,

di =

z⊤
i D

1
2

(
D

1
2Z⊤

−iZ−iD
1
2

n
+ λIp

)−1

D
1
2 zi

n ,

and step (36) follows since di ≥ 0. It is easy to check that lim supp ∥bi∥22/p ≤ C1 < ∞, and
di

a.s.−−→ C2 < ∞ for some constants C1 and C2. Appealing to Lemma S.8.5 of [51], (36) almost
surely converges to 0. This finishes the proof.

Lemma D.3 (Concentration of sum of quadratic forms with independent components and independent
varying inner matrices). Let zp ∈ Rp be a sequence of random vector with i.i.d. entries zpi, i =
1, . . . , p such that for each i, E[zpi] = 0, E[z2pi] = 1, E[|zpi|4+α] ≤Mα for some α > 0 and constant
Mα <∞. Let Z = [z1, . . . ,zn]

⊤ ∈ Rn×p be the design matrix. Let g : Rp → R be any measurable
function such that E[zig(zi)] = 0 and E[g(zi)] = 1. Let D be a positive semidefinite matrix such
that lim sup ∥D∥op ≤M0 almost surely as p→ ∞ for some constant M0 <∞. Then, as n, p→ ∞
such that p/n→ ϕ ∈ (0,∞),∣∣∣∣∣∣ 1n

∑
1≤i ̸=j≤n

(
ZDZ⊤

n
+ λIn

)−1

ij

g(zi)g(zj)

∣∣∣∣∣∣ a.s.−−→ 0. (37)

Proof. The strategy in the proof is to express each of the ij-the entry of the resolvent in (37) such
that the dependence on (zi, zj) and the rest of (zk : k ̸= i, j) is separated. One is then able to use the
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uncorrelatedness of z and g(z) along with standard concentration of a quadratic form with respect to
an independent matrix. Similar strategy has been used in [14] when analyzing kernel ridge regression
under proportional asymptotics.

Denote Y = (ZDZ⊤/n+λIn)
−1. For each pair of i, j ∈ [n] and i ̸= j, we let Z−(ij) ∈ R(n−2)×p

be the matrix comprising the n − 2 rows of Z excluding the ith and jth rows, and U ∈ Rp×2 be
the matrix with columns Uijei = zi,Uej = zj . We finally define the matrices R−(ij) ∈ Rp×p as
follows:

R−(ij) = λD1/2
(
D1/2Z⊤

−(ij)Z−(ij)D
1/2/n+ λIp

)−1

D1/2,

and let Ỹij = {Ym,ℓ}m,ℓ∈{i,j} be the submatrix of Y . Then, using the block matrix inversion formula
(see, e.g., Appendix A.1.4 of [45]) and the Woodbury matrix identity, one can show that

Ỹij =
(
U⊤
ijR−(ij)Uij/n+ λI2

)−1
,

Yij = −
〈
zi,R−(ij)zj

〉
/n

dij
,

where dij is given by:

dij =
(
λ+

〈
zi,R−(ij)zj

〉
/n
) (
λ+

〈
zi,R−(ij)zj

〉
/n
)
−
〈
zi,R−(ij)zj

〉2
/n2.

Since zi, zj , and R−(ij) are mutually independent, by Lemma S.8.5 of [51], we have〈
zi,R−(ij)zj

〉
/n

a.s.−−→ 0 and the denominator concentrates on λ2. By Lemma G.5 (1) of [13],
it follows that max1≤i ̸=j≤n dij

a.s.−−→ λ2. Thus, there exists N0 ∈ N such that for all n ≥ N0,
max1≤i̸=j≤n dij ≥ λ2/2 almost surely. Then, it follows that for n ≥ N0,∣∣∣∣∣∣1p

∑
1≤i ̸=j≤n

Yijg(zi)g(zj)

∣∣∣∣∣∣ ≤ 2

λ2
1

n2

∑
1≤i̸=j≤n

|
〈
zi,R−(ij)zj

〉
g(zi)g(zj)|

=
2

λ2
1

n2

∑
1≤i̸=j≤n

(zig(zi))
⊤R−(ij)(zjg(zj))

a.s.−−→ 0,

where the last convergence is from Lemma S.8.5 of [51] and Lemma G.5 (2) of [13].

Lemma D.4. For any two conforming matrices A and B and any t ̸= 0, we have

A−1BA−1 = (A−1 − (A+ tB)−1)/t+ tA−1B(A+ tB)−1BA−1.

Proof. We recall the Woodbury matrix identity:

(A+UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

This holds for any conforming matrices A, U , C, and V . We will need to apply the Woodbury
matrix identity twice below.

1. Applying the Woodbury identity for the first time with A = A, U = t, C = B, and V = 1,
we get

(A+ tB)−1 = A−1 − tA−1(B−1 + tA−1)−1A−1.

Rearranging, this yields

(A−1 − (A+ tB)−1)/t = A−1(B−1 + tA−1)−1A−1 = A−1(tA−1 +B−1)−1A−1. (38)

2. Applying the Woodbury identity the second time with A = tB, U = 1, C = A, and V = 1,
we get

(A+ tB)−1 = t−1B−1 − t−1B−1(A−1 + t−1B−1)−1t−1B−1.

Multiplying by tB from the left yields

tB(A+ tB)−1 = I − (A−1 + t−1B−1)−1t−1B−1 = I − (tA−1 +B−1)−1B−1.

Now, multiplying by B on the right, notice that

tB(A+ tB)−1B = B − (tA−1 +B−1)−1. (39)
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From (38), observe that

A−1BA−1 − (A−1 − (A+ tB)−1)/t = A−1BA−1 −A−1(tA−1 +B−1)−1A−1

= A−1(B − (tA−1 +B−1)−1)A−1.

Using (39), we then have

A−1BA−1 − (A−1 − (A+ tB)−1)/t = tA−1B(A+ tB)−1BA−1.

Rearranging, we arrive at the desired equality:

A−1BA−1 = (A−1 − (A+ tB)−1)/t+ tA−1B(A+ tB)−1BA−1.

D.3 Concentration of energy of linear and nonlinear components

Lemma D.5. Under Assumptions 1–2, the best linear estimator β0 and the nonlinear component fNL

as defined in (10) satisfies that ∥β0∥2 and ∥fNL∥L4+δ
are bounded almost surely.

Proof. By Jensen’s inequality and Assumption 1, we have E[y2] ≤ E[y4+δ]2/(4+δ) ≤ C
2/(4+δ)
0 for

some constant C0 > 0.

By the orthogonality, we have that E[y2] = E[(x⊤β0)
2] + ∥fNL∥2L2 , which implies that E[(x⊤β0)

2]
and ∥fNL∥2L2 is bounded. Since by Assumption 2, the eigenvalues of Σ is lower bounded by rmin > 0,
we have that E[(x⊤β0)

2] = β0Σβ0 ≥ rmin∥β0∥22 and thus ∥β0∥2 is bounded.

Since fNL = y − x⊤β0, by triangle inequality we have that

∥fNL∥L4+δ
≤ ∥y∥L4+δ

+ ∥x⊤β0∥L4+δ

≤ ∥y∥L4+δ
+ C∥β0∥2)

for some constant C > 0. The second inequality of the above display is from Lemma 7.8 of [57].
Since ∥y∥L4+δ

and ∥β0∥2 are bounded, it follows that ∥fNL∥L4+δ
is also bounded.

E Asymptotic equivalents: background and known results

Preliminary background. In several proofs, we employ the concept of asymptotic equivalence of
sequences of random matrices; see [12, 44, 49, 51]. This section provides a brief overview of the
associated terminology and calculus principles.
Definition E.1 (Asymptotic equivalence). Consider sequences {Ap}p≥1 and {Bp}p≥1 of (random
or deterministic) matrices of growing dimensions. We say that Ap and Bp are equivalent and write
Ap ≃ Bp if limp→∞ | tr[Cp(Ap −Bp)]| = 0 almost surely for every sequence of random matrices
Cp independent to Ap and Bp, with bounded trace norm such that lim supp→∞ ∥Cp∥tr <∞ almost
surely.

The notion of asymptotic equivalence of two sequences of random matrices above can be further
extended to incorporate conditioning on another sequence of random matrices; see [12] for more
details.
Definition E.2 (Conditional asymptotic equivalence). Consider sequences {Ap}p≥1, {Bp}p≥1 and
{Dp}p≥1 of (random or deterministic) matrices of growing dimensions. We say that Ap and Bp are
equivalent given Dp and write Ap ≃ Bp | Dp if limp→∞ | tr[Cp(Ap −Bp)]| = 0 almost surely
conditional on {Dp}p≥1, i.e.,

P
(

lim
p→∞

| tr[Cp(Ap −Bp)]| = 0

∣∣∣∣ {Dp}p≥1

)
= 1,

for any sequence of random matrices Cp independent to Ap and Bp conditional on Dp, with bounded
trace norm such that lim sup ∥Cp∥tr <∞ as p→ ∞.

Below we summarize the calculus rules for conditional asymptotic equivalence in Definition E.2.
These are adapted from Lemma S.7.4 and S.7.6 of [12].
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Lemma E.3 (Calculus of asymptotic equivalents). Let Ap, Bp, Cp and Dp be sequences of random
matrices. The calculus of asymptotic equivalents satisfies the following properties:

(1) Equivalence: The relation ≃ is an equivalence relation.

(2) Sum: If Ap ≃ Bp | Ep and Cp ≃ Dp | Ep, then Ap +Cp ≃ Bp +Dp | Ep.

(3) Product: If Ap has bounded operator norms such that lim supp→∞ ∥Ap∥op < ∞, Ap is
conditional independent to Bp and Cp given Ep for p ≥ 1, and Bp ≃ Cp | Ep, then
ApBp ≃ ApCp | Ep.

(4) Trace: If Ap ≃ Bp | Ep, then tr[Ap]/p− tr[Bp]/p→ 0 almost surely when conditioning on
Ep.

(5) Differentiation: Suppose f(z,Ap) ≃ g(z,Bp) | Ep where the entries of f and g are analytic
functions in z ∈ S and S is an open connected subset of C. Suppose for any sequence Cp of
deterministic matrices with bounded trace norm we have | tr[Cp(f(z,Ap)− g(z,Bp))]| ≤M
for every p and z ∈ S. Then, we have f ′(z,Ap) ≃ g′(z,Bp) | Ep for every z ∈ S, where the
derivatives are taken entrywise with respect to z.

(6) Unconditioning: If Ap ≃ Bp | Ep, then Ap ≃ Bp.

(7) Substitution: Let v : Rp×p → R and f(v(C),C) : Rp×p → Rp×p be a matrix function for
matrix C ∈ Rp×p and p ∈ N, that is continuous in the first augment with respect to operator
norm. If v(C)

a.s.
= v(D) such that C is independent to D, then f(v(C),C) ≃ f(v(D),C) | C.

Standard ridge resolvents and various extensions. In this section, we collect various asymptotic
equivalents. The following corollary is a simple consequence of Theorem 1 in [58]. It provides
deterministic equivalent for the scaled ridge resolvent.
Corollary E.4 (Deterministic equivalent for scaled ridge resolvent). Suppose xi ∈ Rp, 1 ≤ i ≤ n,
are i.i.d. random vectors such that each xi = ziΣ

1/2, where zi is a random vector consisting of i.i.d.
entries zij , 1 ≤ j ≤ p, satisfying E[zij ] = 0, E[z2ij ] = 1, and E[|zij |8+α] ≤Mα for some constants
α > 0 and Mα < ∞, and Σ ∈ Rp×p is a positive semidefinite matrix satisfying 0 ⪯ Σ ⪯ rmaxIp
for some constant rmax <∞ (independent of p). Let X ∈ Rn×p the concatenated matrix with x⊤

i ,
1 ≤ i ≤ n, as rows, and let Σ̂ ∈ Rp×p denote the random matrix X⊤X/n. Let γ = p/n. Then, for
z ∈ C+, as n, p→ ∞ such that 0 < lim inf γ ≤ lim sup γ <∞, and λ > 0, we have

λ(Σ̂+ λIp)
−1 ≃ (v(−λ; γ)Σ+ Ip)

−1,

where v(−λ; γ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ)
= λ+ γ

∫
r

1 + v(−λ; γ)r
dHp(r). (40)

Here Hn is the empirical distribution (supported on R≥0) of the eigenvalues of Σ.

Side remark: The parameter v(−λ; γ) in Corollary E.4 is also the companion Stieltjes transform of
the spectral distribution of the sample covariance matrix Σ̂. It is also the Stieltjes transform of the
spectral distribution of the gram matrix XX⊤/n. This is essentially the characterization we use in
proving Proposition 4.

The following lemma uses Corollary E.4 along with calculus of deterministic equivalents (from
Lemma E.3), and provides deterministic equivalents for resolvents needed to obtain asymptotic bias
and variance of standard ridge regression. It is adapted from Lemma S.6.10 of [51].
Lemma E.5 (Deterministic equivalents for ridge resolvents associated with generalized bias and
variance). Suppose xi ∈ Rp, 1 ≤ i ≤ n, are i.i.d. random vectors with each xi = ziΣ

1/2, where
zi ∈ Rp is a random vector that contains i.i.d. random variables zij , 1 ≤ j ≤ p, each with E[zij ] = 0,
E[z2ij ] = 1, and E[|zij |4+α] ≤ Mα for some constants α > 0 and Mα < ∞, and Σ ∈ Rp×p is a
positive semidefinite matrix with rminIp ⪯ Σ ⪯ rmaxIp for some constants rmin > 0 and rmax <∞
(independent of p). Let X ∈ Rn×p be the concatenated random matrix with xi, 1 ≤ i ≤ n, as
its rows, and define Σ̂ = X⊤X/n ∈ Rp×p. Let γ = p/n. Then, for λ > 0, as n, p → ∞ with
0 < lim inf γ ≤ lim sup γ <∞, the following statements hold:
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(1) Bias of ridge regression:

λ2(Σ̂+ λIp)
−1A(Σ̂+ λIp)

−1

≃(v(−λ; γ,Σ)Σ+ Ip)
−1(ṽb(−λ; γ,Σ,A)Σ+A)(v(−λ; γ,Σ)Σ+ Ip)

−1.

(2) Variance of ridge regression:

(Σ̂+ λIp)
−2Σ̂A ≃ ṽv(−λ; γ,Σ)(v(−λ; γ,Σ)Σ+ Ip)

−2ΣA.

Here v(−λ; γ,Σ) > 0 is the unique solution to the fixed-point equation

1

v(−λ; γ,Σ)
= λ+

∫
γr

1 + v(−λ; γ,Σ)r
dHn(r;Σ), (41)

and ṽb(−λ; γ,Σ) and ṽv(−λ; γ,Σ) are defined through v(−λ; γ,Σ) by the following equations:

ṽb(−λ; γ,Σ,A) =
γ tr[AΣ(v(−λ; γ,Σ)Σ+ Ip)

−2]/p

v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ)

, (42)

ṽv(−λ; γ,Σ)−1 = v(−λ; γ,Σ)−2 −
∫
γr2(1 + v(−λ; γ,Σ)r)−2 dHn(r;Σ), (43)

where Hn(·;Σ) is the empirical distribution (supported on [rmin, rmax]) of the eigenvalues of Σ.

Though Lemma E.5 states the dependency explicitly, we will simply write Hp(r), v(−λ; γ),
ṽb(−λ; γ,A), and ṽv(−λ; γ) to denote Hn(r;Σ), v(−λ; γ,Σ), ṽb(−λ; γ,Σ,A), and ṽv(−λ; γ,Σ),
respectively, for simplifying various notations when it is clear from the context. When A = Σ, we
simply write ṽb(−λ; γ) = ṽb(−λ; γ,A).

F Experiment details

F.1 Reproducibility and compute details

The source code for generating all of our figures is included with the supplementary material. The
source code also includes details about the computational resources used to run the code and other
timing details.

F.2 Simulation details

The covariance matrix of an auto-regressive process of order 1 (AR(1)) is given by Σar1, where
(Σar1)ij = ρ

|i−j|
ar1 for some parameter ρar1 ∈ (0, 1). Define β0 := 1

5

∑5
j=1 w(j) where w(j) is

the eigenvector of Σar1 associated with the top jth eigenvalue r(j). We generated data (xi, yi) for
i = 1, . . . , n from a nonlinear model:

yi = x⊤
i β0 +

1

p
(∥xi∥22 − tr[Σar1]) + εi, xi = Σ

1
2
ar1zi, zij

iid∼ t5
σ5
, εi ∼

t5
σ5
, (M-AR1)

where σ5 =
√
5/3 is the standard deviation of t5 distribution. The benefit of using the above

nonlinear model is that we can clearly separate the linear and the nonlinear components and compute
the quantities of interest because β0 happens to be the best linear projection.

For the simulations, we set ρar1 = 0.5. For finite ensembles, the risks are averaged across 50
simulations.

F.3 Risk comparisons along equivalence paths for finite ensembles

Figure F5 verifies the following linear (in M ) relationship along the path in Theorem 3 for finite
ensembles: R(β̂λ1

⌊p/ψ1⌋,M ;A, b,β0)−R(β̂λ2

⌊p/ψ2⌋,M ;A, b,β0) ≃ ∆/M, for some ∆ (independent
of M ), which is eventually almost surely bounded.

35



1 10 100
10 4

10 3

Ra
ng

e

Estimation risk

1 10 100
Ensemble size M

10 1

100

Training error

1 10 100

10 1

100

Prediction risk

1 10 100

10 1

100

Prediction risk (OOD)

Figure F5: The range (the difference between the maximum and the maximum along the path) of the
finite-sample generalized risk of M -ensemble ridge estimators on the path through (λ, ψ) = (0, 2),
for varying ensemble size M under the same setting as in Figure 1. The generalized risks include the
estimation risk, the training error, the prediction risk, and out-of-distribution (OOD) prediction risk.

F.4 Real-world datasets

We conduct experiments on real-world datasets to examine the equivalence in a more general setting.
We utilized three image datasets for our experimental analysis: CIFAR 10, MNIST, and USPS [59].
For the CIFAR 10 dataset, we subset the images labeled as “dog” and “cat”. For other datasets, we
subset the images labeled “3” and “8”. Then we treat them as binary labels y ∈ {0, 1} and use the
flattened image as our feature vector x. The training sample sizes, the feature dimensions, and the
test sample sizes (n, p, nte) are (10000, 3072, 2000), (12873, 784, 2145), and (22358, 3072, 7981)
for the three datasets, respectively.

For the first experiment in Figure 3, we fix ϕ = p/n and ψ = 4ϕ using the training set of CIFAR-10.
For λψ ∈ {0.01, 0.05, 0.1, 1}, we compute the data-dependent value of λ based on Proposition 4.
Each value of λψ gives a path between (λψ, ψ) and (λ, ϕ).

For the second experiment in Figure F6, by varying the values of subsample aspect ratios ψ, we
compare the random Gaussian linear projection of the estimators and the prediction risk at the two
endpoints (λ, ϕ) and (0, ψ), on CIFAR-10, MNIST, and USPS datasets.
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Figure F6: The functional equivalences of subsampling and ridge regularization on different datasets.
For each dataset with an aspect ratio ϕ = p/n and each value of ψ, the corresponding ridge penalty λ
is estimated by Proposition 4. The two models with ridge penalty and subsample aspect ratio (λ, ϕ)
and (0, ψ) are compared. Note that the model corresponding to (λ, ϕ) is ridge regression at ridge
penalty λ without subsampling, and the model corresponding to (0, ψ) is full-ensemble ridgeless at a
subsample aspect ratio ψ.

F.5 Random features model

The data (xi, yi) is generate from the nonlinear model

yi = x⊤
i β0 +

1

p
(∥xi∥22 − p) + εi,

where xij
iid∼ N (0, 1), and εi ∼ N (0, 1). The prediction risk of the ridge ensemble (M = 100)

is computed based on the random feature φ(Fxi) and the response yi, where F ∈ Rd×p is the
random weight matrix with Fij

iid∼ N (0, p−1). Here, φ is a nonlinear activation function (sigmoid,
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ReLU, or tanh) that is applied entry-wise to Fxi. For the experiment, we set p = 250, d = 500, and
ϕ = d/n = 0.1.

F.6 Kernel ridge regression

For a given feature map Φ : Rp → Rd, the kernel ridge estimator is defined as:

β̂λk (DI) = argmin
β∈Rp

∑
i∈I

(k−1/2yi − k−1/2Φ(xi)
⊤β)2 + λ∥β∥22

∑
i∈I

(yi − Φ(xi)
⊤β)2 +

k

p
λ∥β∥22.

By using the kernel trick, the above optimization problem is equivalent to solving:

α̂λk(DI) = argmin
α∈Rk

α⊤ (KI + kλIk)α+α⊤yI ,

where KI = ΦIΦ
⊤
I ∈ Rk×k is the kernel matrix and ΦI = (Φ(xi))i∈I ∈ Rn×d is the feature

matrix. Simple calculation shows that β̂λk (DI) = Φ⊤
I α̂

λ
k(DI).

Using the same data-generating process as in the previous subsection, the results on kernel ridge
regression are illustrated in Figure F7.
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Figure F7: Heat map of the empirical distribution prediction risk of full-ensemble kernel ridge
estimators, for varying ridge penalties λ and subsample aspect ratio ψ = p/d on the log-log scale.
The prediction risk of the ridge ensemble (M = 100) is computed using polynomial, Gaussian, and
Laplacian kernel, using the default parameters as in Python package scikit-learn v1.2.2 [60]
without the intercept terms. We scale λ by k/p so that we can obtain non-null estimators for the
polynomial inner-product kernel (of degree 3).
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Figure F8: Illustration of risk monotonicity of optimally subsampled ridgeless regression and
optimally regularized ridge regression (Theorem 6).

37


	Introduction
	Summary of contributions
	Related work

	Notation and preliminaries
	Generalized risk equivalences of ensemble estimators
	Structural equivalences of ensemble estimators
	Implications of equivalences
	Discussion
	Proofs of results in Section 3
	Proof of Theorem 1
	Proof of Proposition 2
	Technical lemmas

	Proofs of results in Section 4
	Proof of Theorem 3
	Proof of Proposition 4
	Proof of Corollary 5
	Technical lemmas

	Proof of results in Section 5
	Proof of Theorem 6
	Technical lemmas

	Asymptotic equivalents, concentration results, and other useful lemmas
	Full-ensemble resolvents
	Convergence of random linear and quadratic forms
	Concentration of energy of linear and nonlinear components

	Asymptotic equivalents: background and known results
	Experiment details
	Reproducibility and compute details
	Simulation details
	Risk comparisons along equivalence paths for finite ensembles
	Real-world datasets
	Random features model
	Kernel ridge regression


