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Abstract

We examine generalized and leave-one-out
cross-validation for ridge regression in a pro-
portional asymptotic framework where the di-
mension of the feature space grows proportion-
ally with the number of observations. Given
i.i.d. samples from a linear model with an ar-
bitrary feature covariance and a signal vector
that is bounded in `2 norm, we show that gen-
eralized cross-validation for ridge regression
converges almost surely to the expected out-
of-sample prediction error, uniformly over a
range of ridge regularization parameters that
includes zero (and even negative values). We
prove the analogous result for leave-one-out
cross-validation. As a consequence, we show
that ridge tuning via minimization of general-
ized or leave-one-out cross-validation asymp-
totically almost surely delivers the optimal
level of regularization for predictive accuracy,
whether it be positive, negative, or zero.

1 INTRODUCTION

Fitting high-dimensional statistical models typically
requires some form of regularization, both for computa-
tional and statistical reasons. For optimization-based
models, this can be achieved by adding to the data
fitting objective function a tunable regularization term.
The optimal level of regularization usually depends on
unknown characteristics of the data generating distri-
bution. In practice, one performs regularization tuning
based on the observed data. Proper calibration of regu-
larization can significantly affect the performance of the
fitted model, and consequently proper data-dependent
tuning is one of the core tasks in statistical learning.
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Cross-validation (e.g., Allen, 1974; Stone, 1974; Geisser,
1975) is a widely used method for regularization tuning.
While it has many variants, the most common variant
is arguably k-fold cross-validation (e.g., Hastie et al.,
2009; Györfi et al., 2006). Here we split the data into k
“folds”, leave out the first fold for model fitting so that
we can use it to assess the out-of-sample performance
of the fitted model, then we leave out the second fold,
and so on. By aggregating the errors made across the k
folds, we produce a final estimate of the expected out-of-
sample error profile as a function of regularization level,
and select the tuned regularization level by minimizing
the cross-validated error profile.

While a typical choice of k is 5 or 10, such a choice of
can suffer from high bias in high-dimensional problems.
Setting k = n, the number of observations, leads to a
variant called leave-one-out cross-validation (LOOCV).
This alleviates the bias issues but it is computationally
expensive in general, requiring n model fits. Despite
recent important advances in the theoretical study of
LOOCV and its various approximations in high dimen-
sions (including Kale et al., 2011; Kumar et al., 2013;
Meijer and Goeman, 2013; Obuchi and Kabashima,
2016; Miolane and Montanari, 2018; Wang et al., 2018;
Xu et al., 2019; Stephenson and Broderick, 2020; Wil-
son et al., 2020; Celentano et al., 2020), the theoretical
understanding of these methods, especially statistical
properties of the tuned estimators under general distri-
butional assumptions, is still incomplete.

In this paper, we focus on ridge regression (Hoerl and
Kennard, 1970), a widely-used estimator in statistics
that entails fitting linear regression with `2 regulariza-
tion. We consider two commonly used cross-validation
procedures, LOOCV and an approximation to LOOCV
called generalized cross-validation (GCV) (Golub et al.,
1979; Wahba, 1980, 1990). For ridge regression, both
procedures can be computed efficiently—in a manner
that requires no model refitting whatsoever—and are
popular choices in practice. Our main goal is to inves-
tigate the theoretical behavior of ridge regression when
tuned using one of these cross-validation methods.
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Figure 1: Comparison of the GCV and LOOCV estimates of the expected out-of-sample prediction error for ridge
regression as a function of the regularization parameter λ. We consider an overparametrized regime where the
number of observations is n = 6000 and the number of features is p = 12000. The features are random with a
ρ-autoregressive covariance Σ (such that Σij = ρ|i−j| for all i, j) with ρ = 0.25. The response is generated from
a linear model with a nonrandom signal vector β0. In the left figure, the signal is aligned with the eigenvector
corresponding to the largest eigenvalue of Σ, while in the right figure, the signal is aligned with the eigenvector
corresponding to the smallest eigenvalue. The effective signal-to-noise ratio is set to βT0 Σβ0 = 60 to illustrate
that, in the overparametrized regime, the optimal regularization could be negative or positive depending on how
the signal aligns with the covariance eigenstructure. Note that in both the cases, the GCV and LOOCV curves
track the prediction error over the whole range of λ very closely. The optimal regularization is recovered very
well by the GCV and LOOCV estimates in both cases.

For our theoretical analysis, we adopt a proportional
asymptotic framework in which the number of features
grows linearly with the number of observations (that
is, their ratio converges to a constant). We show that
both the GCV and LOOCV error curves, as functions
of the ridge regularization parameter, converge uni-
formly almost surely to the expected out-of-sample
prediction error curve. Our results hold under weaker
assumptions on the data generating distribution com-
pared to others in the literature thus far, and provide
a rigorous theoretical justification for the use of both
GCV and LOOCV for regularization tuning for ridge
regression in high dimensions. Below we summarize
our main contributions, and illustrate key points with
a numerical example in Figure 1.

1. GCV pointwise convergence. Given n i.i.d. samples
from a standard linear model y = xTβ0 + ε, where x
is p-dimensional feature such that x = Σ1/2z for a
covariance matrix Σ, and z contains i.i.d. entries, we
establish limiting equivalence of the GCV estimator
and the expected out-of-sample prediction error for
ridge regression, under proportional asymptotics (p/n
converging to a constant). This result holds for an
arbitrary sequence of covariance matrices Σ with eigen-
values bounded away from zero and infinity, and an
arbitrary sequence of signal vectors β0 with bounded
`2 norm.

2. GCV uniform convergence. Moreover, we show that
this GCV convergence holds uniformly over compact
intervals of the regularization parameter λ that include
zero and negative regularization.

3. LOOCV convergences. We establish the analogous
properties (pointwise and uniform convergence) for the
LOOCV estimator by relating it to GCV.

4. Optimal tuning. As a direct consequence of uniform
convergence, we demonstrate that the level of regular-
ization chosen based on either of the GCV or LOOCV
estimators almost surely delivers a limiting prediction
accuracy that an oracle with full knowledge of the out-
of-sample prediction error curve would achieve. Thus,
in this sense, both methods are asymptotically optimal
for tuning the prediction error of ridge regression.

2 RELATED WORK

Ridge Error Analysis. The predictive performance
of ridge regression has been studied comprehensively in
various settings, both asymptotic and non-asymptotic;
see, e.g., Hsu et al. (2012); Karoui (2013); Dicker (2016);
Dobriban and Wager (2018). More recently, there has
been a surge of interest in understanding its prediction
error driven by the successes of interpolating models
in high dimensions; e.g., Hastie et al. (2019); Mei and
Montanari (2019); Wu and Xu (2020); Richards et al.
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(2020); Tsigler and Bartlett (2020). Interestingly, Wu
and Xu (2020); Richards et al. (2020) study the nature
of optimal regularization and provide conditions on the
feature covariance and signal structure that result in a
positive or negative level of optimal regularization.

Ridge Cross-Validation. In the low-dimensional
setting, the consistency of LOOCV and GCV for ridge
regression error estimation and regularization tuning
has been established in Stone (1974, 1977); Craven
and Wahba (1979); Li (1985, 1986, 1987); Dudoit and
van der Laan (2005), among others. More recently, sta-
tistical and computational aspects of cross-validation
for regularized estimators in high dimensions have also
been thoroughly studied; see, e.g., Beirami et al. (2017);
Rad and Maleki (2018); Wang et al. (2018); Xu et al.
(2019); Rad et al. (2020); Austern and Zhou (2020).

Most similar to our work in this paper is probably the
result of Hastie et al. (2019) on the asymptotic opti-
mality of LOOCV and GCV tuning for ridge regression
in high dimensions. These authors also adopt a propor-
tional asymptotic model, but use stronger assumptions
on the data generating distribution: they assume Σ = I
(independent features) and that the signal β0 is drawn
from a spherical prior (taking a Bayesian view). Under
these conditions, the optimal level of regularization is
always positive. We significantly generalize the scope
of this analysis by allowing for arbitrary Σ and nonran-
dom β0, in which case the optimal regularization level
can be positive, negative, or zero.

Our Work. We highlight the main contributions of
our paper below.

Analyzing differences. We do not seek to characterize
the limiting risk (we will use the terms risk and pre-
diction error interchangeably), but instead, we analyze
the limiting differences between the LOOCV and GCV
estimators and the risk, and show that these differences
tend to zero. As such, we are able to work in a general
regime where it may not even be possible to precisely
characterize the limiting risk in the first place.

Conditional statements. Our theory is all conditional
on the training data {(xi, yi)}ni=1 (results hold almost
surely with respect to the draws from the training dis-
tribution). Most other papers provide cross-validation
results that hold in an integrated sense over the train-
ing data. Our conditional setup allows for stronger
statements about tuning based on the observed data
rather than in an average sense.

Direct analysis of GCV. Most previous papers rely on
the stability of estimator in question to establish the
properties of LOOCV, while we directly tackle the
explicit forms of prediction error and GCV, and derive

a crucial empirical equivalence lemma to first tie the
risk to GCV, and then GCV to LOOCV.

Uniform convergence. To analyze the cross-validation-
tuned risks, we establish uniform convergence results,
by leveraging the explicit form of the ridge estimator.
This aspect has not been focused on in previous cross-
validation work to the best of our knowledge, except
Hastie et al. (2019).

Proof technique. To reiterate what was mentioned ear-
lier, in comparison to Hastie et al. (2019) (who take
Σ = I and β0 drawn from a prior), we allow Σ and β0
to be essentially arbitrary, only requiring Σ to have
bounded eigenvalues and β0 to have bounded `2 norm.
While the flavor of final results is similar to those in
Hastie et al. (2019), the proof techniques are differ-
ent. We isolate the individual equivalences for the bias-
and variance-like components in the GCV and LOOCV
estimators, which helps shed light into the structure
underlying the overall combined equivalence. Further,
we derive (and rely extensively on) an equivalence that
relates certain functionals involving the sample covari-
ance Σ̂ and population covariance Σ, in a proportional
asymptotic setup. This is in a sense much simpler than
the approach taken in Hastie et al. (2019), which relies
on equating certain limiting formulae that arise from
studying GCV, LOOCV, and ridge risk (equating such
formulae involves difficult and unintuitive manipula-
tions with Stieltjes transforms).

Result utility. Recently, it has been observed that mod-
els with very small or even zero regularization can gen-
eralize well in certain overparametrized settings (e.g.,
Zhang et al., 2017; Belkin et al., 2019). This is also
the case with ridge regression where the optimal level
of regularization can be zero or even negative (Kobak
et al., 2020; Richards et al., 2020; Wu and Xu, 2020).
Certain nontrivial interactions between the properties
of the signal and feature distributions is what leads to
these recent surprises. Our framework automatically
accommodates these cases and affirms that that GCV
and LOOCV can indeed pick risk-optimal interpolators
when they need to.

3 PROBLEM SETUP

We consider the standard regression setting in which
we observe n i.i.d. pairs {(xi, yi)}ni=1, where xi ∈ Rp is
the ith feature vector and yi ∈ R is the corresponding
response variable. In matrix notation, we denote by
X ∈ Rn×p the feature matrix whose ith row is xTi and
by y ∈ Rn the response vector whose ith entry is yi.

Extended Ridge Regression. For a regularization
parameter λ > 0, the ridge regression estimate β̂λ ∈ Rp
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based on features X and response y can be formulated
as the solution to the convex optimization problem

minimize
β∈Rp

1

n
‖y −Xβ‖22 + λ‖β‖22.

The can be explicitly written as

β̂λ = (XTX/n+ λIp)
−1XT y/n,

where Ip ∈ Rp×p is the identity matrix. To allow for
an extended range of λ (including λ = 0), we simply
define the extended ridge regression estimate as

β̂λ = (XTX/n+ λIp)
+XT y/n. (1)

Here A+ denotes the Moore-Penrose pseudoinverse of
a matrix A. Note this definition allows for any λ ∈ R.
For λ > 0, there is no difference between (1) and the
usual definition of ridge (second to last display). For
λ = 0, we can see that (1) reduces to the least squares
solution that lies in the row space of X, and hence has
minimum `2 norm among all least squares solutions.
Of particular interest is when rank(X) = n < p: then
it reduces to the least squares solution that interpolates
the data (Xβ̂λ = y), and has minimum `2 norm among
all such interpolators.

Prediction Error. The expected out-of-sample pre-
diction error (or risk) of the ridge model β̂λ is defined
as

Err(β̂λ) = Ex0,y0

[
(xT0 β̂λ − y0)2 | X, y

]
. (2)

Here the expectation is taken with respect to the dis-
tribution of a new test pair (x0, y0) sampled from the
same distribution as the training data {(xi, yi)}ni=1,
and independent of the training data. The prediction
error is a random variable (it is conditional on—and
thus a function of—X, y) that quantifies how well a
given fitted ridge model β̂λ performs in the task of
predicting the response.

The prediction error as a function of the regularization
parameter λ yields an error curve that we denote by

err(λ) = Err(β̂λ).

As far as we are concerned in this paper, the optimal
regularization parameter is defined as the value that
minimizes the risk curve err(λ). This is the value of λ
that an oracle with knowledge of the risk curve would
pick. We seek to construct a faithful estimate of the
risk curve err(λ) based on the available data X and y,
uniformly over λ, in order to select the regularization
level that leads to prediction error close to that of
the oracle prediction error. To do so, we will consider
LOOCV and GCV whose definitions we recall next.

LOOCV and GCV. The LOOCV estimate for the
risk of a given ridge model β̂λ is defined as

loo(λ) =
1

n

n∑
i=1

(
yi − xTi β̂−i,λ

)2
,

where β̂−i,λ = (XT
−iX−i/n+ λIp)

+XT
−iy−i/n denotes

the ridge estimate with the ith observation pair (xi, yi)
excluded from the training set. Computing the LOOCV
estimate with this definition requires (re)fitting ridge
model n times. Recall that ridge regression is a linear
smoother, Xβ̂λ = Lλ y, where the smoothing matrix
Lλ ∈ Rn×n is

Lλ = X(XTX/n+ λIp)
+XT /n. (3)

Fortunately, there is a so-called shortcut formula for
the LOOCV estimate (see, e.g., Chapter 7 of Hastie
et al., 2009):

loo(λ) =
1

n

n∑
i=1

(
yi − xTi β̂λ
1− [Lλ]ii

)2

, (4)

where [Lλ]ii denotes the ith diagonal element of Lλ.

The GCV estimate is a further convenient approxima-
tion to the LOOCV shortcut formula (4) given by

gcv(λ) =
1

n

n∑
i=1

(
yi − xTi β̂λ

1− tr[Lλ]/n

)2

, (5)

where tr[A] denotes the trace of a matrix A.

Caution needs to be taken when the smoothing matrix
Lλ reduces to the identity matrix In, or in other words,
ridge regression is an interpolator, with Xβ̂λ = y. This
happens when λ = 0 and X has rank n. In this case,
both the numerators and denominators of loo(λ) and
gcv(λ) are 0, however, we can define the corresponding
LOOCV and GCV estimates as their respective limits
as λ→ 0; see Hastie et al. (2019) for details.

Goal of This Paper. Our main goal is to analyze
the differences between the cross-validation estimators
of risk and the risk itself, loo(λ)− err(λ) and gcv(λ)−
err(λ). Let λ?I denote the optimal oracle ride tuning
parameter that minimizes err(λ) over an interval I ⊆ R,

λ?I = arg min
λ∈I

err(λ).

(If there are multiple minimizers, simply let λ?I denote
one of them.) Similarly, let λ̂gcvI and λ̂looI be the corre-
sponding tuning parameters that minimize GCV and
LOOCV over λ ∈ I. We seek to compare the prediction
errors of the models tuned using GCV and LOOCV,
Err(β̂λ̂gcv

I
) and Err(β̂λ̂loo

I
), against the prediction error

under oracle tuning, Err(β̂λ?
I
).
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4 MAIN RESULTS

In this section, we state and discuss our main results.
We first list the required assumptions in Section 4.1. In
Section 4.2, we state the limiting equivalence between
the GCV estimator and prediction risk, followed by the
limiting equivalence between the LOOCV and GCV
estimators in Section 4.3.

4.1 Assumptions

We begin by stating the assumptions we impose on the
structure of response and feature distributions.

Assumption 1 (Response distribution). There exists
a signal vector β0 ∈ Rp such that y = Xβ0 + ε, where
the noise vector ε = (ε1, . . . , εn) ∈ Rn is independent of
X, and its components are i.i.d. with mean 0, variance
σ2, and finite 4 + η moment for some η > 0.

Assumption 2 (Feature distribution). The feature
vectors (rows of X) can be decomposed as x = Σ1/2z,
where Σ ∈ Rp×p is a deterministic positive definite ma-
trix, and z ∈ Rp is a random vector whose components
are i.i.d. with mean zero 0, variance 1, and finite 4 + η
moment for some η > 0.

We consider a proportional asymptotic framework in
which the number of features p grows with the number
of observations n in such a way that their ratio p/n
approaches a constant γ ∈ (0,∞). Accordingly, in our
asymptotic analysis, we must deal with a sequence of
feature covariance matrices Σ and signal vectors β0.
(For ease of readability, we do not make the dependence
of these quantities and many others on p explicit in
our notation.) We make the following assumptions on
the eigenvalues of Σ and the signal energy.

Assumption 3 (Extreme eigenvalues of Σ). The max-
imum and minimum eigenvalues of Σ are upper and
lower bounded by constants rmax < ∞ and rmin > 0,
respectively, independent of p.

The lower bound rmin on the minimal eigenvalue of Σ
will determine, asymptotically, the smallest possible
value of the regularization parameter for which our
results hold. We denote it by λmin = −(

√
γ − 1)2rmin.

Assumption 4 (Signal energy). The signal energy
‖β0‖22 is upper bounded by a constant τ <∞ indepen-
dent of p.

We note that it should be possible to relax the assump-
tions on the maximum and minimum eigenvalues of
Σ, to allow a certain fraction of eigenvalues to diverge
and others to accumulate near zero. We leave such an
extension to future work.

4.2 GCV Versus Prediction Error

We are ready to state our first result comparing the
GCV estimator to prediction error of ridge regression.

Theorem 4.1 (GCV equals prediction error in limit).
Under Assumptions 1 to 4, for every λ ∈ (λmin,∞), it
holds that

gcv(λ)− err(λ)
a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞). Furthermore, the
convergence is uniform in λ over compact subintervals
I ⊆ (λmin,∞); consequently, for any such interval I,

Err(β̂λ̂gcv
I

)− Err(β̂λ?
I
)

a.s.−−→ 0,

where λ̂gcvI and λ?I are the corresponding optimal GCV
and prediction error tuning parameters, respectively.

We note that in this and in all the other asymptotic
statements in the paper, the almost sure qualification
refers to the randomness in both X and y.

Range of λ. The lower limit λmin in Theorem 4.1 is
used to ensure that the resulting smoothing matrix Lλ
stays positive semidefinite; this is simply a function of
the behavior of the minimum non-zero eigenvalue of the
sample covariance matrix Σ̂ (see Bai and Silverstein,
1998).

Note that this range of λ allows for potentially nega-
tive regularization (when γ 6= 1), including zero; the
latter case, in particular, results in the least squares
interpolator when p > n. The fact that GCV works
in this case is interesting because both the numera-
tor and denominator in the expression (5) for gcv(λ)
are 0—implying the particular form of the ridge esti-
mator somehow preserves the information about the
predictive performance in the GCV limit even when
the training error is 0.

The statement in Theorem 4.1 does not cover the be-
havior of GCV at the endpoints λ = λmin and λ→∞.
In fact, it is easy to check that the limiting behavior of
GCV and prediction error matches at these endpoints
as well. In particular, under the same assumptions as
the theorem, if rmin is the limit inferior of minimum
eigenvalues of the Σ sequence, then indeed both

gcv(λmin)→∞ and err(λmin)→∞

as n, p→∞ with p/n→ γ. Similarly, both

gcv(λ)→ c2 and err(λ)→ c2

as λ → ∞ and n, p → ∞ with p/n → γ, where c2 =
E[y20 ] is the prediction error of the null estimator. In
this regard, the pointwise equivalence between GCV
and prediction error extends to the entire range of λ.
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4.3 LOOCV Versus GCV

As a byproduct of our analysis, we establish a limiting
equivalence between the LOOCV and GCV estimators.
This implies a limiting equivalence between LOOCV
and prediction error.

Theorem 4.2 (LOOCV equals GCV in limit). If the
components of the response vector y ∈ Rn have mean
zero and finite second moment, and Assumptions 2 to 3
hold, then for every λ ∈ (λmin,∞),

loo(λ)− gcv(λ)
a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞). Furthermore, the
convergence is uniform in λ over compact subintervals
I ⊆ (λmin,∞).

It is worth pointing out that, compared to Theorem 4.1,
the last guarantee only requires that the response vari-
ables have a finite second moment. In particular, it
does not postulate a linear model. So the equivalence
between the GCV and LOOCV estimators holds even
when the model is misspecified.

In general, the analysis of LOOCV is challenging be-
cause of complex dependencies between its summands.
Fortunately, for ridge regression, the equivalent short-
cut expression given in (4) for the LOOCV estimate
simplifies such dependence. Unlike GCV in (5), which
weights training errors by 1 − tr[Lλ]/n, the shortcut
expression for LOOCV weights the ith training error by
1− [Lλ]ii. Theorem 4.1 effectively shows that this dif-
ferent reweighting does not affect the limiting behavior,
providing a way to directly tie GCV to LOOCV.

An important consequence of the last theorem is the
following.

Corollary 4.3 (LOOCV equals prediction error in
limit). Under the assumptions as Theorem 4.1, the
same results hold but for LOOCV in place of GCV.

(The same remarks about the range of λ that were
made following the GCV theorem also apply here.)

In light of this corollary, we conclude that both the
GCV and the LOOCV estimators are uniformly close
to the true risk in the limit. Thus regularization tuning
using either method will be asymptotically optimal for
ridge regression.

5 PROOF OUTLINES

In this section, we outline the main ideas behind the
proofs of Theorem 4.1 and Theorem 4.2. The complete
proofs are provided in the supplement.

5.1 GCV Versus Prediction Error

The proof of Theorem 4.2 involves two steps. In the
first step, we decompose both the prediction error and
the GCV estimator into asymptotic bias- and variance-
like components as summarized in Lemma 5.1 and
Lemma 5.2. In the second step, we establish limiting
equivalences for both the bias and variance components
as summarized in Lemma 5.3 and Lemma 5.4. The
key reason why the limiting bias-variance equivalences
hold is a certain property obeyed by the denominator
of GCV as elucidated in Lemma 5.5.

Prediction Error Decomposition. We begin with
a familiar asymptotic bias-variance decomposition for
the prediction risk. For convenience, let Σ̂ = XTX/n
denote the sample covariance matrix. Also, define bias-
and variance-like components as follows:

errb(λ) = βT0
(
Ip−Σ̂(Σ̂+λIp)

+
)
Σ
(
Ip−Σ̂(Σ̂+λIp)

+
)
β0,

errv(λ) =
εT√
n

(
X(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+XT

n

)
ε√
n

+ σ2.

The decomposition of the prediction error can now be
summarized as follows.

Lemma 5.1 (Error bias-variance decomposition). Un-
der Assumptions 1 to 4, for every λ ∈ (λmin,∞),

err(λ)− errb(λ)− errv(λ)
a.s.−−→ 0

as n, p→∞ and n/p→ γ ∈ (0,∞).

GCV Decomposition. We decompose GCV into
terms that mimic the bias- and variance-like terms in
the decomposition for the risk. For λ 6= 0, define GCV
bias- and variance-like components as follows:

gcvb(λ) = βT0
(
Ip−Σ̂(Σ̂+λIp)

+
)
Σ̂
(
Ip−Σ̂(Σ̂+λIp)

+
)
β0,

gcvv(λ) =
εT√
n

(
In −

X(Σ̂ + λIp)
+XT

n

)2
ε√
n
.

Additionally, write the GCV denominator as:

gcvd(λ) =
(
1− tr[Σ̂(Σ̂ + λIp)

+]/n
)2
.

When λ = 0, the corresponding quantities after taking
the limit λ→ 0 take the form:

gcvb(0) = βT0 Σ̂+β0,

gcvv(0) =
εT√
n

(
Σ̂+
)2 ε√

n
,

gcvd(0) =
(

tr[Σ̂+]/n
)2
.
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Figure 2: Comparison of the bias and variance decompositions of the GCV estimate and the prediction error.
Similar to Figure 1, the features are random from a ρ-autoregressive covariance matrix Σ with ρ = 0.25. The
response is generated from a linear model where the signal is nonrandom and aligned with the principal eigenvector
of Σ. The effective signal-to-noise ratio is βT0 Σβ0 = 25. The left figure illustrates an underparametrized regime
(with n = 6000 and p = 3000 such that γ = 0.5) while the right illustrates an overparametrized regime (with
n = 6000 and p = 12000 such that γ = 2). In both cases, the bias-variance-like components of the GCV risk
estimate track the bias-variance components in the prediction risk over the entire range of λ very well. In the
underparametrized regime, the bias of the prediction risk is 0 at λ = 0 and increases on either sides when λ 6= 0,
while the variance always decreases as λ increases (from the most negative allowed λ), resulting in a positive
optimal regularization. On the other hand, in the overparametrized regime, the bias is no longer minimized at
λ = 0, but at a negative λ, while the variance is again a decreasing function of λ. Since the bias dominates the
total prediction risk, it results in negative optimal regularization.

(We remark that the limiting expressions for the bias-
and variance-like components and the denominator for
the λ = 0 case can alternately be written in terms of
the gram matrix XXT /n. The representation in terms
of the sample covariance matrix Σ̂ is for consistency
with the λ 6= 0 case.)

Next we establish the decomposition of GCV into bias-
and variance-like quantities.

Lemma 5.2 (GCV bias-variance decomposition). Un-
der Assumptions 1 to 4, for every λ ∈ (λmin,∞),

gcv(λ)− gcvb(λ) + gcvv(λ)

gcvd(λ)

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

Bias-Variance Equivalences. The two bias terms
errb(λ) and gcvb(λ) differ in the sense that the latter
has the unknown Σ replaced by its natural plug-in es-
timator Σ̂ and a rescaling by the denominator gcvd(λ).
The difference between the variance terms is analogous,
albeit slightly more involved. For both, the denomina-
tor adjustment, which can be thought of as a correction
for optimism in the training error by the number of
effective degrees of freedom, turns out to be critical. In-
deed, it is only through this normalization that gcvb(λ)

and gcvv(λ) become consistent estimators of their popu-
lation counterparts, as summarized next and illustrated
in Figure 2.

Lemma 5.3 (Bias equivalence). Under Assumptions 2
to 4, for λ ∈ (λmin,∞),

errb(λ)− gcvb(λ)

gcvd(λ)

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

Lemma 5.4 (Variance equivalence). Under Assump-
tions 1 to 3, for λ ∈ (λmin,∞),

errv(λ)− gcvv(λ)

gcvd(λ)

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

Basic GCV Equivalence. At the heart of why the
rescaling in the GCV bias and variance-like terms yields
consistency is a certain asymptotic equivalence of ran-
dom matrices as summarized below.

Lemma 5.5 (Basic GCV equivalence). Under Assump-
tion 2 and Assumption 3, for any sequence of matrices
Bp ∈ Rp×p that are bounded in trace norm (indepen-
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dent of p), and for λ ∈ (λmin,∞) \ {0}, it holds that

tr
[
Bp
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]

−
tr
[
Bp
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
]

1− tr[(Σ̂ + λIp)+Σ̂]/n

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞). When λ = 0,

tr
[
Bp(Ip − Σ̂Σ̂+)Σ

]
−

tr
[
BpΣ̂

+Σ̂
]

tr[Σ̂+]/n

a.s.−−→ 0.

Finally, to prove uniform convergence in λ, we show
that both the prediction risk err(λ) and the GCV es-
timator gcv(λ), and their derivatives, as functions of
λ, are uniformly bounded over compact subintervals
of (λmin,∞). This yields equicontinuity of the family
of functions λ→ err(λ) and λ→ gcv(λ) almost surely
and the result then follows from an application of the
Arzela-Ascoli theorem. The uniform convergence sub-
sequently leads to the convergence of the tuned errors.

5.2 LOOCV Versus GCV

There are two steps involved in establishing the limiting
equivalence between LOOCV and GCV. The first is to
show that the LOOCV estimator in the limit is equal
to a scalar corrected factor of the training error. The
second is that the correction happens to match with
the factor that appears in the GCV estimator in the
limit. The following lemma provides the LOOCV limit.

Lemma 5.6 (LOOCV limit as rescaled train error).
If the components of the response y ∈ Rn have mean
zero and finite second moment, and Assumptions 2 to 3
hold, then for every λ ∈ (λmin,∞),

loo(λ)−
(

1 + tr[(Σ̂ + λIp)
+Σ]/n

)2 1

n

n∑
i=1

(yi − xTi β̂λ)2

a.s.−−→ 0

as n, p→∞ with p/n→ γ ∈ (0,∞).

The limiting equivalence then follows by tying the scale
factor in the GCV estimator to the scale factor in the
limiting LOOCV using an instantiation of Lemma 5.5.

6 DISCUSSION

In this paper, we established uniform consistency of
the GCV and LOOCV estimators for ridge regression
prediction error under a proportional asymptotic frame-
work. At a high level, the key reason why the limiting
equivalences hold is a certain asymptotic equivalence
of random matrices, where on one side we have a quan-
tity that involves both the feature covariance Σ and

the sample covariance Σ̂, while on the other side, we
have a quantity that only involves Σ̂, appropriately
normalized. That is,

(Σ̂ + λIp)
+Σ � (Σ̂ + λIp)

+Σ̂

1− tr[(Σ̂ + λIp)+Σ̂]/n

where for two sequences of matrices Ap and Bp, Ap �
Bp is used to mean that limn→∞ tr[CpAp]−tr[CpBp] =
0 almost surely for any sequence of deterministic ma-
trices Cp of bounded trace norm.

A similar notion of equivalence has appeared in the ran-
dom matrix theory literature (e.g., Serdobolskii, 1983;
Silverstein and Choi, 1995; Hachem et al., 2007; Ledoit
and Peche, 2011; Rubio and Mestre, 2011; Couillet and
Debbah, 2011), and recently, has been utilized and
developed further in Dobriban and Sheng (2018, 2020).
Our work takes a slightly differently approach in that,
instead of expressing the resolvents in terms of limits of
unknown population quantities (which has been called
a deterministic equivalence), we relate two sets of re-
solvents, neither of which needs to have a computable
asymptotic limit in the first place.

For statistical applications, we believe this could have
broad utility because it allows to tie potentially interest-
ing out-of-sample quantities to purely data-dependent
quantities. For example, it should be possible to asymp-
totically equate more general functionals involving Σ
and Σ̂ in terms of Σ̂ alone. Exploring such connections
for both a wider class of statistical problems and for
metrics other than the expected out-of-sample error is
a future direction.

Beyond asymptotics, it is also of interest to carry out
a finite sample analysis that explicitly reveals how the
interaction between the signal vector and the feature
covariance affects rates of convergence. This may, for
example, facilitate constructions of confidence inter-
vals for the tuned parameters. It may also reveal that
GCV and LOOCV—though consistent across a very
broad set of problem settings, as demonstrated in this
paper—can struggle in terms of their speed of conver-
gence for certain problems, like (say) when the optimal
regularization parameter is around zero. Finally, the
assumptions on the feature and response distribution
should be able to be relaxed; pursuing minimal assump-
tions that allow for equivalences is of general interest.
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This supplementary document contains proofs of the theorems and lemmas in the paper “Uniform Consistency
of Cross-Validation Estimators for High-Dimensional Ridge Regression.” All section and equation numbers in
this document begin with the letter “S” to differentiate them from those appearing in the main paper.

The content of this supplement is organized as follows. In Section S.1, we provide proofs of the constituent
Lemmas 5.1 to 5.4 related to Theorem 4.1 in the main paper, along with the remaining steps to complete the
proof of Theorem 4.1. In Section S.2, we provide proof of the constituent Lemma 5.6 related to Theorem 4.2 in
the main paper, along with the remaining steps to complete the proof of Theorem 4.2. In Section S.3, we list
and prove auxiliary lemmas that we need in other proofs. Finally, in Section S.4, we list useful concentration
results that are used in the proofs throughout.
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S.1 Proofs related to Theorem 4.1

S.1.1 Proof of Lemma 5.1

Recall from Equation (2) that the expected out-of-sample prediction error of the ridge estimator β̂λ is defined as

Err(β̂λ) = Ex0,y0

[
(y0 − xT0 β̂λ)2 | X, y

]
.

Under a well-specified linear response y0 = xT0 β0 + ε0, the prediction error can be decomposed as

Err(β̂λ) = E
[
(β0 − β̂λ)Tx0x

T
0 (β0 − β̂λ) | X, y

]
+ E

[
(β0 − β̂λ)Tx0ε0 | X, y

]
+ E

[
ε20 | X, y

]
= (β0 − β̂λ)TΣ(β0 − β̂λ) + σ2. (S.1)

Here we used the fact that E
[
x0ε0

]
= 0 as ε0 is independent of x0. Using the expression of β̂λ from Equation (1),

the deviation β0 − β̂λ can be expressed as

β0 − β̂λ = β0 − (XTX/n+ λIp)
+XT y/n

= β0 − (XTX/n+ λIp)
+XT (Xβ0 + y −Xβ0)/n

=
(
Ip − (XTX/n+ λIp)

+XTX/n
)
β0 − (XTX/n+ λIp)

+XT ε/n.

Note that the first component depends on the signal parameter β0 and the second depends on the error vector ε.
Plugging this into (S.1), and denoting XTX/n by Σ̂ and Err(β̂(λ)) by err(λ), we have the following decomposition
of the prediction error for any λ ∈ R:

err(λ) = errb(λ) + errc(λ) + errv(λ), (S.2)

where errb(λ), errv(λ), and errc(λ) are the bias, variance, and cross components in the decomposition given by

errb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0,

errc(λ) = −2βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ(Σ̂ + λIp)

+XT ε/n,

errv(λ) = εT
(
X(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+XT /n

)
ε/n+ σ2.

For any λ ∈ (λmin,∞), we establish below that

errc(λ)
a.s.−−→ 0 (S.3)

under proportional asymptotic limit. The desired decomposition in Lemma 5.1 then follows by plugging conver-
gence in (S.3) into (S.2).

To establish the convergence in (S.3), let us write errc(λ) = aTnε/n where an ∈ Rn is a function of X and β0
given by

an = −2X(Σ̂ + λIp)
+Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0.

We note that for λ ∈ (λmin,∞),

‖an‖2/n = 4βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ(Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0

≤ C
∥∥∥(Ip − Σ̂(Σ̂ + λIp)

+
)
Σ(Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)∥∥∥

≤ C,

where the first inequality uses bound on the signal energy from Assumption 4 and the second inequality holds
almost surely for large n by using the facts that ‖Σ̂‖ ≤ C(

√
γ + 1)2‖Σ‖, ‖(Σ̂ + λIp)

+‖ ≤ (λ − λmin)−1 almost
surely for n large enough from Assumption 2 and ‖Σ‖ ≤ rmax from Assumption 3. In addition, ε has i.i.d. entries
satisfying Assumption 1. The desired result then follows from application of Lemma S.4.1.
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S.1.2 Proof of Lemma 5.2

We start by writing the GCV risk estimate gcv(λ) for the ridge estimator from Equation (5) as

gcv(λ) =
yT (In − Lλ)2y/n(

1− tr[Lλ]/n
)2 (S.4)

where Lλ is the ridge smoothing matrix. Note that (S.4) is of the form 0
0 when Lλ = In (which happens when

λ = 0 and X has rank n). In this case, we define the GCV risk estimate as the corresponding limit as λ → 0.
We handle this case separately below.

The denominator of (S.4) can be expressed as

1− tr[Lλ]/n = 1− tr
[
X(XTX/n+ λIp)

+XT /n
]
/n

= 1− tr
[
(XTX/n+ λIp)

+XTX/n
]
/n.

The numerator of (S.4) can be expressed as

yT (In − Lλ)2y/n = (Xβ0 + ε)T (In − Lλ)2(Xβ0 + ε)/n

= βT0 X
T (In − Lλ)2Xβ0/n+ 2βT0 X

T (In − Lλ)2ε/n+ εT (In − Lλ)2ε/n.

Consider the first term of the numerator expression. The factor XT (In − Lλ)2X can be expressed as

XT (In − Lλ)2X = XT
(
In −X(XTX/n+ λIp)

+XT /n
)2
X

=
(
XT −XTX/n(XTX/n+ λIp)

+XT
)(
X −X(XTX/n+ λIp)

+XTX/n
)

=
(
Ip −XTX/n(XTX/n+ λI)+

)
XTX

(
Ip − (XTX/n+ λIp)

+XTX/n
)
.

Consider the second term of the numerator expression. The factor XT (In − Lλ)2 can be expressed as

XT (In − Lλ)2 = XT
(
In −X(XTX/n+ λIp)

+XT /n
)2

=
(
XT −XTX/n(XTX/n+ λIp)

+XT
)(
In −X(XTX/n+ λIp)

+XT /n
)

=
(
Ip −XTX/n(XTX/n+ λIp)

+
)
XT
(
In −X(XTX/n+ λIp)

+XT /n
)

=
(
Ip −XTX/n(XTX/n+ λIp)

+
)(
XT −XTX/n(XTX/n+ λIp)

+XT
)

=
(
Ip −XTX/n(XTX/n+ λIp)

+
)(
Ip −XTX/n(XTX/n+ λIp)

+
)
XT

Consider the third term of the numerator expansion. The factor (In − Lλ)2 can be expressed as

(In − Lλ)2 =
(
In −X(XTX/n+ λIp)

+XT /n
)2

Case when λ 6= 0. The GCV denominator 1−tr
[
(XTX/n+λIp)

+XTX/n
]
/n 6= 0 when λ 6= 0. Thus plugging

the denominator and numerator expansions into (S.4) and denoting XTX/n by Σ̂, the GCV risk estimate can
be decomposed as

gcv(λ) =
gcvb(λ) + gcvc(λ) + gcvv(λ)

gcvd(λ)
, (S.5)

where gcvb(λ), gcvv(λ), and gcvc(λ) are the bias-like, variance-like, and cross components in the decomposition
given by

gcvb(λ) = βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0,

gcvc(λ) = 2βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)2
XT ε/n,

gcvv(λ) = εT
(
In −X(Σ̂ + λIp)

+XT /n
)2
ε/n,

and gcvd(λ) is the normalization factor given by

gcvd(λ) =
(
1− tr[Σ̂(Σ̂ + λIp)

+]/n
)2
.



Similar to the proof of Lemma 5.1, we now establish that

gcvc(λ)
a.s.−−→ 0 (S.6)

under proportional asymptotic limit. Let us write gcvc(λ) = bTnε/n where bn ∈ Rn is a function of X and β0
given by

bn = 2X
(
Ip − (Σ̂ + λIp)

+Σ̂
)2
β0.

As argued in the proof of Lemma 5.1, for λ ∈ (λmin,∞),

‖bn‖2/n = 4βT0
(
Ip − (Σ̂ + λIp)

+Σ̂
)2

Σ̂
(
Ip − (Σ̂ + λIp)

+Σ̂
)2
β0

≤ C
∥∥∥(Ip − (Σ̂ + λIp)

+Σ̂
)2

Σ̂
(
Ip − (Σ̂ + λIp)

+Σ̂
)2∥∥∥

≤ C

almost surely for large n, and since ε has i.i.d. entries satisfying Assumption 1, the convergence in (S.6) follow
from application of Lemma S.4.1.

Limiting case when λ = 0. To handle the case when gcvd(λ) can be zero, we note that when λ 6= 0 using
Lemma S.3.2 the components in the decomposition (S.5) can be alternately expressed as

gcvb(λ) = βT0 λ
2(Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+β0,

gcvb(λ) = 2λ2βT0 (Σ̂ + λIp)
+(Σ̂ + λIp)

+XT ε/n,

gcvv(λ) = λ2εT (XXT /n+ λIn)+(XXT /n+ λIn)+ε,

gcvd(λ) = λ2
(

tr[(XXT /n+ λIn)+]/n
)2
.

We can then cancel the factor of λ2 and take the limit λ→ 0 to get the limiting GCV decomposition as

gcv(0) =
gcvb(0) + gcvb(0) + gcvv(0)

gcvd(0)
, (S.7)

where the limiting bias-like, variance-like and cross components in the decomposition are given by

gcvb(0) = βT0 Σ̂+Σ̂Σ̂+β0 = βT0 Σ̂+β0,

gcvc(0) = 2βT0 Σ̂+2XT ε/n,

gcvv(0) = εT (XXT /n)+2ε/n,

and the limiting normalization can be written as

gcvd(0) =
(

tr[Σ̂+]/n
)2

by noting that tr[(XXT /n)+] = tr[(XTX/n)+]. As before, let us establish that

gcvc(0)
a.s.−−→ 0 (S.8)

under proportional asymptotics. We write gcvc(0) = bTnε/n where bn ∈ Rn is a function of X and β0 given by

bn = 2XΣ̂+2β0.

We note that ‖bn‖2/n is almost surely bounded for large n and ε contains i.i.d. entries satisfying Assumption 1.
Using Lemma S.4.1, we conclude the convergence.

The desired decomposition in Lemma 5.2 then follows by using the convergences in (S.6) and (S.8) into (S.5)
and (S.7), respectively.
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S.1.3 Proof of Lemma 5.3

We start with gcvb(λ) and first establish that

βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0 −

βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2 a.s.−−→ 0. (S.9)

To that end, let B := β0β
T
0 and break the left-hand side into sum of quadratic forms evaluated at the n

observations as follows:

βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0 = tr

[
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)]

= tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
]

= tr

[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
) n∑
i=1

xix
T
i /n

]

=
1

n

n∑
i=1

tr

[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
xix

T
i

]

=
1

n

n∑
i=1

xTi
(
Ip − Σ̂(Σ̂ + λIp

)+
)B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
xi.

The summands xTi
(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
xi are quadratic forms where the point of evaluation

xi and the matrix
(
Ip− Σ̂(Σ̂ +λIp)

+
)
B
(
Ip− Σ̂(Σ̂ +λIp)

+
)

are dependent. To break the dependence, we use the
standard leave-one-out trick and the Sherman-Morrison-Woodbury formula with Moore-Penrose pseudo-inverse
(Meyer, 1973). Let us temporarily call wi := B(Ip − Σ̂(Σ̂ + λIp)

+)xi and proceed as follows:

xTi
(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
xi

= wTi (Ip − Σ̂(Σ̂ + λIp)
+)xi

= wTi
(
Ip − (Σ̂−i + xix

T
i /n)(Σ̂−i + λIp + xix

T
i /n)+

)
xi

= wTi

(
Ip − (Σ̂−i + xix

T
i /n)

(
(Σ̂−i + λIp)

+ − (Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+

1 + xTi (Σ̂−i + λIp)+xi/n

))
xi

= wTi xi − wTi
(
Σ̂−i + xix

T
i /n

)(
(Σ̂−i + λIp)

+ − (Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+

1 + xTi (Σ̂−i + λIp)+xi/n

)
xi

= wTi xi − wTi
(
Σ̂−i + xix

T
i /n

)(
(Σ̂−i + λIp)

+xi −
(Σ̂−i + λIp)

+xix
T
i /n(Σ̂−i + λIp)

+xi

1 + xTi (Σ̂−i + λIp)+xi/n

)

= wTi xi − wTi
(
Σ̂−i + xix

T
i /n

)( (Σ̂−i + λIp)
+xi + (Σ̂−i + λIp)

+xix
T
i (Σ̂ + λIp)

+xi/n− (Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+xi

1 + xTi (Σ̂−i + λIp)+xi/n

)

= wTi xi −
wTi (Σ̂−i + xix

T
i /n)(Σ̂−i + λIp)

+xi

1 + xTi (Σ̂−i + λIp)+xi/n

=
wTi xi + wTi xix

T
i (Σ̂ + λIp)

+xi/n− wTi Σ̂−i(Σ̂−i + λIp)
+xi − wTi xixTi /n(Σ̂−i + λIp)

+xi

1 + xTi (Σ̂−i + λIp)+xi/n

=
wTi xi − wTi Σ̂−i(Σ̂−i + λIp)

+xi

1 + xTi (Σ̂−i + λIp)+xi/n

=
wTi (Ip − Σ̂−i(Σ̂−i + λIp)

+)xi

1 + xTi (Σ̂−i + λIp)+xi/n

=
xTi
(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
xi

1 + xTi (Σ̂−i + λIp)+xi/n
.



By carrying our similar leave-one-out strategy on the other side, we can further simplify

xTi
(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
xi

1 + xTi (Σ̂−i + λIp)+xi/n
=
xTi
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 .

We now split the error to the target in (S.9) as follows:

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
]
−

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

=
1

n

n∑
i=1

xTi
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)

+
)
xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 −

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

= e1 + e2, where

e1 :=
1

n

n∑
i=1

xTi (Ip − Σ̂−i(Σ̂−i + λIp)+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 −

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

 ,

e2 :=
1

n

n∑
i=1

 tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 −

tr
[(
Ip − Σ̂(Σ̂ + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

 .

In Section S.1.6, we show that both terms e1 and e2 almost surely approach 0 under proportional asymptotics.

Let us provide some intuition as follows. On one hand, in the error term e1, conditional on X−i, expected value

of xTi
(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
B
(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
xi is tr

[(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
B
(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
Σ
]

and the expected value of xTi (Σ̂−i+λI)+xi/n is tr
[
(Σ̂−i+λI)+Σ

]
/n. Because of concentration of these quantities

around their respective expectations rapid enough, the error term e1 is almost surely 0. On the other hand, for

e2, tr
[(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
B
(
Ip−Σ̂−i(Σ̂−i+λIp)

+
)
Σ
]

and tr
[(
Ip−Σ̂(Σ̂+λIp)

+
)
B
(
Ip−Σ̂(Σ̂+λIp)

+
)
Σ
]
, and

tr
[
(Σ̂−i +λIp)

+Σ
]
/n and tr

[
(Σ̂ +λIp)

+Σ
]
/n, the matrices involved differ by rank-1 component. The difference

is almost surely 0 in the proportional asymptotic limit. We note that this strategy is similar to the ones used
by, for example, Rubio and Mestre (2011); Ledoit and Peche (2009) to obtain expressions for certain functionals

involving Σ and Σ̂ in terms of Σ. The main difference is that the eventual target in our case is defined solely in
terms of Σ̂ rather than Σ.

We have so far established that

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
]
−

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
B
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]

(
1 + tr

[
(Σ̂ + λI)+Σ

]
/n
)2 a.s.−−→ 0,

which after expressing B in terms of β0 and moving the denominator across yields(
1+tr

[
(Σ̂+λI)+Σ

]
/n
)2
βT
0

(
Ip−Σ̂(Σ̂+λIp)+

)
Σ̂
(
Ip−Σ̂(Σ̂+λIp)+

)
β0−βT

0

(
Ip−Σ̂(Σ̂+λIp)+

)
Σ
(
Ip−Σ̂(Σ̂+λIp)+

)
β0

a.s.−−→ 0.

(S.10)

Case when λ 6= 0. We now use the λ 6= 0 case of Lemma S.3.1 to get

βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 − βT0

(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0

a.s.−−→ 0

under proportional asymptotics as desired.
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Limiting case when λ = 0. To handle the λ = 0 case, we first express Ip− Σ̂(Σ̂ +λIp)
+ = λ(Σ̂ +λIp)

+ when

λ 6= 0 using Lemma S.3.2. We can then move factor of λ2 from βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0

to
(

1 + tr
[
(Σ̂ + λI)+Σ

]
/n
)2

such that

(
1 + tr

[
(Σ̂ + λI)+Σ

]
/n
)2
βT0
(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂
(
Ip − Σ̂(Σ̂ + λIp)

+
)
β0

=
(

1 + tr
[
(Σ̂ + λI)+Σ

]
/n
)2
λ2βT0 (Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+β0

=
(
λ+ λ tr

[
(Σ̂ + λI)+Σ

]
/n
)2
βT0 (Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+β0

=
(
λ+ tr

[
λ(Σ̂ + λI)+Σ

]
/n
)2
βT0 (Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+β0

=
(
λ+ tr

[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]
/n
)2
βT0 (Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+β0.

Using the above expression in (S.10) and sending λ→ 0 thus yields(
tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
βT0 Σ̂+Σ̂Σ̂+β0 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0

a.s.−−→ 0,

or in other words, (
tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
βT0 Σ̂+β0 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0

a.s.−−→ 0.

Using Lemma S.3.1 for this case, we then have

βT0 Σ̂+β0(
tr[Σ̂+]/n

)2 − βT0 (Ip − Σ̂Σ̂+)Σ(Ip − Σ̂Σ̂+)β0
a.s.−−→ 0

under proportional asymptotics, completing both the cases in Lemma 5.3.

S.1.4 Proof of Lemma 5.4

Case when λ 6= 0. Under proportional asymptotic limit, our goal is to show that

εT
(
X(Σ̂ + λIp)+Σ(Σ̂ + λIp)+XT /n

)
ε/n+ σ2 −

εT
(
In −X(Σ̂ + λIp)+XT /n

)2
ε/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 a.s.−−→ 0.

We first note that εT ε/n almost surely approaches σ2 from the strong law of large numbers. Thus we can slightly
rephrase our goals to show as

εT

[(
X(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+XT /n

)
+ In −

(
In −X(Σ̂ + λIp)

+XT /n
)2(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2
]
ε/n

a.s.−−→ 0.

Our main strategy is to show that under proportional asymptotic limit

tr
[
X(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+XT /n

]
/n+ 1−

tr
[(
In −X(Σ̂ + λIp)

+XT /n
)2]

/n(
1− tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2 a.s.−−→ 0. (S.11)

The desired convergence then follows by using Lemma S.4.2.

We proceed by decomposing the first component of (S.11) as follows:

tr
[
X(Σ̂ + λIp)

+Σ(Σ̂ + λIp)X
T /n

]
/n = tr

[
Σ̂(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+
]
/n

= tr
[
Σ(Σ̂ + λIp)

+
]
/n− tr

[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ(Σ̂ + λIp)

+
]
/n.



For the numerator of the second component of (S.11), we note that(
In −X(Σ̂ + λIp)

+XT /n
)2

=
(
In −X(Σ̂ + λIp)

+XT /n
)(
In −X(Σ̂ + λIp)

+XT /n
)

=
(
In −X(Σ̂ + λIp)

+XT /n
)
−X(Σ̂ + λIp)

+XT /n
(
In −X(Σ̂ + λIp)

+XT /n
)

=
(
In −X(Σ̂ + λIp)

+XT /n
)
−X(XTX/n+ λIp)

+XT /n
(
In −X(XTX/n+ λIp)

+XT /n
)

=
(
In −X(Σ̂ + λIp)

+XT /n
)
−X(XTX/n+ λIp)

+
(
XT /n−XTX/n(XTX/n+ λIp)

+XT /n
)

=
(
In −X(Σ̂ + λIp)

+XT /n
)
−X(XTX/n+ λIp)

+
(
Ip −XTX/n(XTX/n+ λIp)

+
)
XT /n.

Thus we have

tr
[
In −X(Σ̂ + λIp)

+XT /n
]2
/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

=
1− tr

[
(Σ̂ + λIp)

+Σ̂
]
/n− tr

[
Σ̂(Σ̂ + λIp)

+
(
Ip − Σ̂(Σ̂ + λIp)

+
)]
/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

=
1

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
−

tr
[
Σ̂(Σ̂ + λIp)

+(Ip − Σ̂(Σ̂ + λIp)
+)
]
/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 .

To establish the desired equivalence, we now use the following two individual equivalences:

tr
[
(Σ̂ + λIp)

+Σ
]
/n− 1

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n

+ 1
a.s.−−→ 0,

which follows from Lemma S.3.1, and

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ(Σ̂ + λIp)

+
]
/n−

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂(Σ̂ + λIp)

+
]
/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 a.s.−−→ 0,

which follows analogously from the equivalence established in the proof of Lemma 5.3 with B = Ip.

Limiting case when λ = 0. To handle the case when λ = 0, we observe that when λ 6= 0, we can write

tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ̂(Σ̂ + λIp)

+
]
/n = 1− tr

[
(Σ̂ + λIp)

+Σ̂
]
/n+ λ2 tr

[
(XXT /n+ λIn)+2

]
/n,

along with

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n = λ tr

[
(XXT /n+ λIn)+

]
/n,

which follow from Lemma S.3.2. This allows us to cancel the factor of λ2 to write

tr
[
Σ̂(Σ̂ + λIp)

+Σ(Σ̂ + λIp)
+
]
/n−

tr
[
(XXT /n+ λIn)+2

]
/n(

tr
[
(XXT /n+ λIn)+

]
/n
)2 + 1

a.s.−−→ 0,

which in the limiting case by sending λ→ 0 provides the equivalence

tr[Σ̂+Σ]/n− tr[Σ̂+2]/n(
tr[Σ̂+]/n

)2 + 1
a.s.−−→ 0

under proportional asymptotic limit. Note that we have written the final expression in terms Σ̂ instead of
XXT /n simply for consistency with the λ 6= 0 case. Combining the two cases, we have the desired limiting
equivalences in Lemma 5.4.
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S.1.5 Completing the proof of Theorem 4.1

Lemmas 5.1 to 5.4 establish the almost sure pointwise convergence of gcv(λ) to err(λ) under proportional
asymptotics for λ ∈ (λmin,∞). To complete the proof of Theorem 4.1, we now show that the convergence
holds uniformly over compact subintervals of (λmin,∞) and subsequently show the convergence of tuned risks
over such intervals.

The strategy is show that, on any compact subinterval I ⊆ (λmin,∞), gcv(λ) and err(λ), and their derivatives, as
functions of λ are bounded over I. This provides equicontinuity of family as functions of λ over I. The Arzela-
Ascoli theorem then provides the desired uniform convergence. The convergence of tuned risks subsequently
follows from a standard argument.

We start by writing the GCV estimate (S.4) for the ridge estimator as

gcv(λ) =
yT (In − Lλ)2y/n(

tr[In − Lλ]/n
)2 .

It is convenient to first assume λ 6= 0 and express In − Lλ as λ(XXT /n + λIn)+ using Lemma S.3.2 and then
cancel the factor of λ2 from both the numerator and denominator, which also covers the limiting λ → 0 case.
This lets us write the GCV estimate as

gcv(λ) =
un(λ)

vn(λ)
, (S.12)

where un(λ) = yT (XXT /n + λIn)+2y/n, and the denominator vn(λ) =
(

tr
[
(XXT /n + λIn)+

]
/n
)2

. We first

bound the numerator and denominator appropriately. Let smin and smax denote the minimum non-zero and
maximum eigenvalues of XXT /n, respectively. We can upper bound the numerator as

|un(λ)| ≤ ‖y‖
2

n

1

(smin + λ)2
, (S.13)

and we can lower bound the denominator as

|vn(λ)| ≥ 1

(smax + λ)2
. (S.14)

Using the two bounds in (S.13) and (S.14) into (S.12), we have the following upper bound on the GCV estimate:

|gcv(λ)| ≤ ‖y‖
2

n

(
smax + λ

smin + λ

)2

.

From the strong law of large numbers we note that ‖y‖2/n is almost surely upper bounded for sufficiently large n.
From Bai and Silverstein (1998), we have that smax ≤ C(1 +

√
γ)2rmax for any C > 1 and smin ≥ c(1−

√
γ)2rmin

for any c < 1 almost surely for sufficiently large n, where rmin and rmax denote the bounds on the minimum and
maximum eigenvalues of Σ from Assumption 3. Thus, over any compact subinterval I of (λmin,∞), gcv(λ) is
bounded almost surely for sufficiently large n.

We next bound the derivative of gcv(λ) as a function of λ. We start with the quotient rule of the derivatives to
write:

gcv′(λ) =
u′n(λ)vn(λ)− un(λ)v′n(λ)

vn(λ)2
. (S.15)

We now upper bound the derivatives of un(λ) and vn(λ), and additionally obtain an upper bound on vn(λ).
From short calculations, we can upper bound the derivative of the numerator as

|u′n(λ)| ≤ 2‖y‖2

n

∣∣∣∣ 1

(smin + λ)3

∣∣∣∣ , (S.16)

and the derivative of the denominator as

|v′n(λ)| ≤
∣∣∣∣ 2

(smin + λ)3

∣∣∣∣ . (S.17)



In addition, we can upper bound the denominator as

|vn(λ)| ≤ 1

(smin + λ)2
. (S.18)

Combining the bounds in (S.16) to (S.18), along with the bounds in (S.13) and (S.14), into (S.15), we get the
following upper bound on the derivative:

|gcv′(λ)| ≤ 4‖y‖2

n

∣∣∣∣ (smax + λ)4

(smin + λ)5

∣∣∣∣ . (S.19)

As before, we note that ‖y‖2/n is almost surely upper bounded for sufficiently large n, and smax is upper bounded
and smin lower bounded above (

√
γ − 1)2rmin for sufficiently large n. Thus, over any compact subinterval I of

(λmin,∞), |gcv′(λ)| is almost surely upper bounded for sufficiently large n.

By similar arguments, we can bound the err(λ) and its derivative as a function of λ. Together, we have that
the function err(λ) − gcv(λ) forms an equicontinous family of functions of λ over any compact subinterval of
(λmin,∞). Applying the Arzela-Ascoli theorem, we conclude uniform convergence for a subsequence, and since
the difference converges pointwise to 0, the uniform convergence holds for the entire sequence.

Finally, we use the uniform convergence to establish the convergence of the tuned risks by a standard argument.
We start with the observation that gcv(λ̂gcvI ) ≤ gcv(λ) for any λ ∈ I using the optimality of λ̂gcvI . Using the

specific λ = λ?I , we thus have that gcv(λ̂gcvI ) ≤ gcv(λ?I). We next note that

err(λ̂gcvI )− err(λ?I) = err(λ̂gcvI )− gcv(λ̂gcvI ) + gcv(λ̂gcvI )− gcv(λ?I) + gcv(λ?I)− err(λ?I)

≤ err(λ̂gcvI )− gcv(λ̂gcvI ) + gcv(λ?I)− err(λ?I)
a.s.−−→ 0,

where the inequality follows from the optimality of λ̂gcvI for gcv(λ) and the two almost sure convergences follow
from the uniform convergence. This concludes the proof of Theorem 4.1.

S.1.6 Error terms in the proof of Lemma 5.3

It is convenient to further split e1 = e11 + e12 where the suberror terms e11 and e12 are defined as follows:

e11 :=
1

n

n∑
i=1

xTi (Ip − Σ̂−i(Σ̂−i + λIp)+
)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xi(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 −

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + xTi (Σ̂−i + λIp)+xi/n

)2
 ,

e12 :=
1

n

n∑
i=1

 tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + xTi (Σ̂−i + λIp)+xi/n

)2 −
tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

 .

We similarly split e2 = e21 + e22 where the suberror terms e21 and e22 are defined as follows:

e21 :=
1

n

n∑
i=1

 tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 −

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2



e22 :=
1

n

n∑
i=1

 tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2 −

tr
[(
Ip − Σ̂(Σ̂ + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2

 .

Below we show that for λ ∈ (λmin,∞) all the suberror terms almost surely approach 0 as n, p→∞ with p/n→ γ ∈ (0,∞).
Note that we use a generic letter C to denote a constant (that does not depend on n or p) whose value can change from
line to line and the inequality sign is used in an asymptotic sense which holds almost surely for sufficiently large n.
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Error term e11

We bound the error term e11 as follows:

|e11| =

∣∣∣∣∣∣ 1n
n∑

i=1

xTi
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xi − tr

[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]

(
1 + xTi (Σ̂−i + λIp)+xi/n

)2
∣∣∣∣∣∣

≤ C

∣∣∣∣∣ 1n
n∑

i=1

xTi
(
Ip − Σ̂−i(Σ̂−i + λIp

)+
)B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xi − tr

[(
Ip − Σ̂−i(Σ̂−i + λIp

)+
)B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]∣∣∣∣∣

a.s.−−→ 0,

where the first inequality follows by noting that from Lemma S.4.2 the quadratic form xTi (Σ̂−i + λIp)+xi/n converges

almost surely to tr[(Σ̂ + λIp)+Σ]/n (as operator norm of (Σ̂−i + λIp)+ is almost surely bounded for large n) and the

fact that
∣∣∣1/(1 + tr[(Σ̂ + λIp)+Σ]/n

)∣∣∣ is bounded by viweing tr[(Σ̂ + λIp)+Σ]/n as a Stieljes transform of a measure with

bounded total mass (see, for example, Paul and Silverstein (2009); Couillet and Hachem (2014)). The convergence in the

final step follows from application of Lemma S.4.4 since
(
Ip− Σ̂−i(Σ̂−i +λIp)+

)
B
(
Ip− Σ̂−i(Σ̂−i +λIp)+

)
has trace norm

almost surely bounded for large n (as trace norm of B is bounded and the operator norm of
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
is

almost surely bounded for large n).

Error term e12

We bound the error term e12 as follows:

|e12| =

∣∣∣∣∣ 1n
n∑

i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]( 1(

1 + xTi (Σ̂−i + λIp)+xi/n
)2 − 1(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2
)∣∣∣∣∣

≤ C

∣∣∣∣∣ 1n
n∑

i=1

1(
1 + xTi (Σ̂−i + λIp)+xi/n

)2 − 1(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2
∣∣∣∣∣

= C

∣∣∣∣∣ 1n
n∑

i=1

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 − (1 + xTi (Σ̂−i + λIp)+xi/n

)2(
1 + xTi (Σ̂−i + λIp)+xi/n

)2(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2

∣∣∣∣∣
≤ C

∣∣∣∣∣ 1n
n∑

i=1

(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 − (1 + xTi (Σ̂−i + λIp)+xi/n

)2∣∣∣∣∣
≤ C max

i=1,...,n

∣∣∣(1 + xTi (Σ̂−i + λIp)+xi/n
)2 − (1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2∣∣∣

≤ C max
i=1,...,n

∣∣∣xTi (Σ̂−i + λIp)+xi/n− tr
[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣ ∣∣∣2 + xTi (Σ̂−i + λIp)+xi/n+ tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣

≤ C max
i=1,...,n

∣∣∣xTi (Σ̂−i + λIp)+xi/n− tr
[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣

a.s.−−→ 0,

where the first inequality bound follows from noting that the matrix
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ

almost surely has bounded trace norm for large n (since trace norm of
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
is bounded almost surely for large n as argued for the error term e11 above and the operator norm of Σ is bounded) and

the final convergence follows from using Lemma S.4.3 by noting that the operator norm of (Σ̂−i + λIp)+ is almost surely
bounded for large n.



Error term e21

We bound the error term e21 as follows:

|e21| =

∣∣∣∣∣ 1n
n∑

i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]( 1(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2 − 1(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
)∣∣∣∣∣

≤ C

∣∣∣∣∣ 1n
n∑

i=1

1(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2 − 1(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
∣∣∣∣∣

=
C

n

∣∣∣∣∣
n∑

i=1

(
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n
)2 − (1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
)2(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

∣∣∣∣∣
≤ C

n

n∑
i=1

∣∣∣∣(1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2
−
(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)2∣∣∣∣

≤ C

n

n∑
i=1

∣∣∣tr [(Σ̂ + λIp)+Σ
]
/n− tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣ ∣∣∣2 + tr

[
(Σ̂ + λIp)+Σ

]
/n+ tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣

≤ C

n

n∑
i=1

∣∣∣tr [(Σ̂ + λIp)+Σ
]
/n− tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣

≤ C

n
a.s.−−→ 0,

where the final convergence follows by noting that

(Σ̂ + λIp)+ − (Σ̂−i + λIp)+ = − (Σ̂−i + λIp)+xix
T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
,

which after multiplying by Σ, taking the trace, and normalizing by n gives

∣∣∣tr [(Σ̂ + λIp)+Σ
]
/n− tr

[
(Σ̂−i + λIp)+Σ

]
/n
∣∣∣ =

1

n

∣∣∣∣∣ tr
[
(Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+Σ

]
1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
=

1

n

∣∣∣∣∣xTi (Σ̂−i + λIp)+Σ(Σ̂−i + λIp)+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
≤ C

n
,

where the last bound follows by noting that operator norm of (Σ̂−i + λIp)+Σ is almost surely bounded for large n.
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Error term e22

We bound the error term e22 as follows:

|e22| =

∣∣∣∣∣∣∣
1

n

n∑
i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]
− tr

[
(Ip − Σ̂(Σ̂ + λIp)+)B(Ip − Σ̂(Σ̂ + λIp)+)Σ

]
(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
)2

∣∣∣∣∣∣∣
≤ C

n

∣∣∣∣∣
n∑

i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]
− tr

[(
Ip − Σ̂(Σ̂ + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]∣∣∣∣∣

≤ C

n

∣∣∣∣∣
n∑

i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
Σ
]
− tr

[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]∣∣∣∣∣

+
C

n

∣∣∣∣∣
n∑

i=1

tr
[(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]
− tr

[(
Ip − Σ̂(Σ̂ + λIp)+

)
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ
]∣∣∣∣∣

≤ C

n

∣∣∣∣∣
n∑

i=1

tr

[
Σ
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
{(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
−
(
Ip − Σ̂(Σ̂ + λIp)+

)}]∣∣∣∣∣
+
C

n

∣∣∣∣∣
n∑

i=1

tr

[{(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
−
(
Ip − Σ̂(Σ̂ + λIp)+

)}
B
(
Ip − Σ̂(Σ̂ + λIp)+

)
Σ

]∣∣∣∣∣
≤ C

n
a.s.−−→ 0,

where the last inequality bound follows by noting that

Σ̂(Σ̂ + λIp)+ − Σ̂−i(Σ̂−i + λIp)+

= (Σ̂−i + xix
T
i /n)(Σ̂−i + xix

T
i /n+ λIp)+ − Σ̂−i(Σ̂−i + λIp)+

= (Σ̂−i + xix
T
i /n)

(
(Σ̂−i + λIp)+ − (Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + 1
n
xTi (Σ̂−i + λIp)+xi

)
− Σ̂−i(Σ̂−i + λIp)+

=
xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
− Σ̂−i(Σ̂−i + λIp)+xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n

=

(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xix

T
i /n(Σ̂−i + λIp)+

1 + xTi (Σ̂−i + λIp)+xi/n
,

which after multiplying by Σ(Ip − Σ̂−i(Σ̂−i + λIp)+)B and taking the trace can be bounded as follows:

∣∣∣∣tr [Σ(Ip − Σ̂−i(Σ̂−i + λIp)+
)
B
{

Σ̂(Σ̂ + λIp)+ − Σ̂−i(Σ̂−i + λIp)+
}]∣∣∣∣

=

∣∣∣∣∣∣∣∣
tr

[
Σ
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xix

T
i /n(Σ̂−i + λIp)+

]
1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣∣∣∣
=

1

n

∣∣∣∣∣xTi (Σ̂−i + λIp)+Σ
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
B
(
Ip − Σ̂−i(Σ̂−i + λIp)+

)
xi

1 + xTi (Σ̂−i + λIp)+xi/n

∣∣∣∣∣
≤ C

n
,

where the last bound follows by noting that the matrix (Σ̂−i +λIp)+Σ(Ip− Σ̂−i(Σ̂−i +λIp)+)B(Ip− Σ̂−i(Σ̂−i +λIp)+)Σ

has almost surely bounded trace norm for large n (since trace norm of B is bounded and the operator norm of the

remaining matrix component is almost surely bounded for large n). The second term can be bounded analogously.



S.2 Proofs related to Theorem 4.2

S.2.1 Proof of Lemma 5.6

We start by writing the leave-one-out risk estimate loo(λ) from Equation (4) as

loo(λ) = yT (In − Lλ)2D−2λ y/n,

where Lλ is the ridge smoothing matrix and Dλ ∈ Rn×n is a diagonal matrix with entries 1−[Lλ]ii for i = 1, . . . , n.
Under proportional asymptotic limit, we show below that for any λ ∈ (λmin,∞),

loo(λ)− yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n

a.s.−−→ 0, (S.20)

which after substituting back for Lλ proves the desired convergence.

Observe that for any i = 1, . . . , n,

[D−1λ ]ii =
1

1− [Lλ]ii
=

1

1−
[
X(XTX/n+ λIp)+XT /n

]
ii

=
1

1− xTi /
√
n(XTX/n+ λIp)+xi/

√
n
.

Denoting XTX/n by Σ̂ and using the Woodbury matrix identity as explained in the proof of Lemma S.3.1, we
have that

1

1− xTi (Σ̂ + λIp)+xi/n
= 1 + xTi (Σ̂−i + λIp)

+xi/n.

The diagonal entries of the matrix D−1λ are thus 1 + xTi (Σ̂−i + λIp)
+xi/n for i = 1, . . . , n.

We proceed to bound the difference in the two quantities of (S.20) as follows:∣∣∣∣loo(λ)− yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n

∣∣∣∣
=

∣∣∣∣yT (In − Lλ)2D−2λ y/n− yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n

∣∣∣∣
≤ yT (In − Lλ)2y/n max

i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)
+xi/n

)2
−
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2∣∣∣∣

≤ C max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)
+xi/n

)2
−
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2∣∣∣∣ ,

where the bound in the last inequality holds almost surely for sufficiently large n by noting that yT (In−Lλ)2y/n
is almost surely bounded for sufficiently large n as explained in the proof of Theorem 4.1 Note that we do not
require that the response y is well-specified. Finally, similar to the proof of Lemma 5.3, we decompose the error
as

max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)
+xi/n

)2
−
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2∣∣∣∣ ≤ ξ1 + ξ2,

where the error terms ξ1 and ξ2 are defined as follows:

ξ1 := max
i=1,...,n

∣∣∣∣(1 + xTi (Σ̂−i + λIp)
+xi/n

)2
−
(

1 + tr
[
(Σ̂−i + λIp)

+Σ
]
/n
)2∣∣∣∣ , (S.21)

ξ2 := max
i=1,...,n

∣∣∣∣(1 + tr
[
(Σ̂−i + λIp)

+Σ
]
/n
)2
−
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2∣∣∣∣ . (S.22)

Both of the error terms approach 0 under proportional asymptotic limit using the final parts of the arguments
used for e12 and e21 in the proof of Lemma 5.3.
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S.2.2 Completing the proof of Theorem 4.2

Case when λ 6= 0. Recall from Equation (S.4) that the GCV risk estimate gcv(λ) in this case can be expressed
as

gcv(λ) =
yT (In − Lλ)2y/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 .

On the other hand, from Lemma 5.6, under proportional asymptotics we have that

loo(λ)− yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n

a.s.−−→ 0.

The result then follows by noting that∣∣∣∣yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n− gcv(λ)

∣∣∣∣
=

∣∣∣∣∣∣∣yT (In − Lλ)2
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
y/n− yT (In − Lλ)2y/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2
∣∣∣∣∣∣∣

≤ yT (In − Lλ)2y/n

∣∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
− 1(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2
∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)2
− 1(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2
∣∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)
− 1(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣
∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)

+
1(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣

≤ C

∣∣∣∣∣∣
(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)
− 1(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)
∣∣∣∣∣∣

a.s.−−→ 0

under proportional asymptotics using the first part of Lemma S.3.1. Note that the bound in the second inequality
again follows from the fact that ‖y‖2/n is almost surely upper bounded for sufficiently large n, and the operator
norm of In − Lλ is bounded almost surely for large n for λ ∈ (λmin,∞).

Limiting case when λ = 0 Similar to the proofs of Lemma 5.3 and Lemma 5.4, to handle the case when λ = 0,

we observe that for λ 6= 0, we can extract a factor of λ2 from (In−Lλ)2 and absorb into
(

1+tr
[
(Σ̂+λIp)

+Σ
]
/n
)2

and take λ→ 0 to write the limiting LOOCV risk estimate under proportional asymptotics as

loo(0)− yT (XXT /n)+2
(

tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n
)2
y/n

a.s.−−→ 0,

while the limiting GCV estimate is given by

gcv(0) =
yT (XXT /n)+2y/n(

tr[Σ̂+]/n
)2 .



As above, we can then bound the difference to get∣∣∣∣∣yT (XXT /n)+2

(
tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]
/n

)2

y/n− yT (XXT /n)+2y/n(
tr[Σ̂+]/n

)2
∣∣∣∣∣

≤ C

∣∣∣∣∣tr [(Ip − Σ̂(Σ̂ + λIp)
+
)
Σ
]
/n− 1

tr[Σ̂+]/n

∣∣∣∣∣
a.s.−−→ 0,

where the convergence follows from the second part of Lemma S.3.1.

Putting things together, this establishes the almost sure pointwise convergence of loo(λ) to gcv(λ). To show
uniform convergence and the convergence of tuned risks, we similarly bound the estimate loo(λ) and its derivative
as a function of λ to establish equicontinuity as done in the proof of Theorem 4.1. We omit the details due to
similarity.

S.3 Auxiliary lemmas

In this section, we state and prove auxiliary lemmas that we often make use of in other proofs. Note that
Lemma 5.5 in the main paper is a special case of Lemma 5.3 and its proof follows analogous steps as the proof
of Lemma 5.3 in Section S.1.3 and is omitted.

Lemma S.3.1 (Basic GCV denominator lemma). Under Assumption 2 and Assumption 3, for λ ∈ (λmin,∞) \
{0},

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n− 1

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n

a.s.−−→ 0 (S.23)

as n, p→∞ with p/n→ γ ∈ (0,∞). In the case when λ = 0,

tr
[
(Ip − Σ̂+Σ̂)Σ

]
/n− 1

tr
[
Σ̂+
]
/n

a.s.−−→ 0 (S.24)

as n, p→∞ with p/n→ γ ∈ (0,∞).

Proof. We start with the the GCV denominator (the denominator of the second term of (S.23)) and establish
that under proportional asymptotics

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

a.s.−−→ 0.

To that end, we use the standard leave-one-out trick to break the trace functional 1 − tr
[
(Σ̂ + λIp)

+Σ̂
]
/n into

random quadratic forms where the point of evaluation is independent of the inner matrix as follows:

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n = 1− 1

n
tr
[
(Σ̂ + λIp)

+
n∑
i=1

xix
T
i /n

]
= 1− 1

n

n∑
i=1

tr
[
(Σ̂ + λIp)

+xix
T
i /n

]
= 1− 1

n

n∑
i=1

xTi (Σ̂ + λIp)
+xi/n

=
1

n

n∑
i=1

(
1− xTi (Σ̂ + λIp)

+xi/n
)

=
1

n

n∑
i=1

1

1 + xTi (Σ̂−i + λIp)+xi/n
.
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Here the last equality follows from the following simplification using the Sherman-Morrison-Woodbury formula
with Moore-Penrose inverse (Meyer, 1973):

1− xTi (Σ̂ + λIp)
+xi/n

= 1− xTi
(
Σ̂−i + λIp + xix

T
i /n

)+
xi/n

= 1− xTi

(
(Σ̂−i + λIp)

+ − (Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+

1 + xTi (Σ̂−i + λIp)+xi/n

)
xi/n

= 1− xTi (Σ̂−i + λIp)
+xi/n+ xTi

(Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+

1 + xTi (Σ̂−i + λIp)+xi/n
xi/n

= 1− xTi (Σ̂−i + λIp)
+xi/n− xTi (Σ̂−i + λIp)

+xi/nx
T
i (Σ̂ + λIp)

+xi/n+ xTi (Σ̂−i + λIp)
+xix

T
i /n(Σ̂−i + λIp)

+

1 + xTi (Σ̂−i + λIp)+xi/n

= 1− xTi (Σ̂−i + λIp)
+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

=
1 + xTi (Σ̂−i + λIp)

+xi/n− xTi (Σ̂−i + λIp)
+xi/n

1 + xTi (Σ̂−i + λIp)+xi/n

=
1

1 + xTi (Σ̂−i + λIp)+xi/n
.

We now break the error in (S.23) as

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

=
1

n

n∑
i=1

1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

=
1

n

n∑
i=1

(
1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

)
= δ1 + δ2,

where the error terms δ1 and δ2 are defined as follows:

δ1 :=
1

n

n∑
i=1

(
1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n

)
,

δ2 :=
1

n

n∑
i=1

(
1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

)
,

In Section S.3.1, we show that both the error terms δ1 and δ2 almost surely approach 0 under proportional
asymptotics for λ ∈ (λmin,∞) under Assumption 2 and Assumption 3.

We now finish the final step by considering the two cases of λ 6= 0 and λ = 0.

Case when λ 6= 0. We so far have that

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

a.s.−−→ 0,

which we can rewrite as(
1− tr

[
(Σ̂ + λIp)

+Σ̂
]
/n
)(

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n
)
− 1

a.s.−−→ 0.

When λ 6= 0, the GCV denominator 1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n 6= 0, and we can safely take the inverse to get

1 + tr
[
(Σ̂ + λIp)

+Σ
]
/n− 1

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n

a.s.−−→ 0

under proportional asymptotic limit as desired.



Limiting case when λ = 0. In this case, 1 − tr
[
(Σ̂ + λIp)

+Σ̂
]
/n can be zero (in particular, it is zero when

p ≥ n and X has rank n). As before, we start with λ 6= 0 and using Lemma S.3.2, express

1− tr
[
(Σ̂ + λIp)

+Σ̂
]
/n = λ tr

[
(XXT /n+ λIn)+

]
/n,

along with

λ tr
[
(Σ̂ + λIp)

+Σ
]

= tr
[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]
/n.

This allows us to move λ across to write(
tr
[
(XXT /n+ λIn)+

]
/n
)(
λ+ tr

[(
Ip − Σ̂(Σ̂ + λIp)

+
)
Σ
]
/n
)
− 1

a.s.−−→ 0.

Sending λ→ 0, writing tr[(XXT /n+)]/n = tr[Σ̂+]/n, and inverting safely, we have

tr
[
(Ip − Σ̂Σ̂+)Σ

]
/n− 1

tr[Σ̂+]/n

a.s.−−→ 0

under proportional asymptotic limit as desired.

Lemma S.3.2 (Gram and sample covariance matrix simplifications). Suppose XTX/n+λIp and XXT /n+λIn
are invertible. Then it holds that

In −X(XTX/n+ λIp)
+XT /n = λ(XXT /n+ λIn)+,

Ip −
(
XTX/n+ λIp

)+
XTX/n = λ(XTX/n+ λIp)

+.

Proof. Recall the Woodbury matrix identity

A−1 −A−1U(V A−1U + C−1)−1V A−1 = (UCV +A)−1.

Letting A = In, U = X/
√
n, C = 1/λIp, V = XT /

√
n, we get

In −X(XTX/n+ λIp)
−1XT /n = (X/

√
n 1/λIpX

T /
√
n+ In)−1

= λ(XXT /n+ λIn)−1.

On the other hand, letting A = Ip, U = Ip, V = XTX/n, C = 1/λIp, we get

Ip −
(
XTX/n+ λIp

)−1
XTX/n =

(
1/λIpX

TX/n+ Ip
)−1

= λ
(
XTX/n+ λIp

)−1
.

S.3.1 Error terms in the proof of Lemma S.3.1

Below we show that for λ ∈ (λmin,∞) both the error terms δ1 and δ2 almost surely approach 0 as n, p→∞ with
p/n→ γ ∈ (0,∞). The arguments mirror parts of the error analysis for terms e12 and e21 in Section S.1.6.

Error term δ1

|δ1| =

∣∣∣∣∣ 1n
n∑
i=1

1

1 + xTi (Σ̂−i + λIp)+xi/n
− 1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑
i=1

tr
[
Σ̂−i + λIp)

+Σ
]
/n− xTi (Σ̂−i + λIp)

+xi/n(
1 + xTi (Σ̂−i + λIp)+xi/n

)(
1 + tr

[
(Σ̂−i + λIp)+Σ

]
/n
) ∣∣∣∣∣

≤ C

∣∣∣∣∣ 1n
n∑
i=1

tr
[
(Σ̂−i + λIp)

+Σ
]
/n− xTi (Σ̂−i + λIp)

+xi/n

∣∣∣∣∣
≤ C max

i=1,...,n

∣∣∣tr [(Σ̂−i + λIp)
+Σ
]
/n− xTi (Σ̂−i + λIp)

+xi/n
∣∣∣

a.s.−−→ 0,

where the final convergence follows from using Lemma S.4.4 as argued for the suberror term e12 in Section S.1.6.
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Error term δ2

|δ2| =

∣∣∣∣∣ 1n
n∑
i=1

1

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
− 1

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n

∣∣∣∣∣
=

1

n

∣∣∣∣∣
n∑
i=1

tr
[
(Σ̂ + λIp)

+Σ
]
/n− tr

[
(Σ̂−i + λIp)

+Σ
]
/n(

1 + tr
[
(Σ̂−i + λIp)+Σ

]
/n
)(

1 + tr
[
(Σ̂ + λIp)+Σ

]
/n
) ∣∣∣∣∣

≤ C

n

∣∣∣∣∣
n∑
i=1

tr
[
Σ(Σ̂ + λIp)

+
]
/n− tr

[
Σ(Σ̂−i + λIp)

+
]
/n

∣∣∣∣∣
≤ C

n
a.s.−−→ 0,

where the last inequality follows analogous simplification as done for the suberror term e21 in Section S.1.6.

S.4 Useful concentration results

The following lemma is a standard concentration of linear combination of i.i.d. entries.

Lemma S.4.1 (Concentration of linear form with independent components). Let ε be a random vector in Rn

that satisfy conditions of error vector in Assumption 1. Let bn be a sequence of random vectors in Rn independent
of ε such that supn ‖bn‖2/n <∞ almost surely. Then as n→∞,

bTnε/n
a.s.−−→ 0.

The following lemma is adapted from Dobriban and Wager (2018, Lemma 7.6).

Lemma S.4.2 (Concentration of quadratic form with independent components). Let ε ∈ Rn be a random vector
that satisfy conditions of error vector in Assumption 1. Let Dn be a sequence of random matrices in Rn×n that
are independent of ε and have operator norm uniformly bounded in n. Then as n→∞,

εTDnε/n− σ2 tr[Dn]/n
a.s.−−→ 0.

The following lemma is adapted from an argument in Hastie et al. (2019, Theorem 7) using union bound along
with a lemma from Bai and Silverstein (2010, Lemma B.26).

Lemma S.4.3 (Concentration of maximum of quadratic forms with independent components). Let x1, . . . , xn be
random vectors in Rp that satisfy Assumption 2 and Assumption 3. Let G1, . . . , Gn be random matrices in Rp×p
such that Gi is independent of xi (but may depend on all of X−i) and have operator norm uniformly bounded in
n. Then as n→∞,

max
i=1,...,n

∣∣xTi Gixi/n− tr[GiΣ]/n
∣∣ a.s.−−→ 0.

The following lemma is adapted from Rubio and Mestre (2011, Lemma 4).

Lemma S.4.4 (Concentration of sum of quadratic forms with independent components). Let x1, . . . , xn be
random vectors in Rp that satisfy Assumption 2 and Assumption 3. Let H1, . . . ,Hn be random matrices in Rp×p
such that Hi is independent of xi (but may depend on all of X−i) that have trace norm uniformly bounded in n.
Then as n→∞, ∣∣∣∣∣

n∑
i=1

xTi Hixi/n− tr[HiΣ]/n

∣∣∣∣∣ a.s.−−→ 0.



References

Zhi-Dong Bai and Jack W. Silverstein. No eigenvalues outside the support of the limiting spectral distribution
of large-dimensional sample covariance matrices. The Annals of Probability, 26(1):316–345, 1998.

Zhidong Bai and Jack W. Silverstein. Spectral Analysis of Large Dimensional Random Matrices. Springer, 2010.

Romain Couillet and Walid Hachem. Analysis of the limiting spectral measure of large random matrices of the
separable covariance type. Random Matrices: Theory and Applications, 3(04):1450016, 2014.

Edgar Dobriban and Stefan Wager. High-dimensional asymptotics of prediction: Ridge regression and classifi-
cation. The Annals of Statistics, 46(1):247–279, 2018.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J. Tibshirani. Surprises in high-dimensional
ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Olivier Ledoit and Sandrine Peche. Eigenvectors of some large sample covariance matrices ensembles. SSRN
Electronic Journal, pages 233–264, 03 2009.

Carl D. Meyer, Jr. Generalized inversion of modified matrices. SIAM Journal on Applied Mathematics, 24(3):
315–323, 1973.

Debashis Paul and Jack W. Silverstein. No eigenvalues outside the support of the limiting empirical spectral
distribution of a separable covariance matrix. Journal of Multivariate Analysis, 100(1):37–57, 2009.

Francisco Rubio and Xavier Mestre. Spectral convergence for a general class of random matrices. Statistics &
probability letters, 81(5):592–602, 2011.


	ridgecv-main
	INTRODUCTION
	RELATED WORK
	PROBLEM SETUP
	MAIN RESULTS
	Assumptions
	GCV Versus Prediction Error
	LOOCV Versus GCV

	PROOF OUTLINES
	GCV Versus Prediction Error
	LOOCV Versus GCV

	DISCUSSION

	ridgecv-supp
	Proofs related to *thm:gcvriskequiv
	Proof of *lem:predriskdecomp
	Proof of *lem:gcvdecomp
	Proof of *lem:gcvpredriskB
	Proof of *lem:gcvpredriskV
	Completing the proof of *thm:gcvriskequiv
	Error terms in the proof of lem:gcvpredriskB

	Proofs related to *thm:loocvgcvequiv
	Proof of *lem:loocvlim
	Completing the proof of *thm:loocvgcvequiv

	Auxiliary lemmas
	Error terms in the proof of lem:gcvbasicdenom

	Useful concentration results


