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Abstract

Recent empirical and theoretical analyses of several commonly used prediction procedures reveal a
peculiar risk behavior in high dimensions, referred to as double/multiple descent, in which the asymptotic
risk is a non-monotonic function of the limiting aspect ratio of the number of features or parameters
to the sample size. To mitigate this undesirable behavior, we develop a general framework for risk
monotonization based on cross-validation that takes as input a generic prediction procedure and returns
a modified procedure whose out-of-sample prediction risk is, asymptotically, monotonic in the limiting
aspect ratio. As part of our framework, we propose two data-driven methodologies, namely zero- and
one-step, that are akin to bagging and boosting, respectively, and show that, under very mild assumptions,
they provably achieve monotonic asymptotic risk behavior. Our results are applicable to a broad variety
of prediction procedures and loss functions, and do not require a well-specified (parametric) model. We
exemplify our framework with concrete analyses of the minimum /3, ¢;1-norm least squares prediction
procedures. As one of the ingredients in our analysis, we also derive novel additive and multiplicative
forms of oracle risk inequalities for split cross-validation that are of independent interest.
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1 Introduction

Modern machine learning models deploy a large number of parameters relative to the number of observations.
Even though such overparameterized models typically have the capacity to (nearly) interpolate noisy training
data, they often generalize well on unseen test data in practice (Zhang et al., 2017, 2021). The striking and
widespread successes of interpolating models has been a topic of growing interest in the recent mathematical
statistics literature (see, e.g., Belkin et al., 2019a, 2018a, 2019b; Bartlett et al., 2020), as it seemingly
defies the widely-accepted statistical wisdom that interpolation will generally lead to over-fitting and poor
generalization (Hastie et al., 2009, Figure 2.11). A body of recent work has both empirically and theoretically
investigated this surprising phenomenon for different models, including linear regression (Hastie et al., 2019;
Muthukumar et al., 2020; Belkin et al., 2020; Bartlett et al., 2020), kernel regression (Liang and Rakhlin,
2020), nearest neighbor methods (Xing et al., 2018, 2022), boosting algorithms (Liang and Sur, 2020), among
others. See the survey papers by Bartlett et al. (2021) and Dar et al. (2021) for more related references.

A closely related and equally striking feature of overparameterized models is the so-called “double/multiple
descent” behavior in the generalization error curve when plotted against the number of parameters or as
a function of the aspect ratio of the number of parameters to the sample size. In a typical double descent
scenario, the generalization or test error initially increases as a function of the aspect ratio. It peaks and in
some cases explodes as this ratio crosses the interpolation threshold, where the learning algorithm achieves a
degree of complexity that allows for perfect interpolation of the data. Past the interpolation threshold, the
test error tapers down as the complexity of the algorithm increases relative to the sample size. Furthermore,
for some algorithms and settings, e.g., the lasso and the minimum ¢;-norm least square (e.g., Li and Wei,
2021) or various structures of the design matrix (Adlam and Pennington, 2020; Chen et al., 2020), multiple
descents may occur. Double and multiple descent phenomena have been first demonstrated empirically, e.g.,
for decision trees, random features and two-layer and deep neural networks, and some of these findings have
now been corroborated by rigorous theories in a growing body of work: see, e.g., Neyshabur et al. (2014);
Nakkiran et al. (2019); Belkin et al. (2018b, 2019a); Mei and Montanari (2019); Adlam and Pennington
(2020); Chen et al. (2020); Li and Wei (2021), among others. However, in general, the shape and number of
local minima associated with a non-monotonic risk profile due to double descent depend non-trivially on the
learning problem, the algorithm deployed, and to an extent, the properties of the data generating distribution
in ways that are only partially understood.

The non-monotonic behavior of the generalization error as a function of the aspect ratio in the over-
parameterized settings suggests the jarring conclusion that, in high dimensions, increasing the sample size
might actually yield a worse generalization error. In contrast, it is highly desirable to rely on prediction
procedures that are guaranteed to deliver, at least asymptotically, a risk profile that is monotonically increasing
in the aspect ratio, over a large class of data generating distributions. (Note that increasing in aspect ratio
is same as decreasing in sample size for a given number of features.) To that effect, some authors have
considered ridge-regularized estimators; see Nakkiran et al. (2020); Hastie et al. (2019). In those cases, under
fairly restrictive settings and distributional assumptions, a monotonic risk profile can be assured. However,
in general settings and for any given procedure, it is unclear how to determine whether the associated risk
profile is at least approximately non-monotonic and, if so, how to mitigate it. The ubiquity of the double and
multiple descent phenomenon in over-parameterized settings begs the question:

Is it possible to modify any given prediction procedure in order to achieve a monotonic risk behavior?

In this paper, we answer this question in the affirmative. More specifically, we develop a simple, general-
purpose framework that takes as input an arbitrary learning algorithm and returns a modified version whose
out-of-sample risk will be asymptotically no larger than the smallest risk achievable beyond the aspect ratio
for the problem at hand. In particular, the asymptotic risk of the returned procedure, as a function of the
aspect ratio, will stay below the “monotonized” asymptotic risk profile of the original procedure corresponding
to its largest non-decreasing minorant (see Figure 1 for an illustration). As a result, when the risk function of
the original procedure exhibits double or multiple descents, our modification will guarantee, asymptotically,
a far smaller out-of-sample risk near the peaks of the risk function. Our approach is applicable to a large
class of data generating distributions and learning problems, with mild to no assumptions on the learning
algorithm of choice.

To illustrate the type of guarantees obtained in this paper, we provide a preview of one of our main results
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Figure 1: Monotonized asymptotic conditional prediction risk of the zero-step procedure (described in
Algorithm 2) and one-step procedure (described in Algorithm 3) for the minimum ¢s-norm and ¢;-norm least
squares procedures. The figure in the left panel follows the setup of Figure 2 of Hastie et al. (2019), and the
figure in the right panel follows the setup of Figure 3 of Li and Wei (2021) (at sparsity level = 0.1). Both
settings assume isotropic features and a linear model with noise variance 02 = 1 and linear coefficients of
squared Euclidean norm p? = 4. Note that the risk is lower bounded by 02 = 1 and the risk of the null
predictor (null risk) is p? + 02 = 5.

from Section 3.3.1 and comment on its implication. Adopting a standard regression framework, we assume
that the data D, = {(X1,Y1),...,(Xn,Ys)} are comprised of n i.i.d. pairs of a p-dimensional covariate and
a response variable from an unknown distribution. Using D,,, suppose one fits a predictor f — a random
function that maps z € RP — f ( ) € R. Given a loss function £: R x R — R, we evaluate the performance
of f by its conditional predictive risk given the data, defined by R(f:D,) = E[((Y, f(Xo)) | Dn], where
(Xo,Yo) is an unseen data point, drawn independently from the data generating distribution. Note the risk is
a random variable, as it depends on the data D,,. We are interested in the limiting behavior of the risk under
the proportional asymptotic regime in which n,p — o0 with the aspect ratio p/n converging to a constant
~v € (0,00). As noted above, in such regime the asymptotic risk profile of f has been recently shown to be
non-monotonic for a wide variety of problems and procedures. In order to mitigate such behavior, we devise
a modification of the original procedure f that results into a new procedure f*, called zero-step procedure
(described in Algorithm 2), whose asymptotic risk profile is provably monotonic in 7. The following informal
result can be derived as a consequence of results in Section 3.3.1.

Theorem 1.1 (Informal monotonization result). Suppose there exists a deterministic function R (-; f ):
(0,00] — [0,00] such that for any ¢ € (0,0] for any dataset D consisting of m i.i.d. observations with p,
features, R(f; D) L Riet(g; f), whenever m, py, — 0 and py/m — ¢. Then, under mild assumptions on
Rt the loss function ¢, and the data generating distribution, the zero-step procedure fzs satisfies

R(f*;D,) — min R¥(¢; f)

=y
as n,p — o and p/n — v € (0,00).

Figure 1 illustrates the above result for the minimum ¢s-norm least squares estimator (Hastie et al.,
2019) and the minimum ¢;-norm least squares estimator (Li and Wei, 2021). The light-blue lines show the
asymptotic risk profiles of the two procedures, which are non-monotonic as they diverge to infinity around
the interpolation threshold of 1, at which the sample size and the number of features are equal. The red lines



depict the risk profiles of the zero-step procedure fzs, which corresponds to the map

7€ (0,) > min R ). (1)
=y

The function (1) is a monotonically non-decreasing function of v, regardless of whether v — RI(~; f) is
non-monotonic. Furthermore, since

min RY(G; f) < RY(y; f), for all 7> 0,
=7

the asymptotic risk of fzs is no worse than that of f . We refer to the function described in (1) as the
monotonized risk of the base procedure f

The assumptions required in Theorem 1.1 are very mild, and apply to a broad range of procedures
and settings. Indeed, as remarked above, the risk profile RI*(-; f) of several estimators have been recently
identified under proportional asymptotics regime; see Remark 3.16. The requirements on the loss functions
are also mild and can be verified for common loss functions. In fact, our results do not require proportional
asymptotics and hold more generally.

We also develop a more sophisticated methodology whose asymptotic risk profile is not only monotonic in
the aspect ratio but can be strictly smaller than the monotonized risk profile (1), a fact that we again verify
for the minimum #s, ¢1-norm least squares procedures. See Section 4.

Core idea: the zero-step procedure. Our methodology is conceptually straightforward, as it relies on a
combination of sample splitting, sub-sampling, and cross-validation. The core principle is as follows. Starting
off with an aspect ratio of p/n, if the risk were to be lower at, say, twice this aspect ratio 2p/n, then we
could just use half the data to evaluate the predictor, enjoying a smaller risk than the one obtained when
training with the entire data. To decide whether the out-of-sample error is lower at any larger aspect ratio,
we use cross-validation to “glean at” the values of the risk function at all aspect ratios larger than the one for
the full data. To elaborate, we next give an informal description of one of our main methods, the zero-step
procedure that we study in Section 3.

We initially split the data into a training and a validation set in such a way that the size of the validation
set is a vanishing proportion of that of the training set. In the first step, we compute a collection of predictors,
each resulting from applying the same base prediction procedure on a sub-sample of size k,, varying over
a grid of values in IC,,. Depending on the size of the sub-sample, we are able to mimic the behavior of the
risk at larger aspect ratios (p/kn, kn € Ky). In the second step, we estimate the out-of-sample risk of each
of these predictors using the validation set. With {p/k, : k,, € K,,} approximating the set [p/n, ], these
estimated out-of-sample risks act as proxies for the true generalization error at larger aspect ratios. In the
final step, we perform model selection by minimizing the estimated test error across the candidate aspect
ratios. In order to make full use of the data, one can use more than one sub-sample for each k, € K,,, a
practice that closely resembles bagging. To prove the “correctness” of the split-sample cross-validation, we
develop novel oracle inequalities in additive and multiplicative forms that are of independent interest.

Because the core components of our approach are sub-sampling and cross-validation, our methodology
is applicable to virtually any algorithm — even the black-box type — and its validity holds under minimal
assumptions on the data generating distribution.

1.1 Summary of results

Below we summarize the main contributions of this paper.

e Novel guarantees for split-sample cross-validation. At its core, our methodology performs model
selection of arbitrary learning procedures built over sub-samples of different sizes, with the size of the
sub-samples treated as a tuning parameter to optimize. Towards that goal, we rely on split-sample
cross-validation, which we analyze in Section 2. In Proposition 2.1, we provide deterministic inequalities
for the risk of split cross-validated predictors in both additive and multiplicative form. We remark
that multiplicative oracle inequalities allow for the possibility of unbounded oracle risk values, and are
therefore well suited to incorporate prediction procedures exhibiting the double descent phenomena



around the interpolating threshold. Leveraging concentration inequalities for both the mean estimator
of the prediction risk and the median-of-means estimator, in Section 2.3, we show how these bounds
imply finite-sample oracle inequalities for split-sample cross-validation that are applicable to a broad
range of loss functions and under minimal assumptions on the learning procedure. In particular, our
results do not require well-specified (parametric) models. We exemplify our bounds on various loss
functions for both regression and classification, and in Theorem 2.22, we give a general multiplicative
oracle inequality for arbitrary linear predictors under mild distributional assumptions.

e Zero-step procedure. Using oracle inequalities for split-sample cross-validation, we put forth a
general methodology that takes as input an arbitrary prediction procedure and minimizes the prediction
risk of its bagged version over a grid of sub-sample sizes. We call this the “zero-step” prediction
procedure. We analyze the asymptotic risk behavior of the zero-step procedure under proportional
asymptotics, in which the number of features grows proportionally with the number of observations. In
Theorem 3.11, we prove that the risk of predictor returned by the zero-step procedure is upper bounded
by the monotonized risk given in (1). Unlike most contributions in the literature on over-parameterized
learning, our results do not depend on well-specified (parametric) models and only require the existence
of a sufficiently well-behaved asymptotic risk profile.

e One-step procedure. In Section 4, we further generalize the zero-step procedure by considering
an adjustment of the original predictor that is inspired by the one-step estimation method used in
parametric statistics to improve efficiency (Van der Vaart, 2000, Section 5.7). This modification, which
can be thought of as a single-iterate boosting of the baseline procedure, is shown, both in theory and in
simulations, to produce an asymptotic monotonized risk that is smaller than the monotonized risk of
the zero-step procedure; see Theorem 4.4. We derive explicit expressions of the asymptotic risk profile
of the one-step procedure for the minimum /5, ¢1-norm least squares prediction procedures. The main
insight we draw from the minimum #s-norm least squares example is that the one-step procedure in
addition to changing the aspect ratio of the predictor also reduces the signal energy leading to a smaller
asymptotic risk; see Remark 4.12.

e Risk profiles. In our study of the performance of the zero-step and one-step procedures, we derive
several auxiliary results that might of independent interest. Specifically, we provide a systematic way to
certify the continuity or lower semicontinuity of the asymptotic risk profile of any prediction procedure,
assuming only point-wise convergence of the conditional prediction risk under proportional asymptotics;
see Proposition 3.10. This is often hard to prove directly from the asymptotic risk profiles as they
are usually defined implicitly via one or more fixed-point equations. Also of independent interest is a
representation that we prove, for the conditional prediction risk of an arbitrary linear predictor with a
one-iterate boosting with minimum /2-norm least squares, using the recent tools from random matrix
theory. This, in particular, involves deriving deterministic equivalents for the generalized bias and
variance of the ridgeless predictor which may be of independent interest; see Lemmas 4.8 and S.5.3.

We corroborate our theoretical results with several illustrative simulations. An intriguing finding emerging
from our numerical studies is the fact that bagging, i.e., aggregation over sub-sample, appears to have a
significant positive impact on the asymptotic risk profile of both the zero- and one-step procedure: averaging
over an increasing number of sub-samples results in a downward shift of the risk asymptotic profile, especially
around the interpolation threshold: see, e.g., Figures 3 and 4. Though we do not provide a theoretical
justification for this interesting phenomenon, we offer some conjectures in the discussion section; see Section 5.

1.2 Other related work

In this section, we review some related work on risk non-monotonicity, cross-validation, as well as exact
asymptotic risk characterization. Explicit references to these works, when appropriate, are also made in the
main sections of the paper.

Non-monotonicity of generalization performance. The study of non-monotone risk behavior is largely
motivated by empirical evidence in standard statistical learning tasks such as classification and prediction,



where instances of non-monotonic risk profiles were originally discovered and reported. See Trunk (1979);
Duin (1995); Opper and Kinzel (1996) and Loog et al. (2020) for some earlier findings on the double descent
risk behavior. Recently, it has garnered growing interest due to the remarkable successes of neural networks
where similar non-monotonic behavior has also been observed; see LeCun et al. (1990); Geiger et al. (2019);
Zhang et al. (2017, 2021) and references therein. The non-monotonic behavior of the test error as a function
of the model size in general context was brought up by Belkin et al. (2019a) and has since been theoretically
established for many other classical estimators such as linear/kernel regression, ridge regression, logistic
regression, and under stylized models such as linear model or random features model. Besides the work
discussed in our main sections, see also Kini and Thrampoulidis (2020); Mei and Montanari (2019); Mitra
(2019); Derezinski et al. (2020); Frei et al. (2022) and the survey paper Bartlett et al. (2021). When it
comes to the sample-wise non-monotonic performances, a recent line of work asks and provides partial
answers to the question: given additional observation points, when and to what extend will the generalization
performance improve (Viering et al., 2019; Nakkiran, 2019; Nakkiran et al., 2020; Mhammedi, 2021). In
particular, Nakkiran et al. (2020) investigates the role of optimal tuning in the context of ridge regression,
and for a class of linear models, demonstrated that the optimally-tuned ¢ regularization achieves monotonic
generalization performance.

Data-splitting and cross-validation. The framework developed in the current paper crucially depends
on split-sample cross-validation, which compares different predictors trained on one part of the sample using
out-of-sample risk estimates from the remaining part. The split-sample cross-validation is a well-known
methodology studied in several works (e.g., Stone (1974); Gyorfi et al. (2002); Yang (2007); Arlot and Celisse
(2010)). Split-sample cross-validation is theoretically easier to analyze compared to the k-fold cross-validation
and is shown to yield optimal rates in the context of non-parametric regression (Yang, 2007; Van der Laan
et al., 2007; Van der Vaart et al., 2006). These works have derived oracle inequalities that show that
split-sample cross-validation based predictor has asymptotically the smallest risk among the collection of
predictors up to an additive error (that converges to zero). The oracle inequalities are either called exact or
inexact depending on whether the constant multiplying the smallest risk is 1 or 1 + ¢ (for an arbitrarily ¢);
see, e.g., Lecué and Mendelson (2012). All these works have used split-sample cross-validation for the purpose
of choosing predictors with good prediction risk, and the existing oracle inequalities are all additive in nature.

Application of cross-validation for over-parameterized learning is more recent and here special care is
required in choosing the split sizes because splitting in half would change the aspect ratios in the proportional
asymptotics regime. In contrast to the low dimensional or non-parametric setting, it is well-known that the
classical k-fold cross-validation framework suffers from severe bias and thus requires careful modification or a
diverging choice of k (see, e.g., Miicke et al. (2021); Rad and Maleki (2020)). In particular, when k is taken
to be n, the resulting procedure is also known as leave-one-out cross-validation (LOOCYV), which mitigates
these bias issue and has proven to be effective in a variety of settings; see Beirami et al. (2017); Wang et al.
(2018); Giordano et al. (2019); Stephenson and Broderick (2020); Wilson et al. (2020); Austern and Zhou
(2020); Xu et al. (2021); Patil et al. (2021, 2022) and references therein.

Our use of cross-validation is slightly different: the goal is to choose the “optimal” sub-sample size for a
single prediction procedure. Furthermore, supplementing the existing oracle inequalities for cross-validation,
we also provide a multiplicative oracle inequality which shows that the split-sample cross-validated predictor
attains the smallest risk in the collection up to a factor converging to 1 with the sample size. This multiplicative
version is crucial for our study, allowing us to consider ingredient predictors whose risk might diverge with
sample size.

Risk characterization. In developing our zero-step and one-step procedures, we assume existence of a
deterministic risk profile function for every aspect ratio. As discussed, the exact formulas for the risk profile
functions have been obtained for various estimators in both classification and regression settings. In the
past decade, several distinct techniques and tools have been developed to explicitly describe and analyze
these risk functions. Prominent examples include the leave-one-out type perturbation analysis (e.g., Karoui
(2013, 2018)), the approximate message passing machinery (e.g., Donoho et al. (2009); Donoho and Montanari
(2016); Bayati and Montanari (2011)), and the convex Gaussian min-max theorem (e.g., Stojnic (2013);
Thrampoulidis et al. (2015, 2018)). These techniques rely critically upon a well-specified model, as well as the
assumption that the entries of the design matrix are drawn i.i.d. from standard normal distribution, while



some restricted universality results are developed in Bayati et al. (2015); Montanari and Nguyen (2017); Chen
and Lam (2021); Hu and Lu (2020). In this work, however, we take a more direct approach and develop
some non-asymptotic oracle risk inequalities. Leveraging upon these oracle inequalities, our results do not
require well-specified models, and only assume the existence of a relatively well-behaved risk profile, which
presumably allows for weaker distributional assumptions.

1.3 Organization and notation

Organization. The rest of the paper is organized as follows.

e In Section 2, we describe the general cross-validation and model selection algorithm, derive associated
oracle risk inequalities, and provide probabilistic bounds on the error terms. We then obtain concrete
results for a variety of classification and regression loss functions.

e In Section 3, we describe the zero-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify the related assumptions for the ridgeless and lassoless prediction
procedures, and show corresponding numerical illustrations.

e In Section 4, we describe the one-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify assumptions for arbitrary linear predictors, the special cases of
ridgeless and lassoless prediction procedures, and show corresponding numerical illustrations.

e In Section 5, we conclude the paper and provide three concrete directions for future work.

Nearly all the proofs in the paper are deferred to the Supplementary Material. The sections and the
equation numbers in the Supplementary Material are prefixed with the letters “S” and “E”, respectively.

Notation. We use N to denote the set of natural numbers, R to denote the set of real numbers, R>q to
denote the set of non-negative real numbers, R~ to denote the set of positive real numbers, and R to denote
the extended real number system, i.e., R = R U {—o0, +0}. For a real number a, (a); denotes its positive
part, |a| denotes its floor, [a] denotes its ceiling. For a set A, we use 1 4 to denote its indicator function. We
denote convergence in probability by 2>, almost sure convergence by ~>», and weak convergence by 4, We
use generic letters C,C1,Csy, ... to denote constants whose values may change from line to line.

For a comprehensive list of notation used in the paper, see Section S.9.

2 General cross-validation and model selection

The primary focus of this paper is to develop a framework to improve upon prediction procedures in the
overparameterized regime in which the number of features p is comparable to and often exceeds the number
of observations n, and where the predictive risk may be non-monotonic in the aspect ratio p/n. As discussed
in Section 1, a fundamental component of our methodology is the selection of an optimal size of the sub-
samples through cross-validation. To that effect, we begin by deriving some general, non-asymptotic oracle
risk inequalities for split-sample cross-validation, as described in Algorithm 1, that hold under minimal
assumptions. While our bounds apply to a wide range of learning problems and may be of independent
interest, they are crucial in demonstrating the risk monotonization properties of the procedures presented in
Sections 3 and 4.

Though cross-validation is a well-known and well-studied procedure (see, e.g., Van der Laan et al., 2007;
Gyorfi et al., 2002; Yang, 2007), our work extends the previous results on cross-validation in a couple of
ways: (1) We derive two forms of oracle risk inequalities: the additive form that is better suited for bounded
loss functions (especially classification losses), and the multiplicative form that is better suited unbounded
loss functions (especially regression losses); (2) In addition to common sample mean based estimation of the
prediction risk, we also analyze the median-of-means based estimation of the prediction risk that proves to be
useful in relaxing strong moment assumption on the predictors.



Algorithm 1 General cross-validation and model selection procedure

Inputs:

a dataset D,, = {(X;,V;) e RP x R:1<i< n};
a positive integer ny, < n;

an index set Z; R

a set of prediction procedures {f¢: ¢ € };

a loss function £: R x R — Rx;

a centering procedure CEN € {AVG, MOM};

a real number 1 > 0 if CEN is MOM.

Output:

a predictor fc"(‘; D,) :RP - R.

Procedure:

1.

Randomly split the index set Z,, = {1,...,n} into two disjoint sets Zy, and Zi, such that |Zi,| = n — ne
(which we denote by ni), |Zie| = nte. Denote the corresponding splitting of the dataset D,, by
Dy = {(X;,Y;) 1 i € I} (for training) and Dye = {(X;,Y;) : j € Ly} (for testing).

. For each ¢ € =, fit the prediction procedure f5 on Dy, to obtain the predictor f5(~; Diy) : RP — R.

For each & € =,

e if CEN = AVG, estimate the conditional prediction risk of ff using

1

R(J*(Dw)) = Do 0y, (X5 Dur)). (2)

J€Lte

MOM, estimate the conditional prediction risk of ]?5 using
R(F*( Dwr)) = MOM({£(Y;, *(X;3 D)), J € Tec}, ). (3)

See discussion after Lemma S.8.2 for the definition of MOM(-, -).

e if CEN

Set fA € = to be the index that minimizes the estimated prediction risk using

€ e argmin R(fE(-; D). (4)

EeE

Note that fA need not be unique (hence the set notation) and any choice that leads to the minimum
estimated risk enjoys the subsequent theoretical guarantees in the paper.

A~

Return the predictor f(-;D,) = f&(-; D).




2.1 Oracle risk inequalities

Setting the stage, suppose we are given n samples of labeled data D,, = {(X1,Y1), (X2, Y2),...,(Xn, Yn)},
where X; € R? is a p-dimensional feature vector and Y; € R is a scalar response variable for i=1,...,n.
Let f be a prediction procedure that maps D,, to a predictor f ( n) : RP — R (a measurable functlon of
the data D,,). For any predictor f(-, D,.), trained on the data set D,,, that takes in a feature vector x € R?
and outputs a real-valued prediction f (z;D,,), we measure its predictive accuracy via a non-negative loss
function £ : R x R — R(. Given a new feature vector Xy € RP with associated response variable Yy € R
so that (Xo,Yp) is independent of D,,,! the prediction error or out-of-sample error incurred by f(, D,) is
0(Yy, f(Xo0:Dn)). Note that the prediction error £(Yp, f(Xo;D,)) is a random variable that is a function of
both Dn and (Xo,Yo).

We will quantify the performance of f (+; Dy,) using the conditional expected prediction loss. The conditional
expected prediction loss given the data D,,, or the conditional prediction risk for short, of f(, D,,) is defined
as

~

R(f(Dn)) = Exoy[0(Yo, f(X03Dn)) | D] = Jé(yf(wﬂ?n)) dP(z,y), (5)

where P denotes the joint probability distribution of (Xg,Ys). Note that R( 1 (+;Dy)) is a random variable
that depends on D,,. An empirical estimator of R(f(-;’Dn)) is denoted by ]’%(f(7Dn)) In this paper, we
mainly consider two such estimators: the average estimator and the median-of-means estimator as defined in
(2) and (3), respectively.

Consider any prescribed index set =, where each § € E corresponds to a specific model that will be clear
from the context. Based on the training data, a predictor fE( Dy, ) is fitted for each model £ and estimated
risks of ff, & € = are compared on a validation data set as described in Algorithm 1. Let fc"(-; D,) be the
final predictor returned by Algorithm 1. We shall consider two types of oracle inequalities: one in an additive
form and the other in a multiplicative form. More specifically, for any prescribed model set =, define the
additive error term and multiplicative error term respectively as follows:

A3 = e [ROFE G D)) = RO D) (62)
AP max ﬁ(fié(.’ptr)) — 1‘. (6b)
" E R( 5(7Dtr))

The following proposition relates the performance of ]?CV(-; D,,) to the “oracle” prediction risk in terms of
these errors terms.

Proposition 2.1 (Deterministic oracle risk inequalities). The prediction risk of fc"(~;Dn) satisfies the
following deterministic oracle inequalities:

1. additive form:
RO (:D.) < min ROFE(:Dw) + 285,
ex

E[R(fw('; Dn))] < Igelél E[R(ff(-; Dtr)] + 2E[A:dd]_

2. multiplicative form:

~ 1 Amul N
RGP < o oy min RO D). (8)

Proposition 2.1 provides oracle bounds on the prediction risk of fc"(-; D,,) in terms of the error terms
A3 and Amu! Note that Proposition 2.1 does not make any assumptions about the underlying model of the

We will reserve the notation (Xg, Yp) to denote a random variable that is drawn independent of D,.

10



data or the dependence structure between the observations. Under some general conditions on the data, one
can show that A2dd and/or A™U! converge to zero in probability as n — 0. The exact rate of convergence

depends on the number of observations ni. in the test data and also on the tail behavior of £(Yp, f5 (Xo0; Dir))
conditional on f¢(-; Dy,). For notational convenience, from now, we will write f< and f¢ to denote £ (-;D,,)
and f&(-; D), respectively.

Remark 2.2 (Lower bound on R( f “)). Proposmon 2.1 provides upper bounds on the (condltlonal) prediction
risk of fCV in terms of the minimum risk of f5 It can be readily seen that the risk of fC" is always lower
bounded by the minimum risk. More formally, note that fCV Z&: f 1: e and, therefore,

R(fY) = DIR(F)1g, > minR(f) Y 1z, = rggR(fﬁ).

£eE (eE

Combined with Proposition 2.1, we conclude that

A A inge= R(fS) + 2421
min R(%) < R(F) < {Minees L) w280 1
et minges R(F) - (1 + Am)/(1 — Aml).,
Thus, convergence (in probablhty) of either A2dd or A™! to 0 implies that the risk of fc" is asymptotically
the same as the minimum risk of ff & € Z in either additive or multiplicative sense, respectively.

The additive and multiplicative form of oracle inequalities have their own advantages. Traditionally, the
additive form is more common. The additive oracle inequality for the prediction risk readily implies the
additive oracle inequality on the excess risk. In other words,

R(F™) = R(™) < min ROFS) = ROP7) + 2857,

for any predictor f*. In particular, this will hold for the best (oracle) predictor for the prediction risk. This
is not true of the multiplicative oracle inequality, which instead only implies the bound

R(f) = R(f*) < eaf min 1 (f$) = R(f)} + ( R(f*),

where f* is any predictor (in particular, the one with the best prediction risk) and

1+ A 2/

S L L M
“Ta-apn, © (1= Az,

In terms of claiming that f v has prediction risk close to the best in the collection of predictors { f5,§ € =},
the multiplicative form has certain advantages compared to the additive form. In the case that mingez R( fg)
converges to 0, the additive oracle inequality (7) implies that the risk of the selected predictor fCV asymp-
totically matches the risk of the best predictor among the collection {ff,f € Z} only if A2dd converges to
zero faster than mingez R( ]?5) If, however, A9 converges to zero slower than the minimum risk in the
collection, then the additive oracle inequality does not imply a favorable result. In this case, a multiplicative
oracle inequality helps. As long as A™" converges to 0, the multiplicative oracle inequality implies that f eV
matches in risk with the best predlctor in the collection, irrespective of whether the minimum risk converges
to zero or not. Note that A2d4 only controls the additive error of the risk estimator R( f§) which is easier to
control than the multiplicative error; think of controlling the error of sample mean of Bernoulli(p) random
variables with p = p,, — 0; See Remark 2.12 for a more mathematical discussion. Even when mingcz R(ff )
does not converge to zero, the multiplicative form might be advantageous compared to the additive form.
Indeed, suppose that f¢° is in the collection and its risk diverges as n — co. Then, it may not be true that

[R(f&) — R(f*)| 5 o,

because both ]:2( f&o) and R(féo) are diverging. This implies that A2d4 does not converge to 0 and in fact,
might diverge. However, the minimum risk in the collection could still be finite, and the additive oracle

11



inequality fails to capture this. On the other hand, ﬁ(fgo)/R(f&’) can still converge to 1 as n — o even if
R(fgo) diverges to c0. In our applications in overparameterized learning, we will encounter this situation
where the number of features (p) is close to the number of observations (n), i.e., p/n ~ 1. See Remark 2.23
for more details.

Remark 2.3 (From multiplicative to additive oracle inequality). Note that if A™ = 0,(1), then (1 +
Amul) /(1T — Amuly = 1 4+ O, (1)AR = 1 + 0,(1), then the multiplicative oracle inequality (8) yields

R(fcv) < (1+O ( )Amul)ggle(ff) = (1+Op( ))I?EIPR(.]%)

Observe that this multiplicative form can be converted into an additive form as

R(F™) < min R(fS) + Op(1)A min R(f%),

where the second term on the right hand side is always smaller order compared to the first term as long as
A™! converges in probability to zero.

From this discussion, it follows that one can choose a predictor with the best prediction risk in a collection
if either A2d9 or A™! converges in probability to zero. The application of Algorithm 1 for risk monotonizing
procedures will be discussed in the next three sections. In the next two subsections, we provide some general
sufficient conditions to verify A2dd = o, (1) and A®! = o,(1) for independent data. We also provide examples
of common loss functions and show that under some mild moment assumptions, they satisfy A2dd = o,(1)
and AM = o, (1).

2.2 Control of A% and A™

In order to characterize R(fc") by Proposition 2.1 it is sufficient to control A2dd and A™u!. In this section,
we demonstrate that under certain assumptions on the loss function ¢, the error terms are small both in
probability and in expectation, which in turn yields optimality of fCV among the predictors in { f§ Ee=}

To facilitate our discussion, for each £ € =, define the conditional ¢;-Orlicz norm of £(Yp, ff(Xo)) given
D,, as
160, FE (X0l b, = inf {C' > 0+ B exp (|£(Yo, FE(Xo))I/C) | D] < 2}- (9)

Similarly, for » > 1, define the conditional L,-norm as
N N r 1/r
Yo, FEXo)) e, o, = (E[Je(Yo, FE(Xo))" | Da])". (10)

It is well-known (Vershynin, 2018, Proposition 2.7.1) that

1600, FE(XoDlyuim, = supr (Yo, F5(Xo)

i.e., there are absolute constants C; and C,, such that

(Yo, FE(X,
0<C < 16(Yo, f5(X0))lly D <0, <o

sup,.q 71 [[€(Yo, fﬁ(Xo))Her"

2.2.1 Control of A2dd
Let fg, Nite, and CEN be as defined in Algorithm 1, and A244 be as defined in (6a).

Lemma 2.4 (Control of A2d4 and its expectation for losses with bounded conditional ¥; norm). Suppose
(X, Y:),i € Tye are sampled i.i.d. from P. Suppose the loss function £ is such that

16(Yo, FE(X0)) |y |p,, < ¢

12



or (Xo,Yy) ~ P and set 6= := maxgez 0¢. Fiz any 0 < A < . Then, for = AVG, or = wi
Xo, Y P and set o ¢ Ag Ey 0<A Th CEN = AVG CEN = MOM with
n=n"4/|Z|, 2 there exists an absolute constant Cy > 0 such that

=|nA = A
P Afldd > (0= max log (|=[n ), log (|H|n ) <n A
Nte Nte

Additionally, if for some A > 0, there exists a Co > 0 such that P(6z = Cy) < n™4, then there exists an
absolute constant C3 > 0 such that

1 ZlnA) log (|E|n4 t t ~
;) < CrCaman {4 [B0END OB | gt L L e, )

Nte TNte Nte MNte §EE

for every it =2 and 1/r + 1/t = 1.

Lemma 2.5 (Control of A4 and its expectation for losses with bounded conditional Ly norm). Suppose
(X, Y;),i € Tye are sampled i.i.d. from P. Suppose the loss function £ is such that

[€(Yo, J?g(XO))HLz\Dn < 0¢

for (Xo,Yo) ~ P and set 65 := maxeez 0¢. Fiz any 0 < A < oo. Then, for CEN = MOM with n = n~*/|=,
there exists an absolute constant C; > 0 such that

log(|Z[n?) <A
Tite

P A?‘ldd > (0= (12)

/
3

Additionally, if for some A > 0 there exists a Cy > 0 such that P(c= ) < n~4, then for CEN = MOM,

/1 Zln4 /1 =
E[A?de] < 0102 Og(ll |7’L ) +C 7A/2|~|1/2 Og | |n max H0-5”L2 (13)
te

for some absolute constant C5 > 0.

Remark 2.6 (Comparison of assumptions for CEN = AVG and CEN = MOM.). Comparing Lemmas 2.4 and 2.5,
we note that the median-of-means method of risk estimation only requires control of the Ly moments of
the loss function compared to the v (exponential) moments of the loss function. This is not surprising
given that the median-of-means was developed as a sub-Gaussian estimator of the mean, only assuming
finite variance (Lemma S.8.2). The Lo moment assumption in Lemma 2.5 can be further relaxed to an L,
moment assumption for « € (0, 1] (Lugosi and Mendelson, 2019, Theorem 3) at the cost of weaker rate of
convergence of A9, One can, of course, replace the median-of-means estimator with any other sub-Gaussian
or sub-exponential mean estimator (Catoni, 2012; Minsker, 2015; Fan et al., 2017) and obtain a similar
weakening of the moment assumptions. Same remark continues to hold for AMU! discussed in Section 2.2.2.

Remark 2.7 (Restriction on A for CEN = MOM). In Lemmas 2.4 and 2.5, we allow for a free parameter A.
However, in order for the choice of 1 to be feasible in the MOM construction (see, e.g., Lemma S.8.2 in
Section S.8), we need B = [8log(1/n)] < nte, which puts the following constraint on A:

me _log(|5])

8log(n?|Z]) < nye <= Al < <
og(n”|E]) < ny ogn Slogn ~ logn

—log(|Z)) —

For a large enough n, this allows for a large range of A. In addition, the right hand side is large enough to
imply exponentially small probability bound for the event that A2d9 is large. The same remark holds for
Lemmas 2.9 and 2.10 below.

2See Remark 2.7.
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The key quantities that drive the tail probability and expectation bound on A?d4 in both Lemmas 2.4
and 2.5 are o= and |Z|. The following remark specifies the permissible growth rates on oz and |Z| to ensure
that A2dd s asymptotically small in probability.

Remark 2.8 (Tolerable growth rates on 6=z for A2dd = ¢,(1)). Suppose |Z| < n® for some constant S > 0

independent of n,p. If
-0 Nte
r logn /)’

then under the setting of Lemmas 2.4 and 2.5, A2dd = o,(1) as n — o0. The remark follows simply by noting
that the dominating term in the probabilistic bound on A24d in (12) is of order

=nA
85\/log(_|n ) <5 \/(S+A)logn _0 <35 /logn> .
Nte Nte Nte

See Section S.6.9 for feasible rates for 6= to ensure that E[A2d9] = o(1).

0

(1

[

2.2.2 Control of A™!

Moving on to A™% analogously to Lemmas 2.4 and 2.5, the following results provide high probability

bounds on A™! in terms of a coefficient of variation parameter x which is the relative standard deviation of
{(Yo, f$(Xo)) conditional on D,,. Let f¢, nie, CEN be as defined Algorithm 1, and A™%! be as in (6b).

Lemma 2.9 (Control of A™! for losses with bounded conditional 11 norm). Suppose (X;,Y;), j € Zie are
sampled i.i.d. from P. Suppose the loss function ¢ is such that

16(Yo, FE(X0) | p, < e for (Xo,Yo) ~ P.

Define ke = 85/R(f5) and Rz = maxeez Re. Fiz any 0 < A < co. Then, for CEN = AVG, or CEN = MOM with
n=n""/|El,
log(|=[n?) log(|=[n?)

1 A~
P [ A > Cks max , <n
Nte Nte

—A

for a positive constant C.

Lemma 2.10 (Control of A™! for losses with bounded conditional Ly norm). Suppose (X;,Y;), j € Zie are
sampled i.i.d. from P. Suppose the loss function £ is such that

HE(YOaf‘E(XO))HLlen < 0¢ for (Xo,Yo) ~ P.

Define ke := ag/R(fg) and Rz 1= maxeez Re. Fiz any 0 < A < 0. Then, for CEN = MOM with n = n~*/|Z],

" 1 E|nA
P AZMI > CKZE Og(| ‘TL ) < an
Nte

for a positive constant C'.

Remark 2.11 (Tolerable growth rate on Az for probabilistic bound). Suppose |Z| < n® for some S < co. If

-0 e
P logn /)’

then under the setting of Lemmas 2.9 and 2.10, A™ = 0,(1) as n — c0.

R

(1
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Remark 2.12 (Comparing the control of A2d4 versus A™). Note that from Lemmas 2.4 and 2.9, controlling
A2dd requires controlling 5=, while controlling A™! requires controlling #=. The former is on the scale of the
standard deviation of the loss, while the latter is normalized standard deviation (where the normalization
is with respect to the expectation of the loss). The advantage of the latter is that, even if the standard
deviation diverges, the normalized standard deviation can be finite. This, in fact, happens for the case of
minimum fo-norm least squares predictor when v ~ 1, in which case the control of A™! is feasible. See also
the discussion in Remark 2.23.

Remark 2.13 (Choice of ny). The above results hold true as long as nye — 0. Of course, the choice
nye restricts the allowable growth rate of 6= and kz as discussed in Remarks 2.8 and 2.11. In our later
applications in overparameterized learning, we adopt the proportional asymptotics framework in which the
number of covariates to the number of observations converges to a non-zero constant. For this reason, we
restrict ourselves to the choices of ng such that nie/n — 0 as n — oo; for example, one can take ny, = n” for
some v < 1. This allows us to have training models with the same limiting aspect ratio (dimension/sample
size) as that of the original data without splitting. However, the larger the n., the more accurate our
estimator of the prediction risk. For this reason, we suggest ny. = O(n/logn) rather than ny = n".

2.3 Applications to loss functions

Below we consider several examples of common predictors and loss functions, and bound the corresponding
conditional & parameters used in Lemmas 2.4 and 2.5, and conditional & parameters used in Lemmas 2.9
and 2.10. Recall the conditional ¥; and L, norms from (9) and (10), respectively. In addition, let ¥o denote
the 5-Orlicz norm. R R

Recall 6z is the maximum of either [[((Yy, f©(Xo0))|lp, |, or [€(Yo, f*(X0))| 1 p, over & € E. Also recall Rz

is the maximum of either |¢(Yo, F$(X0)) |, o, /1€(Yo, FE(X0))| £1jm,. or (Yo, ff(Xo))HLﬂDnA/W(Ym FE(Xo)) | Lap,,

over { € E. In the following, we control each of these quantities for one of the predictors f¢, € € 2, which we
denote simply by f for brevity.

2.3.1 Bounded classification loss functions
Proposition 2.14 (Generic classifier and 0-1 loss and hinge loss). Let f be any predictor.

1. Suppose (Yo, f(Xo)) = max {0,1 - Ybf(Xo)} is the hinge loss. Assume |Yy| < 1 and |f(Xo)| < 1.
Then,

~ ~

1€(Yo, f(Xo)lpyp, <2, and  [€(Yo, f(X0))|L, D, <2

~ ~

2. Suppose (Yo, f(Xo)) = 1{Yy # f(Xo)} is the 0-1 loss. Then,

~ ~

€Yo, f(Xo) gy o, <1, and (Yo, f(Xo)) LoD, < 1. (14)

More generally, any loss function that is bounded by 1 satisfies (14).

Proposition 2.14 implies that the parameter 6= is bounded by 1 (with probability 1) for any collection of

bounded classifiers { f¢,¢ € Z}. Hence, Lemmas 2.4 and 2.5 imply that A2dd = Op(+/10g(|Z|)/nte). Therefore,
the additive form of oracle inequality from Proposition 2.1 can be used to conclude the following result.

Theorem 2.15 (Oracle inequality for arbitrary classifiers). For any collection of classifiers {]?5, & € B} with
log(|Z]) = o(nte) and the loss being the mis-classification or hinge loss with bounded response and predictor,

R(}‘\CV) _ mmR(fg)‘ =0, ( 10g(‘—‘|)> )
EeE Nte
Theorem 2.15 can be used to argue that tuning of hyperparameters in an arbitrary classifier using
Algorithm 1 leads to an “optimal” classifier under the 0 — 1 or hinge loss. Moreover, Proposition 2.14 extends
to arbitrary bounded loss functions.
For logistic or the cross-entropy loss, being unbounded, is not covered by Proposition 2.14. However, we
can use the multiplicative form of the oracle risk inequality (8) as done in the next section in Proposition 2.18.
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2.3.2 Unbounded regression loss functions

Prop051t10n 2.16 (Linear predlctor and square loss). Let f be a linear predictor, i.e., for any xg € RP,
f(xo) =z U8B for some estimator B € RP fitted on D,. Suppose £(Yo, f(XO)) = (Yo — f(Xo))? is the square
loss. Let (Xo,Yy) ~ P. Assume E[Xo] =0, and let ¥ := E[XoX{ |. Then, the following statements hold:

1. If (Xo,Yo) € RP x R satisfies 12 — Lo equivalence, i.e., ||aYo +b" Xo|y, < 7|aYo+b"Xo| 1, for allae R
and b e RP, then

[(Yo, F(Xo)lwyip,
E[((Yp, (X)) | Dn]

6o, FXoD hunip, < 7 fnf (1Yo = X5 Bl + 15 - Bl <7 (15)

2. If (Xo,Yp) satisfies the Ly — Lo equivalence, i.e., ||aYo +b" Xo| 1, < 7|aYo +b" Xo| L, for allae R and
beRP, then

[6(Yo, F(Xo)) 1.,

< 7% (16)
E[((Yo, f(Xo)) | Da]

1Yo, F(Xo))|Lapp, < 7° Jnf (1Yo - X9 Bllzs + 18 - Bls)*,

Proposition 2.17 (Linear predictor and absolute loss). Let f be a linear predictor corresponding to estimator
B fitted on D,,. Suppose £(Yo, f(Xo)) = |Yo— X B| is the absolute loss. Let (Xo,Yo) ~ P. Assume E[Xo] = 0,
and let ¥ := E[ XX, ]. Then, the following statements hold:

1. If (Xo, Yo) € RP x R satisfies 11 — L1 equivalence, i.e., [aYo+b' Xo|y, < 7]aYo+b" Xol 1, for alla e R
and b e RP, then

HE(YOv (XO))HwﬂD

Yo, FXo) i < 7 88 (1Y = X Blas + 1XF (B = B)laion), - grommmene i <
0 0 n

2. If (Xo, Yy) satisfies Ly — Ly equivalence, i.e., |aYo + b Xolr, < TlaYy +b" Xo|1,, for all a € R and
b e Rp, then

Yo, FXo) i, _
E[((¥o, f(X0)) | Du]

[60Yo, F(Xo)) | o, <7 Anf (%o — Xg Ble, +1X3 (B = B)llL.m.),

Proposition 2.18 (Linear predictor and logistic loss). Let Yy € [0,1] almost surely. Let f be a linear

predictor corresponding to an estimator 3 fitted on D,,. Suppose £(Yyp, f(Xo)) 18 the logistic or cross-entropy
loss:

(Yo, f(Xo)) = —Yplog <1A) — (1 —Yp)log (1 - 1A> .

1+eXoh 1+e X5
Assume there exists pmin € (0,1) such that pmin < E[Yo | Xo = 2] < 1 — pmin for all x. Then, the following
statements hold:

1. If Xo € RP satisfies 11 — L1 equivalence, i.e., |b" Xo|ly, < T[0T Xo| 1, for all be RP, then

[€(Yo, f f(X0)) Iy D, < 2mpL .
E[£(Yo, f(Xo)) | Dn] -

2. If Xo € RP satisfies Ly — Ly equivalence, i.c., |[b" Xo|r, < 7|b" Xo|z, for all be RP, then

\|£(Yo,f(AXo))HL2|Dn <2rp-l.
E[((Yo, [(Xo)) | Dy

In the remarks that follow we offer a discussion of the different types of norm equivalences assumed in
Propositions 2.16 to 2.18.
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Remark 2.19 (Discussion of 99 — Lo and Ls — Lo equivalences). A centered random vector Z € R? is said

to be T-sub-Gaussian if

HCLTZ||¢2 <

sup <7 <o where Xz:=Cov(2). (19)

ackr [afs,
See for instance Definition 1.2 and Remark 1.3 of Mendelson and Zhivotovskiy (2020) for more details. The
L4 — Ly equivalence assumption is popular in robust estimation of covariance matrices. See, for example,
Minsker and Wei (2020); Minsker (2018); Mendelson and Zhivotovskiy (2020). This is weaker than the
sub-Gaussianity assumption in (19) in the sense that ¢5 — Lo equivalence implies Ly — Lo equivalence. This
follows from the well-known fact that

Wl _ .
~ u
Sup oy 2 W

Cr <

for some universal constants C; and C.,; see Vershynin (2018, Proposition 2.5.2). The L4 — Lo equivalence
assumption is also weaker than a commonly used assumption in the random matrix theory (RMT) literature.
In RMT, one typically assumes features of the form /27, where Z have i.i.d. entries and ¥ is feature
covariance matrix. If the components of Z are independent and have bounded kurtosis, then this typical
RMT assumption implies Ly — Lo equivalence.

Remark 2.20 (Discussion of ¢); — Ly and Ly — L equivalences). In Remark 2.19, we have given examples of
distributions that satisfy ¥9 — Lo and/or Ly — Lo equivalence. From the fact that, for any random variable
W, the function r — log E[|W|"] (r = 1) is convex (Loeve, 2017, Section 9, inequality (b)), we can conclude
that 1o — Lo equivalence implies ¥y — Ly equivalence, and Ly — Lo equivalence implies Ly — L1 equivalence;
see Proposition S.6.21. We further note that distributions satisfying ¥1 — Lo equivalence also satisfy ¢ — Ly
and Lo — L equivalence. See Figure S.7 for a visual summary of these equivalences and their proofs in
Section S.6.10.

We will now discuss other distributions that satisfy 1; — Lo equivalence (which implies ¢ — L1 equivalence).
A random vector Z € R is log-concave if for any two measurable subsets A and B of R?, and for any 6 € [0, 1],

logP(Ze0A+(1—0)B) > 0-P(Ze A)+(1—0)-P(Ze B),

whenever the set 0A + (1 — 0)B = {0z1 + (1 — 0)as : x1 € A, 22 € B} is measurable; see Definition 2.2 of
Adamczak et al. (2010). There exist a universal constant C' such that all log-concave random vectors Z € R?

with mean 0 satisfy
la"Z|y, < Cla’ Z] 1,

for all a € RY. This follows from the results of Adamczak et al. (2010) and Latala (1999); see also Nayar and
Oleszkiewicz (2012, Corollary 3), Proposition 2.1.1 of Warsaw (2003), and Proposition 2.14 of Ledoux (2001).
In particular, Lemma 2.3 of Adamczak et al. (2010) implies that there exists a universal constant C' such
that for all a € RY

Ja™ Zly, < Clla” Z]1,.

Finally, note that since Ly — Ly equivalence implies Lo — Ly equivalence, and the RMT features as described
in Remark 2.19 satisfy Ly — Lo equivalence, they in turn satisfy Lo — L equivalence.

Remark 2.21 (Model-free nature of assumptions). It is worth emphasizing that we do not require a
well-specified linear model for Propositions 2.16 and 2.17. Hence, our results are model agnostic.

__ Propositions 2.16 to 2.18 imply that, under the stated assumptions, for any collection of predictors
{f¢: f&8(x) = 2T B5, € € B}, Rz is bounded if (X, Y) satisfies a requisite moment equivalence assumption.
On the other hand, the control of 6= depends crucially on behavior of maxeez || 35 — Bolls. Because kg is
bounded with probability 1, Lemmas 2.9 and 2.10 can be used to conclude A = O, (K xy+/10g(|Z])/nte ),
where K x y is the constant in the moment equivalence. Hence, the multiplicative form of the oracle inequality
from Proposition 2.1 can be used to conclude the following general result for an arbitrary collection of linear
predictors.
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Theorem 2.22 (Oracle inequality for arbitrary linear predictors). Fiz any collection of predictors { f5 :
fé(x) = 2735, € € ). Let f< be the output of Algorithm 1 with ¢, € = as the ingredient predictors.
Suppose one of the following conditions hold:

1. The loss is squared error, (Xo,Yo) satisfies 1o — Lo equivalence when CEN = AVE and L4 — Lo equivalence
when CEN = MOM.

2. The loss is absolute error, (Xo,Yp) satisfies Y1 — Lo equivalence when CEN = AVE and Lo — Ly equivalence
when CEN = MOM.

3. The loss is logistic error and pmin < E[Yy | X = 2] < 1 — pmin for some pmin € (0,1), Xy satisfies
Y1 — L1 equivalence when CEN = AVE and Lo — Ly equivalence when CEN = MOM.

Then, there exists a constant C' depending only on the moment equivalence condition such that for any A >0

and for fc" returned by Algorithm 1, we have with probability at least 1 —n=4,

log(|Z[n4)

Nte

‘ R o

mingeg f%(fE )

Here, for CEN = AVE, there are no restrictions on A. For CEN = MOM, we need ) to be n=4/|Z| in Algorithm 1.

Theorem 2.22 implies that a multiplicative form of oracle inequality holds true for any collection of linear
predictors with three commonly used loss functions — square, absolute, or logistic loss — under certain moment
equivalence conditions on the underlying data. It is worth stressing that Theorem 2.22 does not require any
parametric model assumption on the data. The moment equivalence conditions required are quite mild as
indicated in Remarks 2.19 and 2.20. Theorem 2.22 can be used to argue that tuning of hyperparameters for
an arbitrary linear predictor using Algorithm 1 leads to an “optimal” linear predictor. In particular, this
includes variable selection in linear regression, and penalty selection in ridge regression or lasso.

Remark 2.23 (Divergence of A2dd). As mentioned above, control of 5= for a collection of linear predictors
depends crucially on maxeez | 35 — Bo|lz. Controlling this maximum is not difficult in the “low-dimensional”
regime, where the number of features is asymptotically negligible compared to the number of observations. If,
however, the collection of linear predictors involves the least squares estimator with the number of features
approximately same as the number of observations, then Corollaries 1 and 3 of Hastie et al. (2019) implies
that maxeez || B — Bols — o almost surely under some regularity assumptions. The case of number of
features approximately the same as the number of observations can be seen in the problem of tuning the
number of basis functions in series regression (see also Mei and Montanari (2019); Bartlett et al. (2021) for
similar results on random features regression and kernel regression). In this case, A2dd diverges while A™! ig
bounded hinting the advantages of the multiplicative form of the oracle inequality over the additive form.

2.4 Illustrative prediction procedures

In the following two sections, we provide concrete applications of the results from this section in the context
of overparameterized learning. The main motivation of our applications is to synthesize a predictor whose
prediction risk is approximately monotonically non-increasing in the sample size. Although this represents
the basic idea of “more data does not hurt,” many commonly studied predictors such as minimum #5-norm
least squares, minimum #;-norm least squares in the overparameterized regime do not satisfy this property.
In the following sections, we will provide two different ways to synthesize a predictor with this property
starting from any given base prediction procedure.

Definition 2.24 (Prediction procedure). A prediction procedure, denoted by fis a real-valued map, with
two arguments: (1) a feature vector; and (2) a dataset. If D,,, = {(X;,Y;) : 1 <14 < m} represents a dataset
of size m, then f(x;D,,) represents prediction at x of the prediction procedure f trained on the dataset D,,.
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Example 2.25 (Minimum ¢>-norm least squares prediction procedure). Suppose D,, = {(X;,Y;) e R? x R:
1 <4 < m}. The minimum ¢-norm least squares (MN2LS) estimator trained on D,, is defined as

Bunz (D) := arg min {||ﬁ||2 : B is a minimizer of the function 6 — Z(K - X;G)z}.
BERP i=1

The estimator can be written explicitly in terms of (X;,Y;),i=1,...,m as

Brana(D ( Z X; XT> (Tln i Xin) , (20)

where Af denotes the Moore-Penrose inverse of A. It is also the “ridgeless” least squares estimator because of
the fact that Smn2(Drm) = im0+ Bridge, A (Pm), where Bridge A (Dm) is the ridge estimator at a regularization
parameter A > 0 trained on D,,

Bridgor (D) = argmin{ Z — X, 6)? +)\0§}. (21)

HeRP

The MN2LS estimator has attracted attention in the last few years and its risk behavior has been studied by
Bartlett et al. (2020); Belkin et al. (2020); Hastie et al. (2019); Muthukumar et al. (2020), among others.
The MN2LS predictor is now defined as

fmn2 (l‘, D) = xTﬁmHQ (D)7 (22)
for any vector x € RP and dataset D containing random vectors from R? x R.

Example 2.26 (Minimum ¢;-norm least squares prediction procedure). Suppose D, = {(X;,Y;) e R? x R:
1 <4 < m}. The minimum ¢;-norm least squares (MN1LS) estimator trained on D,, is defined as

Bumn1 (D) = arg min { |B]1 : 8 is a minimizer of the function 6 — Z(YZ - X;Q)Q}. (23)
BeRP

i=1

It is also the “lassoless” least squares estimator because of the fact that anl(Dm) = limy_, o+ Blasso’ \, Where
Biasso.x(Dr,) is the lasso estimator at a regularization parameter A > 0 trained on Dy,:

~ 1 &
Brasso.x (D) :—argmin{z ~- X, 0)? +)\|6‘|1}. (24)

OcRP 2m

The MNI1LS estimator connects naturally to the basis pursuit estimator in compressed sensing literature
(e.g. Candes and Tao (2006); Donoho (2006)) and its risk in the proportional regime has been recently
analyzed in Mitra (2019); Li and Wei (2021). The MN1LS predictor is now defined as

Fiun1 (23 D) := & B (D), (25)
for any vector x € RP and dataset D containing random vectors from RP x R.

Note that the MN2LS and MN1LS estimators coincide when there is a unique minimizer of the function
6 — " (Y: — X, 6)?, in which case both the estimators become the least squares estimator.

We focus mostly on the case of linear predictors and squared error loss, although all our results are easily
extendable to general predictors and loss functions. (See Remark 3.16 later in the paper for more details.)
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3 Application 1: Zero-step prediction procedure

3.1 Motivation

Suppose R;, represents the prediction risk of a given
prediction procedure f on a dataset containing n i.i.d.
observations. It is desirable that R, as a function
of n > 1 is non-increasing. As described above, this
however may not hold for an arbitrary procedure
f. If we have access to Ry for 1 < k < n, then one
could just return the predictor obtained by applying
the prediction procedure f on a subset of k; i.i.d.
observations where k; = argmin{Ry : 1 < k < n}.
This procedure, (denoted by, say) f75* essentially
returns a predictor whose risk is the largest non-
increasing function that is below the risk of f; see
Figure 2 for an illustration.

It is trivially true that the risk of the prediction procedure be* as a function of n > 1 is non-increasing
and its risk at the sample size n is given by ming<, R;. This procedure fZS* is, however, not actionable in
practice because one seldom has access to the true risk R,, of fw

The goal of this section is to develop a prediction procedure fzb starting with the base prediction procedure
f such that the risk of fZb is the largest non-increasing function that is below the risk of f (asymptotlcally).

Original procedure (f)
Zero-step procedure (f**)

Prediction risk (R,)

Sample size (n)

Figure 2: Illustration of risk monotonization.

We achieve this goal by applying Algorithm 1 with the ingredient predictors being the prediction procedure f
applied on the subsets of the original data of varying sample sizes.

Remark 3.1 (Conditional versus unconditional risk). There are two versions of the prediction risk R,, that
one can consider: conditional (on the dataset D,,) and unconditional /non-stochastic. The conditional risk
is not just a function of sample size, but also of the data D,,. Hence, the conditional risk Ry, for k < n, is
ill-defined as just a function of the sample size k. Therefore, the motivation above should be considered with
respect to a non-stochastic approximation of the conditional risk. See Section 3.3 for a precise definition of a
non-stochastic approximation of the conditional risk which respect to which we talk of risk monotonization in
the sample size.

3.2 Formal description

Formally, let the original dataset be denoted by D,, = {(X1,Y1),...,(Xn,Ys)}. As in Algorithm 1, consider
the training and testing datasets Dy, and Dy, respectively. Note that our choice of nt as described in
Remark 2.13 satisfies ny = o(n), and hence, the risk of f trained on Dy, is expected to be asymptotically the
same as the risk of ]? trained on D,,.

To achieve the goal described in Section 3.1, one can define the ingredient predictors required in Algorithm 1
as follows: Let Df} denote a subset of D, with nt, —k observations for 1 < k < nyg,. For £, = {1,2,...,ny,—1}
and £ € Z,,, define f5 (z) = f(x, Dtgr) as the predictor obtained by training fon Dfr. Proposition 2.1 along
with Lemmas 2.4 and 2.5 and Lemmas 2.9 and 2.10 can be used to imply that fCV thus obtained has a
non-increasing risk as a function of the sample size.

There are two important points to note here:

1. The external randomness of choosing a subset Dt D, of size &. Observe that there are ("”) different

subsets each with ng, — £ i.i.d. observations. Asymptotically, the prediction risk of f trained on any of
these subsets would be the same. To reduce such external randomness and make use of many different
subsets of the same size, we take the ingredient predictor f5 to be:

1 M ,
=37 2 f@Dy), (26)
j=1

tr—



where Déj , 1 <j <M are M sets drawn independently (with replacement) from the collection of ("‘)

3 subsets of Dy, of size ny — & With M = oo, ff becomes the average of f trained on all possible
subsets of Dy, of size ny, — £. This choice of M removes any potential external randomness in defining
fE The choice of M = 1 has the largest amount of external randomness. Based on the theory of
U-statistics (Serfling, 2009, Chapter 5), we expect the choice M = o to yield a predictor with the
smallest variance; see (63). Observe that the expected value fé( ) remains constant as M changes
because the distribution of Dfrj remains identical across j = 1. However, the computation of f5 with
M = oo is infeasible, and hence, we use a finite M > 1.

. In the description above, we have ny, predictors to use in Algorithm 1. Note that the risk of a predictor

trained on m + 1 observations is asymptotically no different from that of a predictor trained on m
observations. The same comment holds true for predictors trained on m + o(m) and m observations.
For this reason, we can replace Z,, = {1,2,...,ny — 1} with

— Nty
Z,=112... -2 ,  for some v e (0,1), 27
{ [an H &5 1)

and consider predictors obtained by training ]? on subsets of sizes ny, — &|n”| for £ € E,. This helps
in reducing the computational cost of obtaining f°' using Algorithm 1. This further helps in the
theoretical properties of fV in our application of union bound in the results of Section 2.

Taking into account the remarks above, with Z as in (27), for £ € E,,, we define fE as in (26), but with an

important change that D

1] 1

i J < M, now represent randomly drawn subsets of Dy, of size ng = ne, —&|n”|.

The ingredient predictors used in Algorithm 1 are given by Jff, ¢ € E,. We call the resulting predictor
obtained from Algorithm 1 as the zero-step predictor based on f and we denote the corresponding prediction
procedure to be f*. The zero-step procedure is summarized in Algorithm 2.

Algorithm 2 Zero-step procedure

Inputs:

— all inputs of Algorithm 1 other than the index set Z;
— a positive integer M.

Output:

— a predictor fzs

Procedure:

1.

2.

Let ng = n — nge. Construct an index set =, per (27).
Construct train and test sets Dy, and Dy per Step 1 of Algorithm 1.

Let ng = nye —&|n”]. For each £ € 5, and j = 1,..., M, draw random subsets Dfrj of size ng¢ from Dy,.
For each € € Z, fit predictors ff per (26) using predlctlon procedure f and {D 1< j < M}

. Run Steps 3-5 of Algorithm 1 using index set = = E,, and set of predictors { ff, Ee=}

Return fzs as the resulting fCV from Algorithm 1.

SHere, (’:) denotes the binomial coefficient representing the number of distinct ways to pick r elements from a set of n
elements for positive integers n and r.
4The subtraction of 2 in right end point in the definition (27) of Z,, is for technical reasons.
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3.3 Risk behavior of =

As alluded to before, in order to talk about risk monotonization, one needs to consider a non-stochastic
approximation to the conditional risk that depends only on the prediction procedure, the sample size, and
properties of the data distribution. The definition below makes this precise.

Definition 3.2 (Deterministic approximation of conditional prediction risk). For any prediction procedure
f, we call a map R(-; f) : N — R~ a deterministic (or non-stochastic) approximation of the conditional
risk of f if for all datasets D,,, of m i.i.d. random vectors,

[R(F(:Dw) =R (ms )] _ 28
Rdet(ﬂ”b;f) ;0( )7 ( )

as m — o0. (Recall that R(f(-, D)) = §(y; Fz; Dy ))dP(z,y).)

It is important to recognize that R4°t(m; f) is only a function of the sample size m, the prediction
procedure f, and the underlying distribution P, and not the dataset D,,. Note that we do not necessarily
require R*(m; f) to be the expected value of R(f(-;D,,)). Furthermore, a non-asymptotic approximation

RI(; F) of the conditional risk may not be unique.

Remark 3.3 (Relative convergence in Definition 3.2). In (28), the division by RY*(m; f) ensures that
the deterministic approximation to the conditional risk of f(-;D,,) is non-trivial (i.e., non-zero) even if
the conditional risk converges in probability to zero. If the conditional risk is bounded away from zero,
asymptotically, then (28) is trivially implied by

|R(J(::Dm)) = R (m; f)| = 0, (1),

as m — o0. In most settings of overparameterized learning, the conditional prediction risk is asymptotically
bounded away from zero (see (36), for example).

Because |E,,| < n, the results of Section 2 imply that with appropriate choices of CEN and 7 in Algorithm 1
we obtain f*® that satisfies the following risk bound:

R(fzs) ) minges, R(]?E) + Op(1)/log n/ne if o
| minges, R(F$)(1+ Op(1)y/logn/me)  if e =

Assume now there exists a function R* : N — R~ such that the following holds:

1

(1).

s Dgna] _ pdet 3
lim sup P <|R<f<’ i) RN (ne, /) > e) =0 foralle>0. (DET)

n=% g es, Riet(ng, ; f)

Recall that D§: 7 for 1 < j < n are identically distributed, and hence, f(, Dfr"’j ) are also identically distributed
predictors. This implies that assuming (DET) for j = 1 is the same as assuming it for all 1 < j < M.
Note that (DET) is essentially the same as (28), but with a different sequence of sample sizes {ng, }n>1
with &, € Z,. In accordance with our goal of monotonizing the non-stochastic approximation R (-; f~) of
the prediction procedure f , we aim to show that the zero-step prediction procedure fzs has its conditional
prediction risk approximated by mingez, Rdet(ng; f). For notational convenience, set

REmf) = min B*(ng;f) and & e argmin R (ng; f). (30)
Note the notation above is meant to reflect that the index & can be chosen to be any element of the
minimizing set. If £, = {1,...,n — 1}, and v = 0, then Rd/et(n; f) = min{R*t(k; ) : 1 < k < ng — 1}
Although it might be tempting to take =, = {1,...,nt — 1} and v = 0, instead of the one in (27), assumption
(DET) for all non-stochastic sequences {ng, }n>1 with &, € Z,, becomes almost certainly unreasonable. To see
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this, observe that &, = ny — 1 belongs to Z,, for every n, and for this choice, ng, = 1. Hence, the predictor
f(-; Dfr’j ) is computed based on one observation, and cannot satisfy (DET). In the following calculations,
however, we only require assumption (DET) for the non-stochastic sequence {£}}n>1. If nes is known to
diverge to oo and the distribution of the data stays constant, then assumption (DET) is reasonable and is
exactly the same as the existence of a deterministic approximation to the conditional risk of ]? in the sense of
Definition 3.2. In this favorable case of ngx diverging to co with n, one can take =, = {1,...,ne — 1}, and
v = 0. Note that with =, as defined in (27), n¢, — oo for all §, € Z,,, and thus in particular ng — oo as
n — 0. N

It should be stressed that (DET) is an assumption on the base prediction procedure f and not on the
ingredient predictors ff In general, the risk behavior of f does not necessarily imply that of f5 which is an
average of M predictors obtained from f However, the risk of fE can be bounded in terms of the risk f for
loss functions ¢(-,-) that are convex in the second argument. Observe that

M
R(f%) = ( _Z Dfﬂ) <ﬁZR(Y~;D§;j>)- (31)

The inequality (31) follows from Jensen’s inequality. It becomes an equality if M = 1 without the requirement
that the loss function is convex. R

Inequality (31) along with the non-stochastic risk approximation (DET) can be used to control mingez, R(f*)
n (29). From (30), we obtain

M

ey @ 1 ®) 1 T mEnd
grellnR(f < gﬁ*ZR Dfﬂ ) < M R(f(-; D))

~

ct R(F(,D57)) — RO (ngs : )
= R (ng. ; ) (1+ M; Rd"t(ngz;f) ) (32)

D min R (ng; 7)(1+ 0,(1))

£€E,

= RE (n; )(1 4 0,(1)).

Inequality (a) in (32) follows from using Jensen’s inequality. Inequality (b) follows because £ € Z,,. Equality
(c) follows for any fixed M > 1 from the non-stochastic risk approximation (DET); this can be seen from the
fact that the sum of a finite number of o,(1) random variables is o,(1).

All the inequalities in (32) can be made equalities for M = 1, if instead of (DET) we make the stronger
assumption that

g Ensd\\ _ pdet s
lim P | sup R Di)) R~ (ne,; §)l >e| =0 foralle>0. (DET*)
nmP \gnesn Ri(ng,; f)

This is clearly a stronger assumption than required for (32), where we only required such relative convergence
for a specific £ € E,. Under (DET*), we can write

1 M F(..DEIYY _ Rdet 2
min — 2 R 'th;J — min Rdet(n5 f) 1+ Z R(f( » Htr )) RN (nfmf)
e, M = R ng; )

(h@?»—afmaﬂb
Rd(ng; f)

We now conclude that for M =1,

min R(f%) = min R(f(5 D)) = RE"(n: [)(1 + 0,(1)). (33)

EEE, §€En



This proves that all the inequalities in (32) can be made equalities for M = 1 under the stronger assumption
(DET*). Combined with (29), this implies that

R(F®) = {Rd;t(n; P+ 0,(1)) + Oy (1)y/logn/nee  if 52 = Op(1)
REH (n: f)(1+ 0p(1)) if Az = 0, (1) -
_ s 11t 0p(1) + y/logn/nee/RH (n; f)  if 62 = 0,(1)
7N 4 0,(1) if Rz = O,(1).

As mentioned before, assumption (DET*) is significantly stronger than (DET). In the absence of (DET*),
inequality (32) combined with (29) implies that (34) holds with inequalities instead of equalities. For simplicity,
denote:

(01) 6= = Op(1) and R (n; f)/nee/logn — .
(02) Rz = O,(1).
Hence, we have proved the following result:

Theorem 3.4 (Monotonization by zero-step procedure). For M =1, if assumption (DET*) and either (O1)
or (02) hold true, then R‘}?t(-; f) is a deterministic approximation of the prediction procedure f*5, i.e.,

~

|R(f*) — Rt (n; f)]
RISt (n; f)

For M =1, if £(-,-) is convez in the second argument, assumption (DET), and either (O1) or (02) hold true,
then

= 0p(1).

(R(F*) = R (m: )+
Rt (n; f)
Remark 3.5 (Choice of Z,). All the calculations presented in this section hold for any set =,, with |Z,| < n.

As long as either (DET) (for &, = & in (30)) or (DET*) holds true, then one can use =, = {1,2,...,n¢ — 1}
and v = 0. For this choice, Rd/et(-; f) is the monotonized risk as illustrated in Figure 2. With the choice of

= op(1).

=, mentioned in (27), Rd;t(~; f) is not a complete monotonization but it serves as an approximate monotone
risk.

Remark 3.6 (Exact risk fzs). For M =1 (under (DET*)), Theorem 3.4 essentially implies that the risk
of the zero-step procedure closely tracks the monotonized deterministic approximation to the conditional
prediction risk of f trained on Dy,. For M > 1 (under (DET)), Theorem 3.4 does not imply the risk of the
zero-step predictor is monotonic or even that a non-stochastic approximation of the risk exists in the sense of
Definition 3.2. However, our simulations in limited settings presented in Section 3.4 suggest that the risk of
the zero-step prediction procedure is monotone even for M > 1.

Remark 3.7 (Verification of assumptions in Theorem 3.4). The bound on oz and Kz in Assumptions (O1)
and (O2) can be verified for some common loss functions and predictors as discussed in Section 2.3. The
verification of assumption (DET) or (DET*) is very much tied to the exact prediction procedure. We verify
(DET) in a specific setting in Section 3.3.1.

3.3.1 Risk behavior of fzs under proportional asymptotics

In the discussion leading up to Theorem 3.4, we have not made a specific reference to the growth or non-growth
of the dimension of the features. Technically, Theorem 3.4 does allow for the dimension p of the features to
change with the sample size n, i.e., one can have p = p,.

Risk monotonization is an interesting phenomenon to study in light of the double (or multiple) descent
results in the overparameterized setting where p,/n — v as n — . In our previous discussion of non-
stochastic approximation of the conditional prediction risk, we did not stress the dependence on the dimension
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of features. In the following, we consider the implications of Theorem 3.4 in the context of overparameterized
learning and hence consider the following setting.

Recall that the original dataset D,, consists of n i.i.d. observations (X;,Y;) e RP x R, 1 < i < n from
distribution P. In the following as we allow the dimension p of the features to change with the sample size n
and assume that p = p,, satisfies

(PA(Y)) pn/n — v € (0,0) as n — oo.

The above asymptotic regime, which is standard in random matrix theory (Bai and Silverstein, 2010), is used
in the overparameterized learning literature, where it has been referred to as proportional asymptotics (see
e.g., Dobriban and Wager (2018); Hastie et al. (2019); Mei and Montanari (2019); Bartlett et al. (2021)). Note
that under assumption (PA(7)) the underlying distribution P of the observations in D,, should be indexed by
the sample size n. We suppress this dependence for convenience. Under the proportional asymptotics regime
for commonly studied prediction procedures, a deterministic approximation to the conditional prediction
risk of a subset D,, < D,, depends not on m but on p,/m, among other properties of the distribution P.
For this reason, in any discussion of the deterministic approximation of the conditional prediction risk, we
write R4¢t(p,,/m; f) instead of R*(m; f). Now the goal of this subsection is to derive the deterministic
approximation of the conditional risk of the zero-step predictor under (PA(7)).
Recall that from the crucial calculation in (32) leading to the risk of zero-step predictor, we require

R(J(, D)) — R (ngs ; )
R (ng. s f)

= 0p(1), (35)

with & defined as in (30). Except for (35), all the remaining steps in (32) hold true even in the overparam-
eterized setting. In the following, we will provide simple sufficient condition for verification of (35) under
(PA(v)). As mentioned above, the deterministic risk under (PA(7)) often depends not only on the sample
size alone, but also on the ratio of the number of features to the sample size. Therefore, we find it helpful to
rewrite (35) as
T N det 2
RU(iD")) — R (Yin/né’*””f) =o0,(1), where & €arg mianet(pn/ng;f). (DETPA-0)
R (pn/ney; f) =

Note that assumption (PA()) does not imply that p,/ne. converges to a fixed limit as n — co.

Under assumption (DETPA-0), Theorem 3.4 readily implies the risk behavior of fAZS, However, the
possibility that p,/ne: does not converge to a fixed limit necessitates a closer examination of assumption
(DETPA-0). We provide a two-fold reduction of assumption (DETPA-0). Firstly, it suffices to verify that the

~

absolute difference between R(f(-; Dfr:"j )) and Rdet (pn/ngl;f) converges to 0 when RI°t(+; f) is uniformly
bounded away from 0. This is a reasonable assumption in practice because several loss functions under
mild conditions on the response have risk lower bounded by the unavoidable error which is strictly positive.
For example, assuming the loss ¢ is the squared loss and that E[(Yy — E[Y; | Xo])?] > 0, we have for any

prediction procedure f and any training dataset D,, containing m observation,
R(f(:Dwm)) = El(Yo — /(X0 Pw))*|Pu] > E[(Yo — E[Yo|Xo])*] > 0. (36)

Hence, in this case, if there exists a deterministic function Rt : (0, 0] — [0, 0] such that under (PA(7)), as
n — oo,

~ ~

R(f(5DE)) = R (pn/nes; f) = 0p(1), where &€ arg min R (pn/ng; f), (37)
S€E=n
then (DETPA-0) is satisfied. Secondly, the following lemma shows that under (PA(7)), (37) is satisfied if
there exists a deterministic approximation for the conditional risk with datasets having a converging aspect
ratio (i.e., datasets for which the ratio of the number of features to the sample size converges to a constant).
For any v > 0, define
zs . : de s
M = argmin R Y f).
¢:¢=y
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Lemma 3.8 (Reduction of (DETPA-0)). Let Dy, be a dataset with k., observations and p,, features.
Consider a prediction procedure f trained on Dy, . Assume the loss function £ is such that R(f(-;Dg,,.))
is uniformly bounded from below by 0. Let v > 0 be a real number. Suppose there exists a proper, lower

semicontinuous function R (-; f) : [, 0] — [0, 0] such that

R(f(Dy,)) L R4 ), (DETPAR-0)
as km, pm — 0 and py/km — ¢ € MZ. Further suppose that Raet(; f) is continuous on the set MZ*. Then,
(DETPA-0) is satisfied.

We prove Lemma 3.8 using the real analysis fact that a sequence {a, },>1 converges to 0 if and only if for
any subsequence {an, }x>1, there exists a further subsequence {ankl }1=1 that converges to 0 (see, for example,
Problem 12 of Royden (1988); also see Lemma S.6.3 for a self-contained proof). We apply this fact to the
sequence

an(e) = P (|R(F(: D)) = B (pu/mes: | > ).

for every € > 0. A crucial component in applying this technique is to first produce a subsequence {ny, };>1
such that pnkl/ng;% converges to a point in argmin ey, o) RIet(¢; f). A few remarks on the assumptions of
l

Lemma 3.8 are in order.

e In most cases, the set of minimizers of RI(-; f) is a singleton set. For such a scenario, Lemma 3.8 only
requires the deterministic approximation of the conditional prediction risk for a single limiting aspect
ratio (i.e., (DETPAR-0) is only required for a single ¢). Several commonly studied predictors satisfy
(DETPAR-0) as discussed below.

e Assuming lower semicontinuity of RI(-; f) is a mild assumption. In particular, it does not preclude the
possibility that Rt diverges to oo at several values in the domain as shown in Proposition 3.9. Such risk
diverging behavior is a common occurrence for several popular predictors in overparameterized learning,
for example, MN2LS, MNI1LS, etc. The requirement of the lower semicontinuity stems from the goal of
monotonizing R4 from below.

Proposition 3.9 (Verifying lower semicontinuity for diverging risk profiles). Suppose h : [a,c] — R is
continuous on [a,b) U (b, c] and lim,_,,— h(z) = lim,_,,+ h(z) = 0. Then, h is lower semicontinuous on

[a,c].

Proposition 3.9 implies that if RI* is continuous on a set except for a point where it diverges to oo, then
Rt is lower semicontinuous on that set. In this sense, Proposition 3.9 relates the lower semicontinuity
assumption of Lemma 3.8 to the continuity assumption of the lemma.

~ ~

e Continuity assumption on R°t(-; f) at the argmin set arg MiNefy, o] RIet(¢; f) is also mild. Proposition 3.10
below shows that (DETPAR-0) holding for ¢ in any open set Z implies continuity of R on Z. In
particular, this implies continuity on the sets of the type Z = (a,]. If the set of minimizers of R4t
is a singleton set, then (DETPAR-0) itself does not suffice to guarantee the continuity of R at the
minimizer. Proposition 3.10 in such a case requires verifying (DETPAR-0) on an open interval containing
the minimizer.

Proposition 3.10 (Certifying continuity from continuous convergence). Let Dy be a dataset with k,
observations and p,, features, and consider a prediction procedure f trained on Dy,,. Let Z be an open set in

(0,00). Suppose there exists a function Rt : (0,00] — [0, 00] such that

m

R(J(:Dx,)) * R*(o:]) (38)
as ko, pm — 0 and Py, /ky — ¢ € T. Then, RI(; f) is continuous on T.

Combining the results and the discussion above, the verification of (DETPA-0) under (PA(v)) can proceed
with the following two-step program.
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~

(PRG-0-C1) For ¢ such that RI*(¢; f) < co, verify that for all datasets Dy, with limiting aspect ratio ¢,
R(f(-Dx,,)) = R*(; f).
(PRG-0-C2) Whenever R (¢; f) = o0

lim Rdet ’;~ = lim RIe ';N = 0.
Jim R = dim BT

The continuity of R at points where it is finite follows from (PRG-0-C1) via Proposition 3.10. This kind
of convergence is verified in the literature for several commonly used prediction procedures, such as ridge
regression and MN2LS (Hastie et al., 2019), lasso and MN1LS (Li and Wei, 2021), etc; see Remark 3.16 for
more details. This combined with (PRG-0-C2) via Proposition 3.9 implies lower semicontinuity of Rt on
[, 00]. If there is more than one ¢ at which R4 is oo, then Proposition 3.9 should be applied separately by
splitting the domain to only contain one point of divergence. A more general result of this flavour can be
found in Proposition 4.2 in Section 4.3.1.

We will follow these steps to verify (DETPA-0) for the ridge and lasso prediction procedures in Section 3.3.2.
But first we will complete the derivation of the deterministic approximation to the conditional risk of fZS
under (DETPA-0) following (32). Lemma 3.8 combined with Theorem 3.4 proves that the zero-step prediction
procedure approximately monotonizes the risk of the base prediction procedure f as shown in the following
result:

Theorem 3.11 (Asymptotic risk profile of zero-step predictor). For any prediction procedure f, suppose
(PA(7)), either (O1) or (02), and the assumptions of Lemma 3.8 hold true. In addition, if the loss function
s convex in the second argument, then for any M > 1,

(RGP - min (G 1)) = o)
= +

Remark 3.12 (Monotonicity in the limiting aspect ratio and improvement over base procedure). If we
replace assumption (DETPA-0) with the stronger version

.1 J et .
s [R(J(sDE)) = B (pn/nes )] _ o,(1), (DETPA-0*)

€€z, RA (p,, /ne; f)

as n — o0, then for M = 1, the conclusion of Theorem 3.11 can be strengthened to

R(f*3Dy) = min R*(G; /)] = op(1). (39)
This implies that the risk of the zero-step procedure is monotonically non-decreasing in . Under the
assumptions of Theorem 3.11, one can only conclude that the risk of zero-step procedure is asymptoti-
cally bounded above by a monotonically non-decreasing function in v in general. It is trivially true that
mingc<, R((; f) < RI(y; f). Hence, the asymptotic risk of zero-step procedure is no worse than that of
the base procedure.

Remark 3.13 (Finiteness of the risk of fzs). Predictors such the MN2LS or MN1LS undergo divergence in
the prediction risk. The zero-step prediction procedure does not have such a divergence in the risk under
general regularity conditions. In particular, as long as E[£(y,0)] < oo, then the risk of f** is asymptotically
bounded by E[¢(y, 0)]. Observe that E[¢(y, 0)] is the risk of the null predictor which always returns 0 as its
prediction. By including the zero predictor in Algorithm 1, the risk of fzs will always be asymptotically
bounded by this null risk.

3.3.2 Verifying deterministic profile assumption (DETPAR-0)

In the following, we will restrict ourselves to the case of linear predictors and squared error loss, and verify
assumption (DETPAR-0) for MN2LS and MN1LS base procedures.
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Suppose Dy, = {(X;,Y;) e RP» x R: 1< i < kp,}. Recall the MN2LS and MN1LS predictor procedures
defined in Examples 2.25 and 2.26. It is now well-known that the MN2LS and MN1LS prediction procedures
has a non-monotone risk as a function of sample size n (Nakkiran et al., 2020; Hastie et al., 2019; Li and
Wei, 2021). The following two results verify assumption (DETPAR-0) for these two procedures under some
regularity conditions stated in Hastie et al. (2019); Li and Wei (2021).

Proposition 3.14 (Verification of (DETPAR-0) for MN2LS procedure). Assume the setting of Theorem 3
of Hastie et al. (2019). Then, there exists a function RY(+; fmn2) : (0,00] — [0, 0] such that (PRG-0-C1)
holds for all ¢ # 1 and (PRG-0-C2) holds for ¢ = 1.

Proposition 3.15 (Verification of (DETPAR-0) for MN1LS procedure). Assume the setting of Theorem 2
of Li and Wei (2021). Then, there exists a function Rt (-; fyn1) : (0,00] — [0,0] such that (PRG-0-C1)
holds for all ¢ # 1 and (PRG-0-C2) holds for ¢ = 1.

Remark 3.16 (Extending Propositions 3.14 and 3.15 to other predictors). Theorem 3 of Hastie et al. (2019)
only provides the asymptotic behavior of the prediction risk computed conditional only on {X;,1 < i < k;,}.
The proof in Section S.3 of Proposition 3.14 extends the calculations of Hastie et al. (2019) for prediction risk
conditional on Dy, . These calculations can be further extended in a straightforward manner to cover the
case of A > 0, i.e., the ridge regression procedure. See Proposition 3.14 for more details. Similar comments
apply to Proposition 3.15 where the proposition can be easily extended to cover the case of A > 0, i.e., the
lasso prediction procedure.

Additionally, most results in the literature under (PA(7y)) derive the risk behavior as p,,/k;,, — ¢ < .
Propositions 3.14 and 3.15 also extend the existing results to the case when p,,/k,, — 00 as m — .

We present Propositions 3.14 and 3.15 as example results to show the verification of our assumptions follow
rather easily from the existing asymptotic profile results in the literature. In the proportional asymptotic
regime, the risk profiles have been characterized for various other prediction procedures including, high
dimensional robust M-estimator (Karoui, 2013, 2018; Donoho and Montanari, 2016), the Lasso estimator
(Miolane and Montanari, 2021; Celentano et al., 2020), and various classification procedures (Montanari et al.,
2019; Liang and Sur, 2020; Sur et al., 2019). Our results can be suitably extended to verify (DETPA-0) for
these other predictors. Note that for our results, we only need to know that the asymptotic risk exists, which
can potentially hold true under weaker assumptions.

3.4 Numerical illustrations

In this section, we provide numerical illustration of the risk monotonization of zero-step prediction procedure
in the overparameterized setting, when the base prediction procedures are minimum #s-norm least squares
(MN2LS) and minimum ¢;-norm least squares (MN1LS). In order to illustrate risk monotonization as in
Theorem 3.11, we need to show the risk behavior of fZS at different aspect ratios. We use the following
simulation setups for the two predictors.

Minimum /¢s;-norm least squares (MN2LS). We fix n = 1000 and vary the dimension p of the features
from 100 to 10000 (for a total of 20 values of v = p/n logarithmically spaced between 0.1 to 10). This
will show the risk behavior of zero-step procedure for aspect ratios between 0.1 to 10. For every pair of
sample size n = 1000 and dimension p, we generate 100 independent datasets each with n i.i.d. observations
from the linear model Y; = X, By + €;, where X; ~ N'(0,,1,), Bo ~ N(0,, p?/pI,) and €; ~ N'(0,0?) drawn
independently of X;. The model represents a dense signal regime with average signal energy p?. We define
the signal-to-noise ratio (SNR) to be p?/a%. On each dataset, we apply the MN2LS baseline procedure as
well as the zero-step procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations from
the same p + 1 dimensional distribution described above in order to approximate the true risk of the zero-step
and the base prediction procedure. Figure 3 shows the risks of the baseline MN2LS procedure and the
zero-step prediction procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes; we take
0? =1 and p? = SNR. We also present the null risk (p? + o2), i.e., the risk of the zero predictor as a baseline
in both the plots. We observe from the figure that the risk of the zero-step procedure for every M > 1 is
non-decreasing in . Theorem 3.11 implies that the risk of the zero-step prediction procedure for every M > 1
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Figure 3: Illustration of the zero-step prediction procedure with MN2LS as the base predictor with varying
M. The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR regime (SNR
= 1). Here, n = 1000, nt, = 900, nye = 100, n¥ = 50. The features are drawn from an isotropic Gaussian
distribution, the response follows a linear model. The figure show averaged risk over 100 dataset repetitions.

is asymptotically bounded by the risk of the base prediction procedure at each aspect ratio (7). Although
this is somewhat evident from Figure 3, it is not satisfied for all ~, especially for M = 1. This primarily
stems from the smaller sample size at hand and the fact that we are comparing MN2LS trained on full data
(n = 1000) to the zero-step predictor computed on the train data (ng = 900). With an increased sample size
(to say, n = 2500), this finite-sample discrepancy vanishes.

Figure 3 shows that the zero-step procedure with M = 1 attains risk monotonization in a precise sense that
its risk is the largest non-increasing function (of ) below the risk of the MN2LS predictor. For M > 1, our
results do not characterize the risk of zero-step predictor, but Figure 3 shows that averaging has a significant
effect in further reducing the risk. As mentioned before, this is expected from the theory of U-statistics as
U-statistics are UMVUE’s of their expectations (see, e.g., Chapter 5 of Serfling (2009)). All these comments
hold for both low and high SNR alike.

Note that the base predictor has unbounded risk near v = 1. The risk of the zero-step procedure, on the
other hand, is always bounded for all M > 1 and all . In this sense, the zero-step procedure can also be
used as a general procedure for mitigating the surprising descent behavior in the prediction risk.

Minimum ¢;-norm least squares (MN1LS). We fix n = 500 and vary the dimension p of the features
from 50 to 50000 (for a total of 30 values of v = p/n logarithmically spaced between 0.1 to 100). This will
show risk behavior of zero-step procedure for aspect ratios between 0.1 and 100. For every pair of sample
size n = 500 and dimension p, we generate 250 independent dataset each with n i.i.d. observations from the
linear model Y; = X, By + &;, where X; € N'(0,, I,,), 3o has coordinates generated i.i.d. from the distribution
Bé,, 5w + (1 — B)do, where B ~ Bernoulli(r = 0.005) and &; ~ N(0, 0?) is independent of X;. The model
represents a sparse signal regime (with linear sparsity level 7) with average signal energy p?. We again
define SNR to be p?/a2. On each dataset, we apply the MN1LS baseline procedure as well as the zero-step
procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations from
the same p + 1 dimensional distribution described above in order to approximate the true risk of the zero-step
and the base prediction procedure. Figure 4 shows the risks of the baseline MN1LS procedure and the
zero-step procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes. We take 02 = 1 and
p?=SNR. We also present the null risk (p? + o2), i.e., the risk of the zero predictor as a baseline in both the
plots. We again observe that the risk of the zero-step procedure for every M > 1 is non-decreasing in ~.

Similar to Figure 3, we observe in Figure 4 that the zero-step procedure with M = 1 attains precise risk

29



SNR =4 SNR =1

55

Null risk]

4.5

3.5

Prediction risk
»
o
Predicion risk
N
o
T
|

Null risk

Original MN1LS
Zero-step MN1LS, M =1
Zero-step MNILS, M =5 |
Zero-step MN1LS, M = 10
Zero-step MN1LS, M = 20

| | | |
107! 10° 10' 102 107" 10° 10! 102

Aspect ratio (y = p/n) Aspect ration (y =p/n)

Figure 4: Tllustration of the zero-step prediction procedure with MN1LS as the base predictor with varying
M. The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR regime
(SNR = 1). Here, n = 500, ny, = 420, nge = 80, n¥ = 42. The features are drawn from an isotropic Gaussian
distribution, the response follows a linear model with sparse signal (sparsity level = 0.005). The risks are
averaged over 250 dataset repetitions.

monotonization while zero-step with M > 1 improves significantly upon the M = 1 when + is near one. All
these comments hold for both low and high SNR alike.

As with Figure 3, note that the base predictor MN2LS has unbounded risk near v = 1 in Figure 4. The
risk of the zero-step procedure, on the other hand, is always bounded for all M > 1 and all ~.

4 Application 2: One-step prediction procedure

4.1 Motivation

The zero-step procedure introduced in Section 3 provides the desired asymptotic monotonization of the
conditional prediction risk under certain regularity conditions. It takes advantage of the fact that we can
train our predictors on a smaller subset of the data when it is appropriate. In addition, it uses repeated
sampling and averaging in order to remove the external randomness in the choice of the subset.

In this section, we introduce a variant of the zero-step procedure motivated by the classical statistical idea
of one-step estimation (see, e.g., Section 5.7 of Van der Vaart, 2000). In the simplest case of linear regression
where the feature dimension is fixed, the idea of one-step estimation is that we can start with an arbitrary
linear predictor and add to it an adjustment computed based on the residuals of the initial linear predictor.
More precisely, starting with any initial estimator 5 and the associated linear predictor f(x) = z' 5™t we
have

-1
~ . 1 & 1 & ~ . ~
XT init + XT - XZXT - X;(Y; — XT init _ XT ols7 40
B IR w2 Xl = XM g (40)
initial predictor one-step adjustment

where the final resulting predictor corresponds to the ordinary least squares (OLS) estimator EOIS that enjoys
n~1/2 rate and risk optimality under a well-specified linear model.

This idea of one-step estimation is not specific to ordinary least squares. It can be generalized to other
estimators that are solutions to estimating equation ¥, (8) = 0 where ¥,, : R? — R?. The general idea is to
solve a linear approximation to the estimating equation, i.e., given an initial estimator Einit, the one-step
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estimator is the solution (in ) to the linearized estimating equation (around Bi“it)
U, (B + VL (B (8 - ) = 0.

The solution can be expressed as

ﬂ _ Binit _ (V\P(ﬂinit))_l\y(ﬁinit) . (41)
SN—— ~~
initial estimator one-step adjustment

Here VW : R? — RP x RP denotes the Jacobian of W.

One can also view the one-step estimator from the point of view of the Newton’s algorithm. The classical
one-step estimator starts at an initial estimator Bt and takes a Newton’s step on the empirical risk
minimization problem. For a parametric predictor f(-; 3™"), starting with a base estimator ™' we can
define the corresponding one-step predictor as f(+; 5)7 where 3 is the Newton’s step update starting with
Binit given by

n -1 n
f= pmt - (i MY, (X Bmiw)) (i Y vy, f(XZ-;Bi““») : (42)
i=1 i=1

— -

initial estimator Newton’s step

Here, for 1 < i < n, VY, f(X;;+)) : RP — RP denotes the gradient of the prediction loss function
0(Y;, f(Xy; 8)) with respect to 3, and V24(Y;, f(X;;+)) : RP — RPXP denotes the Hessian of the prediction
loss function with respect to 3. In the special case of a linear predictor, where f(z;3) = 273, the one-step
estimator becomes

—1
~ 1 & ~ 1 & ~
— init __ - E XXT 1" Y, XT init - 2 X / Y, XT init
ﬁ ﬁ <1’L 1<*q E ( 2 7 ﬁ ) n 16( (3 7 ﬁ ) ’

i=1 =1

where ¢/ : R x R — R is the first derivative of the loss function £(-,-) in the second coordinate, and
" : R x R — R is the second derivative of the loss function in the second coordinate.

Our goal in this section is to build upon this idea of one-step estimation towards risk-monotonization and
improve on the zero-step procedure. We will restrict ourselves to one-step adjustment with respect to the
square error loss and linear predictors (per (40)). We leave extension to a more general one-step adjustment
(per (41) or (42)) for future work. For more discussion, see Section 5.

There are two points to note when defining (40).

1. The inverse of the sample covariance matrix >, ; X; X' /n in (40) need not always exist. In particular,
when the feature dimension p > n, the sample covariance matrix is guaranteed to be rank deficient.

2. In the overparameterized regime, the residuals Y; — X, Ei“it fori =1,...,n in (40) are identically zero

for several commonly used estimators such MN2LS or MN1LS, if Bi“it and the residuals are computed
on the same dataset.

In order to overcome these two limitations, we consider a variant of the idea of one-step estimation, in
which we make the following changes:

1’. We use a Moore-Penrose pseudo-inverse in place of regular matrix inverse. Note that this is the same
as adding a MN2LS component fitted on the residuals Y; — X, git,

2'. We split the training data and use one part to compute Ei“it and use the other part to compute the
residuals Y; — X ZT Bt This ensures that the residuals are not identically zero in the overparameterized
regime.

In summary, to construct the one-step predictor, we start with a base predictor computed on a subset of
data, evaluate the residuals of this predictor on a different subset of data, and add to the base predictor a
MN2LS fit on the residuals. We formalize this construction next.
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4.2 Formal description

As before, let the original dataset be denoted by D,, = {(X1,Y7),...,(X,,Y,)} and let f be a base prediction
procedure. As per Algorithm 1, let the train and test datasets be Dy, and Dy, respectively. We define the
ingredient predictors to be used in Algorithm 1 constructed using the one-step methodology as follows: Define
the index set &,, as

S, = {(51,52) C e 0,1, e — 1), 6 € {0,1,...,51_1}}.

Let Dfrl and Dtgf be disjoint subsets of Dy, with ny, — & (for 0 < & < nyy — 1) and & (for 0 < & < &)
observations, respectively. Let Itgrl and 7% denote the corresponding index sets of DS and fo7 respectively.

For each index & = (£1,&2) € 2, define the ingredient predictor f§ to be used in Algorithm 1 in three steps:
1. Fit a base prediction procedure f on DS, Call this f(-;DE}).
2. Compute the residuals of predictor f(,Dfrl) on D2, ie., ry=Y; — f(Xj;Dfrl) for j e I,
3. Fit the MN2LS predictor on {(X;,r;):j € 752}, This is the one-step adjustment.

The final ingredient predictor f5 is given by
i
P Dg D) o= flas D)+ | D) XX D, X

JeTs? JeT;?

If & = 0, then Iﬁf is an empty set and there are no residuals r; computed. In this case, we adopt the
convention that there is no one-step adjustment. Therefore, the ingredient predictors for our one-step
procedure includes the ingredient predictors for the zero-step procedure. As with the zero-step procedure,
two remarks are in order:

e There is external randomness in choosing subsets Dfl} and fo of sizes ny, — & and &9, respectively. To
reduce such randomness, we make use of many different subsets of the same sizes and average such
different one-step predictors. More precisely, for each & = (§1,&) € 2, draw m disjoint pairs of sets
(D57 D), (DET DE2PY from Dy,. Formally, for 1 < j < m, we randomly draw a subset D5 from
Dy, of size ny — &1 and a subset Dgf’j from Dtr\Dgrl 7 of size &. We then fit different one-step predictors
f(-;th;"j,fo’j) on (D8 D7) for 1 < j < M, and take the final ingredient predictor € to be the
average of M such predictors:

~ 1M . ,
Fo(x) = 57 X, @ D D). (43)
j=1

As before, when M = oo, f5 becomes the average of all possible pairs of disjoints subsets Dy, of sizes ny — &1
and &, while the case of M = 1 has the largest amount of external randomness. Based on the theory of
U-statistics, we again expect the choice of M = o to provide a predictor with the smallest variance. For
computational reasons, we use a finite value of M > 1.

e In the description above, we have n(nt, + 1)/2 predictors to use in Algorithm 1. Similar to the zero-step
procedure, we replace =,, with

Tty

|n¥]

and consider predictors obtained by training components of f on subsets of sizes ng, — &1|n”| and &|n”|.

2, = {(gl,gg) : 516{2,...,[ 2]},§2e{1,...,§11}}, for some v € (0,1),  (44)

Such a change helps in reducing the cost of computing fc" using Algorithm 1. In addition, this also helps
in the statistical properties of f°¥ when applying the union bound in the results of Section 2.
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With these two modifications, with =, as defined in (44), for £ € E,,, we define f¢ as in (43) with the
subsets D&Y, D27 (for 1 < j < M) now representing disjoints subsets of sizes n, — 51[ Y| and &|n”],

respectively. The ingredients predictors to be used in Algorithm 1 are given by f5 £ € . We call the
resulting predictor obtained from Algorithm 1 as the one-step predictor based on f , and we denote the
corresponding prediction procedure to be f°. The one-step procedure is summarized in Algorithm 3.

Algorithm 3 One-step procedure
Inputs:

— all inputs of Algorithm 1 other than the index set =;
— a positive integer M.

Output:
— a predictor fos
Procedure:
1. Let ny, = n — ne. Construct an index set Z,, per (44).
2. Construct train and test sets Dy, and Dy, per Step 1 of Algorithm 1.

3. Let ni ¢, = nee —&1[n”]| and no ¢, = &|n¥|. For each (§1,62) € 2, and j =1,..., M, draw random pairs
of disjoint subsets (Df7, DE27) of sizes ny ¢, and ng ¢, from Dy, respectlvely For each (£1,&) € 2y,
fit predictors f¢ as described by (43) using prediction procedure f and {(D$7, D827) : 1 < j < M}.

4. Run Steps 3-5 of Algorithm 1 using index set = = Z,, and set of predictors { ff , £ € B}

5. Return fos as the resulting fc" from Algorithm 1.

4.3 Risk behavior of fos

In this section, we examine the risk behavior of one-step predictor fos. Similar treatment as done for the
zero-step procedure in Section 3.3 applies in general. To avoid repetition, we will primarily restrict ourselves
to the proportional asymptotics regime in this section.

4.3.1 Risk behavior of fos under proportional asymptotics

Define ny ¢, = ng — & [n”] and ng ¢, = &|n”|. Assume that there exists a deterministic profile RIt(-, -; -
R x R — R of f such that the following holds:

oty e (2o )

nier, T2e,

Mgt "n £3n

= op(1)R% (p : f) (DETPA-1)

where (£1,,,€3,,) are the indices that minimize the deterministic profile R4 (-, -; 1)

(€6,,65,) € argmin R (p, P ;f). (45)
o (£1,62)€2n Nnig N2,

Because log(|Z,,|) < 2log(n), following the arguments in Section 3.3, we conclude that if (DETPA-1) and
either (01)° or (O2) hold, then

<R(f°s)( min  Rdet <p, p ;f)) - o,,(1)-( min  Rdet (p, p ;f). (46)
+

€1,62)€En Nie N2g €1,§2)€En Nie N2,

5Here, we need (O1) with Rd/e.t(n7 f) replaced with the minimum appearing in (46).
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Just as we reduced verification of (DETPA-0) to (DETPAR-0), we state below a reduction of the
verification of (DETPA-1) that only considers non-deterministic sequences for which the aspect ratios of the
split datasets for the constituent one-step predictors converge.

For any v > 0, define N

MY = argmin - R, G f).
(C1,62):6y ¢ sy

Lemma 4.1 (Reduction of (DETPA-1)). Suppose Dy, ,, and Dy, are dataset with ki, and ko, observa-

~

tions and p, features. Assume the loss function € is such that R(f(-; Dk, .  Dk,.,.)) 15 uniformly bounded
away from 0. Let v > 0 be a real number. Suppose there exists a proper, lower semicontinuous function
Réet : [, 0] x [y, 0] — [0,00] such that the following holds true:

R(f(:sDry s Dia)) 2> R (b1, 625 f) (DETPAR-1)

as kv m, ka.m, Pm — 0 and (pm/k1,m, Pm/k2,m) — ($1, ¢2) € M. Furthermore, suppose that Riet (. .; f) 18
continuous on the set M. Then, (DETPA-1) is satisfied.

The proof of Lemma 4.1 follows analogously to that of Lemma 3.8 where we show that even though the
sequence {®, = (pn/n1¢r ;Pn/N2es, )In>1 May not converge, there exists a subsequence {<I>nkl }i=1 that
converges to some (@1, ¢2) € M?Z. Below we provide some commentary on the assumptions of Lemma 4.1.

e We note that assuming lower semicontinuity of R (., -; f) is a mild assumption. In particular, it does not
preclude the possibility that RI* diverges to oo at several values in the domain as shown in Proposition 4.2.
For example, the proposition implies that if R*(-,-; f) is continuous on a set except for when ¢; = 1 or
¢ = 1, then R is lower semicontinuous, provided Rt diverges to oo when either ¢ or ¢ converges to 1.
The condition of lower semicontinuous deterministic approximation R°t(-;-; f) follows from the continuity
of the domain of R4¢t(.,-; f) (i.e., points of finite function value). This is similar to Proposition 3.9 discussed
in the context of the zero-step predictor. The formal statement for the one-step predictor is as follows.

Proposition 4.2 (Verifying lower semicontinuity for diverging risk profiles). Let (M,d) be a metric space.
Let C be a closed set. Suppose h : M — R is a function such that h(z) < o for x € M\C, and h(z) = ©
for x € C. In addition, if h restricted to M\C' (denoted by h|ypc()) is continuous, and for any sequence
{xn}tn=1 that converges to a point in C, {h(zy)}ns1 converges to . Then, h is lower semicontinuous on M.

e Continuity assumption on RI(-, -; ]?) at the argmin set M35 is also mild. Proposition 4.3 below shows
that (DETPAR-0) holding for (¢1, ¢2) in any open set Z implies continuity of R on Z.

Proposition 4.3 (Certifying continuity from continuous convergence). Let Dy, . and Dy, . be datasets
with k1,m and ko, observations and p,, features, and consider one-step ingredient prediction procedure

fw trained on Dy, . and Dy, . Fiz a open set T < (0,00] x (0,00]. Suppose there exists a function
R4t : (0, 0] x (0,00] — [0,00] such that

R(f(: Dby s Dh)) 2> R (1, 023 ) (47)

as k1. my k2,my Dm — © and (Pm/k1.msPm/k2,m) — (¢1,¢2) € . Then, Rdet(. .; f) s continuous on I.

Combining the results and the discussion above, the verification of (DETPAR-1) under (PA(y)) can
proceed the following three-point program:

(PRG-1-C1) For (¢1, ¢2) such that Rt (¢, ¢o; f) < o0, verify that for all datasets Dy, , and Dy, . with

~

hmltlng aspect ratios (¢17 ¢2)7 R(f(a ) ,Dkl,rruDk:Q’m)) B) Rdcc(qblv ¢27 f)

(PRG-1-C2) Whenever R (¢, ¢o; f) = a0, it obeys that

lim Réet (¢, ’;Nzoo.
(¢,04)—($1,62) (91,65 /)
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(PRG-1-C3) The set of all points where R (6y, ¢ho; f) = o0 is a closed set.

We will follow these steps to verify (DETPAR-1) for the MN2LS and MN1LS prediction procedures in
Section 4.3.2. But we will first complete the derivation of the deterministic approximation to the conditional
risk of f°% under (DETPAR-1). Following similar arguments as those in Section 3.3 for the zero-step procedure,
Lemma 4.1 along with (46) provides the following monotonization result for the one-step procedure:

Theorem 4.4 (Asymptotic risk profile of one-step predictor). For any prediction procedure fw suppose (PA(y)),
either (O1) or (02), and the assumptions of Lemma 4.1 hold true. In addition, if the loss function is convex
in the second argument, then for any M > 1,

(R(fosmn)_ min Rdet(gl,gg;f)> = 0,(1). (48)

1/¢G1+1/C<1/y +

Theorem 4.4 hinges on (DETPA-1) and continuity of RI(-, ; f) which we will verify below in a specific
model setting. Before doing that, let us briefly remark about the extensions and implications of (48).

Remark 4.5 (Exact risk of fOS). For M = 1 under (DETPA-1), (48) only guarantees that the risk of fos

is bounded above by the minimum in (48). Considering a stricter version (DETPA-1*) of (DETPA-1) that

requires the 0,(1) in (DETPA-1) to be uniform over all (&1 ,,,82.,) € Zp, conclusion (48) can be extended to
imply for M = 1 that

R(F*;D,) — i R ¢y, oy )| = 0,(1). 49

(F%5Dn) = Join | BEHG G f)) = 0p(1) (49)

This shows that the risk of the one-step procedure with M = 1 under the stricter assumption of (DETPA-1%)
is exactly the same as the minimum in the display above. This is the characterization of the risk of the
one-step procedure in the same vein as (39) is the characterization of the risk of the zero-step procedure.

Remark 4.6 (Monotonicity in the limiting aspect ratio). Observe that the following map

v min R, G f)

1/C+1/C<1/y

is non-decreasing in . This is because

{(C1,¢2) = 1/C 4+ 1/¢a < 1/} S {(C1,¢2) = /G 4+ 1/Ca < 1/m}  for o < 7,

and hence the minimum can only be larger as v increases. This implies that the risk of the one-step procedure
in asymptotically bounded above by a monotonically non-decreasing function in v under the assumptions of
Theorem 4.4.

Remark 4.7 (Comparison with fzs). Observe that

min B¢, G f) < min RN ), 50
yaihay, T @l <, pin BEG ) (50)
where the left hand side is the asymptotic risk of f°s (with M =1 and under (DETPA-1*)), the right hand
side is the asymptotic risk of f# (with M = 1 under (DETPA-0*)). Hence, under some regularity conditions,
the one-step procedure is as good as the zero-step procedure if not better. See Remark 4.12 for more details.
For M > 1 such a comparison is not readily plausible from our results.

4.3.2 Verification of (DETPAR-1)

We now verify the assumption (DETPAR-1) in a specific model setting when the base prediction procedure
is either MN2LS or MN1LS. But first, we provide a general result describing the asymptotic risk profile of

R(f(-;Dky > Drs,,)) when the base prediction procedure is linear.
Let f be a linear base prediction procedure given by f(x; Dy, ,.) = xTE(DkLm), for some ﬁ(Dkl) e RP

~

computed on Dy, .. If Dy, . = {(X;,Y;) : 1 <i < ko }, the ingredient predictor f(-; Dy, ,,, Dk,,,,) for the
one-step prediction procedure is given by

F(@: Dk 2 Dro) = 7 B(Dy ) + 2 Brma (X, Vi = X[ B(Dry ) 11 <0 < o })). (51)
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The following result characterizes the conditional prediction risk of f(, Dy, > Dk, ) for the squared error

loss in terms of the risk behavior of § (Dg, ). This is possible because the one-step adjustment is fixed
to be the MN2LS prediction procedure and its risk behavior can be completely characterized as done in
Section 3.3.1.

Consider the setting of Proposition 3.14. Let ¥ = WRW T denote the eigenvalue decomposition of

the covariance matrix ¥ = Cov(Xj), where R € RPm*Pm ig a diagonal matrix containing eigenvalues
ro=rg =21, >0, and W e RP*Pm is an orthonormal matrix containing the corresponding
eigenvectors wi, ws,...,wp,, € RPm. In preparation for the statement to follow, define the following

(random) probability distribution on Rxq:
Qn(r) := . %((B(Dk ) = Bo) Twi)ril{r; < r} (52)
n . ~ 1.m i [ T .
R(f(Dr,,.)) — 0% i3

Let H,  denote the empirical spectral distribution of 3, whose value at any r € R is given by

— Z ]]-{rl <r}» (53)

and let H denote the corresponding limiting spectral distribution, i.e., H, 4 H as Pm — 0. See (L2AD) in
the proof of Proposition 3.14 for more details.

Lemma 4.8 (Continuous convergence of squared risk for one-step procedure). Let f be any linear prediction
procedure, and assume the setting of Proposition 3.14. Let k1 m, k2 m, Pm — 90 such that (Dm/k1,m, Pm/k2,m) —

(¢1,¢2). Suppose there exists a deterministic approzimation R (¢y; f) to the conditional squared prediction
risk of f(';Dklym) such that R(f(-; Dy, L)) D R4y f) for ¢y that satisfy R (¢y; f) < 0. Assume the
distribution Qn as defined in (52) converges weakly to a fized distribution @, in pmbabzlzty Then, for
¢a € (0,1) U (1,0], we have R(f(:; Dkl,maDkz,m)) L, R (g dg: f), where Ry, do; f) is given by

R (¢y; ) if ¢o = o0
Rdet(QSl, ¢27 f) — Rdet( 7f) (¢17 ¢2) + 02(1 - Tb(¢1) ¢2)) + 0_2%9(0; ¢2) Zf ¢2 € (17 OO) (54)
1
2

ag

Q_@> if 62 € (0,1)
Here, the scalars v(0; ¢2), 0(0; d2), Vg(0; d2), and Yyp(p1, d2), for ¢o € (1,00), are defined as follows:

v(0; @2) is the unique solution to the fixed-point equation:

v(0:62) = (M(M)H dH(r))l, (55)

0(0; @2) is defined in terms of v(0; ¢g) by the equation:

N 1 r2 -1
o(05¢2) = (v<o;¢2>2 ~o | G dH(”) ’ (56)

— 0g(0; ¢2) is defined in terms of v(0; ¢2) and T(0; p2) by the equation:

2

5y (05 62) = B(0; 62) j G

w0 172 dH(r), (57)

— Yy(1, 92) is defined in terms of v(0; ¢2) and Uy(0; o) by the equation:
1
Tp(d1,92) = (1 +ﬁg(0;¢2))J(U(OW¢2)T+1)2dQ(T) (58)
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Lemma 4.8 provides a deterministic risk approximation for the ingredient one-step predictor f(-; Dy, .., Dks.,.)

in terms of the deterministic risk approximation of the base prediction procedure f . In case of isotropic
covariates, i.e., ¥ = I, , the distribution H is degenerate at 1, and RIY(¢1, ¢a; f) can be simplified because
To(¢1,¢2) = (1 —1/p2), and U4(0; ¢2) = 1/(¢2 — 1). See the proof of Proposition 4.11 for more details.

Note that the assumed limiting distribution @ in general depends on ¢1, ¢2, and hence T4(h1, ¢2) is in
general a function of ¢y, ¢2, and the distribution of the data. On the other hand, v(0; ¢2) defined in (55),
is a function of ¢ alone, and hence ¥4(0; ¢2) is just a function of ¢,. Furthermore, it can be verified that
U4(0;-) is a continuous function on (1,00) and lim,, 1+ U4(0; ¢2) = 0; see Lemma S.6.13 (4). This implies
that Rt (¢y, do; f) satisfies (PRG-1-C1)—(PRG-1-C3), if the base prediction procedure satisfies (PRG-0-C2).
Hence, any prediction procedure that can be used for zero-step can also be used for one-step as long as the
convergence assumption on @, is satisfied. We make this precise in the following result.

Corollary 4.9 (Verification of one-step deterministic profile program). Assume the setting of Lemma 4.8.
In addition, suppose R (¢y; f) satisfies (PRG-0-C2). Then, f(:; Dy, ., Dk,..) satisfies (PRG-1-C1)~(PRG-
1-C3) and hence satisfies (DETPAR-1).

Therefore, the prediction procedures mentioned in Remark 3.16 can be easily shown to satisfy (DETPAR-1).

Although we assume that @n converges weakly to @) in probability, we only need in probability convergence
of { f(r)dQn(r) to § f(r)dQ(r) for f(r) = r/(v(0; p2)r + 1)?, which is a weaker requirement. Intuitively, this
assumption comes from the representation of f(z; Dy, > Dk, ) in (51) as fla; Dy s Dhypi) = foAlB(DkLm)—I—
LL’TanQ(DkQ’m) for some random matrix A\; see Lemma S.5.1. Hence, the risk of fcan be written in terms of

a weighted prediction error of 5(Dk1) with the weights depending on f(+); see (E.69).

Proposition 4.10 (Verification of (DETPAR-1) for the MN2LS base procedure). Assume the setting of
Proposition 3.14. Then, the one-step ingredient predictor constructed from the MN2LS base prediction
procedure satisfies (DETPAR-1).

Proposition 4.11 (Verification of (DETPAR-1) for the MN1LS base procedure). Assume the setting of
Proposition 3.15. Then, the one-step ingredient predictor constructed from the MNI1LS base prediction
procedure satisfies (DETPAR-1).

Remark 4.12 (Comparison of zero and one-step procedure for isotropic covariance). In order to get
an intuition about the risk of one-step procedure, consider the case of isotropic features. In this case,
Rt (g1, ¢o; f) simplifies to

Rdet(¢1; f) 1f ¢2 = o0
~ de a _i 2 i 1 :
RO, s J) = 4 T (@13]) (1 @)” (¢2+¢21> if o2 €(1,e0) (59)
02<1_1¢2> it ¢o € (0,1).

Note that ¢o = 00 corresponds to simply using the base predictor without any one-step residual adjustment.
This is the same as the ingredient predictor used in the zero-step prediction procedure. The one-step prediction
procedure would minimize the expression shown in (59), over ¢, and ¢, satisfying ¢; * + o L'< 4=t If the
optimal ¢o turned out to be o0, then one-step predictor and the zero-step predictor become the same, and
the resulting limiting risk is R4°t(¢y; f). From (59), the risk for ¢ € (1,00) can be decomposed as

12+ o2 7Rdet(¢1;f~)
P2 P21 ¢2 '

Rdet((,bl;f) + (

If the quantity in the parenthesis is negative for some (¢1, ¢2) satisfying the condition d)l_l + ¢y 1< 471, then
the one-step prediction procedure will yield a strictly better risk than the zero-step prediction procedure (for
M =1).

One can gain more insight into how one-step procedure improves on the zero-step by considering the case
of isotropic covariance and MN2LS base prediction procedure. The intriguing finding in this case is that the
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one-step prediction procedure with base MN2LS procedure is effectively the same as applying MN2LS on new
data with reduced signal energy and with a larger limiting aspect ratio.

Formally, under isotropic covariance with MN2LS base procedure, R°* can be written as follows. Recall
p? denotes the limit of |3o[3 and o2 is the noise variance. Then, one has

R ¢y, o fmn2>

[pQ (1-%) +0? <¢11_1)] (1—;) +0? (¢21_1) + 02 if (1, 02) € (1,00] x (1,0]

— [02 (1¢1¢1)] (1—¢12> +o” <¢211) +0” if (¢1,02) € (0,1) x (1,0)
(1) + o if (61,02) € (0,0) x (0,1).

Here, we treat 1/z and 1/(x — 1) to be 0 when z = .
Let R, (¢; p?, 02) denote the asymptotic risk profile of the MN2LS predictor at aspect ratio ¢, signal

mn2

energy p?, and noise energy o2; from the proof of Proposition 3.14 (see also Hastie et al., 2019, Theorem 1),
we have
B 0? (1—7)—&-0 (¢ 1)+0 if ¢ € (1, 0]

m112(¢7p g ) - o2 (g) + o2 if o€ (O’ 1)'

Let R, (o1, ¢o; p?, 02) denote the asymptotic risk profile of the one-step ingredient predictor with MN2LS

mn2

base predictor with signal and noise energy p? and o2, respectively — which above we have denoted with
R (1, ¢2; frunz2). Then, we can write

Rosta (1, 6o p°,0%) = Rieno(¢2; Reseno (01397, 0%) — 0%, 07). (60)
Thus, the limiting risk of the one-step predictor computed on a data with limiting aspect ratio v is given by
Rinto(02(7): R (61 (7); 0%, 0%) — 0%, 0%), (61)

where (¢1(7), ¢2(7)) represents the minimizer of Rfrfgg(Q,Cg;pZ,aQ) over ({1 4+ ¢ < 47t Now the

risk expression (61) can be interpreted as follows: The one-step prediction procedure with base MN2LS
procedure is effectively the same as applying MN2LS on new data with reduced signal energy (because
RIet, (¢1(7); p%,02) < p? + 02) and with a larger limiting aspect ratio ¢o(7y) > 7. Note that reducing the
signal energy reduces the risk for MN2LS due to a reduction in the estimation bias; see Figure S.6 and
Lemma S.6.18 (5). Recall that the effect of the zero-step procedure would just be applying MN2LS on a data
set with a large limiting aspect ratio, but with the original signal energy p?. Hence, the improvement of the
one-step procedure over the zero-step procedure (which only takes place in the overparametrized regime)
essentially stems from reducing the signal energy and thus the bias, which “boosts” the asymptotic risk.

In this case, we can also explicitly carry out the optimization of minimizing R°t({y, (o; f) subject to
the constraint Cfl + CQ_I < v, See Section S.6.7 for the details. See Figure 5 for an illustration of the
comparison the limiting risk of the one-step prediction procedure with the the zero-step prediction procedure.

Finally, we comment that for base predictors other than the MN2LS, the risk of one-step procedure may
not have as nice an interpretation as “boosting” the asymptotic risk by reducing the signal energy in addition
to increasing aspect ratio. However, the message is that the one-step procedure adds another knob to the

zero-step procedure which leads to an improved risk.

4.4 Numerical illustrations

In this section, we provide numerical illustration of the risk monotonization of one-step prediction procedure
in the proportional asymptotic regime, when the base prediction procedures are MN2LS and MNI1LS
prediction procedures, and the one-step adjustment is always performed via MN2LS. In order to illustrate
risk monotonization as in Theorem 4.4, we need to show the risk behavior of f°° at different aspect ratios. We
use the same simulation settings used for the illustration of the zero-step procedure in Section 3.4. Figures 6
and 7 present our simulation results. The conclusions are essentially the same as those stated for the zero-step
procedure in Section 3.4.
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Figure 5: Comparison of zero-step and one-step procedures with MN2LS base procedures under isotropic
feature covariance, and low, moderate, and high SNR regimes. Observe that for SNR = 1, zero-step and
one-step both have the same risk profile with M = 1. This holds true even for SNR < 1, as shown in
Theorem S.6.16. For SNR > 1, there exists a range of y for which one-step is strictly better than zero-step.
See Theorem S.6.16 for more details.

Minimum /;-norm least squares (MN2LS). Figure 6 shows the risks of the baseline MN2LS procedure
and the one-step prediction procedure with MN2LS as the base prediction procedure for high and low SNR
regimes (left: SNR = 4; right: SNR = 1); we take 02 = 1, so that p?=SNR. We also present the null risk
(p? + 0?), i.e., the risk of the zero predictor as a baseline in both the plots.

Similar to the behavior of the zero-step procedure we observe that the risk of the one-step procedure is
non-decreasing in 7y for every M > 1. Although the risk of the one-step procedure is close to being below the
risk of the base procedure, Figure 6 shows the effects of working with a finite sample. (The risk of one-step
for M =1 is sometimes above the risk of the base procedure.)

Figure 6 also shows that the one-step prediction procedure can be strictly better than the zero-step
prediction procedure. In particular, the left panel of Figure 6 shows that around the interpolation threshold of
1, the risk of one-step prediction procedure is not flat. It is strictly increasing. The risk of one-step procedure
for M > 1 is once again seen to be a strict improvement over M = 1.
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Figure 6: Illustration of the one-step procedure with the MN2LS as the base predictor and MN2LS one-step
adjustment with varying M. The left panel shows a high SNR setting (SNR = 4), while the right panel shows
a low SNR setting (SNR = 1). The setup has n = 1000, nt, = 900, nte = 100, n¥ = 50. The features are
drawn from an isotropic Gaussian distribution, the response follows a linear model with dense signal. The
risks are averaged over 100 dataset repetitions.
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Figure 7: Tllustration of the one-step procedure with MN1LS as the base procedure and MN2LS one-step
adjustment with varying M. The left panel shows a high SNR setting (SNR = 4), while the right panel shows
a low SNR setting (SNR = 1). In the setup, n = 500, n¢, = 420, nye = 80, n” = 42. The features are drawn
from an isotropic Gaussian distribution, the response follows a linear model with sparse signal (sparsity level
= 0.0005). The risks are averaged over 100 dataset repetitions.

Minimum /;-norm least squares (MIN1LS). Figure 7 shows the risks of the baseline MN1LS procedure
and the one-step procedure with MN1LS as the base prediction procedure for high (left, SNR = 4) and low
(right, SNR = 1) SNR regimes. We take 0> = 1 and p?> = SNR. We also present the null risk (p? + o?), i.e.,
the risk of the zero predictor as a baseline in both the plots. We again observe that the risk of the one-step
procedure for every M > 1 is non-decreasing in 7. As before, once again we observe in Figure 7 that the
one-step procedure with M = 1 attains precise risk monotonization while zero-step with M > 1 improves
significantly upon the M = 1 case when - is near one. All these comments hold for both low and high SNR
regimes.

5 Discussion

In this paper, we have proposed a generic cross-validation framework to monotonize any given prediction
procedure in terms of the sample size. We studied two concrete methodologies: zero-step and one-step
prediction procedures. The ingredient predictors for the zero-step prediction procedure is the base procedure
applied on a subset of the data. The ingredient predictor for the one-step prediction procedure can be thought
of as boosting applied to the base procedure learned on a subset of data (Schapire and Freund (2013)). In
both cases, we also introduced averaging over the subsets of the data (via the parameter M). This particular
averaging step can be seen as bagging, which is known to have a variance reduction effect.

We have analyzed the properties of zero-step and one-step prediction procedures in a model-free setting
under mild regularity assumptions. This is in contrast to many other works in this literature that require
strong distributional assumptions. In part this is possible because we assume the existence of the limiting
risk and monotonize it (in a data-driven way) without requiring the knowledge/form of the risk.

Monotonization of asymptotic risk also has implications for minimax risk. If the base prediction procedure
has a finite asymptotic risk R and R, respectively, at the limiting aspect ratios of 0 and co, then both zero-step
and one-step prediction procedures applied to such a base procedure yield predictors whose asymptotic risk
lies between [R, R] for all limiting aspect ratios. For example, for the squared error loss and a linear model,
the MN1LS and MN2LS predictors have R = 02 and R = | B||3 + 02, where o2 is the noise energy, which is
also the unavoidable prediction risk, and ||3o|% is the effective signal energy. Because o2 is the unavoidable
prediction risk, and hence a minimax lower bound, the zero-step and one-step predictors based on MN1LS
and MN2LS are minimax optimal up to a multiplicative factor of 1 + SNR =1 + |3||%/0? over all aspect
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ratios ranging from 0 to co. Any base prediction procedure that leads to the null predictor (i.e., f (z) =0 for
all x) for the limiting aspect ratio of oo also has the same property. (Most reasonable prediction procedures
would yield the null predictor as the limiting aspect ratio tends to c0.) Furthermore, for every procedure,
there exists another procedure (such as the zero-step) whose risk is at least as good and is monotone. Thus,
the minimax risk is a monotone function of the limiting aspect ratio. To our knowledge, the minimax risk in
the proportional asymptotics regime under generic signal structure is not available in the literature.

Although the focus of the current paper is exclusively on choosing optimal sample size, one could apply the
cross-validation framework proposed for selecting optimal predictors from any collection. In particular, one
can use our methodology to find optimal penalty parameter for ridge regression or lasso. It can also be used
to select the number of random features in random features regression or kernel features in kernel regression,
or more generally, the number of parameters in a neural network. In the latter case, our procedures will yield
model-wise monotonicity (Nakkiran et al., 2019).

There are several interesting future directions that one can pursue. We will discuss three specific directions
below.

Theoretical characterization of the effect of bagging. We have only characterized the risk of the
zero-step and one-step with M = 1 in terms of the limiting risk of the base procedure. In this sense, we did
not fully analyze the effect of bagging (M > 1) for both zero-step and one-step procedures. It is of interest to
characterize the effect of bagging:

What is the limiting risk of the zero-step and one-step procedures when M > 17

From the theory of U-statistics, it is expected that the risk for M > 1 is non-increasing in M. It is hard
to however argue that the risk of zero/one-step predictors is monotone in the limiting aspect ratio when
M > 1. The main difficulty lies in proving that the ingredient predictors for the zero-step procedure have an
asymptotic risk profile for M > 1. Once this is guaranteed, the theory developed in Section 3.3.1 will readily
imply that the zero-step procedure with M > 1 has an asymptotic monotonic risk profile. We now briefly
mention the difficulty in proving the existence of the asymptotic risk profile for the ingredient predictor when
M > 1.

For concreteness, consider the ingredient predictor of the zero-step prediction procedure with M > 1 that
uses k, < n observations. This is given by

M .
Z (2:D))  with  |Di| = k.

Note that we take subsets D/ as independent and identically distributed subsets of size k,, from the data
and hence for M = oo, we get

f@u;m)—(i) S F (X, Vi) 1< < ko)), (62)

kn/ 1<t <... <@g, <ner

This is a U-statistics of order k,, for every fixed = in terms of the training data. If R(f(-; DI )) B Rdet(g)
whenever p/k,, — ¢, then from the theory developed in Section 3.3.1, it follows that R( ZS) 2 mings., RY((Q)

under (PA(v)). Hence, the main difficulty in characterizing the effect of bagging lies in proving the existence

~

of limit of R(f). For the squared error loss, it can be proved that (see Section S.6.11)

R(Far) = B(Fo(+Du)) + 7 i) > f(”(ax{(X%,Y )i 1< < k)~ To(e:Dy)) dPy, (). (63)

kn

L1 yeeey bl

It is 1nterest1ng to note that the risk of fM only depends on M as a linear function of 1/M. If the base
predictor f is non-zero almost surely, then the risk of fM is a strictly decreasing function of M. Observe
that (63) holds true even for M = 1 and from our results, we know that the right hand side with M = 1
has a finite deterministic approximation. This implies that each of the components in (63) is asymptotically
bounded. Hence, as M — o0, we can conclude that R(fys) — R(fo) 2 0.
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Because k, — o and p/k, — ¢, the second term in (63) above could be analyzed using deterministic
representation for f(Xo; {(X3,,Y:,) : 1 < j < kn}) (e.g., Theorem 1 of Liu and Dobriban (2019) for ridge
regression) and the theory of U-statistics. On the other hand, R(fgo) could also be similarly analyzed using
deterministic representations and the theory of U-statistics. We leave this for future work.

Other variants of boosting. In our empirical studies, we found that the one-step predictor (for M = 1)
which is a boosted version of the subsampled predictor has a much better performance than the zero-step
predictor (with M = 1), especially around the interpolation threshold. For reasons unclear to us currently, the
performance of one-step predictor (for M = 1) can be matched, at least in shape, by a zero-step predictor with
some M > 1. In this sense, the effect of one iterate boosting can be matched by the effect of multi-subsample
bagging. Furthermore, as M increases, both zero-step and one-step seem to approach the same limit in our
empirical studies. The interesting aspect is that the work done by M subsample bagging is achieved by one
boosting iterate. This begs the question: is there a better boosting mechanism that can match zero-step
predictors performance at M = oo. In particular:

What are the other choices of one-step residual adjustments? And what is the “best” choice?

We have only analyzed the one-step residual adjustment done via MN2LS. Other choices are certainly possible:
for instance, one could do MN1LS or minimum #,-norm least squares or minimum /¢ robust least squares in
the context of linear regression. It seems cumbersome to analyze each one of these residuals adjustments
case-by-case and find the best choice. For general models, one can think of the residuals adjustment we
proposed as a variant of Newton’s step for the squared error loss under homoscedasticity as mentioned in (41).
The discussion of the “best” choice of the residual adjustment very much hinges on the question of what
is the best predictor in a given model in the proportional asymptotics regime. Although we do not know
the answer to this question, one can potentially target the question of deriving a residual adjustment that
yields an asymptotic risk performance similar to that of the zero-step predictor with M = co. For any given
predictor, is there a one iterate boosted version (i.e., one-step predictor with M = 1) that achieves the same
asymptotic performance as the M-subsample bagging with M = o0?

Similar to the one-step predictor one can develop a k-step predictor by splitting the data into potentially
(k + 1) batches and optimizing over the number of observations in each batch. This is analogues to k-iterate
boosting as our one-step procedure (with M = 1) is analogues to the one iterate boosting. This gets
computationally intensive very quickly as k increases. Furthermore, we believe that k-step predictor combined
with bagging would yield the same asymptotic risk profile as the zero- and one-step predictors with M = co.
In this sense, it seems a worth problem to investigate a better one iterate booster than to investigate the
k-step predictor precisely.

Comparison with other regularization strategies. On the surface, zero-step and one-step procedures
might seem to use only a subset of the data, and hence might appear sub-optimal. Along the same lines, one
might also wonder why not employ regularization techniques and optimize over the regularization parameter.
To the first point, note that we make use of the whole data in estimating the risk and comparing predictors
at different sample sizes, and hence make use of the full data. To the second point, it is somewhat surprising
to report that optimally-regularized procedures such as ridge regression with optimal choice of penalty need
not have monotone risk (in the limiting aspect ratio); see, for example, Figure 1 of Hastie et al. (2019).
But our procedure will always lead to a monotone risk and hence makes better use of the data compared
to optimum regularization procedures in general. Irrespective, it is still interesting to consider the relation
between zero-step and one-step, and the optimum regularization procedures in cases where the latter has a
monotone risk. In our empirical studies we found that in a well-specified linear model, zero-step and one-step
procedures (with the MN2LS base procedure) with a large enough M have asymptotic risk very close to the
risk of the optimum ridge regression procedure. See the left panel of Figure 8. In a sparse linear regression
model, zero-step and one-step procedures (with the MN1LS base procedure) with a large enough M has
asymptotic risk very close to the risk of the optimum lasso regression. It is also interesting to observe that
the risk is monotone for optimally tuned lasso. See the right panel of Figure 8. The effect of both bagging
and boosting with large M in this case appears to be similar. In other words, thinking of the base procedures
MN2LS and MNI1LS as ridge and lasso, respectively, with zero penalty parameter, the zero- and one-step
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Figure 8: Comparison of different regularization strategies of zero-step, one-step, optimal ridge, and optimal
lasso. The left panel shows a dense signal regime and the right panel shows a sparse signal regime. The setup
has n = 100, SNR = 4. The features are drawn from an isotropic Gaussian distribution, the response follows
a linear model with dense (left panel) and sparse signal (right panel, sparsity level = 0.0005). The risks are
averaged over 100 dataset repetitions.

predictors with M large attaining the same asymptotic risk as optimum ridge or lasso can be considered
as finding optimal regularization for these procedures. Without explicitly formalizing the regularization
predictor, zero- and one-step perform “optimal” implicit regularization. To what extent such similarity
extends to other settings is an interesting future direction:

Under what conditions, do zero- and one-step predictors with MN2LS/MNI1LS base predictor
match the asymptotic risk profile of optimized regularization of ridge/lasso regression? What
other base predictors (and corresponding classes of regularized predictors) does this phenomenon
extend to?
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Supplement to “Mitigating multiple descents:
A model-agnostic framework for risk monotonization”
This document serves as a supplement to the paper “Mitigating multiple descents: A model-agnostic
framework for risk monotonization.” The section and equation numbers in this document begin with the

letters “S” and “E” to differentiate them from those in the main paper. The content of the document is
organized as follows.

e In Section S.1, we present proofs of results related to general cross-validation and model selection from
Sections 2.1 to 2.3.

e In Section S.2, we present proofs of results related to risk monotonization behavior of the zero-step
procedure from Section 3.3.

e In Section S.3, we present proofs for the verification of the deterministic risk profile assumption for the
MN2LS and MNI1LS prediction procedures from Section 3.3.2.

e In Section S.4, we present proofs of results related to risk monotonization behavior of the one-step
procedure from Section 4.3.1.

e In Section S.5, we present proofs for the verification of the deterministic risk profile assumption
for arbitrary linear prediction procedures, and the MN2LS and MN1LS prediction procedures from
Section 4.3.2.

e In Section S.6, we collect various technical helper lemmas and their proofs that are used in proofs in
Sections S.2 to S.5, and other miscellaneous details.

e In Section S.7, we list calculus rules for a certain notion of asymptotic equivalence of sequences of
matrices that are used in proofs in Sections S.3 and S.5.

e In Section S.8, we record statements of useful concentration results available in the literature that are
used in proofs in Sections S.1, S.3 and S.5.

e In Section S.9, we list some of the main notation used in the paper.

S.1 Proofs related to general cross-validation and model selection

S.1.1 Proof of Proposition 2.1

Additive form. We will first prove the oracle risk inequalities (7) in additive form. Recall Algorithm 1
returns fcv = f¢. Adding and subtracting mingez R(f%) and mingcz ]%(fg) to R(f), we can break R(f°")
into the following additive form:

R(f*) = min R(f¢) + min R(f*) — min R(f¢) - min R(F$) + R(f5). (E-1)

3=S) £eE ge=
An application of triangle inequality then lets us upper bound R(fc") into sum of three terms:

R(F™) < pin B) + | min ROP) - min RO+ [RUF) - min R (2

-

~

(a) (b)

We will next upper bound both terms (a) and (b) by A2d4 to finish the first inequality of (7).
By definition (6a) of A4 for every & € Z, we can write

R(fS) < R(F&) + A and  R(f5) < R(F%) + AR, (E.3)
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Taking minimum on both sides of the inequalities in (E.3) then yields

rgnnR(f&) < Iﬁnm R(f%) + A2 and rgnill R(f%) < Ignill R(f€) + A2,
ez (S ez

Combining the two inequalities, we arrive at the desired bound for term (a):

mlnR(fE) min R fE ' < A2
§eE 3=

~

Since £ € arg Mingez R(j/"\g)7 we can obtain the following upper bound for term (b):

[R(FS) — min R(FS)| = |R(FS) — R(F)

< Aadd

n

where the inequality follows from the definition of A2dd,
Substituting the bounds (E.4) and (E.5) into (E.2), we conclude that

‘R(fcv) min R(f%) ‘< 2A24d,
EeE

(E.6)

This implies the first inequality of (7). Taking expectations on the both sides of the first inequality of (7), we

obtain A )
E[R(f*)] < E[min R(f)] + 2E[AT].

(E.7)

It is clear that the first term on the right hand side is bounded above by mingez E[R( Je )], and thus we obtain

the second inequality of (7). This completes the proof of the oracle risk inequalities in additive form.

Multiplicative form. We now turn to prove the oracle risk inequality (8) in multiplicative form. Recall

again that Algorithm 1 returns f‘“’ = fg . In contrast to the proof of Proposition 2.1, we now break R( f‘“’)

into the following multiplicative form:

2 R(™) 507

vy _ RU™) 5 _ BT
R = 3 oy RE) = i RO
® R 5o
A R
_RU™ ARG o
" R(fv) €= | R(f9) R(%)
2 R(fcv) -min | [ m XE(AP) -R(f*
< R HE na R(Ap)> R(f%)
R(f*) RUFH\ . oo
S j.%( Acv) (r?eaéx R( Aﬁ)) rfrélélR(f )
(2) 1A = (max R(Jié)> -min R(f¢)
in R(f%) £eE R(f9) geE
€2 R(F¥)
max é(.}f’:&)
_ €e= R(fﬁ) . min ¢
g et
min —=
€2 R( 5)

o1



In the chain above, equality (i) follows from the definition of f in Algorithm 1, inequality (¢¢) follows from the

inequality a;b; < (max; a;)b; for any two sequences a;, b;, 1 < i < m, and inequality (4ii) follows by noting
that

RFf) 11 _ 1
R(J)  R(*) mgypméqy
R(fe)  R(f¢) R(f%)
Now, from the definition of A™ for all £ € Z, we have
Lo ami < BUD
RS9

In addition, since the loss function is assumed to be non-negative, both R( f‘f) and ﬁ(fg) are non-negative
for all £&. Hence, we can bound

R(f& R(fE
(1 —A™D), < min R(Ji ) < max R(Ji ) <1+ Am (E.9)
= R(F) = R(Y)
Using (E.9) in (E.8) then implies the desired upper bound:
=R 1 Amul N
R(F™Y) < ——2 . min R(Y).

(1—Aml), ge=

This completes the proof of the oracle risk inequality in multiplicative form.

S.1.2 Proof of Lemma 2.4

Tail bound. We begin by applying the Bernstein inequality (see Lemma S.8.1 for the exact statement) on

the random variables ¢(Y}, fg( i), J € Lie with mean R( 7 condltlonally on Dy,. (Note that the random
variables are i.i.d. conditionally on Dy,.) For any 0 < n < 1 and £ € Z, we have the tail bound

x o log (2 . log (2
<| Dudl Z UY, R(f9| =y max{ o2 g’lgt/|n)’0£ [glgt/n)} |Dtr> <. (E.10)
e ]EItC e €

Taking expectation on both sides, we get that the unconditional probablhty is also bounded by 1. Denoting
the prediction risk estimate by ( ff) and choosing n = n/|=Z|, for any € € E, we can equivalently write the

bound as
PQﬂﬁ%ﬂgwga@mw{1%@Emhmemm%><n.

Nte Nte |E|

Applying union bound over £ € Z, for any 0 < n < 1/|=Z|, we get uniform bound

P(ygé@qmﬁﬂ>q?%&mw{]%@EWﬂk%@amq><n

Nte Nte
Using the definition of A244 and setting 6= := maxye= ¢, so far we have that
log (2|= log (2|2
P(sza%mw{ %<|my%<umq><n (EB11)
TNte Nte
Choosing 7 = n~4 for A > 0 provides the desired tail bound (for a modified constant C; > 0)
log (|2|n4) log (|Z[n?
P | A% > 0152 max og (|E|n ), g (IEln?) <n A
Nte Nte
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Expectation bound. We now turn to bounding E[A2d4]. Define the event

log (|Z|n4) log (|E|n?)

)
Nte TNte

Bt = { AMd > 0 Cy max

Since P(G,, = C3) < n~4, combining this with (E.11), we conclude that P(B%) < 2n~4. For the case of
CEN = MOM, the proof follows from that of Lemma 2.5. This follows because bounded 1, norm implies bounded
Lo norm.

We can bound E[A2d] by breaking the expected value as

E[AR] = E[AY15,] + E[A} 14 ]

log (|Z|n4) log (|E|n? , ‘ '
< CyCymax { /2B 0EY) 1L |y amaay e ey
te v (E.12)
ZinA) log (|EnA
< 0102 max log(| |n )7 o8 (‘ |n ) + (E[(A?de)t])l/t (Qn_A)l/T,

Nte Nte
for Holder conjugates ¢, = 2 satisfying 1/t + 1/r = 1. Observe now that
E[(A3*)1] < 2| maxE| |R(F) — RG]
ex

< [E|maxE | E | [R(F%) ~ R(F)|' | Du |

¢\ 12 £\
< Cs|=|max E laémax{( > , ( ) }
§eE Nte Nte

where the last inequality follows from integrating the quantile bound in (E.10) and Cj is a constant potentially
larger than C;. Substituting this bound in (E.12), we obtain the desired expectation bound

)

1 =AY 1 =lnA4 t t
E[A;aldd] < C,C, max og (|Z[n )’ 08 (‘ [n ) +anA/’”|E|1/tmaX{ ) }maX (E[Ug])l/t

Nte Nte Nte Nte ==

for t,r > 2 such that 1/r + 1/t = 1. This completes the proof.

S.1.3 Proof of Lemma 2.5

Tail bound. The proof is similar to the proof of Lemma 2.4. Our main workhorse is going to be
Lemma S.8.2. We use n = (|:|nA)71 in Algorithm 1. Applying the lemma with such 7 on the random
variables £(Y, fE( i), J € Lo conditionally on Dy, for each £ € = we get the tail bound

1 _A
(i 3 o= 22 ) <
te

J€Lte

|-

for some absolute constant C'y > 0. In other words,

~ ~ . [log(|=2nA n=A
\R(fﬂ—R(ff)\wlam/“m”’m <i

Integrating out Dy, and applying union bound over £ € = then leads to the uniform bound

P | max
¢eE

/

R(f*) - R(fg)‘ C1 max o log(IElnh) ) _ -, (E.13)

[3=S) Nte
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Substituting for the definitions of A219 and &z gives the desired tail bound

log(|=[n4) n—A
TNte

P (A > 62 (E.14)

N

Expectation bound. For bounding E[A244], we again follow similar strategy as in the proof of Lemma 2.4.
In order to bound certain expectations, we begin by extending the tail bound (E.14). From the assumption,
P(G= = Cy) < n~# for a constant Cy > 0. For such a constant, consider the event

log(|E[n?)

Nte

Bl =AM > 00,

n
Conditioning on the event {G= > C5}, we can bound the probability of B% as follows:

1 E|n4 1 =
]P)(BEL) =P A%dd > C10y M,ag <Oy |+ P Azdd > C10y M 8'5 > Oy

Nte Nte

~ |log(|Z|n4 . 2
<P [ A9 5 050, | 108ERY) +P (G, = o) < —,
Nte n

where we used the bound from (E.14). We are now ready to bound E[A2d4] by splitting using the event B.
We have

[Aadd] Aadd]l L] +E [A'ldd]llgE

=|nA
log(“—‘ln ) 1/2( [|Azdd|2])1/2

A
\/W 2 —A 1/2 (E[|A?de|2])1/2 (E.15)

where in the first inequality, we used Cauchy-Schwartz inequality for the second term. It remains to bound
E[|A244|2]] which we do below. We have

< C1Cy

E[’Aiddﬁ =E [I?a}
[SH=)

R7) - 1P | < Elmaxe IR - RG]

For bounding the second term, recall that the MOM procedure computes ]?B(ff ) as the median of empirical
means computed on B partitions of the test data. For each of the B partitions, the variance of the empirical
mean is 3? /(n4e/B). To bound the variance of the median of means on B partitions, we invoke Theorem 1 of
Gribkova (2020) (with & =2, p = 1, and 4 corresponding to the median position). Note that each of the B
empirical means are independent and identically distributed. This provides

|27 = r(F)| | Do | < © % <CBG§
R R |pe| <0 (g ) <0

for some absolute constant C'. Thus,

L) <0 (1212 maxeiez)

Nte E€E

B 1/2
< CIE|V2, ] max (E[&g])
Nte &§E=
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Recalling B = [8log(|Z|n?)] and combining this bound with (E.15), we finally have the desired expectation

bound
/1 = at = 1/2
]E [Azdd C C Og | ‘n + C an/2|'—‘1/2 Og ‘ |Tl IglaX )
=

for some absolute constant C'3 > 0. This Completes the proof.

S.1.4 Proof of Lemma 2.9

As argued in the proof of Lemma 2.4, using Lemma S.8.1, for any A > 0, we have the tail bound:

P (E@f) - (Y| > 5 max{ os(En) 1°g('E”A)} ‘ m) <

‘Dte | ‘Dte |

for some universal constant C' > 0. By diving R(fg) on the both side of error event, and denoting Eg/R(fg)

by K¢, equivalently we have

R(f¢ log(|Z[n4) log(|E|n4 -4
p (B _ > Cfie max og(|E|n )’ og(|E[n") D)<
R(f¢) | Die |Del |=]

Integrating over randomness in Dy, and applying union bound over £ € =, we obtain

fé log(|Z[n4) log(|E[nA
(Ji) 1’ > C'max k¢ max og(I=in ), og(=ln”) <n 4.
R(f%)

§eE Nte Nte
In other words, in terms A™ and Az, we have

=

P | max
EeE

= A =|nA
P Agul > CRE max 1Og(‘\_4|’l’L )7 1Og(‘\_4|’l’L ) < an,
TNte Tte

as desired. This completes the proof.

S.1.5 Proof of Lemma 2.10

As argued in the proof of Lemma 2.5, using Lemma S.8.2, for any A > 0, we have the following tail bound:
~ log(|Z2|n4 n=4
B (|R(F) - B > ey B2 | p, ) <
"Dte| |‘:“
for some universal constant C > 0. By diving R( IS ) on the both side of error event, and denoting o /R(ff )
R(f)

by Re, we obtain
—A
p (|2 Dy | <.
R(f*) =l

Integrating over randomness in Dy, and applying union bound over £ € =, this implies that

log(|Z|n4)
| Dre

R(f¢ . |log(|E[nA
P (Ji)l’ZC’maX/ig M <n A
R(f£> ez Nte
Writing in terms A™! and Az, we arrive at the desired bound:
=na
P A™ > Cks log(|=|n") <n A
Nte

This finishes the proof.
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S.1.6 Proof of Proposition 2.14
Part 1. For the first part, observe that |¢(Yo, f(Xo))| = max{0,1 — Y, f(Xo)} < 2 assuming |Yp| < 1 and

~

|f(Xo)| < 1. For a bounded random variable Z, |Z|y, < |Z]x (see, e.g., Example 2.5.8 of Vershynin

~

(2018)). Thus, the random variable £(Yy, f(Xo)) is conditionally sub-Gaussian with sub-Gaussian norm 2 (up
to constants), and consequently sub-exponential with the same sub-exponential norm upper bound. The
conditional Ls norm bound follows similarly.

Part 2. The second part follows in the same vein by noting that £(Yp, F(Xo)) = Ly L 7(xo)
0 or 1, and Bernoulli random variables are sub-Gaussian with sub-Gaussian norm 1 (up to constants) and
hence sub-exponential with the same sub-exponential norm upper bound. The bound on the conditional Lo
norm follows analogously.

only takes values

S.1.7 Proof of Theorem 2.15

An outline for the proof is already provided in Section 2.3. The theorem follows by combining the additive form
of the oracle inequality from Proposition 2.1, along with the probabilistic bounds on A?d4 from Lemmas 2.4
and 2.5, and the bounds on conditional ¥; and Ly norm bounds from Proposition 2.14.

S.1.8 Proof of Proposition 2.16

Part 1. For the first part, we bound the t; norm of the squared error by the squared s norm of the error
to get
1Yo, F(Xo)) s ip, = 1Yo = Xg B)lpuip, < Yo = Xg Bl3,p, (E.16)
where the inequality follows by Lemma 2.7.7 of Vershynin (2018). Note that for any § € R?, we have
(Yo~ Xq B) = (Yo — Xg 8) + X (8~ B). (B.17)
Because |Z1 + Z2|yp, < |Z1]ys + | 2]y, we can bound
1Yo — Xg Bllysip, < Yo — Xg Blvs + 1Xg (8= B)lsip,.- (E.18)

Noting that Yy — X, 8 = (Yo, Xo) " (1, —3) and (8 — B) is a fixed vector conditioned on D,,, by using 1 — Lo
equivalence on (Xo, Yp), we have

1Yo — Xg Bly, < 7lYo = Xg Blz. and |Xg (B~ B)lysip, < 71Xg (B~ B)lsjp, = 718~ Bz, (E.19)

where in the last inequality we used the fact that E[Xo] = 0 and E[X,X, ] = 3. Thus, combining (E.16),
(E.18), and (E.19), for 5 € RP, we have

[6(Yo — Xg B)lyap. < (1Yo = Xg Bl + 118 — Bl2)*.

Taking infimum over 3, we have that for squared loss
[6(Yo, (X)) gD, < 72 nf (1Yo - X Bl + 18— Bls)?,

as desired. This completes the proof of the first inequality in (15). For the second inequality in (15), using
the 19 — Lo equivalence on the vector (Xy, Yp), observe that

E[((Yo, f(X0)) | Da] = E[(Yo — X4 8)* | Dal = Yo = X{ 7,1, - (E.20)
Hence, from (E.16) and (E.20), we have

~ =~ -~ 2
HE(YOa f(XO))”wﬂDn < HYb - XJﬁH?ZJﬂDn _ <(}/05 XO)(L _6)|w2|'Dn> < 7_2

E[0(Yo. J(X0)) | Dul Yo - X4 B2, 10, \ (Yo, Xo)(L,~A)lyfo,

as desired. This completes the proof of the first part.
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Part 2. We now turn to the second part to bound the conditional Lo norm of the square loss. For the
square loss, note that

[6(Yo, F(Xo)I2,p, = El(Yo — f(X0))* | Dal- (E.21)

Using the decomposition (E.17) and triangle inequality with respect to the Ly norm, we have
E[(Yo ~ X§ B)* | Da]'/* < E[(Yo — X7 8)" | Dul'/* + E[X] (8~ B)* | Da]'* (B.22)
Using the Ly — Lo equivalence for (Yy, Xo), we can bound
1Yo = Xq Ble, < 7I¥o = Xq Ble, and | X¢ (8= B)|Lyp, < 71X (8= B)lLap,. (E.23)
Thus, combining (E.21), (E.22), and (E.23), we have for any 8 € RP,
|(Yo, F(Xo) | Lajp, < (7[Yo = X§ Blz, + 7B = Bls)® < 7(|Yo — Xq Blr, + 18— Bls)*.

This completes the proof of first inequality in (16). For the second inequality of (16), note that

2
< T

~

E[((Yo, [(X0) | Da] Yo — F(X0)I3,p,

=~

1600, F (XD o, _ 1Yo = T Koy, <<m,xo)(1,—B>L4mn>2
1Yo, Xo0)(1, =Bl LoD,

This concludes the proof of the second part.

S.1.9 Proof of Proposition 2.17
The proof is similar to that of Proposition 2.16.

Part 1. From the decomposition (E.17) and the triangle inequality on ¢; norm, we have for any 3 € R?,
1Yo — Xg Blly,p, < 1Yo — Xg Blys + 1Xg (B = B)ip,.- (E.24)
Using the 11 — L; equivalence of (X, Yp), note that
[Yo — Xg Bly, < 7lYo = Xg Blz, and  |Xg (8 = B)ly,p, < 7IXg (8= B)ly,p,- (E.25)
Thus, from (E.24) and (E.25), for any 8 € RP, we have
1Yo = Xg Bly,ip, < 7(|Yo = Xg Bl +1X0 (B = B)|z,p,)-

Now taking infimum over [ € RP yields the first inequality of (18). To show the second inequality, observe
that

160, f (X)) lwip _ [Yo = Xg Bluyp,, _ i
E[¢(Yo, f(Xo)) | Da] Yo — Xq Blr,p,
as desired. This finishes the proof.

)

Part 2. The second part follows analogously to the first part by using the Lo — Ly equivalence on (X, Yp).

S.1.10 Proof of Proposition 2.18
We start by writing the loss as

~

€Yo, F(X0)) = Yolog(1 + e~ %) + (1 - Y0)log(1 + X0 )
= KL(Y, (1 +exp(—Xg 3))7H).

Observe that the loss is non-negative since log(1 + ) > 0 for all ¢.
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Upper bounds on ¢, and L; norms. We will first obtain an upper on the loss and consequently on the
11 and Lo norms of the loss. Because Y takes values 0 or 1, we have that

~

(Yo, f(X0)) < max {log(1 + X0 P) log(1 + X7 #)}
< log(1 + elXoTB\)7

t

where the second inequality follows since t — e’ is monotonically increasing in t. Now using the following

bound on log(1 + el*l):
log 2 if eltl <1

log(1 + ell) <
8l ) log(2ell) =log2 + |t| otherwise,

we can upper bound the loss by R R
(Yo, f(X0)) < |Xg B +log 2.
Hence, we can upper bound the v; and Ly norm of the loss as follows:
1€Y0, F(Xo) g 1D, < 108(2) + [Xq Bllyy|p,. (E.26)
(E[£*(Yo, F(X0)) | Da])'/? < log(2) + (E[| X B” | Da])>. (E.27)

Lower bound on expectation. Next we obtain a lower bound on E[¢(Y, fA(XO)) | Dy,]. Setting p(x) =
E[Yy| X = «], it is clear that

E[¢(Yo, f(X0)) | Dn, Xo] = p(Xo) log(1 + exp(—Xq B)) + (1 — p(Xo)) log(1 + exp(Xq ).

Because 0 < ppin < min{p(z),1 — p(z)} for all z, we have

E[((Yo, f(X0)) | Dn] = pumin E[max{log(1 + exp(—XJ 5)), log(1 + exp(XJ 5))} | Du]
= Puin Eflog(1 + exp(|X] 5])) | Da]

> 22 llog(2) + | X7 B | Da] = 22 (log(2) + E|X{ BI), (E:28)

where the second equality follows since ¢ — e’ is monotonically increasing in ¢ € R, and the last inequality
follows from the fact that 1/2 < log(1 + exp(x))/(log(2) + z) < 1 for all = > 0.
Using (E.26) and (E.28), we have

~

[0, F XD, _  1X0 Blysjp, +108(2)  _ 7IX Blr,p, +log(2)
E[(Yo, /(X0)) | Du]  punin(BIX 5| | D +108(2))/2  Puin(T1 Xg B2, +10(2)),2

-1
min*

=27p

This proves the first part of Proposition 2.18. A similar bound holds for the second inequality of Proposi-
tion 2.18 using upper bound from (E.27) and lower bound (E.28). This completes the proof.

S.1.11 Proof of Theorem 2.22

An outline for the proof is provided in Section 2.3. The theorem follows by combining the multiplicative
form of the oracle inequality from Proposition 2.1, along with probabilistic bounds on A™"! from Lemmas 2.9
and 2.10, and the bounds on ratio of conditional ¥; and L; norms, and Lo and L; norms from Proposition 2.16.

S.2 Proofs related to risk monotonization for zero-step procedure

S.2.1 Proof of Theorem 3.4

An outline for the proof is already provided in Section 3.3. For the sake of completeness, we briefly summarize
the main steps below.
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The deterministic additive and multiplicative oracle risk inequalities from Proposition 2.1, along with
probabilistic bounds from Lemmas 2.4, 2.5, 2.9 and 2.10, provide the following bound on the risk of the
zero-step predictor

e [minges, R(fE) + 0,(1)y/log n/nwe if 52 — 0,(1),
R(f*) = {mingeEn R(F6) (1 + 0p(1)\/logn/mie)  if e = Op(1). (E.29)

Depending on the value of M, we now bound the term mingez, R( I ) under the assumptions (DET*) or
(DET).

Case of M =1. Under (DET*), we have from (33),

min R(f¢) = min R(f(D5")) = RS (n; /)1 + 0p(1)). (E-30)

eE, §EE,

Combining (E.30) with (E.29) yields

R(F™) = Rt (n: [)(1+ 0,(1)) + Op(1)y/logn/nie  if 3= = Op(1)
R (n; ) (1 + 0,(1) if fiz = Oy(1) E31)
_ R (n; f) {1 + 0p(1) + «/logn/nte/R(}et(n; f) if o= = 0,(1) .
7 1+ 0,(1) if iz = O,(1).
Thus, under (01) or (02), we have |R(f*) — RISt (n; f)|/R‘}et(n; f) = 0p(1) as desired.
Case of M > 1. Under (DET), we have from (32),
min R(f*) < R (n; F)(1 + 0,(1)). (E.32)

€€En

Now similar to the case of M = 1, combining (E.32) with (E.29), and under (O1) or (02), we have that
(R(f*) — RY"(n; f))4/R%" (n; f) = 0p(1) as claimed. This finishes the proof.

S.2.2 Proof of Lemma 3.8

Our goal is to verify (DETPA-0), i.e., existence of a deterministic profile R(-; f) such that for all non-
stochastic sequences &}, € argming.z R (p,/ng; f) and 1 < j < M,

~

R DE) = R on/ngsi ) o,
R (pp/ngy; f)

as n — o under (PA(y)). Recall here f(-; fo"j), 1 < j < M, is a predictor trained on the dataset Dg“j
of sample size ngx = ng, — & |n”| and feature dimension p,. We will make a series of reductions to verify
(DETPA-0) from the assumptions of Lemma 3.8.

First, note that R(f(~; DE: j)) for 1 < j < M are identically distributed. It thus suffices to pick j = 1,
which we will do below and drop the index for notational brevity. Second, since R(f(; Dy,.)) > 0 for all k,,,
it suffices to show that as n — oo under (PA(v)),

R(]?(,Dfr’:)) — R (p, /ngs; £ 20, where & €argmin R (p,, /ng; .

§€En

More explicitly, that for all € > 0, it suffices to verify that as n — oo under (PA(7)),

P(IR(F(5 D) = R (pu/ney; ) = €) 0, where & € argmin R (p,, /ng; f).

§€Bn
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Now, we will do our final reduction. Fix e > 0. Define a sequence {h, (€)},>1 as follows:

ha(e) i= P(IR(F(5DE)) — R (pp/nes: )] > ).

From the discussion in Section 3.3.1, we know that p,/ne¢» may not necessarily converge as n — co. But
applying Lemma S.6.3 on the sequence {h,(¢)},>1, in order to verify that h,(¢) — 0 as n — oo, it suffices
to show that for any index subsequence {nj}r>1, there exists a further subsequence {n,};>1 such that
b, () > 0 as I — 0. Towards that goal, fix an arbitrary index subsequence {nj}r>1. We will appeal to
Lemma S.6.5 to construct the desired subsequence {ny, };>1 along which we will argue that hy,, — 0 provided
the assumptions of Lemma 3.8 are satisfied. In particular, from Lemma S.6.1, note that since ny,/n — 1 as
n — o0, we have Ilz, (¢) — ¢ for any ¢ € [y, 0] as n — 0. Now applying Lemma S.6.5 on R4°t(; f) and the
grid Z,, guarantees that for any subsequence {py, /n%k }k>1, there exists a subsequence {pnkl /ngv*w, }i=1 such

that as [ — oo,

Pn_ ., 4 e argmin R (C; f). (E.33)
e, ¢ely, 0]

We will now show that h,,, (€) — 0 as { — oo if the profile convergence assumption (DETPAR-0) of Lemma 3.8

is satisfied, i.e., for a dataset Dy, with k,, observations and p,, features, there exists R (; f) such that

R(f(-; Dk,.)) LN Rdet(qb; f) whenever Z—m — ¢ € arg min Rt (¢ f) (E.34)

m Ce[,0]

This follows easily because the profile convergence condition (E.34) implies that as [ — oo,

~ & ~ ~
P ('R(f(~;Dtr ")) — R (¢; f)’ > e) 0 whenever 2% ¢ € argmin R4 (¢; f).
e, ¢ely,]

But since Rt (-; f) is continuous at ¢, and Pu/ngs, = ¢ € argmingepy o RI(¢; ) as | — oo from (E.33)
1
this implies that, as [ — o,

g (‘R(ﬂ-; D)) — R (p, e 'f>\ > ) — h) — 0.

nk”

This concludes the proof.

S.2.3 Proof of Proposition 3.9

In order to verify lower semicontinuity of h, if suffices to show that for any ¢ € R>g, the set {z : h(x) < t} is
closed. Because lim,_,,- h(z) = o and h continuous on [a,b), there exists b_(t) < b such that h(z) >t for
all z > b_(t). Similarly, there exists by (¢) > b such that h(x) >t for all < b (¢). Note that

{z:h(z) <t} ={2:hljap_ @) (@) <t} u{z:h|p,@),q(T) <t}

Because h is continuous on [a,b_(t)] and [b4(¢), c], it is also lower semicontinuous on these intervals, and
hence the corresponding level sets are closed. Because the intersection of two closed sets is closed, the
statement follows.

S.2.4 Proof of Proposition 3.10

The proof builds on similar idea as that in the proof of Lemma S.6.7 and employs a proof by contradiction.
However, since the random functions in this case (which are conditional prediction risks) are not simply
indexed by n (but also by other properties of the data distributions), we will need to do a bit more work.
We wish to show that RI¢t(-; f) is continuous on Z € (0,0). We will first show that Rt(.; f) is Q-
continuous (see Definition S.6.8) on Z and use Lemma S.6.9 to lift Q-continuity to R-continuity. Towards
showing Q-continuity, for the sake of contradiction, suppose RIt(-; fN) is Q-discontinuous at some point
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¢w € Z. This implies that there exists a sequence {¢,},>1 in Q¢ such that ¢, — ¢4, but for some € > 0
and all » > 1,

R(y3 [) ¢ [R (003 [) — 26, R (605 f) + 2e]. (E.35)
(Note that R (¢,; ]7) + Rdet(qboo;f) as ¢ — dg.) The proof strategy is now to construct a sequence
of datasets {D}, }m>1 whose aspects ratios p,,/kn, converge to ¢4, but the conditional prediction risks
R(f(; Dy, ) of predictors f(-;Dj, ) trained on these datasets do not converge to R (¢ f), thereby

supplying a contradiction to the hypothesis of continuous convergence of R(f( Dy ) to R (¢pop; f) We
will construct such a sequence of datasets below. '

For every r = 1, construct a sequence of datasets {D;f;}mzl with k,, observations and p,, = ¢;k,, features.
(Since ¢, € Q=q, the resulting p,, is a positive integer.) See Figure S.1 for a visual illustration. For every
r = 1, from the assumption of Proposition 3.10, we have that

R(f( DY) & R (¢,; f) (E.36)

as K, pm — 00 because py,/kmym — ¢, as m — 0. Now, fix p € (0,1). For r = 1, the convergence in (E.36)
guarantees that there exists an integer m; > 1 such that the event

Oy = (IR(FDY ) = R* (60 ) < (E.37)
has probability at least p. In addition, on the event €2,,,, by the triangle inequality we have that

[R(F(5 DL ) = RO (b3 )] = [R© (015 ) = R (oo )] = [R(F(5 DR ) = RN )] > e, (E.38)
where the second inequality follows by using (E.35) and (E.37). Next, for > 2, let m, > m,_1 be an integer
such that the event

Qpn, = {|R(F(: DL ) = R* (i ) < € (E.39)

has probability at least p. Such sequence of integers {m,},>2 and the associated events {2, },>2 indeed
exist as a consequence of the convergence in (E.36) for r = 2. On each Q,,,

~ ~

[R(F(5 DY ) = B (d0i )| > €
by similar reasoning as that for (E.38) using (E.35) and (E.39) for r > 2. Moreover, note that since m, > m,
m, — 00 as T — 0.

Consider now a sequence of datasets {D}, }m>1 such that:

1. The first m; datasets are {Dg}n ™1 that have k,, number of observations and p,, = ¢1k,, number of

m=1
features for m = 1,...,my.
2. The next mqo — m datasets are {D,fi ﬁ"’:ml 41 that have k,, number of observations and p,, = ¢2kn,
number of features for m =my +1,...,mo.
3. The next ms — mqy datasets are {D,f3 e .41 that have k,, number of observations and p,, = ¢3k,
number of features for m = msy + 1,...,ms3.
4. Andsoon ...

We will argue now that the sequence of datasets {Dj, },,>1 works for our promised contradiction. Observe
that in the construction above the aspect ratios p,,/kny, — ¢o because ¢, — ¢o. However, we have that for
all r > 1,

P(|R(f(:: D}, ) — R (¢os )] > €) = P(R(f( Dy,,,)) — R (601 )| > €) > p.

Therefore, there exists an € > 0 for which there is no M > 1 such that for m > M,

P(IR(f(+;D},)) — R (b3 )] > €) < p/2.
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Hence, we get the desired contraction that

R(f(D,)) P R (¢, f)

as Kk, pm — 0 and py, /ky — ¢o. This completes the proof.

It is worth pointing out that the proof above bears similarity to the proof of Lemma S.6.9. It is possible
to combine the two and not have to go through the route of Q-continuity. We, however, find it easier to
break them so that the main ideas are easier to digest even though it leads to some repetition of overall proof
strategies.

o o o Di; DL
Djy  Di D Dy Dy
Dy DfE DP Dy Dy
Dy Dp o DR Dy 12
Dy D DY 2/ 2/
Dy D D Dy Dy

1 ®2 o3 Or oo
R, f) ¢ [RIY(Docs f) — 26, RI(¢ocs f) + 2]

Vr, P(R(f(5DEr ) = R b,5 )l <€) > p
R(f(; D;?m)) £ R (¢oo; f) (contradiction)

Figure S.1: Tllustration of construction of grid of datasets used in the proof of Proposition 3.10. (Side note:
as can be seen from the figure, the argument bears similarity to the standard diagonalization argument.)

S.2.5 Proof of Theorem 3.11
We will split the proof depending on the value of M.

Case of M = 1. Consider first the case when M = 1. In this case, for every £ € =, ff = ff (and thus,
f* = f%), which we denote by f* for simplicity of notation. To bound the desired difference, we break it
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into three terms:

(™)~ min m(7:0)) = (R - pin R(P)

¢=p/n !
N R P73 _ . Rdet (N; p")) E.40
(rgrgél (f*) P / ne)) . (40
N (min Rt (f’ p”) — min Rdet(f;<)> :
EeE 73 ¢zp/n +

This inequality follows from the fact that (a +b+ ¢)4 < (a)+ + (b)+ + (¢)4 for any a,b,c € R. We show
below that each of the three terms asymptotically vanish in probability as n — oo with p/n < T.

Term 1: Because |Z| < n'™" < n, and 6= = 0,(+/n”/log(n)), following Remark 2.8, under the assumptions
of Lemma 2.4 or Lemma 2.5, we have

~

R(f*¥) — min R(fﬁ)‘ = 0,(1), (E.41)

EeE

which proves that the first term on the right hand side of (E.40) converges to zero in probability.
Term 2: To deal with the second term on the right hand side of (E.40), define

& € argmin Rdet (f, pn> .

§eE LS

Because RI(-;+) is a non-stochastic function, {£!},>1 is a non-stochastic sequence and further, trivially,
& e Efor all n > 1. Observe now that

min R(f*) < R(f*)

EeE
. N N (E.42)
= R(ffn) — Rdet (f; pn) + min Rdet (f; p”) .
ng; EeE ng
Hence, assumption (DETPA-0) implies that
min R(f¢) — min R ( f; Pn = 0,(1), (E.43)
¢e= (eE ne +

as n — oo.
Term 3: Finally, because the risk profile ¢ — Rdet(f; () is assumed to be continuous at ¢*, Lemma S.6.1
with the grid = yields

min R4 (f; p”) — inf RI(F; g)‘ = o(1). (E.44)

£eE ne) (v
Combining (E.41), (E.43), and (E.44), we have the desired result that

2,0.

'R(f“) ~min R ()

=y

Case of M > 1. Consider now the case when M > 1. Note that (z + y)+ < (x)+ + (y)+ since max{z, 0} is
a convex function of z. Thus, we can break and bound the desired difference as:

¢=p/n

() - min (o)) )

(eE

~ . ~ 1 M
< (R(f“) - minR(ﬁ)) " <minR<ff> ~min - Y R(ff))
+ +



(Ignelfl Z R fE mln Rdet (f5 pz>>

N (min Riet <J?, p") — min Rdet(ﬁ C)) :
ge= L3 +

=y

+

As before, we show below that each of these terms are asymptotically vanishing in probability.

Term 1: Note that 6z < o= (from the triangle inequality for Lo and vy norms). Thus, as argued above
for the case of m = 1, the first term is 0,(1).

Term 2: For the second term, observe that, for all £ € =,

-o(i 1)

Therefore, we have

and the second term is 0.
Term 3: For the third term, as before, note that

M
(1521?23 mdeet (f€ pg)) < (AZZR(E”)_Rdet <f;5;>) 7
° +

with the right hand side being o0,(1) because of (DETPA-0).

Term 4: Analogous to the argument for the m = 1 case, the fourth term is o(1).

Combined together, we have the final result. This completes the proof. For an overview, a schematic for
the proof of Theorem 3.11 is provided in Figure S.2.

R(F*) min R(f) R(fE)

R (p,, /ng:; f)

min RIS
CEly,00]

Figure S.2: Schematic of the proof of Theorem 3.11.

S.3 Proofs related to deterministic profile verification for zero-step
procedure

In this section, we verify the assumption (DETPAR-0) for the MN2LS and MNI1LS prediction procedures.
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S.3.1 Proof of Proposition 3.14

Recall Dy, is a dataset with k,,, observations and p,, features. Theorem 3 of Hastie et al. (2019) assumes
the following distributional assumptions on the dataset Dy, , .

(£2A1)

(£2A2)

((2A3)
((2A4)
((2A5)

The observations (X;,Y;), 1 < i < k;,, are sampled i.i.d. from the model Y¥; = XZTBO + ¢; for some
(deterministic) unknown signal vector 5y € RP= and (random) unobserved error &;, assumed to be
independent of X; € RP™, with mean 0, variance 02, and bounded moment of order 4 + § for some
6> 0.

The feature vector X;, 1 < i < ky,, decomposes as X; = LY2Z,, where ¥ € RPm*Pm ig a positive
semidefinite (covariance) matrix and Z; € RP»*1 is a random vector containing i.i.d. entries with mean
0, variance 1, and bounded moment of order 4 + ¢ for some § > 0.

The norm of the signal vector ||3o||2 is uniformly bounded in p, and lim, o |Bol3 = p* < 0.

There exist real numbers ryin and rmax with 0 < rpin < rmax < 00 such that ryinly, < X < rmaxdp,, -

Let ¥ = WRW denote the eigenvalue decomposition of the covariance matrix ¥, where R € RPm*Pm
is a diagonal matrix containing eigenvalues (in non-increasing order) r > ry > --- = r, > 0, and
W e RPm>Pm ig an orthonormal matrix containing the associated eigenvectors wy, ws, ..., wp,, € RP™.
Let Hp, denote the empirical spectral distribution of ¥ (supposed on R~ () whose value at any r € R is
given by

1 Pm
Hpm (T) = Z ]]-{riér}'
Pm 3
Let Gp,, denote a certain distribution (supported on R~q) that encodes the components of the signal

vector By in the eigenbasis of ¥ via the distribution of (squared) projection of Sy along the eigenvectors
wj,1 < j < pp, whose value any r € R is given by

2 Z(B(—)rwz)Z ]l{mér}'

G -
pn (1) = 1508 &

Assume there exist fixed distributions H and G (supported on R~¢) such that H,, 4 H and Gy, 4 a
as pm, — 0.

Under assumptions (¢/2A1)—(¢3A5), we will verify that, for the MN2LS base prediction procedure fmng,
there exists a deterministic risk approximation R (-; fine) : (0,00] — [0, 00] that satisfy the two conditions

stated in Proposition 3.14. In particular, we will show that the function R4t(-; fmng) defined below satisfies
the required conditions:

01—(;5 if p€(0,1)
o) ifp=1
2 ~ 0. r
B ) = | P 0000 | (s a6 (.45)
2 ( s~ r? e
‘o (m(o,gz))f T + 1) if 6 — (1,)
pQJTdG(T)+U2 if ¢ = oo,
where the scalars v(0; ¢), V(0; ¢), and ¥4(0; @), for ¢ € (1,0), are defined as follows:
e v(0; ¢) is the unique solution to the fixed-point equation:

1 v(0; P)r
¢ J oy (40
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e (0; ¢) is defined through v(0; ¢) by the equation:

NN G SN SN
"’(O’@‘(v(ow o] T o gme )) ’ (E.47)

e U4(0; ¢) is defined through v(0; ¢) and ¥(0; ¢) by the equation:
2
Ty(0:6) = 50:0)6 | ooz L) (B.45)

We will verify the two conditions of Proposition 3.14 below.

The limiting risk for the MN2LS predictor provided in (E.45), although in a different notation, matches
the one obtained in Theorem 3 of Hastie et al. (2019). We believe our notation makes the subsequent analysis
for the one-step procedure easy to follow for the reader. It is worth mentioning, however, that Hastie et al.
(2019) only explicitly consider ¢ € (0,1) U (1,00). We extend the analysis to show that the risk continuously
diverges to o0 as ¢ — 1 and also continuously converges to the null risk as ¢ — oo0. In addition, as mentioned
in Remark 3.16, we analyze the prediction risk conditioned on both (X,Y’) as opposed to only on X as
done in Hastie et al. (2019). Furthermore, we also establish continuity properties of the deterministic risk
approximation in the aspect ratio that is needed for our analysis.

Condition 1: Continuous convergence of conditional risk over ¢ € (0,1) u (1, 0].

Let X € RFm*Pm denote the design matrix and Y € R¥» denote the response vector associated with the
dataset Dy,,. Let € € R*m denote the error vector containing errors ¢;, 1 < ¢ < k,;,. Write the data model
from assumption (/2A1) as Y = X "3y + €, and the MN2LS estimator (20) as

Ban2(Diy) = (XX Jk) XY [hoy. (E.49)

The associated predictor funa(-; Dy, ) is given by (22). Recall the prediction risk R ny(fmnz(-; Dy,.)) (where

we use the subscripts X, Y to explicitly indicate the dependence of R(meQ('; Dk,,)) on the training data
(X,Y)) under the squared error loss is given by

Rx.y (fum2(Dr,)) = E[(Yo — frn2(Xo03 Di,))? | X, Y], (E.50)

where (X, Yp) is sampled independently from the same distribution as the training data (X,Y").
Our goal is to show that as ky,,pm — 0, if pp/km — ¢ € (0,1) U (1,0], Rx v (funm2(:; D)) —=>
RI*(; fun2). The proof follows by combining Propositions S.3.1 to S.3.3. Specifically:

1. Propositions S.3.1 and S.3.2 combined together imply that Rx,y(fmﬂ(qum)) 22, Rt(g; fmng) as
Pms km — 00 and pm/km —>¢€ (07 1) Y (1700)

2. Proposition S.3.3 imply that Rx)y(fmng(';pkm)) 2%, Rt (op; fmng) as P, km — 0 and pp,/ky, — 0.

Below we prove Propositions S.3.1 to S.3.3. R

In preparation for the statements to follow, denote by ¥ := X T X /k,,, the sample covariance matrix. Let
the singular value decomposition of X /v/k,, be X /vk,, = USVT, where U € RFn>*km and V e RPm>*Pm
are orthonormal matrices, and S € RF»*? is a diagonal matrix containing singular values in non-increasing
order s1 =89 = ....

The proposition below provides conditional convergence for the prediction risk (E.50) when py,/kyn — ¢ €
(0,1) U (1,00) as P, km — 0.

Proposition S.3.1 (Conditional convergence of squared prediction risk of MN2LS predictor). Suppose
assumptions (UoA1)—(€2A4) hold. Then, as kyy,pm — 0, if pm/km — ¢ € (0,1) U (1,0), then

Rx.y (fun2(Di,)) = Bg (I, — SIE)R(1,, — S18)6, — 0 te[E18] k- 0% 25 0. (E.51)
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Proof. Under assumption (£2A1), the squared prediction risk (E.50) decomposes into
RX,Y(fan('; Dy,,)) = (5mn2(ka) - BO)TZ(Ean(Dk,n) — Bo) + 0. (E.52)
Similarly, under assumption (¢3A1), the estimator (E.49) decomposes into
B (D) = (X T X k) X T X [k Bo + (X T X [kin) X T/l
Consequently, the difference between the estimator and the true parameter decomposes as
B2 (D) = Bo = {(X T X k) X T X Jk — I, B0 + (X T X [born) X Te/kern. (E.53)

Substituting (E.53) into (E.52), we can split the first term on the right hand side of (E.52) into three
component terms:

(Bun2(Dr,.) = Bo) "E(Bun2(Dr,,) — o) = Bo + Vy + Co,
where the component terms are given by:

By = By {(X T X Jkm)' X T X Jliry — Iy, }2{(X T X /) X T X [k, — 1, } Bo
= BOT(Ipm - 2Aﬁf})z(jpm - iTi)BOa

Co = By {(X "X /ky)' X T X [k, — I, } (X T X /) X Te /Ky,
— —By (I, — S'B)SST X Te/k,,
Vo=¢e"X/kn(XT X /ky)"2(XT X /)T X Te/kpp,

e (XSS XT ke kim.

To finish the proof, we will show concentration of the terms Cy and Vj below.
Term Cy: We will show that Cy =2 0 as ky,, prm — 00 such that p,,/k, — ¢ € (0,1) U (1,0). Note that
IXI8(1,,, — S1)80(2/km = B4 (I, — SIS XT XN, — S15)80/knm
<[Bol311(Ly,, — STE)TBIEVIN(,,, — BT5)op
< [Bol3l - rimax - 12 lop, (E.54)

where in the last inequality (E.54), we used the fact that |1, — ﬁTﬁﬂop < 1, |Z]op € Tmax, and that
SIESt = EA]T, along with the submultiplicativity of the operator norm. Now, note that lim inf min; <<, s7 >
Tmin(1—+/9)? almost surely from Bai and Silverstein (2010) for ¢ € (0,1) U (1, 0). Therefore, lim sup ”iTHOp <
C for some constant C' < 00 almost surely. Applying Lemma S.8.5, we thus have that Co 2250.
Term Vy: We will show that Vo —tr[S+X]/k,, =5 0 as kyy,, P — 00 such that py, /k, — ¢ € (0,1)u(1, ).
Observe that A R R
IXSISE X llop < T |Slop 112 (E.55)

Now, note that limsup |2 op < limsup maxi<i<p s < Fmax(1 + v/@)2, almost surely for ¢ € (0,1) U (1, 0)
from Bai and Silverstein (2010). In addition, as argued above, Hf]THOP < C almost surely for some constant
C < . Thus, using Lemma S.8.6, it follows that Vi — o tr[Xf]*Ef)*XT]/kfn 2%, 0. Finally, since
tr[XSTESTXT/E2, = tr[STESTS]/ky, = tr[ST5]/kp, we obtain that Vy — o2 tr[S15] /kp, 22 0.

O

The next proposition provides deterministic limits of the conditional risk functionals in Proposition S.3.1
when pp, /kym — ¢ € (0,1) U (1,00) as kpy, pm — 0.

Proposition S.3.2 (Limits of conditional risk functionals over ¢ €

(0,1) U (1,0)). Suppose assumptions
(L2A2)—~(L3AB) hold. Then, as kpy,pm — ©, and ppm/km — ¢ € (0,1) U (

1,0), the following holds:
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e Bias functional:

0 if p€(0,1)
< 1§ R SIAS s
Bo (Ip,, — Z12)(1,,, — 286, T _A4GWr) ifde(1,0),

e Variance functional:

if € (0,1)
o2 tr[ B8] Ky 22 )

2 1500, r
o d)’U(O, ¢)J (1 T ’U(O;qb)’l")2
where v(0; ), V(0;¢), and U4(0; @) are as defined in (E.46), (E.47), and (E.48), respectively.

Proof. We will consider the bias and functionals separately below.

dH(r) if ¢ € (1,0),

Bias functional. Consider first the bias functional 38 (I,,, ETE)E(I — EAJTZA])BO Since Tmin > 0,
the smallest eigenvalue of St is almost surely positive, and the matrix ¥ is almost surely invertible as
km, pm — 0 and py,/kym — ¢ € (0,1). Therefore, in this case, SIS = I, almost surely, and 3] (I, —
ZAJTEA])Z(IPM — f]Tfl)ﬁo 2%, 0. For the case when k,,,p, — o and pm/km — ¢ € (1,0), from the second
part of Corollary S.6.12 by taking f(X) = 3, we have

(Ip,, — SIR(T,, — B18) = (14 5,(0;0)) (0(0; )% + L, )" S(0(0; 4T + 1, )7,

where v(0; ¢) and 9,4(0) are as defined by (E.46) and (E.48), respectively. Note that from Lemma S.6.13 (1)
v(0; ¢) is bounded for ¢ € (1,00), and the function r — /(1 + rv(0; ¢))? is continuous. Hence, under (/2A3)
and (¢3A5), using Lemma S.7.2 (4), we have

Pm

BI(L,, — SN, —S18)8 25 lim > (1+7, i (8Tw)?
O( ) ( ) 0 pm*’@;( + ( ))(14‘7"1 ( )) ( 0 )
= p5§w 1Bo]3(1 + 3, (0 J 5 o E dG,,, (1)
— (1 +7,(0; ¢))J(1+m( 572 460,

where in the last line we used the fact that G, and G have compact supports, and lim,, . | B0[3 = p*.
This completes the proof of the first part.

Variance functional. Consider next the variance functional tr[EAITE] Jkm. As kpy, pr — 0 and pp, /Ky —
¢pe(0,1), 3} is almost surely invertible as explained above. In this case, tr[f]TE]/kmftr[(ZTZ/km)*l]/km 22
0, where Z € RF»*Pm is matrix with rows Z;, 1 < i < ky,. From the proof of Proposition 2 of Hastie et al.
(2019), this limit is given by ¢/(1 — ¢). In the case when k., p, — © and p,/k, — ¢ € (1,0), from
Corollary S.6.12, we have
ST = 5(0;¢) (0(0; )T + 1,) 252,

Along the same lines as above, from Lemma S.6.13 (1), v(0; ¢) is bounded for ¢ € (1,0), and the the function
r— 12/(1 4 v(0; $)r)? is continuous. Thus, under (¢3A5), using Lemma S.7.2 (4), we have

Pm 2
2 St a.s. . Dm 1 o . T
tr| XY/ k,, —> 1 — (0 —_
o [ ZE b e km pmv( 9) 1—21 (1 +v(0;¢)r;)?
2

Il
-
St
L
&

—

This completes the proof of the second part. O
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We remark that Corollary S.6.12 used in the proof of Proposition S.3.2 assumes existence of moments of
order 8 + « for some « > 0 on the entries of Z;, 1 < i < k,,,, mentioned in assumption (¢3A1). As done in the
proof of Theorem 6 of Hastie et al. (2019) (in Appendix A.1.4 therein), this can be relaxed to only requiring
existence of moments of order 4 + . This being a simple truncation argument, we omit the details and refer
the readers to Hastie et al. (2019).

The proposition below covers the case when py,/ky, — 00 as pm, ky, — 0.

Proposition S.3.3 (Limits of risk and deterministic risk approximation as ¢ — o). Suppose assumptions
(l2A1)—~(L2AB) hold. Then, as kpy,pm — © and pp/km — 0, we have

R,y (fun2 (i D)) — By £B0 — 0% =5 0.
In addition,

lim Rdet(.; fmn2) = limoo BoX By + 02 = p? frdG(r) + o
Pm—

$—0

Proof. From (E.52), note that

Rx v (fum2(:1 Dr,,)) — (Bol% + 02) = | Bun2 (D, )% — 2Bmn2(Dr,,) 'S 59
< Tr;iln”erﬂH% + 2Hﬁmn2(ka)H2HEBOH2
< Tr;ilnHﬂan (,ka)H% + 2TmaxTH5mn2 (ka)HQy

where the first inequality follows by using the lower bound 7y, on the smallest eigenvalue of X, and the
Cauchy-Schwarz inequality, and the second inequality follows by using the upper bound rpax on the largest
eigenvalue of X. Thus, for the first part it suffices to show that |Bmn2]2 — 0 as kn,,p — 0 and p/k,, — 0.
Towards that end, note that

|Bunz (Dr, )2 = (X "X /kn) XY koo

< (XX k) X/ Ko lop | Y /A R |2

S CH(XTX/km)TX/\/ kmlopV/ p? + 02,
where the last inequality holds eventually almost surely since (¢2A1) and (¢3A3) imply that the entries of Y have
bounded 4-th moment, and thus from the strong law of large numbers, |Y /v/k,]||2 is eventually almost surely
bounded above by y/E[Y2] = 4/p2 + 02. Observe that operator norm of the matrix (X " X /km )" X /v/ky, is
upper bounded by the inverse of the smallest non-zero singular value sy, of X. As ky,, p,, — 00 such that
D/ km — 00, Smin — 00 almost surely (e.g., from results in Bloemendal et al. (2016)) and therefore, |||z — 0

almost surely. This completes the proof of first part.
Now, from Lemma S.6.13 (1) limy_, v(0;¢) = 0, and from Lemma S.6.13 (4) limy—,o 4(0; ¢) = 0. Thus,

lim p2(1+7,0:0) | g7y AG0) = [ raG)

On the other hand, from Lemma S.6.13 (4),

. 2 ~rA. r _
Jm, 050 | gy 4 =

This proves the second part, and finishes the proof. O

Condition 2: Left and right limits of deterministic risk approximation as ¢ — 1.
Next we verify that limg_,; R (¢; famz) = o0. First note that limg_, - RI%(g; frn2) = limy - 1/(1—¢) =
oo. Now, from Lemma S.6.13 (4), observe that
r2
li 0(0; ——————dH(r) = .
i, 670:0) | G ) =

Since limg_,;- R%*(¢) = limy_,,+ R%*(¢) = o0, we have that lim,_,1 R*(¢) = o0, as claimed. This finishes
the verification.
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S.3.2 Proof of Proposition 3.15

Recall that Dy, is a dataset with k,, observations and p,, features. Li and Wei (2021) makes the following
distributional assumptions on the dataset Dy, . We adapt the scalings of Li and Wei (2021) to match the
current paper for easy comparisons.

((1A1) (X;,Y;) for 1 <i < k,, are i.i.d. observations from the model: Y = X Ty + ¢ for some fixed unknown

vector By € RP»*! and unobserved error € where ¢; "N (0,02) independent of X.

(¢1A2) Each design vector is independently drawn by X; N N(0,1,).
(¢1A3) The signal vector 3y is random such that the scaled coordinates {,/pm, - 58 Pm  converge weakly to a
probability measure Pg, where E[©%] < c0 and P(© # 0) > 0.

Under these assumptions, Theorem 2 of Li and Wei (2021) demonstrates that the prediction risk of the
MN1LS estimator obeys ¢

lim R(fani(5Dr,)) = 72, (E.56)
pinse

almost surely with respect to X and Y. Here, (7%, @*) stands for the unique solution to the following system
of equations

™ =0>+E [(n(@ +7Z;at) — @)2] , (E.57a)

o' =P(|© + 72| > ar), (E.57b)

where © ~ Pg, and Z ~ N(0,1) and is independent of ©. Here, 7(-;b) is the soft-thresholding function at
level b > 0 that maps x € R to

n(a;b) = (2| - b) sgn(@).
The existence and uniqueness of the equation set (E.57) is established in Li and Wei (2021). To facilitate
accurate characterization of 7* as a function of ¢, we make assumption on how the ground true is generated
as follows.

(¢1A4) Suppose that each coordinate of 8y = [B{]1<i<p is identically and independently drawn as follows

ﬁé bid- GIPM/\/pim + (1 - E)P(), (E58)

where P, corresponds to the Dirac measure at point ¢ € R, and M > 0 is some given scalar that
determines the magnitude of a non-zero entry.

Under the above four assumptions, it is proved in Lemma 2 (p. 50) of Li and Wei (2021) that
li *2(p) = o E.59
Jm, 77%(g) = 0, (E.59)

and Lemma 1 (p. 51) of Li and Wei (2021) that

¢hm 72(¢) = 0% + E|Bo|32 = 0 + eM>.
— 00
We remark that the above results are stated slight differently therein due to a different scaling, where a global
1/v/km, is applied to the design matrix and ,/p,, is applied to the ground truth parameter Sy. Here, we adapt
a global scaling to allow for convenient comparisons with the MN2LS estimator.

From the discussion above, it is therefore clear that, one can set

021i¢ if ¢ € (0,1)
Rdet(.;fmnl) _Jwo ifo=1 (E.60)
2 if ¢ € (1,00)

ol +eM? ifp=0

61i and Wei (2021) assumes p/n = ¢ for simplicity, but the proof goes through literatim as p/n — ¢.
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which satisfies the conditions of Proposition 3.15.
In order to see this, first recognizing that the convergence (E.56) holds almost surely, the first condition
of Proposition 3.15 is satisfied naturally. Additionally, as established in Section S.3.1 and in (E.59), one has

lier Rdet((b; fmnl) =00, and lim Rdet(¢; fmnl) = 0, (E61)
¢—1 ¢—1-

which validates the second condition of Proposition 3.15. Putting everything together completes the proof of
Proposition 3.15.

S.4 Proofs related to risk monotonization for one-step procedure

S.4.1 Proof of Lemma 4.1

The idea of the proof is similar to proof of Lemma 3.8. We wish to verify that there exists a deterministic
approximation R4t : R x R — R to the conditional prediction risk of the predictor f (~;Dfr1‘”’] ,fo’"’J ),
1 < j < M that satisfy

R(F( D7 pEEndyy — Riet (pn D f)’ = 0, (1) R (pn P ;f>

) )
nier, M245, ey, M2,

as n — oo under (PA(y)), where (£7 ,,,€5,,) are indices such that

* * . P D o
(51,n7£2,n) € argmin Rdet (n’ n 7f> .
(61,€2)€En n1¢, N2.¢,

Following the arguments in the proof of Lemma 3.8, using the lower bound on R(f(+; thrl’"‘j,’fo‘"’j)) and
identical distribution across 7, it suffices to show that for all € > 0,
> e> —0

g

as n — oo under (PA(v)). Note that here we have dropped the superscript j for brevity. Now we will show

that (DETPAR-1) along with the assumed continuity behavior of RI(, ; f) implies desired conclusion. Fix
e > 0 and define a sequence h,,(€) as follows:
= 6) .

~

(3 139 e DPn Dn s
R(f(:; D™, Dy ))_Rdt ( »f)

)
e, M28

€, P Pn 3
R(f(5 Dy, D)) — R < ;f>

hn(e) =P (

We want to show that h,(e) — o0 as n — o under (PA(y)). We first note that using Lemma S.6.3, it
suffices to show that for an arbitrary subsequence {n}r>1, there exists further subsequence {ng, };>1 such
that hy,, — 0asn — o0. Also, note that since ny,/n — 1, the grid =, satisfies the space-filling property from
Lemma S.6.2 that Iz, (1, () — (€1, ) for any (i, C2) that satisfy (7' + ¢ <y~ ! and the set of (¢, (o)
that satisfy this condition is compact. Now, we apply Lemma S.6.5 on the function RI®t(-, -; f) and the grid
En. Let sequence {x,},>1 be such that z,, := (pn/nl)gin,pn/ng,ggm) for n > 1. Lemma S.6.5 guarantees that
for any arbitrary subsequence {x,, }x>1, there exists a further subsequence {:zznkl }i=1 such that

b
Nier, M2e,

Tny, = (¢1,¢2) €  argmin RI(Cy, Cos f). (E.62)
GG syt

We will now show that h,, — 0 as!— oo if assumption (DETPAR-1) Lemma 4.1 is satisfied. It is easy to
see that the assumption implies

s gg,n

R(F( D5 DE)) B R (), s )
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* *
as n, Pn, &7 1y €3 ,, — 00, whenever

(Pn/nagr, Pn/n2es ) — (¢1,¢2) €  argmin RI((1, Gos f).
GGyt

But using the continuity of RIet(-, ; f) on the set arg min<;1+<;1<,y,1 RIY((y, Co; f) and the fact that the

sequence {¥y, }i>1 converges to a point in this minimizing set from (E.62), it follows that that h,, — 0 as
I — o0 as desired. This finishes the proof.

S.4.2 Proof of Proposition 4.2

Fix t < co. We will verify that the set Cy := {x : h(z) < ¢} is closed. Note that Cy € M\C because h(z) < o
for z € Cy. Now consider any converging sequence {x, },>1 in Cy with limit point p. We will argue that p € C;.
First note that the function h is continuous over C; because Cy € M\C. Note that p ¢ C, because if it does
then h(xz,) — o0 as n — 0o, which in turn implies that for infinitely many k > 1, h(xg) > ¢, contradicting
xn € Cy for all n > 1. Hence, p e M\C and z,, € M\C for all n > 1. Therefore, continuity of h on M\C' yields
h(zx,) — h(p). Moreover, h(z,) < t implies that lim, o h(z,) < ¢, which in turn implies that h(p) < t.
Hence p € C, finishing the proof.

S.4.3 Proof of Proposition 4.3

The proof uses a similar contradiction strategy employed in the proof of Proposition 3.10. We only sketch the
proof, and omit the details.

Suppose RIt(, -; f) is discontinuous at some point (¢1.0, P2,00). This gives us a sequence {(¢1.r, 2.r)}r=1
such that for some € > 0 and all r > 1,

Ry, bors ) ¢ [RI (1,00, b2.0; ) — 26, R (D1 o0y do.o0; F) + 2€], (E.63)

while (¢1,,, p2.) = (91,00, P2,00) as 7 — 0. From the continuous convergence hypothesis, for each r > 1, one

can then construct a sequence of datasets {(D,fl1 , D;ﬁ;)}mgl with p,, features and (k1 ,,, k2, ) Observations

for which N N
R(f( DR D2r ) 2 R (10, 0.3 ) (E.64)

as Pm, k1,m, k2,m — © and (pm/k1,m,Pm/k2,m) — (91,7, ¢2,+). From (E.63) and (E.64), one can obtain a
sequence of increasing integers {m, },>1 such that for each r» > 1, with probability 0 < p < 1,

|R(F(: DR D27 )) = RN oo, G2.005 )| > €

This then lets us construct a sequence of datasets {(D;Cl m,D§€2 m)}m>1 similar as done in the proof of
Proposition 3.10 for which

R(f( Dy, . Di, ) P R (61,00, 62,501 f)

as P, k1.m, k2.m — 00 and (Dm/k1,m, Pm/k2,m) = ($1,00, 2,00). This supplies the required contradiction to
the continuous convergence hypothesis.

S.4.4 Proof of Theorem 4.4
The idea of the proof is similar to that of the proof of Theorem 3.11. We will break the proof in two cases.

Case of M = 1. Consider first the case when m = 1. In this case, fc" = ff, which we denote by ]?5 for
notational simplicity. Bound the desired difference as

\R(f“)— min  RCNFGLG)

1/¢14+1/C2<n/p
< R Fev — min R 3 inR 3 s Rdet ra Pn Pn
‘ (f) min (f )‘Jr min (f*) min fyn_&[nuJ,&WJ
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+

min R4t <~; Pn , Pn ) - min Rdet N, ,
ges f n—§1[nVJ fg[’ﬂ”J 1/G1+1/¢i<n/p (f G CQ)

We show below that each of the terms asymptotically go to zero. Observe that

[n/ln"]—2]
== D @-1<n’
&1=2
Since 0z = o= = op(1/n?/log(n)), under the setting of Lemma 2.4 or Lemma 2.5, Remark 2.8 hold so that

The assumption on the asymptotic risk profile (DETPA-1) leads to

. TEN . det [ 7. Pn Pn _
IggélR(f ) Ig_lelélR (fa n— fl[nUJ ) €2anJ)’ 0;0(1)'

Since the risk profile R4t ( f ; (1, (o) is assumed be continuous at its minimizer, applying Lemma S.6.2 we get

min R (f, Pn Pn RdCt(f? C1,C2)-

, — min
ge= n—&|n¥] &ln"J) 1/¢i+1/¢asn/p

Combining the above three convergences, we have the desired conclusion.

Case of M > 1. When m > 1, we bound the desired difference as

R revy . Rdet ~7 ,
( )= e n B UG Cz))+

M
< (R(fc") — min R(]?f)) + (min R(]?g) — % Z min R(ff))
+ +

feE IES)

M
+ (1 minR(J?jE) — min R <f£§ Po Do ))
+

M e ik n- Gl Gl

+ ( min R <~; Pn ) Pn > - min R (fr ¢y, )
(seE / n—E&inv] &Anv] ) a1/ (f1,2) N

As before, we show below that each of the terms asymptotically vanish. Noting that 6= < o=, application
of Remark 2.8 shows that the first term is 0,(1). The second term is 0 exactly as argued in the proof of
Theorem 3.11. The third term is 0,(1) by noting that (DETPA-1) holds for all j = 1,...,m. Finally, the
fourth term is 0 as argued for the case of m = 1.

S.5 Proofs related to deterministic profile verification for one-step
procedure

In this section, we verify the assumption (DETPAR-1) for the one-step procedure, where the base prediction
procedure is linear, under some regularity conditions. We also specifically consider the cases of MN2LS and
MNI1LS base prediction procedures.

S.5.1 Predictor simplifications and risk decompositions

In this section, we first provide preparatory lemmas that will be useful in the proofs of Lemma 4.8 and
Corollary 4.9.
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Let X, € RFt.m*Pm and Y; € RF1m denote the feature matrix and response vector corresponding to the
first split dataset Dy, .. Similarly, let X5 € RF2m*Pm and Y, € RF2m denote the feature matrix and response
vector corresponding to the second split dataset Dy, ,,.

The following lemma gives an alternative representation for the ingredient one-step predictor assuming
that the base prediction procedure is linear.

Lemma S.5.1 (Alternate representation for the ingredient one-step predictor). Suppose the base prediction
procedure f is linear such that f(x; Dy, .,,) = zTE(DkLm) for some estimator B(Dkl,m) trained on Dy, .. Let
f('?Dkl,m»'Dkz,m) denote the ingredient one-step predictor (51). Then, ]?(~;Dk1,m,Dk2M) is a linear predic-
tor such that ]?(l”?Dkl,m,Dkz,m) = xTE(Dkl,m,7Dk2,nL) with the corresponding ingredient one-step estimator

~

ﬁ('Dkl,m7D2,m) given by
B(Dky 2 Drs ) = {Ip — (X3 Xa/kom) (XS Xo/k2m)}B(Dry ) + Bun2(Dry ), (F.65)

where ang(DkQ)m) is the MN2LS estimator fit on Dy, . Furthermore, suppose assumption ({2A1) holds true
for Dy, .. Then, the error between E(Dkl’m,’l)kzm) and By can be expressed as

/B(Dkl,m7Dk2,m) - 50
= {I, = (X Xs/k )" (XJ Xo/ko m) }(B(Dr, ,.) — Bo) + (X3 Xo/kam) X3 €2/k2m. (E.66)
Proof. For the first part, start by re-arranging the ingredient one-step predictor (51) as follows:

f@; Dy, .. Drs,) = F(@3 Dk, L) + 2 (XS Xofko )T X3 (Yo — XoB(Dr, ) /kam

= 2" B(Dy, ) + 2" (X Xo/kom)' X5 (Vs — XoB(Dry ) kom

= 2" {I, — (X] X [ko,m) (X3 X2)/ko,m }B(Dry ) + 2 (X3 Xo/kom) X3 Ya/kom
2T {I, — (X X [ko.m)"(X] X3)/kom }B(Dr, ,.) + " Buan2 (D, )

where Buna (D, ) = (X3 Xa/ka,m)' X3 Ya/ka,m is the MN2LS estimator fit on Dy, , . Thus, f(+; Dy, ,., Dr,..)

is a linear predictor with the corresponding ingredient one-step estimator 5 (Dky.pn» D2,m) given by (E.65).
This completes the proof of the first part.
For the second part, note that under linear model Y2 = X253y + &2 (from (¢2A1) for Dy, ,, ), the ingredient

one-step estimator g(DkLm,Dkz’m) can be further simplified to

5(Dk1,m’Dk2,m)
= {I, — (X3 Xo/ko,n) (X3 Xo/k2,) }B(Dr,..) + (X3 Xo/kam) (X3 Xo/kom)Bo
+ (X;XQ/klm)TX;éfg/kQ,m.

Hence, the error between E(Dk17m,Dk2’m) and By can be expressed as

~

B(Dry s Prs) — Bo

= {I, — (X3 Xo/kom) (X Xo/k.m)} B(Dr, ) + (X3 Xa/ko.m) (X3 Xa/k2.m)Bo
+ (X3 Xa/kom)' X5 €2/ka.m — Po

= {I, — (X3 Xo/kon) (X3 Xo/ko,m) }B(Dr,.,..) + {(X3 Xo/ko,m) (X3 Xo/kom) — I} Bo
+ (X3 Xa/kom) X3 €2/kom

= {I, — (X3 Xo/kam)" (X3 Xo/k2,m) }(B(D, ) = Bo) + (X3 Xa/kam) X3 €/ko m.

This completes the proof of the second part. O

~

Recall that we are interested in the conditional squared prediction risk of f(-; Dy, ., D, ,,):

~ ~

RX1,Y17X2,Y2 (f(';Dk1,m,7Dk2,m)) = E[(}/O - f(XO;Dkfl,m,’Dk2,m))2 ‘ X1, 1;1, X27 YF2L (E67)
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where (Xy,Yp) is sampled independently and from the same distribution as the training data (X1,Y7) and

~

(X2,Y3). We are being explicit about the dependence of R(f(-; Dk, ,,, Dk, ,,)) on (X1, Y1, X5, Y3) as we will

~

consider concentration of R(f(-; Dk,.,,, Dks,,,,)) conditional on (X1, Y1) first, followed by that on (X3, Y>).
For notational convenience, let f]l = X{FXl/kLm and 22 = XgXQ/kQ’m denote the sample covariance
matrices for the two data splits Dy, ,, and Dy, . , respectively. The next lemma gives conditional concentration
of the squared prediction risk (E.67) of the one-step ingredient predictor under the additional assumptions
(/2A2)—(/2A4> on Dk2,m'

Lemma S.5.2 (Conditional concentration of squared prediction risk of one-step ingredient predictor).
Assume the setting of Lemma S.5.1. In addition, suppose assumptions ({2A2)~(¢2A4) hold for Dy, . . Let
k1 msk2,m, Pm — © such that pp/kem — ¢2 € (0,1) U (1,0) and assume limsup HB(Dkl,m) — Bol2 <
almost surely. Then, we have

Rx, vi, %%, (f (s Dry s Dhy.n))
— (B(Dr,..) — Bo) (I, — V)1, — 185)(B(Dy,,.) — o) — 02 tr[E1E] kg — 0% 225 0.

Proof. The proof follows similar steps as those in the proof of Proposition S.3.1. We start by decomposing
the squared prediction risk:

Rx,¥1.X2.¥: (F (4 Dry s Do) = (B(Dry ., Doin) — Bo) "S(B(Di,y . Disy) — Bo) + 02 (E.68)
Under (¢3A1), from Lemma S.5.1, we have

B(Di, s Dra) — Bo = (Ip — S1E)(B(Dry.,) — Bo) + EE X €2/kz m.

Thus, the first term in the squared prediction risk (E.68) of f(; Dy, ., Dk,.,.) can be split into:

(B(Dkl,m,7pk2,nL) - ﬂO)TZ(E(DkLmaIDkzm) - 50) = Bl + Cl + ‘/1;

where the terms B, C1, and V; are given as follows:
By = (B(Dx,.,.) — Bo) (I, — S155)S(1, — S180)(B(Dy, ) — Bo),
C1 = (B(Dry,.) — Bo) (I, — B15)SL X €3/ m,
Vi = eo(XoZISSI X ko ) en/kom.

The rest of the proof shows concentration for the terms C; and V;.

As argued in the proof of Proposition S.3.1, appealing to Lemma S.8.5 we have that C, 22,0 as
Pms km — o0 such that p,,/k2.m — ¢ € (0,1) U (1,00), assuming limsup |3(Dg, ,,) — Boll2 < c0. This is
because, from a bounding similar to (E.54), we have

limsup | X2 }(I, — £585)(B(Dr, ) — Bo)|3/k2.m < Climsup |B(Dy, . — Bo)l3 < C,

almost surely for a constant C' < 0. Similarly, for the term Vi, using Lemma S.8.6 along with the bound
from (E.55), we have Vi — o2 tr[£ %] /kg m 2> 0. This finishes the proof. O

Lemma S.5.3 (Conditional deterministic approximation of squared risk of ingredient one-step predictor).
Assume the setting of Lemma S.5.2. Let ki ., k2.m, Pm — © such that py,/kam — ¢2 € (0,1) U (1,00]. Then,
we have

RX1,Y17X2,Y2 (]?(’ Dkl,mvpkz,m)) - R%Q,Yl (]F(’ Dkl,m)) =2 0,

~ ~

where Ry v, (f(-3Dk, ,,)) is a certain generalized squared prediction risk of the predictor f(:; Dy, ), fit on
the first split data Dy, ., given by

(B(Dx,.,.) — Bo) ' 2(B(Dr,.,.) — Bo) + o if ¢ = o0
Ry (F:Dip)) = | BPri) = 60)T9(D)B(Dr,,) = Bo) + 0 telh(E)) hom + 0% if ¢ € (1,0)
rs if € (0,1),
(E.69)

75



where g(X) and h(X) are matriz functions of ¥ given explicitly as follows:
9(2) = (1 +04(0;$2)) (v(0; ¢2) X + I, ) ' E(0(0;02)5 + 1, ) h(B) = B(0; $2) (v(0; ¢2) % + 1) 7?52,
and v(0; ¢2), V(0; ¢2), and Vy(0; ¢2) are as defined in (55), (56), and (57), respectively.

Proof. We will start with the functionals derived in Lemma S.5.2 and obtain corresponding asymptotic
deterministic equivalents conditioned on X and Y7 as k1,m, k2,m, Pm — 0, and pp,/k2 m — ¢ € (0,1) U (1, o0].
We will split into three cases depending on where ¢ falls.

o ¢ € (0,1): When k1,m, k2,m, pm — 00 such that p,,/ka n, — ¢2 € (0,1), (I, — f];f]) = 0 almost surely and
tr[f]TE]/kg’m — ¢2/(1 — ¢3) 25 0, as argued in the proof of Proposition S.3.2.

o ¢ (1,00): Next we consider the case when ki, k2 m,Dm — 0, such that pp,/ke,m — ¢ € (1,00).

Consider the bias functional (3(Dy, ,.) — Bo)T (I, — 1E2)S(I, — B182)(B(Dy, ) — Bo)- Invoking Part 1
of Corollary S.6.12 with f(X) = X, as k2, Py — © such that p,,/k,, — ¢2 € (1,0), we have

(I, — S155)2(1, — B18s) ~ (1 + F4(0; 62)) (0(0; 2)S + I, ) ' S(0(05 ¢2)S + I, )",

where v(0; ¢2) and U,(0; ¢2) are as defined in (55) and (57), respectively. Now, note that the vector
(B(Dw,.,.) — Bo) is independent of 30, Thus, from the definition of asymptotic equivalence, we have

(B(Dr, ) = Bo) (I, — ELE0) S (1, = B133) (B(Dr ) = Bo) = (B(Di, ) — Bo) T 9(2)(B(Dg, ) — Bo) = 0.

Consider now the variance resolvent f]gE From Part 2 of Corollary S.6.12 with f(X) = X, as ka ym, Pm — ©
such that p,,/k2 m — @2 € (1,0), we have

BI5 ~ 5(0; 62) (v(0; 62)S + I, ) 282
Hence, using Lemma S.7.2 (4), we have

0 (S5 kg — 0 8 [(0: 62)(0(0: 62) + Iy, ) 252 ey 25 0

o ¢ = oo: Finally, consider the case when ki, k2 1m, P, — © and py,/ka,m — 0. We start by expressing
the ingredient one-step estimator (51) as

B(Dkl,m,7pk2,m,) = g(Dkl,'m.) + (XQTXQ/kQ,m)TX;(Yv? - X2§(Dkl,m,))/k27m'

Using triangle inequality, note that

H/B(Dkl,'rn ’ Dkz,m) - /B(Dkl,m)

2 = (X3 Xo/ko,m) X3 (Yo — X2B8(Dry ) /K22
< (X3 Xo/kam) Xo/v/ kamlop| Yo — XoB(Dry ) /A E2ym -

Under the setting of Lemma 5.5.2, the second term in the display above is almost surely bounded. Hence,
following the proof of Proposition S.3.3, it follows that |3(Dy, .., Dk,.,.) — B(Dk,,.) |2 ==> 0. From the
analogous reasoning in the proof of Proposition S.3.3, this in turn implies that

~

Rx, v,.%:% (F( Dry 12 Dy ) — (B(Dr, L) = Bo) "S(B(Dr, ) — o) — 02 25 0.

This completes all three cases and finishes the proof. O
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S.5.2 Proof of Lemma 4.8

The idea of the proof is to use the conditional deterministic risk approximation derived in Lemma S.5.3 and
obtain a limiting expression for the deterministic approximation in terms of the assumed limiting distribution
(52).

We start by noting that N N

18(Drs,.n) = Bollz < oninl| B(Prs, ) = Bollz-

Thus, under the assumption that there exists a deterministic approximation R (¢y; f ) to the conditional risk
of f(~;Dk1’m) such that R(f(quLm)) 2, Rdet(qﬁl;f) as k1,m,Pm — 0 and pp,/k1,m — ¢1, for ¢1 satisfying
R(¢y: f) < oo, it follows that limsup ||B(Dk1,m) — Bolz < . We can now invoke Lemma S.5.3. Let
kg m — 00 such that p,,/ka.m — ¢2 € (0,1) U (1,00]. We will split into various cases depending on ¢s.

1. The limit for ¢ = o0 is clear from the ¢o = o0 case in (E.69).

2. When ¢ € (1, 00), we need to obtain limiting expressions for the quantities (E(Dkl’m)fﬂo)Tg(E) (B(Dkl,m)*
Bo) and tr[h(X)]/ka,m = tr[D(0; ¢2)22(v(0; ¢2)X + 1) 2] /ka,m in terms of the limiting distributions Q
and H.

For the former, we start by expanding the quadratic form:

(B(Dkl,m) - ﬁo)TQ(E)(g(Dkl,m) — fo)
= (B(Dx, ,.) — Bo) " Wyg(R)W T (B(Dx, ) — Bo)

= Y (B(Dr) — o) Twi ()

= & (B(D ) = o) )i glrs)r
= D W;) 15
OOk s 2y D10 - o)
= (R(F(:Dan) = 0*) [ 30)4Qur), (E:70)

where g(r) is given by

N B G
g(r) = r (1+ 9(07¢2))(U(0;¢2)r+1)2'

Under the assumption that @n 4, Q@ in probability, we have

[300a@.0) > [ara@e) - [ S22 aqn). (E)

Observe that g is continuous. Since R(f(nglym)) 25, Rt (y)y; f), from (E.70) and (E.71), we have

(B(Dkl,m) - 50)T9(E)(§(Dk1,m) —Bo) B (R (¢n; f) — o)1 + Ug(0; ¢2)) J m dQ(r)

= R (; P)Yo(1, P2) — 02T (b1, ba), (E.72)
where Tp(¢1, ¢2) is as defined in (58).

For the latter, using Lemma S.7.2 (4) and noting that the integrand is continuous, we have
R b = 2000 60) [ sy Ay () 25 6300:00) [ oo b ()
k2.m (14 v(0; ¢p2)r)? (v(0; p2)r + 1)2
= Ug(0; ¢2), (E.73)
where 7,(0; ¢2) is as defined in (57).
Putting (E.69), (E.72), and (E.73) together, the result follows for ¢, € (1, 00).
3. The final case of ¢ € (0, 1) follows analogous argument as in the proof of Proposition S.3.2.

This completes the proof.
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S.5.3 Proof of Corollary 4.9

We will show that there exists a deterministic risk approximation RI(-, -; f) : (0,00] x (0,00] — [0, 0] to the
conditional prediction risk R(f(-; Dk, ., Dk,.,)) of the one-step ingredient predictor f(-; Dk, ., Dk,,,,) that
satisfies the three-point program (PRG-1-C1)—(PRG-1-C3). In particular, we will show that the following

RA°t(..; ), that is a continuation of (54), satisfies the required conditions:

R (4. ) if ¢y = o0
. _ (R (¢n; F) — 02) o (or, p2) + 02(1 — Tp(61, da)) + 0?0y (05 ¢2)  if ¢o € (1,0)

R 1,25 f) = < o if g = 1
- = if 65 € (0,1),

where RI°t(; f ) is the assumed deterministic risk approximation to the conditional prediction risk R(f(-; Dy, ..))

of the base predictor f(-;Dy, ,,), and Yy(-;-) and 9,4(0;-) are as defined in (58). Below we split the three
verifications:

1. Let ®F = {¢1 € (0,00] : Rd“(qﬁl;f) = o} denote the set of limiting aspect ratios greater than
one, where the deterministic risk approximation to the base procedure is c. By the hypothe-
sis of Lemma 4.8, we have R(f(-;D,,,)) 2, R (15 f) as ki m,pm — 0 and pp/kim — ¢1 €
(0,00]\®*. Now observe that R (¢, ¢o; f) = o0 only at ®© := {(d1,¢2) : ¢1 € DL or ¢y = 1}.
This is because T4(¢1, P2),U4(0; ¢2) < oo for ¢o € (1,00) from Lemma S.6.13 (5). Note from the
conclusion of Lemma 4.8 that R(f(-;Dklym,DkZm)) 2, Rt (g, ¢o; f) as K1.my k2,m, pm — o0 and
(Pm/k1,ms Dm/k2,m) — (61, ¢2) € (0,00] x (0,00\®®, or in other words, continuous convergence of the
risk to the deterministic approximation holds for all limiting (¢1, ¢2) for which Rt (¢y, ¢o; f) < 0.
This verifies (PRG-1-C1).

2. From the argument above, we have Rt (¢, ¢o; f) = oo over ®®. Pick any (¢, ¢2) € D*. We will show
that RIY(¢), ¢h; f) — o0 as (¢}, @) — (¢1, ¢2). From the definition of ®*, the point (¢, ¢2) falls into
either of the following two cases:

e ¢» = 1: In this case, observe that R* (¢}, %) — 00 as (¢}, ¢h) — (41, 1) because limg, - ¢5/(1—
#h) = oo, and RI(¢),¢h) — 0 as (¢}, dh) — (¢1,17) because, from Lemma S.6.13 (5),
limg, 1+ Ty (0; ¢5) = 00. Thus, RY(¢], ¢h) — 0 as (¢}, ¢h) — (41, ¢2)-

o ¢ € ®X: In this case, R (¢}) — 0 as ¢} — ¢ from the assumption that R (-; f) satisfies
(PRG-0-C2). Because Y4(¢], ¢5),04(0; ¢5) > 0 over (¢, ¢5) € (0,00] x (1,00] from arguments in
Lemma S.6.13 (4) and Lemma S.6.13 (5), it follows that

lim Rdet L ';N = lim Rde ';N = 0.
o (91, 92; f) . (61:.f)

Thus, RY(¢}, ¢5) — 0 as (¢}, ¢h) — (61, ¢2).

Therefore, whenever (¢}, ¢5) — (¢1,d2), we have R (¢, ¢h; f) — o0, and thus R (., -; f) satisfies
(PRG-1-C2).

3. Finally, the set of (¢1, ¢2) such that Rt (¢, ¢o; f) = o0 is ®®. Because ®* is product of two sets each
of which is closed in R, this set is closed in R?. Therefore, Rt(-, -; f) satisfies (PRG-1-C3).

~

Put together, all of (PRG-1-C1)-(PRG-1-C3) hold, and this in turn implies that f(-; Dy, ,,, Dk,.,.) satisfies
(DETPAR-1). This finishes the proof.
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S.5.4 Proof of Proposition 4.10

It suffices to verify the hypothesis of Lemma 4.8 and then appeal to Corollary 4.9. We will use Corollary S.6.12
along with the Portmanteau theorem to certify existence of a limiting distribution @ assumed in Lemma 4.8.
The form of @ is defined through limiting formulas for the generalized prediction risks of the base predictor.
Let f be any continuous and bounded function. We will show that § f(r) dQ,, (1) converges to a deterministic
limit that is a function of H and G, and show existence of ) through this limit. We start by noting that

f £ AQn(r) = (B(Dis ) — o) T FENB(Dsr ) — Bo), (E.74)

where f(X) = Wf(R)W T, and f(R) is a matrix obtained by applying f component-wise to the diagonal
entries of R. We will now obtain a limiting expression for the term on the right hand side of (E.74), which

has the form of a generalized prediction risk of 3 (Dk,.,,,)- Similar to the proof of Proposition 3.14, we will
first obtain a deterministic equivalent for the generalized prediction risk. Following similar steps as in the
proof of Proposition S.3.1, we have that

(B(Dr,.) = Bo) T F(E)B(Dry..) — o) — By (I = E18) F(2) (I, — £181) o + tr[S] £(2)]/krm 22 0. (E.75)
Now, using first part of Corollary S.6.12, we can write
(I, = SIE)F(E)I, — BIE1) = (14 0,(0;61)) (0(0; 1) + I, ) " E(0(0;61)E + I, ) "

Using Property 4 of Section S.7, this then yields
57 (1~ EIB)FE)L, - SIE05 25 (14 73,(0:60) |
Similarly, using second part of Corollary S.6.12, we have

STAE) = 505 61) (0(0; )% + L, ) ().

Hence, appealing to Property 4 of Section S.7 again, we have
I as. |, rf(r
WELH b 22 61000 60) [ D an ) (B.77)
Therefore, from (E.74)—(E.77), it follows that

(00 o) + 12 1G0T T 00 ¢1)J w0 o0y 112 S0

Observe that this defines a distribution Q because one can take f(r) = e!'" = cos(tr) + isin(¢r), which then
implies convergence of the characteristic function at all points. This finishes the proof. To get more insight

into the risk behaviour of the ingredient one-step predictor, we can also write out an explicit formula for the
deterministic approximation RI°t(-,-; fiun2). We will do so below.

| 7004Qutr) =2 (43,0000 |

~

For the particular functional R(f(-; Dy, ,,,Dk,.,.)), we have a specific f given by

r

flr) =01+ 59(0;¢2))W-

Thus, the final expression for R1°t(¢;, ¢2) can be written explicitly as follows:

R (41, )
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R (min{¢1, ¢2}) if g1 = o0 or ¢y = o0
P21+ 300,021+ ,0:0) | s O
£ o0, 002)0r70501) | o A )
- + o2 (@5(0;@)[@@(7«) + 1) if (61, 2) € (1,0) x (1, 00)
o> (@5(0;@4@@@ + 1) if (1, 2) € (0,1) x (1, 00)
e if (91,62) € (0,%0) x (0,1),

where v(0; ¢) is as defined in (E.46), 9(0; ¢) is as defined in (E.47), 7,(0; ¢) is as defined in (E.48), and
Ug(0; @1, ¢2) is as defined below:

2

(1 +v(0; ¢2)r)*(1 + v(0; ¢1)r)?

(14 7,(0; 62))é f dH (r)

Ug(0; 1, 02) =

1 r
o0 f T+ oo H0

Here, R () is RI(; fing) as defined in (E.45).

S.5.5 Proof of Proposition 4.11

Verification of the hypothesis of Lemma 4.8 is easy in this case because ¥ = I,,. Observe that under (¢;A2),
the distribution @n is simply a point mass at 1. Thus, the hypothesis of Lemma 4.8 is trivially satisfied.
Moreover, we can explicitly write expressions for the functions 94(0;-) and Yy (-;-). Towards that end, we will
first obtain expressions for the ingredient functions v(0;-) and v(0; -).

e v(0; ¢2): The fixed-point equation (55) can be solved explicitly since H is a point mass at 1. The
fixed-point equation in this case simplifies to

1l _, 1
v(0;02)  w(030) +1°

(E.78)

Solving (E.78) for v(0; ¢2), we get

)

v(0; p2) = g —1°

and 1+ v(0;¢2) =

1

e U(0; ¢2): Using (E.79), we can compute the inverse of T(0; ¢2) per (56) as

—1)2 —1)2 _ _1)\3
3505 6) L = (6 — 1)2 — 12211 % D7 gy -1z 2217 ¢21> (o —12%2 — L_ (@ ¢21> .
Thus, we have
B0:0) = P and B(0i0a)n = D (B50)
’ (g2 —1)%’ 7 (f2 —1)3
Using (E.79) and (E.80), we can explicitly write out expressions for Yp(¢1, ¢2) and 0g(0; @2).
o Uy(0; ¢2): Substituting (E.79) and (E.80) into (57), we obtain
2 12

B0 = —22 107 L g (14 5,(00)) = —22 (E51)

(P2 —1)3 3 o — 17 2 — 1

80



e Ty(¢1, P2): Substituting (E.79) and (E.80) into (58), we get

da (p2—1)% ¢o—1 1
T = = d 1-7 = —.
b(¢1a¢2) ¢2 1 ¢% ¢2 ) an b(¢17¢2) ¢2
Observe that since the distribution @) does not depend on ¢ in this case, Tp(¢1, ¢2) in turn also does
not depend on ¢7.

(E.82)

Therefore, using (E.81) and (E.82), the deterministic risk approximation from (54) simplifies in this case
as follows:

P?+ 02 if ¢1 = ¢y = 0
R () if ¢y = o0
p2<1¢12>+02<¢21_1)+02 if g1 = o0

R (g1, 625 F) = { Rl () (1 - ;2) +0? <¢>21— 1> + 02 if (61, 2) € (1,0) x (1,0)
o? <1f1¢1> (1—;2) + o2 (¢21_1> +02 i (61, 42) € (0,1) x (1,0)
o? <1¢2¢2) + o2 if (61, ¢2) € (0,0) x (0,1).

Here, RI(-) is RI(-; fin1) as defined in (E.60).

S.6 Technical helper lemmas, proofs, and miscellaneous details

In this section, we gather various technical lemmas along with their proofs, and other miscellaneous details.
Specific pointers to which lemmas are used in which proofs are provided at the start of each section.

S.6.1 Lemmas for verifying space-filling properties of discrete optimization grids

In this section, we collect supplementary lemmas that are used in the proofs of Theorems 3.11 and 4.4 in
Sections S.2 and S.4, respectively.

Lemma S.6.1 (Verifying space-filling property of the discrete grid used in the zero-step procedure). Let
{pn}, {man}, {man} are three sequences of positive integers such that ms , < ms , for n = 1. Suppose

man

— 0

Pn_ e (0,00) and
min min

)

as n — o0. Define a sequence of grids G, as follows:

gw_{pnzlgkgrmm_ﬂ},
min — ka,n ma,n

Then, for any ¢* € [y, 0], IIg, (¢*) — ¢* as n — o, where Ilg, (y) = argmin,.g |y — x| is the point in the
grid Gy, closest to y. In particular, in the context of Algorithm 2, taking mi ., = ny and ma, = |n”| for
v e (0,1), we get the aspect ratios used in Algorithm 2 “converge” to [y, ] when niy/n — 1 under (PA(Y)).

Proof. We will consider different cases depending on where ¢* € [, 0] lands. See Figure S.3.

1. Consider the first case when »
n

TSOS .
Min —M2n
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¢ ¢ ¢
— I T

case 1 ase 3 case 2
IIg, (¢¥) Ig, (¢¥) Ig, (¢¥)
0 -— l — O

| | | | | |
I I I I I I
Y Pn Pn Pn Pn Pn

M1,pn—M2,n M1 n—2M2 n mi n—kmso, min—(k+1)msa M, — [an _2" Mo

? m2 n ’
Gn

Figure S.3: Illustration of different cases of ¢ € [y, ] and the corresponding projection g, (¢*).

In this case, IIg, (¢*) is simply the first point in the grid. Observe that in this case

Pn

* * Pn min
g, (") - <SS ———— 7= —355-—7—>7-7=0
g ( ) My — Man 1— man

min
as n — oo under the assumptions that p,/ms , — v and ma,/mi ., — 0.

. Consider the second case when »
n

min — ’le,n — 2]

man

< ¢ < oo

In this case, IIg, (¢*) is simply the last point in the grid. We will show eventually the only ¢* in
this case is (* = o. Note that p,/(m1,, — kms,) increases with k > 0. If {* = oo, then IIg, (¢*) =
DPn/ (M n — k*mg ) for k* = [mq ,,/me , —2]. Hence, it suffices to prove that p,/(m1, —k*ma ) — ©
as n — 00. This follows from the fact that

min _ ’le,n _ 2“ < 27
man man
and thus
Pn Pn Pn

= > — 00 = C*
min — k*mgm m27n(m1,n/m2,n — [mlﬂ/m?,n _ 2]) = Mg 5

)

as n — o and p,/my , — v € (0,00).

. Consider the third case when

Pn Pn Min
— < ("< forsomelékS{ : —2] E.83
min — km2,n min — (k + 1)m2,n man ( )
From the first inequality in (E.83), we have
D L B Ry Wy NN N KR - (E.84)
mi, — kma my nC* min min my nC*
Similarly, from the second inequality of (E.83), we have
Pn >1— (k + l)mQ,n — km2,n > 1— Pn - — ma n ) (E85)
ml,ng* min min ml,nC min

The upper and lower bounds from (E.85) and (E.84) together imply that

1 — DPn _ ma.n < km27n <1-— Pn

ml,nc* min min ml,nc* .

) s
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Because lim,,_,q ma /M1, = 0, we conclude that

. kmo
lim 2 _q
n—0 My p C*

€ (0,1). (E.86)

Now, note that since IIg, (¢*) is either of the two points of the grid partition, we have

* * Pn Pn
Mg, () = ¢l < Mmin— (k+1Dmayn  mi, —kmoy
_ DPn man
min — (k4 1)mapn mi, —kma,
Pn m2,n
_ min min
B 1_ (k‘ + 1)m2,n 1_ km27n
min min
0 0

EECRIE )N

as n — oo and p,/mq, — v and mg /My, — 0, where the limiting in the convergences on the last
line follow from (E.86).

This completes all the cases.
Finally, observe that for Algorithm 2, when mo,, = |n”] for some v € (0,1) and m; , = ny, such that
Nge/n — 1 as n — oo, pp/mi, — v € (0,0), and ma ,/m1, — 0, and hence the statement follows.
O

Lemma S.6.2 (Verifying space-filling property of the discrete grid used in the one-step procedure). Let {p,},
{min}, {man} are three sequences of positive integers such that ms,, < mi, forn =1, and n — o0,

m
Pn_ v e (0,00) and 2 0.
min min

Define a sequence of grids G, as follows:

Pn Pn Min
= : 2, | —— =2 -1} ;.
o {<m1,n — kyman’ k’zmz,n) e { Y {mzn H AR }}

Let (7 and (5 be two non-negative real numbers such that

1 n 1 - 1

GG
Let Ilg, (¢F,G3) = (1,0, T2,n) denote the projection of the point (¢, (3) on the grid G, with respect to the {1
distance. Then, w1, — (i and 72, — (5 as n — 0. In particular, in the context of Algorithm 3, taking

M1, = Nge, Mo, = [NY] for some v € (0,1), we get the aspect ratios used in Algorithm 3 “converge” to the
set {(C1,C) 1 (T + ¢t <yt when ny/n — 1 under (PA(7)).

Proof. The proof follows the general strategy employed in the proof Lemma S.6.1 and uses the result as
ingredient.
Fix any point ({7, (5) that satisfies the constraint

1 1

T + * S
a & v
We will construct a pair (g7, g5) in the grid G,, such that (g7, 93) — (¢f,¢3). Because

Mg, (¢156) = (G5 G)llew < Ig1592) = (5 G ens
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such a choice shows the desired result.
Define

(ke 3) = (’le,n —pn/ﬂ 7 {pn/GD’ and (g%, g8) ( p P )

* 1)
man man min — klmQ,n k5m2,n

By appealing to Lemma S.6.1, it follows that 71, — (i as n — . Note that the value of k7 is exactly
the right point of the grid interval in Figure S.3 in the proof of Lemma S.6.1. Since (i € [, ] and the
first coordinate of the grid G,, is the same as that in Lemma S.6.1, we have that g7 is a feasible choice and
97 — (7. It remains to verify the conditions for g3.
Note that when (5 = o0, k3 = 0, which satisfies the desired condition. Assume that (5 < c0. We verify
below that k5 < kJ so that k3 is a feasible choice and that
kgmgm 1
-

Pn G’

which implies the desired convergence of the reciprocal.
Observe that

X< Pn < Pn (ml,n . 1) < Mmin _pn/gf —
2 C;mQ,n man Dn Cf man !
This verifies the first condition. For the second part, consider
0< k£m27n _ i _ Hpn/QJ ma.n _ i man 50
Pn CQ* man Pn Cz* Pn

under (PA(y)) as n — .
Finally, note that for Algorithm 3, when mgy, = |n”| for some v € (0,1) and m;, = n such that
Nge/n — 1 as n— oo, pp/ma, — v € (0,0), and ma ,/m1, — 0, and therefore the statement follows.

O

S.6.2 Lemmas for restricting arbitrary sequences to specific convergent sequences

In this section, we collect supplementary lemmas that are used in the proofs of Lemmas 3.8 and 4.1 in
Sections S.2 and S.4, respectively.

Lemma S.6.3 (From subsequence convergence to sequence convergence). Let {a,}m>1 be a sequence in R.
Suppose for any subsequence {am, }k>1, there is a further subsequence {amkl bi=1 such that lim,, o Uy, = 0.
Then lim,;,—o @, = 0.

Proof. Let a := limsup,,,_,, am and S := liminf,, .o @;,,. This means that there is subsequence {anm, }r>1
such that lim,, o @m, = . Similarly, there is a (different) subsequence {a,, }i>1 such that lim,, o am, = 8.
But since every converging sequence has a further subsequence that converges to the same limit, the lemma
follows. O

Lemma S.6.4 (Limit of minimization over finite grids in a metric space). Let (M,d) be a metric space, and
C be a subset of M. Suppose h : M — R is a function that attains its infimum over C at (*. Let G be a
finite set of points in C'. Then, the following inequalities hold:

0 < minh(x) — inf h(z) < ATlg(C") — h(C"), (E87)

where Tlg(y) = argmin, g d(x,y) is the point in the grid closest to y. Consequently, if G, is a sequence of
grids such that Ilg (¢*) — ¢*, and h(-) is continuous at (*, then

min h(z) — in(fj h(z) — 0. (E.88)
xTEe

z€Gy
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Proof. Since G < C and TIg(¢*) € G, we have the following chain of inequalities:

B(C") = inf h(e) < min h(x) < A(TTg(C")).

Subtracting h(¢*) throughout, we get the desired result (E.87). In addition, if G, is a sequence of grids such
that IIg(¢*) — ¢*, then continuity of h(-) at ¢* implies h(TIg(¢*)) — h(¢*) leading to (E.88). O

Lemma S.6.5 (Limit points of argmin sequence over space-filling grids). Let (M, d) be a metric space and
C be a compact subset of M. Let G, be a sequence of grids such that for any ¢ € C, Ilg, (¢) = ¢ as n — ©
where Ilg, (y) = argmin,g d(z,y) is the point in the grid G, closest to y. Let h : C — [0, 0] be a lower
semicontinuous function, and let x,, € argmin,.g h(x). Then, for any arbitrary subsequence {n, }r>1 of
{zn}nz1, there exists a further subsequence {xn, }i>1 such that x,, converges to a point in arg min cc h(C)
as | — 0.

Proof. Because h is lower semicontinuous and C' is compact, h attains its minimum on C (see, e.g., Section
1.6 of Pedersen (2012) and also see Theorem 1.9 of Rockafellar and Wets (2009) with the domain R™ replaced
with any metric space.). Let M = argmin .. h(¢), which is non-empty. Because C is compact, for any
arbitrary subsequence {x,, }r>1, there is a further subsequence {xnkl }i>1 that converges to some point p € C.
Lower semicontinuity of h now implies that

liminf h(zn, ) = h(p). (E.89)

l—0
See, e.g., Section 1.5 of Pedersen (2012). By definition, h(zn,, ) = mingeg,, h(z) and because g, (¢) — ¢
L l
for any ¢ € €, Lemma S.6.4 implies that

lim i(zp, ) = minh(().

l—0 ceC

Combined with (E.89), we conclude that h(p) = min¢ec h(¢), and hence p € M = argmin .. h((). O

S.6.3 Lemmas for certifying continuity from continuous convergence

In this section, we collect supplementary lemmas that are used in the proofs of Propositions 3.10 and 4.3 in
Section S.2 and Section S.4, respectively.

Lemma S.6.6 (Deterministic functions; see, e.g., Problem 57, Chapter 4 of Pugh (2002), converse of Theorem
21.3 in Munkres (2000)). Suppose f, and f are (deterministic) functions from I S R to R. For any x € I
and any arbitrary sequence {x,}n>1 in I for which x,, — x, assume that f,(x,) — f(x) as n — . Then, f
s continuous on 1.

Proof. The following is a standard proof by contradiction. Assume f is discontinuous at a € I. Then, there
exists a sequence x,, — a such that

fwn) ¢ [f(a) = 26, f(a) + 2€]

for some € > 0. Note that f,(z) — f(z) for all z € I. Now, consider another sequence y,, such that

Y1 =y2 = =yn, =71, where [fn, (1)~ f(a)l>e€
YN +1 = YNy+2 = *° = YN, = T2, where ‘sz(xQ)_f(a” >€7N2>N1
Observe that y,, — a, however f,(y,) - f(a). Hence, a contradiction. O

Lemma S.6.7 (Extension of Lemma S.6.6 to random functions). Suppose f, is a sequence of random real-
valued functions from I € R such that, for every deterministic sequence {Tn}n>1 in I such that x, —> x €1,
fn(xn) — f(x) in probability, for a deterministic function f on I. Then, f is continuous on I.
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Proof. The idea of the proof is similar to that of an analogous statement for fixed functions; see Lemma S.6.6.
We will use proof by contradiction. Assume that f is discontinuous at a € I. Then, as in the proof of
Lemma S.6.6 for deterministic functions, there exists a € > 0 and a sequence {x,} < I such that x,, — a and

fan) ¢ [f(a) — 2 f(a) + 2€]. (E.90)

From the hypothesis, we have that, for each z € I, f,(x) — f(z) in probability. Let p € (0,1) be a fixed
number. Then, there exists an integer N1 > 1 such that the event

Qn, = {[fn (1) = f(21)] < €}

holds with probability at least p. Thus, on Qp,, by the triangle inequality,

[fn,(@1) = f(a)| = | f(z1) = fla)l =[x, (@) = f(@1)] > €, (E91)

where last inequality stems from (E.90). Next, for i = 2,3,..., let N; = N;_1 + 1 be an integer such that the
event

QN’i = {|sz(xl) - f(xl)‘ < 6}

has probability at least p. These sequences of numbers {N;} and events {0y, } exist because, by hypothesis,
fn(x;) — f(x;) in probability for each 7. Furthermore N; — o and, on each Qy;,, |fn,(x;) — f(a)| > € by the
same argument used in (E.91).

Consider the sequence {y,,} given by

Y1 =Y2 =" =YN, = L1

YN1+1 = YNi4+2 = " = YN, = 22

such that, by construction, y,, — a. We will derive a contradiction by showing that it cannot be the case
that f,(yn,) — a in probability, thus violating the hypothesis. Indeed, the sequence of probability values
{P(| frn(yn) — f(a)| > €)} does not converge to zero since, for each n, there exist infinitely many N; > n such
that

P(lf5: (yn,) = f(a)] > €) = P(y,) > p > 0.

Thus, it must be the case that f is continuous at a. Continuity of f over I readily follows.

S.6.4 A lemma for lifting Q-continuity to R-continuity

The following lemma is used in the proofs of Propositions 3.10 and 4.3 in Sections S.2 and S.4, respectively.

Recall that a function f : R — R is continuous at a point zo € R, if for all sequences {x,},>1 in R for
which z,, - x4 as n — o0, we have f(z,) - f(xzy) as n — 0. Call this R-continuity of f at the point x4,
and call a function is R-continuous if it is R-continuous on its domain. Define a variant of continuity with
respect to rational sequences, dubbed Q-continuity, as follows.

Definition S.6.8 (Q-continuity). A function f: R — R is Q-continuous at a point 2, € R, if for all sequences
{zn}n>1 in Q for which z, — x4 as n — ©, we have f(z,) — f(zy) as n — 0. A function is Q-continuous
if it is Q-continuous over its domain.

The following lemma shows that Q-continuity implies R-continuity.

Lemma S.6.9 (Q-continuity implies R-continuity). Suppose f: R — R is a Q continuous function. Then f
18 R-continuous.

Proof. To prove R-continuity of f, fix any y,, € R, and consider any arbitrary sequence {y,},>1 in R such
that y, — Yo as n — 00. For any € > 0, if we can produce n. such that |f(y,) — f(ye)| < € for all n = n,,
then R-continuity of f follows. We will produce such n, below.
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For every m > 1, construct a sequence {xj m}r>1 in Q such that zy ,, — ym as k — o0; see Figure S.4.
(Note this is possible because Q is dense in R.) Now, for every m > 1, using Q-continuity of f at y,,, we
have f(zkm) — f(ym) as k — co. Fix € > 0. Let ko(€) = 1 and for m > 1, define a positive integer k,,(¢) by

km(€) = min{k > kp1(€) : |f(zrm) — f(ym)| < €/2}.

Such a kn,(e) always exists because Ty, — ym as k — o0 and f is Q-continuous at y,,. Note that
km(€) > km—1(€), which in turn implies that k,,(€) = m and thus k,(¢) — o0 as m — o0. Hence, as m — o0,
Tk, (e),m — Yoo- Using the Q-continuity of f at yo, there exists a positive integer m, such that for all m > m,
we have | f(zy,. (¢),m) — f(Yo)| < €/2. For all m > m,, by the triangle inequality, observe that

|f(ym) = f(yao)| < |f(ym) — f(km(€)| + | f(km(€)) — f(ya)| < e

Therefore, choosing n. = m. completes the proof. O
m
Q = Tkm —
k i T1,1 T1,2 T1,m T1,00
x2,1 22 T2.m T2, 00
Lky,1 Ty 2 Lkq,m Ly ,00
Lk, Ty ,2 Tkom Lo ,00
i
km (6)’1$km (€),2 Lk (€),m Lk, (€),00
A1 Y2 Ym Yoo

|f(ka(e),m(s)) - f(yoo)’ < 6/2

ff(ka(e),m(e)) —

|f(ym) - f(yoo)‘ <e

Figure S.4: Illustration of the grid of rational sequences used in the proof of Lemma S.6.9.

S.6.5 Lemmas on asymptotic deterministic equivalents for generalized bias and
variance resolvents

In this section, we collect lemmas on asymptotic deterministic equivalents for generalized bias and variance
resolvents associated with ridge and ridgeless regression that are used in the proof of Proposition 3.14 in
Section S.3, and Proposition 4.10 and Lemma 4.8 in Section S.5.

Lemma S.6.10 (Deterministic equivalents for generalized bias and variance ridge resolvents). Suppose
X; eRP, 1 <i<n, are i.i.d. random vectors with each X; = ZZ-ZV?, where Z; € RP contains i.i.d. random
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variables Z;j, 1 < j < p, each with E[Z;;] = 0, E[Z};] = 1, and E[|Z;;|¥T*] < M, for some constants
a >0 and M, < ©0, and ¥ € RP*P is a positive semidefinite matriz such that rminlp < X < rmaxl, for
some constants Tmin > 0 and rmax < 0 (independent of p). Let X € R™*P be the random matriz with X;,
1 <i<n, as its rows and let S € RPXP denote the p x p random matriz X " X /n. Let A € RP*P be any
deterministic positive semidefinite matriz that commutes with ¥ such that aminly < A < amaxI, for some
constants amin > 0 and amax < 0 (independent of p). Let v, := p/n. Then, for A\ > 0, as n,p — © with
0 < liminf~,, <limsup-, < oo, the following asymptotic deterministic equivalences hold:

1. Generalized variance of ridge regression:
(B4 M) 28A = 5(= X 9m) (0(=A;70)E + 1) 224, (E.92)
where v(—X;yn) = 0 is the unique solution to the fized-point equation
V(=X7m) T = A tr[B(0(= X 70)E + 1) /b, (E.93)
and U(—X;vn) is defined via v(—X;v,) by the equation
V(=X7m) 7" = 0(=As9m) 72 = Y tr[ZP (0(= A7) + L) 7] /p. (E.94)
2. Generalized bias of ridge regression:
N(E 4 ML) AR + ML) T = (=N 70)8 + )7 By (— X ) B + A) (=X m)E + L), (B.95)
where v(—X;v,) as defined in (E.98), and Uy(—A;vy,) is defined via v(—X;vy,) by the equation

Tn tr[AE(’U(fA; fYn)E + Ip)iz]/p
V(=X 7)) % = [ E2 (0(= A ) S + 1) %) /p

Ug(=A; ) = (E.96)

Proof. The main idea for both the first and second parts is to use Corollary S.7.4 as the starting point, and
apply the calculus rules for asymptotic deterministic equivalents listed in Section S.7 to manipulate into the
desired equivalents.

Part 1. For the first part, observe that we can express the resolvent of interest (associated with the
generalized variance of ridge regression) as a derivative (with respect to \) of a certain resolvent:

(E+ M) 2EA= (B +AL) TA-NE + M) 24 = %[/\(2 +A,) A (E.97)
To find a deterministic equivalent for (ZAl + )\Ip)*zf]A, it thus suffices to obtain a deterministic equivalent for
the resolvent )\(i + A,) 7! A and take its derivative, thanks to the differentiation rule from Lemma S.7.2 (5).
Similar derivative trick is used in the proof of Theorem 2.1 in Liu and Dobriban (2019) and Theorem 2.1
in Dobriban and Wager (2018) to compute the standard variance of ridge regression, by Dobriban and
Sheng (2020) in the context of distributed ridge regression, and in the earlier works by Karoui and Kosters
(2011); Rubio and Mestre (2011); Ledoit and Péché (2011), among others, to compute certain limiting trace
functionals.

Starting with Corollary S.7.4, we have

AE + ML)~ (0(=Aiyn) S + 1) 7Y,
where v(—A;7,) is the unique solution to the fixed point equation
V(=X 7n) T = A te[B(0(= X 70)E + 1) /. (E.98)
Since A has bounded operator norm (uniformly in p), from Lemma S.7.2 (3), we have

AE 4+ M) TA = (v(=Aiy,)E + 1) LA, (E.99)
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where v(—A\; ;) is as defined by (E.98). It now remains to take the derivative of the right hand side of (E.99)
with respect to A. Before doing so, we will briefly argue that the differentiation rule indeed applies in this
case. Let T' € RP*P be a matrix with trace norm uniformly bounded in p. Note that

tr[TAE + A,) " TA] = te[T(I, — (2 + AL) 1A]
< [Ty = £(Z + AL,) ") Ao tr[T]
< -2+ /\Ip)_1H0pHA”0p tr[T]
< [Allop t1[T] < C,

for some constant C' < oo. Here, the first inequality follows from Proposition 3.4.10 of Pedersen (2012) (see
also, Problem II1.6.2 of Bhatia (1997)), and the second inequality follows from the submultiplicativity of the
operator norm. Similarly, note that

tr[T(v(=As70) 2 + 1) T AL < [ (0(=A570) 2 + L)~ opl| Allop t2[T] < C,

for some constant C' < co. Thus, we can safely apply the differentiation rule from Lemma S.7.2 (5) to get

(f] + )\Ip)72§314 ~ i[(v(_)ﬁ%t)z + Ip)ilA]'

12
Taking derivative, we have
0 -1 0 -2
5[(7)(_)\;7”)2 +1,)7 Al = —a[v(—)\;'yn)](v(—)\;vn)Z +I,) XA (E.100)

We can write - 0/0A\[v(—)\;7,)] in terms of v(—X\;v,) by taking derivative of (E.98) with respect to A and
solving for - d/0A[v(—A;vn)]. Taking the derivative of (E.98) yields the following equation:

0 _ 0 _
—5[71(—)\;%1)]71(—)\;’)%) 214y, — a[v(—)\;%)] tr[S2 (v(=A;70) S + 1) 2]/ (E.101)
Denoting - 0/0A[v(=A;v,)] by D(=A; 7,) and solving for ¥(—X;v,) in (E.101), we get
T(=X7m) 7 = 0(=X5790) 7 = e[ (0(= i) B+ L) 7 /p. (E.102)

Combining (E.97), (E.100), and (E.102), the statement follows. This completes the proof of the first part.

Part 2. For the second part, observe that we can express the resolvent of interest (appearing in the
generalized bias of ridge regression) as a derivative of a certain parameterized resolvent at a fixed value of the
parameter:

NS+ ML) TAE + ML) = AH(E 4 AL, + ApA) TLA(S + A, + ApA) Ym0
(E.103)

K ~
— X + AL, + M\pA) ! )
ap[( + P+ P ) ]p=0

It is worth remarking that in contrast to Part 1, we needed to introduce another parameter p for this part to
appropriately pull out the matrix A in the middle. This trick has been used in the proof of Theorem 5 in
Hastie et al. (2019) in the context of standard bias calculation for ridge regression. Our strategy henceforth
will be to obtain a deterministic equivalent for the resolvent A(X + A, + ApA)~!, take its derivative with
respect to p, and set p = 0. Towards that end, we first massage it to make it amenable for application of
Lemma S.7.3 as follows:
AE 4+ AL+ 2pA) T = AE + A1, + pA)
= (I + pA)TV2A((L, + pA) V2SI, + p2) V2 + ML) (I, + pA) T
= (I, + pA) " VPA(S, 4 + AL) " (I, + pA) ™2, (E.104)
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where ZA)p,A = E;{i(ZTg/n)E;{Z and X, 4 := (I, + pA)~Y2%(I, + pA)~Y2. We will now obtain a deter-
ministic equivalent for A(3, 4 + Al,)~!, and use the product rule to arrive at the deterministic equivalent for
AE + A, + ApA)~ L
Using Corollary S.7.4, we have
)‘(ip,A + )\Ip)il = (Ug(_)‘vp; 'YH)Zp,A + Ip)ilv (E105)

where vy(—A, p; ¥) is the unique solution to the fixed-point equation

Vg (=X, p59) T = At Yt 4 (Vg (=X, pi ) Spa + L) ]/ p- (E.106)
Combining (E.104) with (E.105), and using the product rule from Lemma S.7.2 (3) (which is applicable since
(I, + pA)~Y/2 is a deterministic matrix), we get
=+ pA)il/zA(ﬁpyA + )‘Ip)il(Ip + I’A)il/2
~ (Ip + pA) 2 (0g (= A, pi90) Bpoa + L) " (I + pA) Y2
=+ pA)_l/Q(Ug(_/\a ;) (Ip + pA)_l/ZZ(Ip + pA)_1/2 + Ip)_l(lp + PA)_1/2
= (vg(=\, p; ) E + I, + pA) L.

AE + AL, + ApA)~!

Similarly, the right hand side of the fixed-point equation (E.106) can be simplified by substituting back for
Yp,4 to yield

Vg (=X, 93 9n) T = At 1[I + pA) TR (T, + pA) T (0g (<A, 03 ) Spa + 1)/
= A+ Y tr[E(vg (=X, 05 70) (Ip + pA)l/QEP,A(Ip + pA)1/2 +p + pA)~/p
= A+ Y e[S (g (=N, pi ) B+ I, + pA) /. (E.107)
Finally, we will now use the differentiation rule from Lemma S.7.2 (5) (with respect to p this time). The

applicability of the differentiation rule follows analogously to first part for p > —1/ami,. Additionally, it is
easy to verify that both sides of (E.107) are analytic in p. Taking derivative with respect to p, we get

0 _
- afp[(vg(*/\, P ) S + I + pA)~1]

(E.108)
(0 _
= (0g(=X, p; )T + I + pA) ! (ap[vg(—k,p; )2+ A) (vg(=X, p; 1) E + I + pA) .

Setting p = 0 and observing that vy(—X, 0;v,) = v(—A;¥), where v(—X\; ;) is as defined in (E.98), we have

0 -
3, [0 S+ I pA) ]|

r=r (E.109)

= W(=XNy)Z + 1)t (;{)[vg(—)\,pwﬂ)] ‘ . 3+ A) (V(=A; 7)) + I,) "t

To obtain an equation for 6/dp[ve(—A, p; Yn)]|p=0, We can differentiate the fixed-point equation (E.107) with
respect to p to yield

0 _
- (Tp[vg(—%p;vn)]vg(—k,p;vn) 2

0 _
=~ 3, 0o (=2 i) e[ (0g (= A, p; ) S + Iy + pA) 2] /p
— Y tr[AS(vg (=X, p39m) S + I + pA) 2] /p.
Setting p = 0 in the equation above, and using the fact that vy(—AX,0;v,) = v(—X;7,), and denoting
9/0plvg(=A, pi )]l p=0 by Ug(—A;yn), we get that
A tr[AB(0(=A;70)E + I,) 2] /p
0(=A7m) 2 = tr[Z2 (0(= X 9m) S + 1) 2] /p

Ug(—=A;7n) = (E.110)
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Therefore, from (E.103) and (E.109), we finally have
(T + /\Ip)*lA(fl FAL) T > (0(=XA70)8 + L) T @ (<X )2+ A (=X ) S+ 1) 7

where v(—X;v,) is as defined in (E.98), and 04(—A; ) is as defined in (E.110). This completes the proof of
the second part.
O

Lemma S.6.11 (Deterministic equivalents for generalized bias and variance ridgeless resolvents). Assume
the setting of Lemma S.6.10 with vy, € (1,00). Then, the following deterministic equivalences hold:

1. Generalized variance of ridgeless regression:
SFA =~ 5(0;790) (0(0;7,)E + I,) 2TA, (B.111)
where v(0;7y,) is the unique solution to the fixed-point equation
Yt = tr[0(057) 2(0(05 ) + 1) "1/, (E.112)

and U(0;7y,) is defined through v(0;7y,) via
~ -2 2 -2 -1
5(057) = (0(0;7m) ™2 = Y t2[Z2(0(0590) 2 + I,)"%]/p) (E.113)

2. Generalized bias of ridgeless regression:

(I, = S*S)A(I, — 7 8) > (0(0;7,)E + L) (5,05 7)E + A) (v(0;7,) + L), (B.114)
where v(0; ;) is as defined in (E.112), and 94(0;+,,) is defined via v(0;7,,) by

Vg (05 9n) = Y tr[AZ(v(0;7,,) S + L) 2] /p - (v(0395) ™2 = tr[Z2 (v(0;7,)Z + Ip)_z]/p)_l. (E.115)

Proof. The proofs for both the parts use the results of Lemma S.6.10 and a limiting argument as A — 0%.
The results of Lemma S.6.10 are pointwise in A, but can be strengthened to be uniform in A over a range
that includes A = 0 allowing one to take the limits of the deterministic equivalents obtained in Lemma S.6.10
as A — 0t.

Part 1. We will use the result in Part 1 of Lemma S.6.10 as our starting point. Let A := [0, Apmax| where
Amax < 00, and let T be a matrix with bounded trace norm. Note that

| r[(3 + ML) PBAT]| < (£ + M) B A]op tr[T] < Cl(E + ML) > Elop|Aflop < C (E.116)

for some constant C' < oo. Here, the last inequality follows because s7/(s? + A)? < 1 where s7, 1 <i < p, are

the eigenvalues of f], and the operator norm A is assumed to be bounded. Consider the magnitude of the
derivative (in A) of the map A — tr[(X + AI,) X AT given by

a% tr[(2 + ML) 2SAT)| = 2|tr[(2 + ML) >SAT|.

Following the argument in (E.116), for A € A, observe that
|tr[(§) + )‘Ip)_?)f:AT]‘ < H(i + )‘Ip)_3§3“0pHA”0p tr[T] < C

for some constant C' < co. Similarly, in the same interval tr[d(—X;v,,) (v(=X;7,)E + I,) 2°SAT] < C. In
addition, from Lemma S.6.14, we have the map A — tr[0(—X; 7) (v(=X;7,)E + I,) “2AT] is differentiable
in A and the derivative for A € A is bounded. Therefore, the family of functions tr[(2 + AI,) " 2ZAT] —
tr[0(=X; 7)) (V(=A; ¥)E + 1,,) 2S AT forms an equicontinuous family in A over A € A. Thus, the convergence
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in Part 1 of Lemma S.6.10 is uniform in A. We can now use the Moore-Osgood theorem to interchange the
limits to obtain

lim {tr[fﬁAT] — e [5(0; 73) (0(0; 70) S + Ip)_QZ‘AT]}

p—0©

— lim lim {tr[(fz + ML) 2B AT — te[5(=X;7m) (0(=A; 1) S + Ip)_QEAT)]}

pP—00 A0+
_ N : 3 -2 PN - -2
= lim_lim { 6(S + M) 2BAT] — [5(=Xi70) (0(=X7)E + L) *BAT)] |

= 0.

In the first equality above, we used the fact that £+ = STES+ = lim, o+ (f] + /\Ip)*lf](i + AI,)71, and
that the functions v(-;7,) and ?(+;7,) are continuous (which follows, from say Lemma S.6.15 (1)). This
provides the right hand side of (E.111). Similarly, the fixed-point equation (E.98) as A — 0T becomes

U(O;’Yn)_l =Tn tr[z(v(();’)’n)z + Ip)_l]/p'

Moving v(0;7y,) to the other side (from Lemma S.6.13 (1), it follows that v(0;7,) > 0 for 7, € (1,0)), we
arrive at the desired result.

Part 2. As done in Part 1, it is not difficult to show that over A € A the family of functions tr[A2(X +
AL)TLA(E 4 ML) T = te[(0(=X59) + L) LTy (= 1) S + A) (0(=A;70)E + I,) 1T form an equicon-
tinuous family. Therefore, the convergence in Part 2 of Lemma S.6.10 is uniform in A over A (that includes
0). Using the Moore-Osgood theorem to the interchange the limits, one has

lim {tr[(Ip — )AL, - ST

— r(0(0:7) + ) 7 (@ (03 9)% + A)(0(0; )T + 1) T |

— lim lim {tr[/\2(f3 +AL)TLAGS + ML) T

pP—0 A—0+
— t[(0(=X70)E + 1) T Ty (— X 7)E + A) (v(=X;70)E + Ip)’lT]}

= lim lim {tr[AQ(ﬁ + )\Ip)_lA(i + )\Ip)_lT]

A—0t+ p—0
— r(0(= 2 9) S + 1) @y (~X9) T + A)(0(=Xi70)S + L) T}
=0.

Now both (E.113) and (E.115) follow by taking A — 0% in (E.95) and (E.96), respectively.
This concludes the proof.

O

Corollary S.6.12 (Limiting deterministic equivalents for generalized bias and variance ridgeless resolvents).
Assume the setting of Lemma S.6.10. Let f: Rs9 — Rxq be a function. Then, as n,p — o and p/n — v €
(1,00), the following equivalences hold:

1. Limiting generalized variance of ridgeless regression:
S F(8) = 0(0) (075 + ) 2SF(5), (E.117)
where v(0;y) and U(0;7) are defined by (E.112) and (E.113), respectively.
2. Limiting generalized bias of ridgeless regression:
(I, = SYE)F(E)(I, = BYE) = (1+55(0;7)) (0(0;7)8 + L) ()0 + L) !, (B.118)
where v(0;7) is as defined in (E.112) and U,(0;7) is as defined in (E.115) with A replaced by f(X).
Proof. The proof follows from Lemma S.6.11, in conjunction with Lemma S.6.13 ((1), (3), (4)) to provide

~

continuity of the functions v(0;-), ¥(0;-), and v,4(0;-) (in the aspect ratio) over (1,00). O
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S.6.6 Lemmas on properties of solutions of certain fixed-point equations

In this section, we collect helper lemmas that are used in the proofs of Proposition 3.14 in Section S.3,
Corollary 4.9 in Section S.5, and Lemma S.6.11 and Corollary S.6.12 in Section S.6.

Lemma S.6.13 (Continuity and limiting behavior of functions of the solution of a fixed-point equation
in the aspect ratio). Let a > 0 and b < o0 be real numbers. Let P be a probability measure supported on
[a,b]. Consider the function v(0;-) : ¢ — v(0; @), over (1,00), where v(0;p) = 0 is the unique solution to the
fized-point equation
1 v(0; @)1
—= | —————dP(r). E.119
o~ ) Tro e (E.119)
Then, the following properties hold:
1. The function v(0;-) is continuous and strictly decreasing over (1,00). Furthermore, lim,_,;+ v(0; ¢) = o0,
and limg_,, v(0; ¢) = 0.
2. The function ¢ — (¢v(0;$)) ! is strictly increasing over (1,00). Furthermore, limg_, 1+ (¢v(0;¢)) ™! =0
and lim o (¢pv(0; ¢)) 1 = 1.

3. The function ©(0;-) : ¢ — ¥(0; ¢), where

5(0:6) = ((01@ = Wdﬂr))_l,

is continuous over (1,00). Furthermore, limy_,+ 0(0; ¢) = 0, and limg_, 9(0; ¢) = 0.

4. The function vy(0;-) : ¢ — 0g(0; @), where

r2
5g(0§ ¢) = v(0; ¢)¢’J W dP(r),

is continuous over (1,00). Furthermore, limy_,1+ U4(0; ¢) = 00, and limg_,o U4(0; ¢) = 0.
5. Let Q be a (fized) probability distribution supported on [a,b] that depends on a scalar ¢1. Then, the
function Typ(d1;-) : ¢ — Tp(d1,¢), where

Ty(1,0) = (1+7,(0;9)) J L (),

(14 v(0;0)r)
is continuous over (1,00). Furthermore, Yip(p1,¢) < 0 for ¢ € (1,0), and limy_on Tp(¢1,9) = 1.

Proof. We consider the five parts separately below. Before doing so though, it is worth mentioning that
for ¢ € (1,00), there is a unique non-negative solution v(0; ¢) to the fixed-point equation (E.119) as stated
in the statement. This follows from Lemma S.6.15 (1). The following properties refer to the function
v(0;+) : ¢ — v(0; @) defined via this unique solution.

Part 1. We begin with the first part. Observe that the function

1
— — dP
t fl—&-trd (r)

is strictly decreasing and strictly convex over (0,00). Thus, the function

t
H _[ J-l—l—trd (r)

is strictly increasing and strictly concave over (0, oo), with lim;_,0 7'(t) = 0 and lim;_,,, T'(t) = 1. Since the
inverse image of a strictly increasing and strictly concave real function is strictly increasing and strictly
convex (see, e.g. Proposition 3 of Hiriart-Urruty and Martinez-Legaz (2003)), we have that T—! is strictly
convex and strictly increasing. This also implies that 7~ is continuous. Note that v(0;¢) = T~(¢~1). Since
¢! is continuous, it follows that v(0;-) is continuous. In addition, since ¢ > ¢! is strictly decreasing, we
have that v(0;-) is strictly decreasing. Moreover, limy_,1+ T (¢ 1) = 00, and limg_oo T~ (¢~ 1) = 0.
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Part 2. From (E.119), we have

1 r
¢mm¢>=J1+v®¢vdP“’

Because v(0; ¢) is strictly decreasing over (1,00), the right side of the display above is strictly increasing.
Furthermore, because lim,_,;+ v(0; ¢) = 00, we have lim_,q+ (¢v(0; #))~! =0, and because limy_,o v(0; ¢) =
0, we have limg_,q (¢v(0; )"t =1.

Part 3. From Part 1, the function 1/v(0;-)? is continuous. In addition, observe that the function

o | a0

is also continuous. Finally, note that

2 _¢J(1+r2§0;¢))2 P = ( d)f(l-i-rv )2 dP(r)) >0,

where the last inequality holds for all ¢ € (1,00) because v(0;¢) > 0 over ¢ € (1,00) from Part 1, and the
term in the parenthesis is strictly positive over ¢ € (1, 00) because

¢f<1+m ) ¢f1+m dpP(r) =1,

where the last equality follows from (E.119). Thus, v(0;-) is continuous.
Furthermore, since lim_,1+ v(0; ¢) = o0, it follows that limg_,;+ ¥(0; ¢) = co. Similarly, from limg_, v(0; ¢) =
0 and the fact that

r2

lm | —— —_dP(r) = a® > 0,
2 | Ty P 20> 0

it follows that limy_,, 7(0; ¢) = 0.

Part 4. Similar to Part 3, continuity of ,(0; -) follows from the continuity of ¥(0; -) and v(0; ¢). To compute
the desired limits, observe that

1
1+ 04(0;0) = 5 .
T
=4 | iy 70
We thus have
2
(14 5,(0:0) ™ = 1= 00506 | sz AP() (.120)
2
Because lim,_,1+ v(0; ¢) = oo, from (E.121), we have
Jim, (1470 $) "t =1- Jlim, qsf 0 P =1-1=0

It follows then that lim,_,;+ U4(0; ¢) = 0.
On the other hand, observe from (E.120) that

2

(14 3,(0:6)) " = 1 — $o(0; B)u(0; as)f( ’

Ao PO (E.122)
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From Part 2, we have limy_, ¢v(0;¢) = 1, and from Part 1, we have limy_, v(0; $) = 0. Moreover, since P
is supported on [a, b], and v(0; ¢) > 0 for ¢ € (1,0) from Part 1, for ¢ € (1, 00), note that

’/‘2 2
<] wrmwar <

Thus, from (E.122), we obtain
lim (1+9,(0;4)) ' =1-0=1.

¢$—00

We hence conclude that limg o T4(0; ¢) = 0.

Part 5. The continuity claim follows from the continuity of v(0; -) and ¥4(0; -) from Parts 1 and 4, respectively.
From calculation similar to that in Part 4, it follows that (1 + 24(0;¢)) < o for ¢ € (1,00). Now, since
v(0;¢) > 0 for ¢ € (1,00) from Part 1, and @ is supported on [a, b], observe that

1
——d <1 .
| irmap a0 <1<
Hence, T4(¢1,¢) < oo for ¢ € (1,0). Moreover, because limg_,o (1 4+ 04(0;¢)) = 1, and limg_, v(0; ) = 0,
we obtain .

lim Y = lim (1 4+ 7,(0;¢)) - li ——d =1.

4)1_1}30 b(¢17¢) 451_{%0( + UQ(O; ¢)) d)l—I};O (1 + ’U(O,d))?")Q Q(T)
Therefore, limg_,oc To(¢1,¢) = 1, as desired.

This completes all the five parts, and finishes the proof. O

Lemma S.6.14 (Bounding derivatives of the solution of a fixed-point equation in the regularization parameter).
Let a > 0 and b < o0 be real numbers. Let P be a probability measure supported on [a,b]. Let v € (1,00) be a
real number. Let A = [0, Anax] for some constant Apax < 00. For A € A, let v(—=X;y) = 0 denote the solution
to the fized-point equation

1 T
o(=Av) A VJ v(=Ay)r +1 4P(r)

Then, the function A — v(—A\;7y) is twice differentiable over A. Furthermore, over A, v(—\;7), 0/0A[v(=A;7)],
and 02 /0X?[v(—\;7)] are bounded above. Furthermore, over A, absolute values of v(—X\;v), d/0A[v(—=X;7)],
and 02/0X?[v(—X\;v)] are bounded above.

Proof. Start by re-writing the fixed-point equation as

1 r
A= v(=X7) 7] v(=Asy)r + 1 4P(r)

Define a function f by

1 r
=—— dP(r).
f@) =5 = [ S apw)
Observe that v(—A;7y) = f~1()\). The claim of twice differentiability of the function A — v(—2\;~,,) follows
from Lemma S.6.15 (4). The claim of boundedness of the function and its first derivatives (with respect to \)
follows from Lemma S.6.15 ((4), (5), (6)).
O

Lemma S.6.15 (Bounding derivatives of the solution of a fixed-point equation). Let a > 0 and b < o0 be two
real numbers. Let P be a probability distribution supported on [a,b]. Let v € (1,00) be a real number. Define
a function f by

f(x)=l—fyj T ap(r). (E.123)

T xr+1

Then, the following properties hold:
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1. There is a unique 0 < xg < 00 such that f(xg) = 0. The function f is twice differentiable and strictly
decreasing over (0,x0), with lim,_o+ f(x) = 00 and f(zg) = 0.

2. The derivative [’ is strictly increasing over (0,x¢), with im,_,q+ f'(z) = —o0 and f'(zp) < 0.
3. The second derivative f" is strictly decreasing over (0,xq), with lim,_o+ f”(x) = 00 and f"(z¢) > 0.

4. The inverse function = is twice differentiable, bounded over [0,00) by x¢ < ©, and strictly decreasing
over (0,0), with f~1(0) = zo and lim,_.o f~*(y) = 0.

5. The derivative of the inverse function (f=1)" is bounded over [0,0) by

2
Lo

1 —’yf (xo”;oi 1>2 dP(r)

6. The second derivative of the inverse function (f=1)" is bounded over [0,00) by

< 00.

3
2z

(1 = vj (xoioi 1>2 dP(r)>3

Proof. We consider different parts separately below.

< 00.

Part 1. Observe that

The function g : © — 1/x is positive and strictly decreasing over (0,00) with lim, o+ g(z) = o and
lim, o g(2) = 0, while the function

xr
h:z—1-— dP
x nyxr—i—l (T)

is strictly decreasing over (0,0) with h(0) = 1 and lim, , h(xz) = 1 —+ < 0. Thus, there is a unique
0 < zp < o such that h(zg) = 0, and consequently f(xg) = 0. Because h is positive over [0, z¢], f, a product
of two positive strictly decreasing functions, is strictly decreasing over (0, xz¢), with lim,_,¢+ f(z) = o0 and

f(xo) = 0.

Part 2. The derivative f’ at x is given by

F(z) = —% +7f(wrjl)2dP(r) - —% (1 _WJ <xfi 1)2 dP(r)> .

The function g : # — 1/2% is positive and strictly decreasing over (0,00) with lim, o+ g(z) = o and
lim, o g(z) = 0. On the other hand, the function

2
xr
h:o:r—>1'yj<xr+l> dP(r)

strictly decreasing over (0, 00) with A(0) = 1 and h(zg) > 0. This follows because for x € [0, z¢],

vJ (x::i 1)2 dP(r) < (xo?f 1) VJ (xﬁl) ) (B.124)

<7szr dP(r)g*yJ Tor dP(r) =1,

r+1 Tor + 1

96



where the first inequality in the chain above follows as the support of P is [a,b], and the last inequality
follows since f(xzp) = 0 and z¢ > 0, which implies that

ToTr
_d
.’E()’I’"‘l

P(r).

Thus, —f’, a product of two positive strictly decreasing functions, is strictly decreasing, and in turn, f’ is
strictly increasing. Moreover, lim,_,o+ f'(z) = —o0 and f’(xg) < 0.

1
— = ’yj ! dP(r), or equivalently that 1= *yf
o Tor + 1

Part 3. The second derivative f” at x is given by

(@) = 5 - 2vf(xr7j:1)3dP(r) -2 (1 -] <mf”i 1>3 dP(r)) .

The rest of the arguments are similar to those in Part 2. The function g : x — 1/2 is positive and strictly
decreasing over (0,00) with lim,_,q+ g(z) = 0 and lim,_, g(x) = 0, while the function

3
xr
h:o:r—>1'yj<xr+l> dP(r)

is strictly decreasing over (0,00) with h(0) = 1 and h(zg) > 0 as

WJ (xrxi 1)3 dPr) < (:z:;)oi 1>27f (wx: 1) dP(r) (5.125)

xr Tor
< dP(r) < dP(r) = 1.
FYJ:W—I—l (r) Fyfmor—i-l (r)

It then follows that f” is strictly decreasing, with lim,_,q+ f”(z) = o0 and f”(xz¢) > 0.

Part 4. Because f is twice differentiable and strictly monotonic over (0,z), f~! is twice differentiable
and strictly monotonic (see, e.g., Problem 2, Chapter 5 of Rudin (1976)). Since f(zo) =0, f~1(0) = z¢, and
since lim, o+ f(z) = o0, lim,_,o f~!(y) = 0. Hence, f~! is bounded above over [0,%) by zg < 0.

Part 5. Because f'(z) # 0 over (0, x), by the inverse function theorem, we have

Y@ = || < ]| = !
G s

where the first inequality uses the fact that | f/(zo)| < |f/(x)] for z € (0, z¢] from Part 2, and the last inequality
uses the bound from (E.124).

< o,

Part 6. Similar to Part 5, by inverse function theorem, we have

2 <1_7 J(xrx:—1>3 dP(r)> ) i .
% (1 —’yJ (mﬁ 1)2 dP(r)>3 (1 fvf (xfi 1)2 dP(r))3

where the first inequality uses the bound from (E.125), and the second inequality uses the bound from
(E.124).
This finishes all the six parts, and concludes the proof.

=y = | £ -

(z)?

O

We remark that the technique of Lemma A.2 of Hastie et al. (2019) can be applied to obtain similar
conclusions as those in Lemmas S.6.14 and S.6.15. However, since our parameterization is slightly different,
we make use of the inverse function theorem instead of the implicit function theorem employed in Hastie
et al. (2019).
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S.6.7 Proof of Theorem S.6.16 (Risk characterization of one-step procedure
with ridgeless regression)

The following theorem characterizes the risk of the one-step procedure starting with MN2LS base procedure
for isotropic features under square error. Let RI*(y; f°%) denote the risk of the one-step predictor starting
with the MN2LS base predictor on i.i.d. data with limiting aspect ratio ~.

Theorem S.6.16 (Limiting risk of one-step procedure with ridgeless regression). Suppose assumptions
(£2A1), ((2A2) with ¥ = I, ((2A3) hold true. Let SNR := p?/o?. Then, the limiting risk of the one-step
predictor starting with the MN2LS base predictor under (PA(7)) is given as follows:

o When SNR < 1:

’V

e When 1 < SNR < SNR*(~ 10.7041):

R (y; /)

o? —1=

1—x

20/2VSNR — 1 — 1
{SNR( )+

1
G2—1

oL
G

+

SNR

det (. Fos ' ; < —
B iy 7S sNren !
7 SNR otherwise.
. 1
fy<l—- ———=<1
24/24/SNR — 1
-1
fleo—— 1 (oL !
24/2v/SNR — 1 VSNR  4/24/SNR — 1
1 1
1- —
G — 1} ( C2)
otherwise,

where SNR* (which is approximately 10.7041) is value of x > 1 that solves

-1
P S RN SIS S (E.126)
2W/2v/z — 1 VO NS
and (1,(2 = 1 are solutions to the equations
1 S G 1 ( G G )
SNR|{———| = — + 1—= E.127
(Cl C2) (-1 (-1 G-1 GG —1) ( )
1 1 1
— 4+ = =—. E.128
G & 7 ( )
e When SNR > SNR*:
Y . *
~ r— fy<y' <1
Rdet(,y; f'os) - 1— ¥
o2 - 1 1 } ( 1) 1 .
SNR({1—— ]+ 1—=]+ otherwise,
{ < C1> G -1 G2 G—1
where SNR” is as defined in (E.126), v* is given by
1 1 1 1 \!
1— {14+ min{SNR((1—-— |+ 1—— )+ ,
< 7<1{ < Cl) C1—1}< C2> C2—1>

and (1,( = 1 are solutions to the set of equations (E.127) and (E.128).
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Furthermore, in each case, the limiting risk is a non-decreasing function of .

Proof. From Proposition 4.10, it follows that that the limiting risk of the ingredient one-step predictor for
various limiting split proportions ({1, (2) under isotropic features is given by

p2(1—ci1)+a2(<111)}(1—é)+a2(<2{1) when (1 > 1,6 > 1
Rdet(Ch@;f)—l: o2 (%)}(1——)—!—0 ( 171) when (1 <1,(o > 1

o2 (1%2) when ¢ < 1.

Note that the last case covers both ¢; > 1 and ¢; < 1. Given a fixed v, our goal is to minimize R*((y, Ca; f)

with the constraint Cl + 412 < 1

To simplify the calculatlons below, we first scale out the factor of o2 and express the risk in terms of
2
SNR := Z; to write

R SNR(l—%)+(11_)}(1—%)+(;_) when ¢; > 1,6 > 1
Rdet(i{; G@if) 121} (1 —Cé) A <<211_1) C G-1 ey
1£2<2> when (2 < 1.

The problem of minimizing R(Z?\OS) can now be broken into three separate minimization problems, one for
each of the cases above. The final allocation is then the one that gives the minimum among the three cases.

We next notice a simple observation that lets us eliminate the third case. Any feasible allocation of (;
and (3 in the third case is also a feasible allocation for the second case. This can be seen by making (; for
the second case equal to (5 in the third case and letting (; for the second case tend to co. Moreover, this
gives the same objective value for both the cases. Hence, the minimum of the second case is no larger than
the minimum of the third case and we can ignore the minimization of the third case.

Overall we are thus left with two minimization problems:

minimize £SNR( Y+ (a5)(1-2) + (a5)

: 1
subject to = + & < 3 (E.129)
Cl >1
G2>1
from the first case, and
e . 1
minimize {1 Cl\} 1- 1 ) (Cz—l)
subject to & + & < 3 (E.130)
<1
G2>1

from the second case. We now in turn analyze both of these optimization problems.

Optimization problem (E.130)

Let’s start with the problem (E.130). Note that the objective function of the optimization problem (E.130)
does not depend on SNR. Hence the optimal value will only be a function of . In addition, the constraint
(1 < 1 is only satisfied when v < 1. Thus, when v > 1, the problem is infeasible. We divide the remaining
range of v into two main cases of O <7 < 0.5 and 0.5 < v < 1. In each of the cases, we show that the
minimum value of the problem is 2, which is achieved by setting ¢; = v and ( = ®©

When v < 0.5.  We first note that any allocation (; > 0.5 is suboptimal because when (; > 0.5, we have
- Lemma S.6.17 (3). Thus using Lemma S.6.18 (3), the objective function in this case is always
larger than 1 for such (;. However, we can achieve 1 by setting ¢(; = 0.5 and (s — 0. Therefore we only need
to consider ¢; < 0.5. For such (1, we have > C Lemma S.6.17 (1). Now using Lemma S.6.18 (1), the
optimal allocation is obtained by setting (s — o0 and choosing the least (7, which is v, and the corresponding
optimal value is

0l
1—v°
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When 0.5 < v < 1. We claim that the optimum value is still %, which is achieved by setting ¢; =

and (5 — 0. This is a slightly more involved argument than the previous case because now 151 - will be
larger than 1 since (; > v > 0.5, and hence there is a possibility of optimal allocation other than (; =~ and
(o = 0. We proceed as follows.

Consider any feasible (; < 1. On one hand, using Lemma S.6.18 (2), we note that the unconstrained

<1
. . T i S R
optimal (3 for this ¢; is m—l' On the other hand, from the constraint &S5 g we know that we

L There are now two possible scenarios.
¥ <1

need to satisfy (o >

e When % <7v<l1
such that v < {3 < 1) satisfies

—~

In this case, we verify that any feasible (;

To see this, the above inequality after separating components of v and (; reads

1 1 [1
—<—41—4/— -1
Y G1 G
4

It is easy to check that the function z +— 1 + % — 4 /% — 1 attains minimum value of % (at x = %) on

the interval 0.5 < x < 1. Thus whenever v > %, this condition will be satisfied for all feasible (7. In
this case, from Lemma S.6.18 (2), the optimal ¢, that satisfy the constraint is +—+. Plugging this

v <1

value into the objective function, we arrive at the objective function

1 1
1 1 ST
.
1-G v G 1—;4‘5

and the overall optimization problem reduces to

minimize { 1£1<1 } (

subject to (G = v =
<1 < 1.

o (E.131)

s

We can verify that the objective function is increasing in the constraint set and achieves the minimum
at (1 = 7. The corresponding (> then tends to oo as desired.

e When 0.5 < v < %, or equivalently % < % < 2.

In this case, we can check that when

2 4

24, /471

vy (E.132)
2

(g,erg) Sas (;,2+2)’
vy 7y
we have
1 > L +1 1 1
v G G1
which leads to
¢1
1 - 1—C1
1 1
YT w S 1



/<1
Thus (& = —L—="1 is feasible. The objective at this (s is 24/ — 1. Now note that the function
2 141( _1 1-C1
—61

x — 2, /7%= — 1 is increasing for 0 <z < 1 and thus the optimal ¢; in this case is the lower point of

—T

the above interval (E.132). The optimal value for this case is thus given by

i
R S \/; +1
While when , y , y
7<C1<7 i ! 1, or A ! 1<§1<1,
2(7%—%+2) 2(712—%+2)
we have
- < = +1-— 1 1
Y Q G
As argued before, in this case, the optimal ¢y is — T and the objective function at this value is given
TG
by

1 1
1 1 ST
1-G v G 1—§+?1

This function is again increasing in (; in the constrained set and hence the optimal value of (; is the

lower point when (; = v leading to the optimal value ﬁ Now, we have

2 4
5 5Ty 71 .
1=y Z_d4q-24 /4741

for 0.5 < v < %. Thus overall, even in this case, the optimal allocation is (; = v and (; — o0.

Optimization problem (E.129)

We now turn to problem (E.129). In this case, the solution depends on both SNR and «. Note that the
objective function can be written more compactly as h({2; h({1; SNR)) where h(v; SNR) is defined as

h(v;SNR) = SNR <1 - 1) + L
v/ =1
We first consider the case when SNR < 1. We argue that the optimum value in this case is SNR itself
and it is achieved by setting both (; — o0 and (s — c0. This can be seen as follows. For any feasible (; > 1,
the minimum value of h(y; SNR) is SNR and it is achieved as (; — oo from Lemma S.6.18 (1). Since this
minimum value is less than 1, h(¢2; SNR) is again minimized as {5 — o0 and overall minimum is SNR.
Let us consider the case when SNR > 1. For ease of notation, we denote SNR by s.
We first claim that we can restrict to (; > % without loss of generality. This is because for any

% that gives either the same or smaller objective value while

enlarging the constraint set for (5. This claim follows from Lemma S.6.19 (1).

Next observe that the minimum without the constraint C% + %2 < % is

2/2¢/s —1—1,

1< (1< %, there is a corresponding (; >
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which is achieved by setting (; = ¢£1 and (5 = V2VETL e values of ~ for which this value is achievable

V24/5-1—1

1 1 B
7<<1_v@+1_2w@—1) . (E.133)

In other words, the optimum value of problem (E.129) is 24/24/s — 1 — 1 for  satisfying (E.133) achieved by

are:

setting (1 = \/\g/i and (o = %

Now we consider + bigger than (E.133). For such ~, we need to move either (or both) of ¢; and (s from
their unconstrained optimum values above. We claim that the constraint = + ? < 1 need to be satisfied with
equality in thls case ThlS can be seen as follows. By way of Contrad1ct10n suppose the optimal allocation is
(¢7,¢3), and 4* + C* < =. We now argue that we can strictly decrease the objective function while satisfying

the constraint by producmg a feasible allocation ((7*,(3*) that strictly dominates the assumed allocation.
We have two cases to consider.

1. {7 = f\s/il and ¢5 > % In this case, observe that we can keep (;* = (i and decrease (5 so

that (3% = = — CL* This is feasible. Now note that
1

h(G3™5 h(CT758)) = h(C™5 h(CT5 ) < h(C3; h(CT5 5))

where the inequality follows from Lemma S.6.19 (2). Thus, the new allocation strictly decreases the
objective value.

1
Py

2. (7> \/\5/51 and (5 = % In this case, we can decrease (7 first so that (;* = % — é, and keep

= (5. Observe that this modification keeps us in the feasible region. Now note that

h(G3™: h(C™58)) = h(C3: h(CT™s8)) < h(C33 h((T58))
where the inequality follows from Lemma S.6.19 (1). Thus, the objective value is again strictly smaller.

Hence, in both the cases, the objective value can be strictly improved while staying within the feasible
constraint. Therefore, we must hit the constraint with equality.

With the equality constraint, we can now use the method of Lagrange multipliers. The Lagrangian is
given by

G G v

The optimality conditions are given by the following system of equations in ({3, (2, 1)

EIED PR R
G G-1)¢G (G-1)? 2

(-e)emm) &

11 1

G ey

L(C1, G2, ) = h(C2; h(C138)) + p < L l _ 1) .

After minor simplifications, these lead to




Eliminating p, we get two equations in two unknowns (1, (2):

8(1__1>= ¢ G 1 (L_Q‘i>
G G (G —12 (—-1)2 -1 G (¢ —1)
1 1 1

GGy

as claimed.
Finally, to obtain various boundary cutoff points for v and SNR in each of the cases, note that:

e When z = SSN#RIL, we have %= = SNR.
e Whenz =1— ——L— we have - = 24/2¢/SNR — 1 — 1. In addition, from a short calculation it
24/2+/SNR—1 =T
-1
foll h hen SNR ~ 10.704, we have 1 — — 2 —— = (2 — —L_ — L .
ollows that, when SNR 0.704, we have ovavsNiT ( VAR~ \avenmo

X

e When z = v, we have 2= = min, <1 h(72; h(71; SNR)).

This finishes the proof. See Figure S.5 for an illustration of the optimal splitting of the aspect ratios

(T (7), ¢ (7)) for a given v for two different SNR values. O
SNR =6 SNR = 12
8 ‘ 14 ; ; ; ‘
SNR + 1
SNR4+1| [T T T T T T TS s s mss s s m s
7 ____________________________ 12 |- |
6l
10r .
4
El PN
= P o\ A1 2 gt 1
S Ny = 1.9322,(f(v) = 2.7471, (3(7) = 6.5135 s 8 KNy =1.9322,¢1(7) = 1.9322,G(7) = Inf , /g
e Al 2V/2V/SNR — 1 e e
£ N7 =1G(y) = 1.8182,G(7) = 2.2222 goet 1
al Lo /N 2=Lg() =16364,G(y) =25714_ 2V2VSNE -1
Ny =10.64,((7) = 0.64,¢5(7) = Inf ar 7
27 Original MN2LS | Ny =0.64,((v) = 0.64,G(v) = Inf
One-step MS2LS, M =1 27 1
0o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Aspect ratio (y = p/n) Aspect ratio (y = p/n)

Figure S.5: Illustration of the optimal splitting of the aspect ratios for the one-step optimization with MN2LS
base prediction procedure. Here, (¢f(7),(5(7)) indicates the optimal splitting of the aspect ratio v for the
first and second splits.

S.6.8 Lemmas on properties of risk profile of ridgeless regression

In this section, we collect helper lemmas used in the proof of Theorem S.6.16. All the lemmas in this section
are quite elementary, and only abstracted out for ease of repeated use in the proof of Theorem S.6.16.

Lemma S.6.17 (Properties of ridgeless risk profile in the underparameterized regime). The function
g:x— 7= over the domain (0,1) has the following properties:

1. The function g is increasing in x.
2. When z < 0.5, g(x) < 1.
3. When x > 0.5, g(z) > 1.
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Proof. The claims are easy to check. See Figure S.6 (the z < 1 segment) for illustration. O

Lemma S.6.18 (Properties of ridgeless risk profile in the overparameterized regime). Let h(-;s) : x —
S (1 — %) + ﬁ be a function defined on the domain x > 1, parametrized by s = 0. The function h has the
following properties:

1. When s < 1, the function is decreasing in x and approaches the minimum value of s as r — 0.

2. When s > 1, the function attains the minimum value of 24/s — 1 at = \/\g/iy

3. When s > 1, h(z;s) > 1 for all x > 1.

4. Forxz > o1 the function is increasing in x.

5. The function s — h(x;s) is increasing in s for s =0 for any fized x > 1.

Proof. The first property is easy to check. The second property follows elementary calculus. The third
property follows from the second property. The fourth property follows by inspecting the derivative of h(:; s)

for x > \/\E/E ;- The fifth property is easy to check. See Figure S.6 (the > 1 segment) for illustration.

10
9t 4

st 4

—g(")

S ef ——h(50.5) |

> h(-1)

c 5F 4

s —— h(:2)

o

547 V/f ——h(55) |

2 | h(+ 10)
3l ]
ol |
1
0 s s s s s s s s s

Figure S.6: Illustration of ridgeless risk profile with varying SNR.
O

Lemma S.6.19 (Properties of ridgeless one-step ingredient risk profile in the overparameterized regime).
Let h(x;s) :x— s (1 - %) + ﬁ be a function defined on the domain x > 1, parameterized by s = 1. Let
g: (z,y) — h(y; h(zx;s)) be a function defined on the domain x > 1 and y > 1, parameterized by s = 1. The
function g has the following properties:

1. For any fized y > 1, the function g is minimized at x = \/}/31 and increasing in x for x = \/‘g/f

T
2. For any fixzed x > 1, g(x,y) is increasing over y =

Proof. The first claim follows from Lemma S.6.18 (2), (4), (5). The second claim follows from Lemma S.6.18 (4).
O
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S.6.9 Control of additive error term in expectation

The following remark complements Remark 2.8 and specifies the growth allowed conditions on 6z to ensure
that E[A2d4] = o(1).

Remark S.6.20 (Tolerable growth rates on 6= for EA2d9 = 0(1)). Suppose |Z| < n® for some S < co. Under
the setting of Lemma 2.4, if for some t > 1,

1/2
max |Gelp, = o0 —rte |,
te= t n—A+(A+9)/t

then E[A244] = o(1). On the other hand, under the setting of Lemma 2.5, if

1/2
max [G¢|L, = o | —te
gez SNz nE—A)72

then E[A244] = o(1). The remark follows simply by observing that the first term in the expectation bounds
(11) and (13) for both Lemmas 2.4 and 2.5 are o(1), while the second term in Lemma 2.4 is of order

an/erS/t
o .
I max loe L.,

te

for r,t > 1 and 1/r + 1/t = 1, and the second term in Lemma 2.5 is of order

<n—A/2+S/2>

———— | max |J¢| L,-
1/2 = S 152
nté €e=

It is worth mentioning that one can also derive suitable growth rates on kg that yield conditions for
E[A™!] = o(1). However, this does not directly lead to control of E[R(f(-;D,))] in the multiplicative
form (8). This is because of the denominator (1 — A™), appearing in (8). For every n, there is a non-zero
probability that the denominator (1 — A™%), is zero. Hence, the right hand side of (8) may not have a
finite expectation in general. However, assuming E[R(f5(~; D,))] < C for some C' < oo for all £ € Z, one can
control E[R(f‘“’(-; D,,))] by explicitly analyzing P(A™*! > 1/2), and using the bound

1+ Ap! 2

- min R(fg(ﬁ Dtr)-lAy;ul@/z + Z R(J?g(ﬁ Dn))]lAgm1>1/2~

R rev ';Dn < -—1 T
(f ( )) (1 _ A#ul)_‘r ce= e

S.6.10 A lemma on norm equivalence implications
The following lemma formalizes various norm equivalence implications mentioned in Remarks 2.19 and 2.20.
Proposition S.6.21 (Norm equivalence implications). The following statements hold.

1. Suppose a random X satisfies Ly — Lo equivalence, i.e., there exists a constant C' such that E[X*] <
CE[X?], then the random variable satisfies Ly — Ly equivalence, i.e., there exists a constant C such
that E[X?] < CE[|X]].

2. A random variable W satisfying 1o — Lo equivalence also satisfies 11 — L1 equivalence.

Proof. We will use the fact that the map p — log E[|X|P] (p = 1) is convex. In other words, for A € (0,1), we
have
log E[| XM +(=N] < Xog E[| X|"] + (1 — \) log E[| X |*]. (E.134)

We now use r =4 and s = 1, and A = 1/3 so that Ar + (1 — \)s = 2. Plugging these choices in (E.134) yields

1 2
log E[X?] < 3 log E[X*] + 3 log E[| X|].
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In terms of norms the inequality then becomes
4 2
2log [ X||z, < glog | Xz, + 3 log [ X]z,.

This yields
| Xz, _ 4, 11Xz,

< - log .
XMz, 3 7 XL,

2
3 log

Manipulating both sides, we end up with

2
HXHL2 < (”X”L4 )
1X ]z, 1X1 2,
as desired.

The second facts follows because ¢, — Lo equivalence implies L, — Lo equivalence for each p > 1, i.e., for
each p > 1, we have that

Wz, < Cy/pIWlL,,

for an universal constant C'; see Vershynin (2018, Proposition 2.5.2), for example. This in particular implies,
L4 — L5 equivalence, and by the first fact implies Lo — L. Thus, there exists a universal constant C such that

Wiz, < [W]L,.
Combining with the inequality above, we then get for p > 1,
Wz, < CvpIW L, < Cp[WL,.

Now, using Vershynin (2018, Proposition 2.7.1), this implies ¢; — L equivalence.
Alternatively, assuming 1y — Lo equivalence, observe the following chain of inequalities:

(a) (b) (c)
CHXHL4 < ”X“'l/)l < (10g2)1/2”X”’¢12 < C“XHLQ

where (a) follows from Vershynin (2018, Proposition 2.5.2), (b) follows from Wellner and van der Vaart (2013,
Problem 2.2.5), (c) follows from the assumed 19 — Lo equivalence. Finally, since ¥ — Lo equivalence implies
L4 — Ly equivalence, and from the fact this implies Lo — L1 equivalence concludes the proof.

Figure S.7 visually summarizes the norm equivalence implications. O]

Yo — Ly | == | 1 — Lo \

b [

Ly — Lo — Lo — 1,4 /

Figure S.7: Visual illustration of norm equivalence implications discussed in Remarks 2.19 and 2.20, and in
the proof of Proposition S.6.21. In the figure, = indicates that equivalence A implies equivalence B.
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S.6.11 Proof of (63)

Below we prove the risk decomposition (63) for the ingredient zero-step predictor under squared error loss.
The proof follows from the following iterated bias-variance decomposition.

E[(Yo — fNI(Xo;Dtr))z | Dix]
= E[E[(Yo — Fur(Xo; Du))? | Des, (Xo,Yo)] | D]

= B[ (Yo — E[Jur (X0: Du) | Dos, (X0, Y0)] ) | D] + E[Var (s (Xo: Dee) | Der, (X0, ¥0)) | D]
2

(k)n) 015eylky,

1 -
+E [MVar ( (X0;Dir,1) | D, (XOaYO)) ‘ Dtr]

1

=E| (Y, -

= Aol P) + 38| oy S (P00 1 €5 <)) = FolX0:D) | D]
kn) i1ynin,,

where in the last line f,(-; D) : RP — R is defined such that for any = € R?

fw(x;Dtr)=(i D CICOR B By )

S.7 Calculus of deterministic equivalents

We use the language of deterministic equivalents in the proofs of Proposition 3.14 and Proposition 4.11 in
Section S.3 and Section S.5, respectively. In this section, we provide a basic review of the definitions and
useful calculus rules. For more details, see Dobriban and Sheng (2021).

Definition S.7.1. Consider sequences {A,},>1 and {B,},>1 of (random or deterministic) matrices of growing
dimension. We say that A, and B, are equivalent and write A, ~ B, if lim,_, | tr[Cy (A, — Bp)]| = 0 almost
surely for any sequence Cj, matrices with bounded trace norm such that limsup |Cplltr < o0 as p — .

An observant reader will notice that Dobriban and Sheng (2021) use the notation A, = B, to denote
deterministic asymptotic equivalence. In this paper, we instead prefer to use the notation A, ~ B, for such
equivalence to stress the fact that this equivalence is exact in the limit rather than up to constants as the
“standard” use of the asymptotic notation = would hint at.

Lemma S.7.2 (Calculus of deterministic equivalents, Dobriban and Wager (2018), Dobriban and Sheng
(2021)). Let Ay, By, and C), be sequences of (random or deterministic) matrices. The calculus of deterministic
equivalents satisfy the following properties:

1. Equivalence: The relation ~ is an equivalence relation.
2. Sum: If Ay ~ By, and Cp ~ Dy, then Ap + Cp ~ B, + Dy,

3. Product: If A, a sequence of matrices with bounded operator norms, i.e., |Ap|op < 00, and By, ~ Cp,
then A,By ~ A,Cp.
4. Trace: If A, =~ B,, then tr[A,]/p — tr[Bp]/p — 0 almost surely.

5. Differentiation: Suppose f(z,A,) ~ g(z, Bp) where the entries of f and g are analytic functions in
ze S and S is an open connected subset of C. Suppose for any sequence C), of deterministic matrices
with bounded trace norm we have | tr[Cp(f(z, Ap) — g(z, Bp))]| < M for every p and z € S. Then we
have f'(z, Ap) ~ ¢'(2, Bp) for every z € S, where the derivatives are taken entry-wise with respect to z.
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We record deterministic equivalent for the standard ridge resolvent.

Lemma S.7.3 (Deterministic equivalent for basic ridge resolvent, adapted from Theorem 1 of Rubio and
Mestre (2011); see also Theorem 3.1 of Dobriban and Sheng (2021)). Suppose X; € RP, 1 < i < n, are i.i.d.
random vectors where each X; = Z; Y2, where Z; contains i.i.d. entries Zij, 1 < j <p, with E[Z;;] =0,
E[Z}] = 1, and E[|Zi|***] < My, for some a > 0 and M, < o, and X2 € RP*P is a positive semidefinite
matriz such that 0 < X < ryad, for some constant (independent of p) rmax < 0. Let X € R"*P the matriz

with X;, 1 <4< n as rows and S € RPXP denote the random matriz X "X /n. Define v, = p/n. Then, for
2e€C>° asn,p — oo such that 0 < liminfy, < limsup~y, < 0, we have

(- 21) 7~ (cle(z;90)) — 21,) 71, (E.135)

where c(e(z;7yn)) s defined as
1

_ , E.136
1+ yne(z;vm) ( )

c(e(z;7n))

and e(z;7y,) is the unique solution in C>° to the fived-point equation
e(z:7m) = B[S (ele( ) - 21,) " 1/p. (E.137)
Furthermore, e(z;vy,) is the Stieltjes transform of a certain positive measure on Rsq with total mass tr[X]/p.

We note that in defining e(\;7,,), it is also implicitly a parameterized by X. We suppress this dependence
for notational simplicity, and only explicitly indicate dependence on z and =, that will be useful for our
purposes.

Corollary S.7.4. Assume the setting of Lemma S.7.8. For A > 0, we have
AE ML)~ (0(=X)E + 1) 7Y
where v(—X\;yy) s the unique solution to the fixed-point equation

v
V(=A;Yn)

Proof. From Lemma S.7.3, for z € C>Y, we have the basic equivalence for ridge resolvent

= A+ Y tr[S0(= X 7)E + L) /p.

A~

(2 —20) 7! ~ (cle(z;m))E — 21,) 7, (E.138)

where c(e(z;7y,)) is defined by (E.136) and and e(2;7,) is the ungiue solution in C>° to the fixed-point
equation (E.137). Substituting for e(z;~,) from (E.136) into (E.137), we can write the fixed-point equation
for c(e(z;v,)) as
1 1
— — — = tr[3(c(e(z; )T — 2L,) ] /p. E.139

Manipulating (E.139), we can write

1

lem)) 1= i tr[S(e(e(z3 7)) % = 21,) " M/p = s e[S (ele(z7))/(—2)S + L) M/p. (E.140)

(—2)

Moving (—z) across in (E.140), we have equivalently the following equation for c(e(z;vx)):

) = r[X(cle(z; —z -1
(el TF=mt [E(cle(zmm))/(=2)E + 1) /p. (E.141)

Now defining ¢(e(z;7v,))/(—2) by v(z;795), the fixed-point equation (E.141) becomes

= —2 + Y tr[S((2;7)2 + I,) "] /p. (E.142)

v(2;Yn)
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Note that (E.142) is also known as the Silverstein equation (Silverstein, 1995), and v(z;7,) as the companion
Stieltjes transform. Along the same lines, from (E.138), we have

(=2)(Z = 2L,) ™" = (=2)(c(e(z 7)) = 2I,) ™ = (c(e(zi 7))/ (=2) 2 + 1) 7 (E.143)
Substituting for v(z;,), we can thus write
(—2)(Z = 2L,) "' ~ (v(z;9m)S + I,) . (E.144)
Now, taking z = —\ in (E.142) and (E.144) yields the equivalence
A+ ML) > (v(=A ) + 1)L,
where v(—A\;~,) is the unique solution to the fixed point equation
1
0(=X7m)

Finally, since v(—X\;7y) is a Stieltjes transform of a probability measure (with support on Rs¢), we have that
for Re(\) > 0, by taking Im(A) — 0, we have that Im(v(—X;v,)) — 0, and thus the statement follows. [

= A+ tr[S(0(=X70)E + 1) " /p.

We remark that we will directly apply Corollary S.7.4 for a real A > 0 (in particular, in Lemma S.6.10).
The limiting argument to go from a complex A to a real A follow as done in the proof of Corollary S.7.4. See,
for example, proof of Theorem 5 in Hastie et al. (2019) (that uses Lemma 2.2 of Knowles and Yin (2017)) for
more details.

S.8 Useful concentration results

In this section, we gather statements of concentration results available in the literature that are used in the
proofs in Sections S.1, S.3 and S.5.

Non-asymptotic statements

Tail bounds. The following two tail bounds are used in the proofs of Lemmas 2.4, 2.5, 2.9 and 2.10 in
Section S.1.

Lemma S.8.1 (Bernstein’s inequality, adapted from Theorem 2.8.1 of Vershynin (2018)). Let Z1,...,Z, be
independent mean-zero sub-exponential random variables. Then, for every t = 0, we have

P >ty <2 i r t
= X 2€xXp —Ccmin 5 9
Y1 1213, maxicicn [ Zilly,

where ¢ > 0 is an absolute constant. In other words, with probability at least 1 —n, we have

>z
i=1

Lemma S.8.2 (Concentration for median-of-means (MOM) estimator, adapted from Theorem 2 of Lugosi
and Mendelson (2019)). Let W1y, ..., W, be i.i.d. random variables with mean p and variance bounded by o>.
Suppose we split the data {W1,...,W,} into B batches T1,...,Tg. Let 1, be sample mean computed on Ty
forb=1,...,B. Define

n

>

i=1

n

1 2\ 1 2
< = |2 = | = i -
max y | - ;:1 1233, log ( ) - ax [ Zily, log <n>

M .= median(fiy, . . ., iB)-

Then, we have

IP’{ g = p) > 0\/4B/n} < exp(—DB/8).

Thus, letting 0 < n <1 be a real number, B = [8log(1/n)], with probability at least 1 —n,

~ 32log(1/n
0] < o200
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With B = [8log(1/n)], we use the notation MOM({W1,...,W,},n) for i that is,

MOM({Wl, ey WTL}? T]) = ﬁl‘[’[gbldog(l/n)]' (E.145)

Moment bounds. The following two moment bounds imply Lemmas S.8.5 and S.8.6 that are used in the
proofs of Proposition 3.14 and Corollary 4.9 in Section S.3 and Section S.5, respectively.

Lemma S.8.3 (Moment bound on centered linear form, adapted from Lemma 7.8 of Erdos and Yau (2017)).
Let Z € R? be a random vector containing i.i.d. entries Z;, i = 1,...,n, such that for each i, E[Z;] = 0,
E[Z2] =1, and E[|Z;|*] < M},. Let a € RP be a deterministic vector. Then,

Ella’ Z|7] < CgM,|lall3
for a constant Cy that only depends on q.

Lemma S.8.4 (Moment bound on centered quadratic form, adapted from Lemma B.26 of Bai and Silverstein
(2010)). Let Z € R™ be a random vector with i.i.d. entries Z;, i = 1,...,n, such that for each i, E[Z;] = 0,
E[Z?] = 1, and E[|Z:|¥] < My, for k > 2 and some constant My,. Let A € RP*P be a deterministic matriz.
Then, for q =1,

E[|ZTAZ — t:[A]|7] < Co{(Mytx[AAT])Y? + Moy tr[(AAT)9/2]}

or a constant C, that only depends on q.
q

Asymptotic statements

As a consequence of Lemma S.8.3 and Lemma S.8.7, we have the following concentration of a linear form
with independent components.

Lemma S.8.5 (Concentration of linear form with independent components). Let Z € R? be a random
vector with i.i.d. entries Z;, i = 1,...,p such that for each i, E[Z;] = 0, E[|Z;|**?] < M,, for some constant
M, < 0. Let A €RP be a random vector independent of Z such that limsup,, | Ap[?/p < M, almost surely
for a constant M,, < 0. Then, AT Z/p — 0 almost surely as p — 0.

As a consequence of Lemma S.8.4 and Lemma S.8.7, we have the following concentration of a quadratic form
with independent components.

Lemma S.8.6 (Concentration of quadratic form with independent components). Let Z € RP be a random
vector with i.i.d. entries Z;, i = 1,...,p such that for each i, E[Z;] = 0, E[Z2] = 1, E[|Z;|**®] < M, for
some o > 0 and constant M, < . Let D € RP*P be a random matriz such that limsup | D| o, < M, almost
surely as p — oo for some constant M, < . Then, Z' DZ /p — tr[D]/p — 0 almost surely as p — 0.

Lemma S.8.7 (Moment version of the Borel-Cantelli lemma). Let {Z,},>1 be a sequence of real-valued
random variables such that the sequence {E|Z,|%},>1 is summable for some ¢ > 0. Then, Z, — 0 almost
surely as n — 0.
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S.9 Notation

Below we list general notation used in this paper. Table 1 at the end of the manuscript provides a comprehensive
list of some of the specific notation used throughout.

e We denote scalar random variables in regular upper case (e.g., X), and vector and matrix random
variables in bold upper case (e.g., X). We use calligraphic letters to denote sets (e.g., D), and blackboard
letters to denote some specials sets listed next.

e We use N to denote the set of natural numbers. We use QQ to denote the set of rational numbers, Q¢
to denote the set of positive rational numbers; R to denote the set of real numbers, R>( to denote the
set of non-negative real numbers, R~ to denote the set of positive real numbers; C to denote the set of
complex numbers, C>% to denote the upper half of the complex plane, i.e., C>° = {z € C : Im(z) > 0}.

e For a real number a, (a) denotes its positive part, |a| denotes its floor, [a] denotes its ceiling, sgn(a)
denotes its sign. For a complex number z, Re(z) denotes its real part, Im(z) denotes its imaginary part,
Z denote its conjugate, |z| denotes its absolute value.

e For a set A, |A| denotes its cardinality, .A® denotes its complement, 14 denotes its indicator function.
For a function f, d/0x[f] denotes its partial derivative with respect to variable z. We also use f’ to
denote derivative of f when it is clear from the context.

e For an event A, P(A) denotes its probability, and 14 its indicator random variable. For a random
variable X, E[X] denotes its expectation, Var(X) = E[(X —E[X])?] denotes its variance; E[ X "] denotes
its r-th moment, E[|X|"] denotes its r-th absolute moment, | X |z = (E[|X|"])*/" denotes its L, norm,
for a real number r > 1; | X|, denotes its ¢ norm for an Orlicz function v; see Section 2.2 for more
details.

e For a vector a € R?, |a|, denotes its £, norm for r > 1, |a|a = VaT Aa denotes its norm with respect
to a positive semidefinite matrix A € RP*P,

e For a matrix A € R**P, AT € RP*" denote its transpose, AT € RP*™ denotes the its Moore-Penrose
inverse, |Alop denotes its operator norm, ||Ai denotes its trace norm or nuclear norm (|Al =
tr[(AT A)1/2] = 3. 04(A)), where o1(A) = 02(A) > ... denote its singular values in non-increasing
order. For a square matrix A € RP*P, tr[A] = >? | A;; denotes its trace. A p-dimensional identity
matrix is denoted as I, or simply I when it is clear from the context.

e For a p x p positive semidefinite matrix A with eigenvalue decomposition A = VRV T for an orthonormal
matrix V' and a diagonal matrix R, and a function f : R5y — Rxg, we denote by f(A) the p x p positive
semidefinite matrix V f(R)V'T, where f(R) is a p x p diagonal matrix obtained by applying the function
f to each diagonal entry of R.

e For two sequences of matrices A, and B,,, we use the notation A, ~ B, to denote a certain notion
of asymptotic equivalence; see Section S.7 for more details. For symmetric matrices A and B, A < B
denotes the Loewner ordering to mean that the matrix B — A is positive semidefinite.

e We write a = b when there exist absolute constants C; and C,, such that C; < a/b < C,,. We write
a < b when there exists an absolute constant C such that a < Cb.

e We use O and o to denote the big-O and little-o asymptotic notation, respectively. We use O, and o,
to denote the probabilistic big-O and little-o asymptotic notation, respectively. We denote convergence

in probability by <>, almost sure convergence by —>», weak convergence by 4,

e Finally, we use generic letters C,C1, Co, ... to denote constants whose value may change from line to
line.
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Notation Meaning (Location in the paper)
(X Y) feature vector X € R? and response variable Y € R (Section 2.1)
= {(Xl,Y) n dataset with n observations (X;,Y;), 1 <14 < n (Section 2.1)

predictor fitted on dataset D,, using prediction procedure f (Section 2.1)
non-negative loss function (Section 2.1)
prediction loss of predictor f(-;D,) evaluated at test point (Xo,Yy) (Section 2.1)

R( prediction risk of predictor f(, Dy) (5)

ﬁ(f( :Dy)) estimator of prediction risk of ]?(, D,.) (Section 2.1)

Fev(s D) cross-validated predictor fitted using dataset D,, (Algorithm 1)

f5 ,EEE collection of prediction procedures indexed by set = (Algorithm 1)

Nir, Mte number of train and test observations (Algorithm 1)

Dir, Die random split of D,, into train and test datasets with ny, and ny. observations (Algorithm 1)
Tiv, Lie disjoint subsets of Z,, := {1,...,n} that are index sets for Dy, and Dy, (Algorithm 1)
CEN, AVG, MOM centering procedure, averaging, median-of-means (2, 3)

7 parameter in median-of-means (E.145)

Aadd Am“l error terms in the additive and multiplicative oracle risk inequalities (6a, 6b)

05, o= conditional second moment of loss and their max over = (Lemmas 2.4 and 2.5)

Re, Rz conditional kurtosis-like parameter of loss and their max over Z (Lemmas 2.9 and 2.10)

1Yo, £(Xo; Do)l m,
[(Yo, f(Xo0; Do)z, 1m0,

conditional 1; norm of prediction loss (9)
conditional L, norm of prediction loss (r > 1) (10)

éridgea ?lassoy ﬁmn27 ﬁmnl
fana fmnl

ridge, lasso, min £, £1-norm least squares estimation procedures (20-24)
min ¢35, ¢1-norm least squares prediction procedures (22, 25)

fzs(-; Dy) zero-step predictor fitted on dataset D,, (Algorithm 2)
€ (0,1) exponent for block sizes |n”| in zero-step prediction procedure (Algorithm 2)
ng n — &|n”| (Algorithm 2)
M number of sub-samples for averaging for zero-step ingredient predictor (26)
Dgrj ,1<j< M random subset of Dy, of size ng (Algorithm 2)
f ( ,’Dfr’] )N zero-step ingredient predictor ﬁttedN on dataset ’Dtgr’j using base prediction procedure f (26)
Rt (m; f) deterministic approximation to R(f(:; D)) (Definition 3.2)
Rd/et(n; ) monotonized deterministic approximation at sample size n under general asymptotics (30)
PA(7) proportional asymptotics regime (PA(7))
DETPA-0 assumption of deterministic risk approximation to conditional risk under PA (DETPA-0)
DETPAR-0 reduction of assumption DETPA-0 (Lemma 3.8, DETPAR-0)
R (p,,/m; f) deterministic risk approximation at aspect ratio p,,/m under PA (Section 3.3.1)
& optimal sequence of £ for zero-step monotonized risk approximation (30, DETPA-0)
PRG-0-C1,C2 deterministic risk approximation program for zero-step (PRG-0-C1)—(PRG-0-C2)
km, pm sample size and feature size when verifying zero-step profile assumption (Lemma 3.8)
p?, 02 SNR signal energy, noise energy, signal-to-noise ratio (p?/0?) (Section 3.4)
frfer (qzﬁ7 p%,0?%) MN2LS risk approximation at aspect ratio ¢, signal energy p?, noise energy o2 (60)
foo( Dir) zero-step ingredient predictor fitted on D,, with M = o (62)
f"s(-‘ Dy) one-step predictor fitted on dataset D,, (Algorithm 3)

(nl RIRRL 52)

(D59, DS), 1< j < M
F(: D, D)
DETPA-1, DETPA-1*
DETPAR—l

R (p/n1, p/na; f)

(& ns63,0)
PRG-1-C1,C2,C3
kl,m; kZ,m;pm

Wi,y T, 1 <Z<pm
Qn, Q

H H

Pm>

(n = &i[n”], &|n"]) (Algorithm 3)

random pairs of disjoint subsets of Dy, of sizes (n1¢,,n2.¢,) (Algorithm 3)

one-step ingredient predictor fitted on datasets (D57, DF27) (43)

assumption of deterministic risk approximation to conditional risk under PA (DETPA-1)
reduction of assumption DETPA-1 (Lemma 4.1, DETPAR-1)

risk approximation of ingredient one-step predictor at aspect ratios (p/n1,p/n2) (Section 4.3.1)
optimal pair of sequence of £ for one-step monotonized risk approximation (45)
deterministic risk approximation program for one-step (PRG-1-C1)—(PRG-1-C3)

sample size and feature sizes when verifying one-step profile assumption (Lemma 4.1)
eigenvectors and eigenvalues of feature covariance matrix X € RPm*Pm (Section 4.3.2)

a certain random distribution and its weak limit (E.69)

empirical distribution of eigenvalues of ¥ and limiting spectral distribution (53)

v(0; ¢2),0(0 ¢>2) T)g( ;02), To(h1,P2) scalars in risk approximation of one-step procedure with linear base procedure (55-58)

?;IEQ(QZ)M ¢2, O )

MN2LS one-step risk approx at aspect ratios (¢1, ¢2), signal energy p?, noise energy o2 (60)

Table 1: Summary of some of the main notation used in the paper.
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