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Abstract

Recent empirical and theoretical analyses of several commonly used prediction procedures reveal a
peculiar risk behavior in high dimensions, referred to as double/multiple descent, in which the asymptotic
risk is a non-monotonic function of the limiting aspect ratio of the number of features or parameters
to the sample size. To mitigate this undesirable behavior, we develop a general framework for risk
monotonization based on cross-validation that takes as input a generic prediction procedure and returns
a modified procedure whose out-of-sample prediction risk is, asymptotically, monotonic in the limiting
aspect ratio. As part of our framework, we propose two data-driven methodologies, namely zero- and
one-step, that are akin to bagging and boosting, respectively, and show that, under very mild assumptions,
they provably achieve monotonic asymptotic risk behavior. Our results are applicable to a broad variety
of prediction procedures and loss functions, and do not require a well-specified (parametric) model. We
exemplify our framework with concrete analyses of the minimum ℓ2, ℓ1-norm least squares prediction
procedures. As one of the ingredients in our analysis, we also derive novel additive and multiplicative
forms of oracle risk inequalities for split cross-validation that are of independent interest.
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1 Introduction

Modern machine learning models deploy a large number of parameters relative to the number of observations.
Even though such overparameterized models typically have the capacity to (nearly) interpolate noisy training
data, they often generalize well on unseen test data in practice (Zhang et al., 2017, 2021). The striking and
widespread successes of interpolating models has been a topic of growing interest in the recent mathematical
statistics literature (see, e.g., Belkin et al., 2019a, 2018a, 2019b; Bartlett et al., 2020), as it seemingly
defies the widely-accepted statistical wisdom that interpolation will generally lead to over-fitting and poor
generalization (Hastie et al., 2009, Figure 2.11). A body of recent work has both empirically and theoretically
investigated this surprising phenomenon for different models, including linear regression (Hastie et al., 2019;
Muthukumar et al., 2020; Belkin et al., 2020; Bartlett et al., 2020), kernel regression (Liang and Rakhlin,
2020), nearest neighbor methods (Xing et al., 2018, 2022), boosting algorithms (Liang and Sur, 2020), among
others. See the survey papers by Bartlett et al. (2021) and Dar et al. (2021) for more related references.

A closely related and equally striking feature of overparameterized models is the so-called “double/multiple
descent” behavior in the generalization error curve when plotted against the number of parameters or as
a function of the aspect ratio of the number of parameters to the sample size. In a typical double descent
scenario, the generalization or test error initially increases as a function of the aspect ratio. It peaks and in
some cases explodes as this ratio crosses the interpolation threshold, where the learning algorithm achieves a
degree of complexity that allows for perfect interpolation of the data. Past the interpolation threshold, the
test error tapers down as the complexity of the algorithm increases relative to the sample size. Furthermore,
for some algorithms and settings, e.g., the lasso and the minimum ℓ1-norm least square (e.g., Li and Wei,
2021) or various structures of the design matrix (Adlam and Pennington, 2020; Chen et al., 2020), multiple
descents may occur. Double and multiple descent phenomena have been first demonstrated empirically, e.g.,
for decision trees, random features and two-layer and deep neural networks, and some of these findings have
now been corroborated by rigorous theories in a growing body of work: see, e.g., Neyshabur et al. (2014);
Nakkiran et al. (2019); Belkin et al. (2018b, 2019a); Mei and Montanari (2019); Adlam and Pennington
(2020); Chen et al. (2020); Li and Wei (2021), among others. However, in general, the shape and number of
local minima associated with a non-monotonic risk profile due to double descent depend non-trivially on the
learning problem, the algorithm deployed, and to an extent, the properties of the data generating distribution
in ways that are only partially understood.

The non-monotonic behavior of the generalization error as a function of the aspect ratio in the over-
parameterized settings suggests the jarring conclusion that, in high dimensions, increasing the sample size
might actually yield a worse generalization error. In contrast, it is highly desirable to rely on prediction
procedures that are guaranteed to deliver, at least asymptotically, a risk profile that is monotonically increasing
in the aspect ratio, over a large class of data generating distributions. (Note that increasing in aspect ratio
is same as decreasing in sample size for a given number of features.) To that effect, some authors have
considered ridge-regularized estimators; see Nakkiran et al. (2020); Hastie et al. (2019). In those cases, under
fairly restrictive settings and distributional assumptions, a monotonic risk profile can be assured. However,
in general settings and for any given procedure, it is unclear how to determine whether the associated risk
profile is at least approximately non-monotonic and, if so, how to mitigate it. The ubiquity of the double and
multiple descent phenomenon in over-parameterized settings begs the question:

Is it possible to modify any given prediction procedure in order to achieve a monotonic risk behavior?

In this paper, we answer this question in the affirmative. More specifically, we develop a simple, general-
purpose framework that takes as input an arbitrary learning algorithm and returns a modified version whose
out-of-sample risk will be asymptotically no larger than the smallest risk achievable beyond the aspect ratio
for the problem at hand. In particular, the asymptotic risk of the returned procedure, as a function of the
aspect ratio, will stay below the “monotonized” asymptotic risk profile of the original procedure corresponding
to its largest non-decreasing minorant (see Figure 1 for an illustration). As a result, when the risk function of
the original procedure exhibits double or multiple descents, our modification will guarantee, asymptotically,
a far smaller out-of-sample risk near the peaks of the risk function. Our approach is applicable to a large
class of data generating distributions and learning problems, with mild to no assumptions on the learning
algorithm of choice.

To illustrate the type of guarantees obtained in this paper, we provide a preview of one of our main results
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Figure 1: Monotonized asymptotic conditional prediction risk of the zero-step procedure (described in
Algorithm 2) and one-step procedure (described in Algorithm 3) for the minimum ℓ2-norm and ℓ1-norm least
squares procedures. The figure in the left panel follows the setup of Figure 2 of Hastie et al. (2019), and the
figure in the right panel follows the setup of Figure 3 of Li and Wei (2021) (at sparsity level = 0.1). Both
settings assume isotropic features and a linear model with noise variance σ2 “ 1 and linear coefficients of
squared Euclidean norm ρ2 “ 4. Note that the risk is lower bounded by σ2 “ 1 and the risk of the null
predictor (null risk) is ρ2 ` σ2 “ 5.

from Section 3.3.1 and comment on its implication. Adopting a standard regression framework, we assume
that the data Dn “ tpX1, Y1q, . . . , pXn, Ynqu are comprised of n i.i.d. pairs of a p-dimensional covariate and

a response variable from an unknown distribution. Using Dn, suppose one fits a predictor pf — a random
function that maps x P Rp ÞÑ pfpxq P R. Given a loss function ℓ : R ˆ R Ñ Rě0, we evaluate the performance

of pf by its conditional predictive risk given the data, defined by Rp pf ;Dnq “ ErℓpY0, pfpX0qq | Dns, where
pX0, Y0q is an unseen data point, drawn independently from the data generating distribution. Note the risk is
a random variable, as it depends on the data Dn. We are interested in the limiting behavior of the risk under
the proportional asymptotic regime in which n, p Ñ 8 with the aspect ratio p{n converging to a constant

γ P p0,8q. As noted above, in such regime the asymptotic risk profile of pf has been recently shown to be
non-monotonic for a wide variety of problems and procedures. In order to mitigate such behavior, we devise
a modification of the original procedure pf that results into a new procedure pf zs, called zero-step procedure
(described in Algorithm 2), whose asymptotic risk profile is provably monotonic in γ. The following informal
result can be derived as a consequence of results in Section 3.3.1.

Theorem 1.1 (Informal monotonization result). Suppose there exists a deterministic function Rdetp¨; pfq :
p0,8s Ñ r0,8s such that for any ϕ P p0,8s for any dataset D consisting of m i.i.d. observations with pm
features, Rp pf ;Dq

p
ÝÑ Rdetpϕ; pfq, whenever m, pm Ñ 8 and pm{m Ñ ϕ. Then, under mild assumptions on

Rdet, the loss function ℓ, and the data generating distribution, the zero-step procedure pf zs satisfies

ˇ

ˇ

ˇ
Rp pf zs;Dnq ´ min

ζěγ
Rdetpζ; pfq

ˇ

ˇ

ˇ

p
ÝÑ 0

as n, p Ñ 8 and p{n Ñ γ P p0,8q.

Figure 1 illustrates the above result for the minimum ℓ2-norm least squares estimator (Hastie et al.,
2019) and the minimum ℓ1-norm least squares estimator (Li and Wei, 2021). The light-blue lines show the
asymptotic risk profiles of the two procedures, which are non-monotonic as they diverge to infinity around
the interpolation threshold of 1, at which the sample size and the number of features are equal. The red lines
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depict the risk profiles of the zero-step procedure pf zs, which corresponds to the map

γ P p0,8q ÞÑ min
ζěγ

Rdetpζ; pfq. (1)

The function (1) is a monotonically non-decreasing function of γ, regardless of whether γ ÞÑ Rdetpγ; pfq is
non-monotonic. Furthermore, since

min
ζěγ

Rdetpζ; pfq ď Rdetpγ; pfq, for all γ ą 0,

the asymptotic risk of pf zs is no worse than that of pf . We refer to the function described in (1) as the

monotonized risk of the base procedure pf .
The assumptions required in Theorem 1.1 are very mild, and apply to a broad range of procedures

and settings. Indeed, as remarked above, the risk profile Rdetp¨; pfq of several estimators have been recently
identified under proportional asymptotics regime; see Remark 3.16. The requirements on the loss functions
are also mild and can be verified for common loss functions. In fact, our results do not require proportional
asymptotics and hold more generally.

We also develop a more sophisticated methodology whose asymptotic risk profile is not only monotonic in
the aspect ratio but can be strictly smaller than the monotonized risk profile (1), a fact that we again verify
for the minimum ℓ2, ℓ1-norm least squares procedures. See Section 4.

Core idea: the zero-step procedure. Our methodology is conceptually straightforward, as it relies on a
combination of sample splitting, sub-sampling, and cross-validation. The core principle is as follows. Starting
off with an aspect ratio of p{n, if the risk were to be lower at, say, twice this aspect ratio 2p{n, then we
could just use half the data to evaluate the predictor, enjoying a smaller risk than the one obtained when
training with the entire data. To decide whether the out-of-sample error is lower at any larger aspect ratio,
we use cross-validation to “glean at” the values of the risk function at all aspect ratios larger than the one for
the full data. To elaborate, we next give an informal description of one of our main methods, the zero-step
procedure that we study in Section 3.

We initially split the data into a training and a validation set in such a way that the size of the validation
set is a vanishing proportion of that of the training set. In the first step, we compute a collection of predictors,
each resulting from applying the same base prediction procedure on a sub-sample of size kn varying over
a grid of values in Kn. Depending on the size of the sub-sample, we are able to mimic the behavior of the
risk at larger aspect ratios (p{kn, kn P Kn). In the second step, we estimate the out-of-sample risk of each
of these predictors using the validation set. With tp{kn : kn P Knu approximating the set rp{n,8s, these
estimated out-of-sample risks act as proxies for the true generalization error at larger aspect ratios. In the
final step, we perform model selection by minimizing the estimated test error across the candidate aspect
ratios. In order to make full use of the data, one can use more than one sub-sample for each kn P Kn, a
practice that closely resembles bagging. To prove the “correctness” of the split-sample cross-validation, we
develop novel oracle inequalities in additive and multiplicative forms that are of independent interest.

Because the core components of our approach are sub-sampling and cross-validation, our methodology
is applicable to virtually any algorithm – even the black-box type – and its validity holds under minimal
assumptions on the data generating distribution.

1.1 Summary of results

Below we summarize the main contributions of this paper.

• Novel guarantees for split-sample cross-validation. At its core, our methodology performs model
selection of arbitrary learning procedures built over sub-samples of different sizes, with the size of the
sub-samples treated as a tuning parameter to optimize. Towards that goal, we rely on split-sample
cross-validation, which we analyze in Section 2. In Proposition 2.1, we provide deterministic inequalities
for the risk of split cross-validated predictors in both additive and multiplicative form. We remark
that multiplicative oracle inequalities allow for the possibility of unbounded oracle risk values, and are
therefore well suited to incorporate prediction procedures exhibiting the double descent phenomena
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around the interpolating threshold. Leveraging concentration inequalities for both the mean estimator
of the prediction risk and the median-of-means estimator, in Section 2.3, we show how these bounds
imply finite-sample oracle inequalities for split-sample cross-validation that are applicable to a broad
range of loss functions and under minimal assumptions on the learning procedure. In particular, our
results do not require well-specified (parametric) models. We exemplify our bounds on various loss
functions for both regression and classification, and in Theorem 2.22, we give a general multiplicative
oracle inequality for arbitrary linear predictors under mild distributional assumptions.

• Zero-step procedure. Using oracle inequalities for split-sample cross-validation, we put forth a
general methodology that takes as input an arbitrary prediction procedure and minimizes the prediction
risk of its bagged version over a grid of sub-sample sizes. We call this the “zero-step” prediction
procedure. We analyze the asymptotic risk behavior of the zero-step procedure under proportional
asymptotics, in which the number of features grows proportionally with the number of observations. In
Theorem 3.11, we prove that the risk of predictor returned by the zero-step procedure is upper bounded
by the monotonized risk given in (1). Unlike most contributions in the literature on over-parameterized
learning, our results do not depend on well-specified (parametric) models and only require the existence
of a sufficiently well-behaved asymptotic risk profile.

• One-step procedure. In Section 4, we further generalize the zero-step procedure by considering
an adjustment of the original predictor that is inspired by the one-step estimation method used in
parametric statistics to improve efficiency (Van der Vaart, 2000, Section 5.7). This modification, which
can be thought of as a single-iterate boosting of the baseline procedure, is shown, both in theory and in
simulations, to produce an asymptotic monotonized risk that is smaller than the monotonized risk of
the zero-step procedure; see Theorem 4.4. We derive explicit expressions of the asymptotic risk profile
of the one-step procedure for the minimum ℓ2, ℓ1-norm least squares prediction procedures. The main
insight we draw from the minimum ℓ2-norm least squares example is that the one-step procedure in
addition to changing the aspect ratio of the predictor also reduces the signal energy leading to a smaller
asymptotic risk; see Remark 4.12.

• Risk profiles. In our study of the performance of the zero-step and one-step procedures, we derive
several auxiliary results that might of independent interest. Specifically, we provide a systematic way to
certify the continuity or lower semicontinuity of the asymptotic risk profile of any prediction procedure,
assuming only point-wise convergence of the conditional prediction risk under proportional asymptotics;
see Proposition 3.10. This is often hard to prove directly from the asymptotic risk profiles as they
are usually defined implicitly via one or more fixed-point equations. Also of independent interest is a
representation that we prove, for the conditional prediction risk of an arbitrary linear predictor with a
one-iterate boosting with minimum ℓ2-norm least squares, using the recent tools from random matrix
theory. This, in particular, involves deriving deterministic equivalents for the generalized bias and
variance of the ridgeless predictor which may be of independent interest; see Lemmas 4.8 and S.5.3.

We corroborate our theoretical results with several illustrative simulations. An intriguing finding emerging
from our numerical studies is the fact that bagging, i.e., aggregation over sub-sample, appears to have a
significant positive impact on the asymptotic risk profile of both the zero- and one-step procedure: averaging
over an increasing number of sub-samples results in a downward shift of the risk asymptotic profile, especially
around the interpolation threshold: see, e.g., Figures 3 and 4. Though we do not provide a theoretical
justification for this interesting phenomenon, we offer some conjectures in the discussion section; see Section 5.

1.2 Other related work

In this section, we review some related work on risk non-monotonicity, cross-validation, as well as exact
asymptotic risk characterization. Explicit references to these works, when appropriate, are also made in the
main sections of the paper.

Non-monotonicity of generalization performance. The study of non-monotone risk behavior is largely
motivated by empirical evidence in standard statistical learning tasks such as classification and prediction,
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where instances of non-monotonic risk profiles were originally discovered and reported. See Trunk (1979);
Duin (1995); Opper and Kinzel (1996) and Loog et al. (2020) for some earlier findings on the double descent
risk behavior. Recently, it has garnered growing interest due to the remarkable successes of neural networks
where similar non-monotonic behavior has also been observed; see LeCun et al. (1990); Geiger et al. (2019);
Zhang et al. (2017, 2021) and references therein. The non-monotonic behavior of the test error as a function
of the model size in general context was brought up by Belkin et al. (2019a) and has since been theoretically
established for many other classical estimators such as linear/kernel regression, ridge regression, logistic
regression, and under stylized models such as linear model or random features model. Besides the work
discussed in our main sections, see also Kini and Thrampoulidis (2020); Mei and Montanari (2019); Mitra
(2019); Derezinski et al. (2020); Frei et al. (2022) and the survey paper Bartlett et al. (2021). When it
comes to the sample-wise non-monotonic performances, a recent line of work asks and provides partial
answers to the question: given additional observation points, when and to what extend will the generalization
performance improve (Viering et al., 2019; Nakkiran, 2019; Nakkiran et al., 2020; Mhammedi, 2021). In
particular, Nakkiran et al. (2020) investigates the role of optimal tuning in the context of ridge regression,
and for a class of linear models, demonstrated that the optimally-tuned ℓ2 regularization achieves monotonic
generalization performance.

Data-splitting and cross-validation. The framework developed in the current paper crucially depends
on split-sample cross-validation, which compares different predictors trained on one part of the sample using
out-of-sample risk estimates from the remaining part. The split-sample cross-validation is a well-known
methodology studied in several works (e.g., Stone (1974); Györfi et al. (2002); Yang (2007); Arlot and Celisse
(2010)). Split-sample cross-validation is theoretically easier to analyze compared to the k-fold cross-validation
and is shown to yield optimal rates in the context of non-parametric regression (Yang, 2007; Van der Laan
et al., 2007; Van der Vaart et al., 2006). These works have derived oracle inequalities that show that
split-sample cross-validation based predictor has asymptotically the smallest risk among the collection of
predictors up to an additive error (that converges to zero). The oracle inequalities are either called exact or
inexact depending on whether the constant multiplying the smallest risk is 1 or 1 ` δ (for an arbitrarily δ);
see, e.g., Lecué and Mendelson (2012). All these works have used split-sample cross-validation for the purpose
of choosing predictors with good prediction risk, and the existing oracle inequalities are all additive in nature.

Application of cross-validation for over-parameterized learning is more recent and here special care is
required in choosing the split sizes because splitting in half would change the aspect ratios in the proportional
asymptotics regime. In contrast to the low dimensional or non-parametric setting, it is well-known that the
classical k-fold cross-validation framework suffers from severe bias and thus requires careful modification or a
diverging choice of k (see, e.g., Mücke et al. (2021); Rad and Maleki (2020)). In particular, when k is taken
to be n, the resulting procedure is also known as leave-one-out cross-validation (LOOCV), which mitigates
these bias issue and has proven to be effective in a variety of settings; see Beirami et al. (2017); Wang et al.
(2018); Giordano et al. (2019); Stephenson and Broderick (2020); Wilson et al. (2020); Austern and Zhou
(2020); Xu et al. (2021); Patil et al. (2021, 2022) and references therein.

Our use of cross-validation is slightly different: the goal is to choose the “optimal” sub-sample size for a
single prediction procedure. Furthermore, supplementing the existing oracle inequalities for cross-validation,
we also provide a multiplicative oracle inequality which shows that the split-sample cross-validated predictor
attains the smallest risk in the collection up to a factor converging to 1 with the sample size. This multiplicative
version is crucial for our study, allowing us to consider ingredient predictors whose risk might diverge with
sample size.

Risk characterization. In developing our zero-step and one-step procedures, we assume existence of a
deterministic risk profile function for every aspect ratio. As discussed, the exact formulas for the risk profile
functions have been obtained for various estimators in both classification and regression settings. In the
past decade, several distinct techniques and tools have been developed to explicitly describe and analyze
these risk functions. Prominent examples include the leave-one-out type perturbation analysis (e.g., Karoui
(2013, 2018)), the approximate message passing machinery (e.g., Donoho et al. (2009); Donoho and Montanari
(2016); Bayati and Montanari (2011)), and the convex Gaussian min-max theorem (e.g., Stojnic (2013);
Thrampoulidis et al. (2015, 2018)). These techniques rely critically upon a well-specified model, as well as the
assumption that the entries of the design matrix are drawn i.i.d. from standard normal distribution, while
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some restricted universality results are developed in Bayati et al. (2015); Montanari and Nguyen (2017); Chen
and Lam (2021); Hu and Lu (2020). In this work, however, we take a more direct approach and develop
some non-asymptotic oracle risk inequalities. Leveraging upon these oracle inequalities, our results do not
require well-specified models, and only assume the existence of a relatively well-behaved risk profile, which
presumably allows for weaker distributional assumptions.

1.3 Organization and notation

Organization. The rest of the paper is organized as follows.

• In Section 2, we describe the general cross-validation and model selection algorithm, derive associated
oracle risk inequalities, and provide probabilistic bounds on the error terms. We then obtain concrete
results for a variety of classification and regression loss functions.

• In Section 3, we describe the zero-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify the related assumptions for the ridgeless and lassoless prediction
procedures, and show corresponding numerical illustrations.

• In Section 4, we describe the one-step prediction procedure, and provide its risk monotonization
guarantee. We then explicitly verify assumptions for arbitrary linear predictors, the special cases of
ridgeless and lassoless prediction procedures, and show corresponding numerical illustrations.

• In Section 5, we conclude the paper and provide three concrete directions for future work.

Nearly all the proofs in the paper are deferred to the Supplementary Material. The sections and the
equation numbers in the Supplementary Material are prefixed with the letters “S” and “E”, respectively.

Notation. We use N to denote the set of natural numbers, R to denote the set of real numbers, Rě0 to
denote the set of non-negative real numbers, Rą0 to denote the set of positive real numbers, and R to denote
the extended real number system, i.e., R “ R Y t´8,`8u. For a real number a, paq` denotes its positive
part, tau denotes its floor, ras denotes its ceiling. For a set A, we use 1A to denote its indicator function. We
denote convergence in probability by

p
ÝÑ, almost sure convergence by

a.s.
ÝÝÑ, and weak convergence by

d
ÝÑ. We

use generic letters C,C1, C2, . . . to denote constants whose values may change from line to line.
For a comprehensive list of notation used in the paper, see Section S.9.

2 General cross-validation and model selection

The primary focus of this paper is to develop a framework to improve upon prediction procedures in the
overparameterized regime in which the number of features p is comparable to and often exceeds the number
of observations n, and where the predictive risk may be non-monotonic in the aspect ratio p{n. As discussed
in Section 1, a fundamental component of our methodology is the selection of an optimal size of the sub-
samples through cross-validation. To that effect, we begin by deriving some general, non-asymptotic oracle
risk inequalities for split-sample cross-validation, as described in Algorithm 1, that hold under minimal
assumptions. While our bounds apply to a wide range of learning problems and may be of independent
interest, they are crucial in demonstrating the risk monotonization properties of the procedures presented in
Sections 3 and 4.

Though cross-validation is a well-known and well-studied procedure (see, e.g., Van der Laan et al., 2007;
Györfi et al., 2002; Yang, 2007), our work extends the previous results on cross-validation in a couple of
ways: (1) We derive two forms of oracle risk inequalities: the additive form that is better suited for bounded
loss functions (especially classification losses), and the multiplicative form that is better suited unbounded
loss functions (especially regression losses); (2) In addition to common sample mean based estimation of the
prediction risk, we also analyze the median-of-means based estimation of the prediction risk that proves to be
useful in relaxing strong moment assumption on the predictors.
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Algorithm 1 General cross-validation and model selection procedure

Inputs:

– a dataset Dn “ tpXi, Yiq P Rp ˆ R : 1 ď i ď nu;
– a positive integer nte ă n;
– an index set Ξ;
– a set of prediction procedures t pfξ: ξ P Ξu;
– a loss function ℓ : R ˆ R Ñ Rě0;
– a centering procedure CEN P tAVG, MOMu;
– a real number η ą 0 if CEN is MOM.

Output:

– a predictor pf cvp¨;Dnq : Rp Ñ R.

Procedure:

1. Randomly split the index set In “ t1, . . . , nu into two disjoint sets Itr and Ite such that |Itr| “ n´ nte
(which we denote by ntr), |Ite| “ nte. Denote the corresponding splitting of the dataset Dn by
Dtr “ tpXi, Yiq : i P Itru (for training) and Dte “ tpXj , Yjq : j P Iteu (for testing).

2. For each ξ P Ξ, fit the prediction procedure pfξ on Dtr to obtain the predictor pfξp¨;Dtrq : Rp Ñ R.

3. For each ξ P Ξ,

• if CEN “ AVG, estimate the conditional prediction risk of pfξ using

pRp pfξp¨;Dtrqq “
1

|Dte|

ÿ

jPIte

ℓpYj , pf
ξpXj ;Dtrqq. (2)

• if CEN “ MOM, estimate the conditional prediction risk of pfξ using

pRp pfξp¨;Dtrqq “ MOM
`␣

ℓpYj , pf
ξpXj ;Dtrqq, j P Ite

(

, η
˘

. (3)

See discussion after Lemma S.8.2 for the definition of MOMp¨, ¨q.

4. Set pξ P Ξ to be the index that minimizes the estimated prediction risk using

pξ P arg min
ξPΞ

pRp pfξp¨;Dtrqq. (4)

Note that pξ need not be unique (hence the set notation) and any choice that leads to the minimum
estimated risk enjoys the subsequent theoretical guarantees in the paper.

5. Return the predictor pf cvp¨;Dnq “ pf
pξp¨;Dtrq.
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2.1 Oracle risk inequalities

Setting the stage, suppose we are given n samples of labeled data Dn “ tpX1, Y1q, pX2, Y2q, . . . , pXn, Ynqu,
where Xi P Rp is a p-dimensional feature vector and Yi P R is a scalar response variable for i “ 1, . . . , n.
Let pf be a prediction procedure that maps Dn to a predictor pfp¨;Dnq : Rp Ñ R (a measurable function of

the data Dn). For any predictor pfp¨;Dnq, trained on the data set Dn, that takes in a feature vector x P Rp

and outputs a real-valued prediction pfpx;Dnq, we measure its predictive accuracy via a non-negative loss
function ℓ : R ˆ R Ñ Rě0. Given a new feature vector X0 P Rp with associated response variable Y0 P R
so that pX0, Y0q is independent of Dn,1 the prediction error or out-of-sample error incurred by pfp¨;Dnq is

ℓpY0, pfpX0;Dnqq. Note that the prediction error ℓpY0, pfpX0;Dnqq is a random variable that is a function of
both Dn and pX0, Y0q.

We will quantify the performance of pfp¨;Dnq using the conditional expected prediction loss. The conditional

expected prediction loss given the data Dn, or the conditional prediction risk for short, of pfp¨;Dnq is defined
as

Rp pfp¨;Dnqq :“ EX0,Y0
rℓpY0, pfpX0;Dnqq | Dns “

ż

ℓpy, pfpx;Dnqq dP px, yq, (5)

where P denotes the joint probability distribution of pX0, Y0q. Note that Rp pfp¨;Dnqq is a random variable

that depends on Dn. An empirical estimator of Rp pfp¨;Dnqq is denoted by pRp pfp¨;Dnqq. In this paper, we
mainly consider two such estimators: the average estimator and the median-of-means estimator as defined in
(2) and (3), respectively.

Consider any prescribed index set Ξ, where each ξ P Ξ corresponds to a specific model that will be clear
from the context. Based on the training data, a predictor pfξp¨;Dtrq is fitted for each model ξ and estimated

risks of pfξ, ξ P Ξ are compared on a validation data set as described in Algorithm 1. Let pf cvp¨;Dnq be the
final predictor returned by Algorithm 1. We shall consider two types of oracle inequalities: one in an additive
form and the other in a multiplicative form. More specifically, for any prescribed model set Ξ, define the
additive error term and multiplicative error term respectively as follows:

∆add
n :“ max

ξPΞ

ˇ

ˇ

ˇ

pRp pfξp¨;Dtrqq ´Rp pfξp¨;Dtrqq

ˇ

ˇ

ˇ
, (6a)

∆mul
n :“ max

ξPΞ

ˇ

ˇ

ˇ

pRp pfξp¨;Dtrqq

Rp pfξp¨;Dtrqq
´ 1

ˇ

ˇ

ˇ
. (6b)

The following proposition relates the performance of pf cvp¨;Dnq to the “oracle” prediction risk in terms of
these errors terms.

Proposition 2.1 (Deterministic oracle risk inequalities). The prediction risk of pf cvp¨;Dnq satisfies the
following deterministic oracle inequalities:

1. additive form:

Rp pf cvp¨;Dnqq ď min
ξPΞ

Rp pfξp¨;Dtrq ` 2∆add
n ,

ErRp pf cvp¨;Dnqqs ď min
ξPΞ

ErRp pfξp¨;Dtrqs ` 2Er∆add
n s.

(7)

2. multiplicative form:

Rp pf cvp¨;Dnqq ď
1 ` ∆mul

n

p1 ´ ∆mul
n q`

¨ min
ξPΞ

Rp pfξp¨;Dtrq. (8)

Proposition 2.1 provides oracle bounds on the prediction risk of pf cvp¨;Dnq in terms of the error terms
∆add
n and ∆mul

n . Note that Proposition 2.1 does not make any assumptions about the underlying model of the

1We will reserve the notation pX0, Y0q to denote a random variable that is drawn independent of Dn.
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data or the dependence structure between the observations. Under some general conditions on the data, one
can show that ∆add

n and/or ∆mul
n converge to zero in probability as n Ñ 8. The exact rate of convergence

depends on the number of observations nte in the test data and also on the tail behavior of ℓpY0, pf
ξpX0;Dtrqq

conditional on pfξp¨;Dtrq. For notational convenience, from now, we will write pf cv and pfξ to denote pf cvp¨;Dnq

and pfξp¨;Dtrq, respectively.

Remark 2.2 (Lower bound on Rp pf cvq). Proposition 2.1 provides upper bounds on the (conditional) prediction

risk of pf cv in terms of the minimum risk of pfξ. It can be readily seen that the risk of pf cv is always lower
bounded by the minimum risk. More formally, note that pf cv “

ř

ξPΞ
pfξ1

pξ“ξ, and, therefore,

Rp pf cvq “
ÿ

ξPΞ

Rp pfξq1
pξ“ξ ě min

ξPΞ
Rp pfξq

ÿ

ξPΞ

1
pξ“ξ “ min

ξPΞ
Rp pfξq.

Combined with Proposition 2.1, we conclude that

min
ξPΞ

Rp pfξq ď Rp pf cvq ď

#

minξPΞRp pfξq ` 2∆add
n

minξPΞRp pfξq ¨ p1 ` ∆mul
n q{p1 ´ ∆mul

n q`.

Thus, convergence (in probability) of either ∆add
n or ∆mul

n to 0 implies that the risk of pf cv is asymptotically

the same as the minimum risk of pfξ, ξ P Ξ in either additive or multiplicative sense, respectively.

The additive and multiplicative form of oracle inequalities have their own advantages. Traditionally, the
additive form is more common. The additive oracle inequality for the prediction risk readily implies the
additive oracle inequality on the excess risk. In other words,

Rp pf cvq ´Rpf‹q ď min
ξPΞ

Rp pfξq ´Rpf‹q ` 2∆add
n ,

for any predictor f‹. In particular, this will hold for the best (oracle) predictor for the prediction risk. This
is not true of the multiplicative oracle inequality, which instead only implies the bound

Rp pf cvq ´Rpf‹q ď cn
␣

min
ξPΞ

Rp pfξq ´Rpf‹q
(

` pcn ´ 1qRpf‹q,

where f‹ is any predictor (in particular, the one with the best prediction risk) and

cn “
1 ` ∆mul

n

p1 ´ ∆mul
n q`

, cn ´ 1 “
2∆mul

n

p1 ´ ∆mul
n q`

.

In terms of claiming that pf cv has prediction risk close to the best in the collection of predictors t pfξ, ξ P Ξu,

the multiplicative form has certain advantages compared to the additive form. In the case that minξPΞRp pfξq

converges to 0, the additive oracle inequality (7) implies that the risk of the selected predictor pf cv asymp-

totically matches the risk of the best predictor among the collection t pfξ, ξ P Ξu only if ∆add
n converges to

zero faster than minξPΞRp pfξq. If, however, ∆add
n converges to zero slower than the minimum risk in the

collection, then the additive oracle inequality does not imply a favorable result. In this case, a multiplicative
oracle inequality helps. As long as ∆mul

n converges to 0, the multiplicative oracle inequality implies that pf cv

matches in risk with the best predictor in the collection, irrespective of whether the minimum risk converges
to zero or not. Note that ∆add

n only controls the additive error of the risk estimator pRp pfξq, which is easier to
control than the multiplicative error; think of controlling the error of sample mean of Bernoullippq random

variables with p “ pn Ñ 0; See Remark 2.12 for a more mathematical discussion. Even when minξPΞRp pfξq
does not converge to zero, the multiplicative form might be advantageous compared to the additive form.
Indeed, suppose that pfξ0 is in the collection and its risk diverges as n Ñ 8. Then, it may not be true that

ˇ

ˇ pRp pfξ0q ´Rp pfξ0q
ˇ

ˇ

p
Ñ 0,

because both pRp pfξ0q and Rp pfξ0q are diverging. This implies that ∆add
n does not converge to 0 and in fact,

might diverge. However, the minimum risk in the collection could still be finite, and the additive oracle
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inequality fails to capture this. On the other hand, pRp pfξ0q{Rp pfξ0q can still converge to 1 as n Ñ 8 even if

Rp pfξ0q diverges to 8. In our applications in overparameterized learning, we will encounter this situation
where the number of features (p) is close to the number of observations (n), i.e., p{n « 1. See Remark 2.23
for more details.

Remark 2.3 (From multiplicative to additive oracle inequality). Note that if ∆mul
n “ opp1q, then p1 `

∆mul
n q{p1 ´ ∆mul

n q` “ 1 `Opp1q∆mul
n “ 1 ` opp1q, then the multiplicative oracle inequality (8) yields

Rp pf cvq ď p1 `Opp1q∆mul
n q min

ξPΞ
Rp pfξq “ p1 ` opp1qq min

ξPΞ
Rp pfξq.

Observe that this multiplicative form can be converted into an additive form as

Rp pf cvq ď min
ξPΞ

Rp pfξq ` Opp1q∆mul
n min

ξPΞ
Rp pfξq,

where the second term on the right hand side is always smaller order compared to the first term as long as
∆mul
n converges in probability to zero.

From this discussion, it follows that one can choose a predictor with the best prediction risk in a collection
if either ∆add

n or ∆mul
n converges in probability to zero. The application of Algorithm 1 for risk monotonizing

procedures will be discussed in the next three sections. In the next two subsections, we provide some general
sufficient conditions to verify ∆add

n “ opp1q and ∆mul
n “ opp1q for independent data. We also provide examples

of common loss functions and show that under some mild moment assumptions, they satisfy ∆add
n “ opp1q

and ∆mul
n “ opp1q.

2.2 Control of ∆add
n and ∆mul

n

In order to characterize Rp pf cvq, by Proposition 2.1 it is sufficient to control ∆add
n and ∆mul

n . In this section,
we demonstrate that under certain assumptions on the loss function ℓ, the error terms are small both in
probability and in expectation, which in turn yields optimality of pf cv among the predictors in t pfξ, ξ P Ξu.

To facilitate our discussion, for each ξ P Ξ, define the conditional ψ1-Orlicz norm of ℓpY0, pf
ξpX0qq given

Dn as
}ℓpY0, pf

ξpX0qq}ψ1|Dn
:“ inf

␣

C ą 0 : E
“

exp
`

|ℓpY0, pf
ξpX0qq|{C

˘

| Dn
‰

ď 2
(

. (9)

Similarly, for r ě 1, define the conditional Lr-norm as

}ℓpY0, pf
ξpX0qq}Lr|Dn

:“
`

E
“
ˇ

ˇℓpY0, pf
ξpX0qq

ˇ

ˇ

r ˇ
ˇ Dn

‰˘1{r
. (10)

It is well-known (Vershynin, 2018, Proposition 2.7.1) that

}ℓpY0, pf
ξpX0qq}ψ1|Dn

— sup
rě1

r´1}ℓpY0, pf
ξpX0qq}Lr|Dn

,

i.e., there are absolute constants Cl and Cu such that

0 ă Cl ď
}ℓpY0, pf

ξpX0qq}ψ1|D

suprě1 r
´1}ℓpY0, pfξpX0qq}Lr|Dn

ď Cu ă 8.

2.2.1 Control of ∆add
n

Let pfξ, nte, and CEN be as defined in Algorithm 1, and ∆add
n be as defined in (6a).

Lemma 2.4 (Control of ∆add
n and its expectation for losses with bounded conditional ψ1 norm). Suppose

pXi, Yiq, i P Ite are sampled i.i.d. from P . Suppose the loss function ℓ is such that

}ℓpY0, pf
ξpX0qq}ψ1|Dn

ď pσξ
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for pX0, Y0q „ P and set pσΞ :“ maxξPΞ pσξ. Fix any 0 ă A ă 8. Then, for CEN “ AVG, or CEN “ MOM with
η “ n´A{|Ξ|, 2 there exists an absolute constant C1 ą 0 such that

P

¨

˝∆add
n ě C1pσΞ max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

˛

‚ď n´A.

Additionally, if for some A ą 0, there exists a C2 ą 0 such that PppσΞ ě C2q ď n´A, then there exists an
absolute constant C3 ą 0 such that

Er∆add
n s ď C1C2 max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

` C3n
´A{r|Ξ|1{t max

"
c

t

nte
,
t

nte

*

max
ξPΞ

}pσξ}Lt
(11)

for every r, t ě 2 and 1{r ` 1{t “ 1.

Lemma 2.5 (Control of ∆add
n and its expectation for losses with bounded conditional L2 norm). Suppose

pXi, Yiq, i P Ite are sampled i.i.d. from P . Suppose the loss function ℓ is such that

}ℓpY0, pf
ξpX0qq}L2|Dn

ď pσξ

for pX0, Y0q „ P and set pσΞ :“ maxξPΞ pσξ. Fix any 0 ă A ă 8. Then, for CEN “ MOM with η “ n´A{|Ξ|,
there exists an absolute constant C1 ą 0 such that

P

¨

˝∆add
n ě C1pσΞ

d

logp|Ξ|nAq

nte

˛

‚ď n´A. (12)

Additionally, if for some A ą 0 there exists a C2 ą 0 such that PppσΞ ě C2q ď n´A, then for CEN “ MOM,

E
“

∆add
n

‰

ď C1C2

d

logp|Ξ|nAq

nte
` C3n

´A{2|Ξ|1{2

d

log2
p|Ξ|nAq

nte
max
ξPΞ

}pσξ}L2 (13)

for some absolute constant C3 ą 0.

Remark 2.6 (Comparison of assumptions for CEN “ AVG and CEN “ MOM.). Comparing Lemmas 2.4 and 2.5,
we note that the median-of-means method of risk estimation only requires control of the L2 moments of
the loss function compared to the ψ1 (exponential) moments of the loss function. This is not surprising
given that the median-of-means was developed as a sub-Gaussian estimator of the mean, only assuming
finite variance (Lemma S.8.2). The L2 moment assumption in Lemma 2.5 can be further relaxed to an L1`α

moment assumption for α P p0, 1s (Lugosi and Mendelson, 2019, Theorem 3) at the cost of weaker rate of
convergence of ∆add

n . One can, of course, replace the median-of-means estimator with any other sub-Gaussian
or sub-exponential mean estimator (Catoni, 2012; Minsker, 2015; Fan et al., 2017) and obtain a similar
weakening of the moment assumptions. Same remark continues to hold for ∆mul

n discussed in Section 2.2.2.

Remark 2.7 (Restriction on A for CEN “ MOM). In Lemmas 2.4 and 2.5, we allow for a free parameter A.
However, in order for the choice of η to be feasible in the MOM construction (see, e.g., Lemma S.8.2 in
Section S.8), we need B “ r8 logp1{ηqs ď nte, which puts the following constraint on A:

8 logpnA|Ξ|q ď nte ðñ A log n ď
nte
8

´ logp|Ξ|q ðñ A ď
nte

8 log n
´

logp|Ξ|q

log n
.

For a large enough n, this allows for a large range of A. In addition, the right hand side is large enough to
imply exponentially small probability bound for the event that ∆add

n is large. The same remark holds for
Lemmas 2.9 and 2.10 below.

2See Remark 2.7.
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The key quantities that drive the tail probability and expectation bound on ∆add
n in both Lemmas 2.4

and 2.5 are pσΞ and |Ξ|. The following remark specifies the permissible growth rates on pσΞ and |Ξ| to ensure
that ∆add

n is asymptotically small in probability.

Remark 2.8 (Tolerable growth rates on pσΞ for ∆add
n “ opp1q). Suppose |Ξ| ď nS for some constant S ą 0

independent of n, p. If

pσΞ “ op

ˆ
c

nte
log n

˙

,

then under the setting of Lemmas 2.4 and 2.5, ∆add
n “ opp1q as n Ñ 8. The remark follows simply by noting

that the dominating term in the probabilistic bound on ∆add
n in (12) is of order

pσΞ

d

logp|Ξ|nAq

nte
ď pσΞ

d

pS `Aq log n

nte
“ O

˜

pσΞ

c

log n

nte

¸

.

See Section S.6.9 for feasible rates for pσΞ to ensure that Er∆add
n s “ op1q.

2.2.2 Control of ∆mul
n

Moving on to ∆mul
n , analogously to Lemmas 2.4 and 2.5, the following results provide high probability

bounds on ∆mul
n in terms of a coefficient of variation parameter κ which is the relative standard deviation of

ℓpY0, pf
ξpX0qq conditional on Dn. Let pfξ, nte, CEN be as defined Algorithm 1, and ∆mul

n be as in (6b).

Lemma 2.9 (Control of ∆mul
n for losses with bounded conditional ψ1 norm). Suppose pXj , Yjq, j P Ite are

sampled i.i.d. from P . Suppose the loss function ℓ is such that

}ℓpY0, pf
ξpX0qq}ψ1|Dn

ď pσξ for pX0, Y0q „ P.

Define pκξ “ pσξ{Rp pfξq and pκΞ “ maxξPΞ pκξ. Fix any 0 ă A ă 8. Then, for CEN “ AVG, or CEN “ MOM with
η “ n´A{|Ξ|,

P

¨

˝∆mul
n ě CpκΞ max

$

&

%

d

logp|Ξ|nAq

nte
,

logp|Ξ|nAq

nte

,

.

-

˛

‚ď n´A

for a positive constant C.

Lemma 2.10 (Control of ∆mul
n for losses with bounded conditional L2 norm). Suppose pXj , Yjq, j P Ite are

sampled i.i.d. from P . Suppose the loss function ℓ is such that

}ℓpY0, pf
ξpX0qq}L2|Dn

ď pσξ for pX0, Y0q „ P.

Define pκξ :“ pσξ{Rp pfξq and pκΞ :“ maxξPΞ pκξ. Fix any 0 ă A ă 8. Then, for CEN “ MOM with η “ n´A{|Ξ|,

P

¨

˝∆mul
n ě CpκΞ

d

logp|Ξ|nAq

nte

˛

‚ď n´A

for a positive constant C.

Remark 2.11 (Tolerable growth rate on pκΞ for probabilistic bound). Suppose |Ξ| ď nS for some S ă 8. If

pκΞ “ op

ˆ
c

nte
log n

˙

,

then under the setting of Lemmas 2.9 and 2.10, ∆mul
n “ opp1q as n Ñ 8.
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Remark 2.12 (Comparing the control of ∆add
n versus ∆mul

n ). Note that from Lemmas 2.4 and 2.9, controlling
∆add
n requires controlling pσΞ, while controlling ∆mul

n requires controlling pκΞ. The former is on the scale of the
standard deviation of the loss, while the latter is normalized standard deviation (where the normalization
is with respect to the expectation of the loss). The advantage of the latter is that, even if the standard
deviation diverges, the normalized standard deviation can be finite. This, in fact, happens for the case of
minimum ℓ2-norm least squares predictor when γ « 1, in which case the control of ∆mul

n is feasible. See also
the discussion in Remark 2.23.

Remark 2.13 (Choice of nte). The above results hold true as long as nte Ñ 8. Of course, the choice
nte restricts the allowable growth rate of pσΞ and pκΞ as discussed in Remarks 2.8 and 2.11. In our later
applications in overparameterized learning, we adopt the proportional asymptotics framework in which the
number of covariates to the number of observations converges to a non-zero constant. For this reason, we
restrict ourselves to the choices of nte such that nte{n Ñ 0 as n Ñ 8; for example, one can take nte “ nν for
some ν ă 1. This allows us to have training models with the same limiting aspect ratio (dimension/sample
size) as that of the original data without splitting. However, the larger the nte, the more accurate our
estimator of the prediction risk. For this reason, we suggest nte “ Opn{ log nq rather than nte “ nν .

2.3 Applications to loss functions

Below we consider several examples of common predictors and loss functions, and bound the corresponding
conditional pσ parameters used in Lemmas 2.4 and 2.5, and conditional pκ parameters used in Lemmas 2.9
and 2.10. Recall the conditional ψ1 and Lr norms from (9) and (10), respectively. In addition, let ψ2 denote
the ψ2-Orlicz norm.

Recall pσΞ is the maximum of either }ℓpY0, pf
ξpX0qq}ψ1|Dn

or }ℓpY0, pf
ξpX0qq}L2|Dn

over ξ P Ξ. Also recall pκΞ

is the maximum of either }ℓpY0, pf
ξpX0qq}ψ1|Dn

{}ℓpY0, pf
ξpX0qq}L1|Dn

or }ℓpY0, pf
ξpX0qq}L2|Dn

{}ℓpY0, pf
ξpX0qq}L1|Dn

over ξ P Ξ. In the following, we control each of these quantities for one of the predictors pfξ, ξ P Ξ, which we
denote simply by pf for brevity.

2.3.1 Bounded classification loss functions

Proposition 2.14 (Generic classifier and 0-1 loss and hinge loss). Let pf be any predictor.

1. Suppose ℓpY0, pfpX0qq “ max
␣

0, 1 ´ Y0 pfpX0q
(

is the hinge loss. Assume |Y0| ď 1 and | pfpX0q| ď 1.
Then,

}ℓpY0, pfpX0qq}ψ1|Dn
ď 2, and }ℓpY0, pfpX0qq}L2|Dn

ď 2.

2. Suppose ℓpY0, pfpX0qq “ 1tY0 ‰ pfpX0qu is the 0-1 loss. Then,

}ℓpY0, pfpX0qq}ψ1|Dn
ď 1, and }ℓpY0, pfpX0qq}L2|Dn

ď 1. (14)

More generally, any loss function that is bounded by 1 satisfies (14).

Proposition 2.14 implies that the parameter pσΞ is bounded by 1 (with probability 1) for any collection of

bounded classifiers t pfξ, ξ P Ξu. Hence, Lemmas 2.4 and 2.5 imply that ∆add
n “ Opp

a

logp|Ξ|q{nteq. Therefore,
the additive form of oracle inequality from Proposition 2.1 can be used to conclude the following result.

Theorem 2.15 (Oracle inequality for arbitrary classifiers). For any collection of classifiers t pfξ, ξ P Ξu with
logp|Ξ|q “ opnteq and the loss being the mis-classification or hinge loss with bounded response and predictor,

ˇ

ˇ

ˇ
Rp pf cvq ´ min

ξPΞ
Rp pfξq

ˇ

ˇ

ˇ
“ Op

˜

d

logp|Ξ|q

nte

¸

.

Theorem 2.15 can be used to argue that tuning of hyperparameters in an arbitrary classifier using
Algorithm 1 leads to an “optimal” classifier under the 0 ´ 1 or hinge loss. Moreover, Proposition 2.14 extends
to arbitrary bounded loss functions.

For logistic or the cross-entropy loss, being unbounded, is not covered by Proposition 2.14. However, we
can use the multiplicative form of the oracle risk inequality (8) as done in the next section in Proposition 2.18.

15



2.3.2 Unbounded regression loss functions

Proposition 2.16 (Linear predictor and square loss). Let pf be a linear predictor, i.e., for any x0 P Rp,
pfpx0q “ xJ

0
pβ for some estimator pβ P Rp fitted on Dn. Suppose ℓpY0, pfpX0qq “ pY0 ´ pfpX0qq2 is the square

loss. Let pX0, Y0q „ P . Assume ErX0s “ 0p and let Σ :“ ErX0X
J
0 s. Then, the following statements hold:

1. If pX0, Y0q P Rp ˆR satisfies ψ2 ´L2 equivalence, i.e., }aY0 ` bJX0}ψ2
ď τ}aY0 ` bJX0}L2

for all a P R
and b P Rp, then

}ℓpY0, pfpX0qq}ψ1|Dn
ď τ2 inf

βPRp
p}Y0 ´XJ

0 β}ψ2
` }pβ ´ β}Σq2, and

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď τ2. (15)

2. If pX0, Y0q satisfies the L4 ´L2 equivalence, i.e., }aY0 ` bJX0}L4
ď τ}aY0 ` bJX0}L2

for all a P R and
b P Rp, then

}ℓpY0, pfpX0qq}L2|Dn
ď τ2 inf

βPRp
p}Y0 ´XJ

0 β}L2
` }pβ ´ β}Σq2, and

}ℓpY0, pfpX0qq}L2|Dn

ErℓpY0, pfpX0qq | Dns
ď τ2. (16)

Proposition 2.17 (Linear predictor and absolute loss). Let pf be a linear predictor corresponding to estimator
pβ fitted on Dn. Suppose ℓpY0, pfpX0qq “ |Y0´XJ

0
pβ| is the absolute loss. Let pX0, Y0q „ P . Assume ErX0s “ 0p

and let Σ :“ ErX0X
J
0 s. Then, the following statements hold:

1. If pX0, Y0q P Rp ˆR satisfies ψ1 ´L1 equivalence, i.e., }aY0 ` bJX0}ψ1
ď τ}aY0 ` bJX0}L1

for all a P R
and b P Rp, then

}ℓpY0, pfpX0qq}ψ1|Dn
ď τ inf

βPRp
p}Y0 ´XJ

0 β}L1
` }XJ

0 ppβ ´ βq}L1|Dn
q,

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď τ. (17)

2. If pX0, Y0q satisfies L2 ´ L1 equivalence, i.e., }aY0 ` bJX0}L2
ď τ}aY0 ` bJX0}L1

, for all a P Rp and
b P Rp, then

}ℓpY0, pfpX0qq}L2|Dn
ď τ inf

βPRp
p}Y0 ´XJ

0 β}L1
` }XJ

0 ppβ ´ βq}L1|Dn
q,

}ℓpY0, pfpX0qq}L2|Dn

ErℓpY0, pfpX0qq | Dns
ď τ. (18)

Proposition 2.18 (Linear predictor and logistic loss). Let Y0 P r0, 1s almost surely. Let pf be a linear

predictor corresponding to an estimator pβ fitted on Dn. Suppose ℓpY0, pfpX0qq is the logistic or cross-entropy
loss:

ℓpY0, pfpX0qq “ ´Y0 log

ˆ

1

1 ` e´XJ
0
pβ

˙

´ p1 ´ Y0q log

ˆ

1 ´
1

1 ` e´XJ
0
pβ

˙

.

Assume there exists pmin P p0, 1q such that pmin ď ErY0 | X0 “ xs ď 1 ´ pmin for all x. Then, the following
statements hold:

1. If X0 P Rp satisfies ψ1 ´ L1 equivalence, i.e., }bJX0}ψ1
ď τ}bJX0}L1

for all b P Rp, then

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď 2τp´1

min.

2. If X0 P Rp satisfies L2 ´ L1 equivalence, i.e., }bJX0}L2 ď τ}bJX0}L1 for all b P Rp, then

}ℓpY0, pfpX0qq}L2|Dn

ErℓpY0, pfpX0qq | Dns
ď 2τp´1

min.

In the remarks that follow we offer a discussion of the different types of norm equivalences assumed in
Propositions 2.16 to 2.18.
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Remark 2.19 (Discussion of ψ2 ´ L2 and L4 ´ L2 equivalences). A centered random vector Z P Rp is said
to be τ -sub-Gaussian if

sup
aPRp

}aJZ}ψ2

}a}ΣZ

ď τ ă 8 where ΣZ :“ CovpZq. (19)

See for instance Definition 1.2 and Remark 1.3 of Mendelson and Zhivotovskiy (2020) for more details. The
L4 ´ L2 equivalence assumption is popular in robust estimation of covariance matrices. See, for example,
Minsker and Wei (2020); Minsker (2018); Mendelson and Zhivotovskiy (2020). This is weaker than the
sub-Gaussianity assumption in (19) in the sense that ψ2 ´ L2 equivalence implies L4 ´ L2 equivalence. This
follows from the well-known fact that

Cl ď
}W }ψ2

suprě1 r
´1{2}W }Lr

ď Cu

for some universal constants Cl and Cu; see Vershynin (2018, Proposition 2.5.2). The L4 ´ L2 equivalence
assumption is also weaker than a commonly used assumption in the random matrix theory (RMT) literature.
In RMT, one typically assumes features of the form Σ1{2Z, where Z have i.i.d. entries and Σ is feature
covariance matrix. If the components of Z are independent and have bounded kurtosis, then this typical
RMT assumption implies L4 ´ L2 equivalence.

Remark 2.20 (Discussion of ψ1 ´L1 and L2 ´L1 equivalences). In Remark 2.19, we have given examples of
distributions that satisfy ψ2 ´ L2 and/or L4 ´ L2 equivalence. From the fact that, for any random variable
W , the function r ÞÑ logEr|W |rs (r ě 1) is convex (Loeve, 2017, Section 9, inequality (b)), we can conclude
that ψ2 ´ L2 equivalence implies ψ1 ´ L1 equivalence, and L4 ´ L2 equivalence implies L2 ´ L1 equivalence;
see Proposition S.6.21. We further note that distributions satisfying ψ1 ´ L2 equivalence also satisfy ψ1 ´ L1

and L2 ´ L1 equivalence. See Figure S.7 for a visual summary of these equivalences and their proofs in
Section S.6.10.

We will now discuss other distributions that satisfy ψ1´L2 equivalence (which implies ψ1´L1 equivalence).
A random vector Z P Rq is log-concave if for any two measurable subsets A and B of Rq, and for any θ P r0, 1s,

logPpZ P θA` p1 ´ θqBq ě θ ¨ PpZ P Aq ` p1 ´ θq ¨ PpZ P Bq,

whenever the set θA ` p1 ´ θqB “ tθx1 ` p1 ´ θqx2 : x1 P A, x2 P Bu is measurable; see Definition 2.2 of
Adamczak et al. (2010). There exist a universal constant C such that all log-concave random vectors Z P Rq
with mean 0 satisfy

}aJZ}ψ1
ď C}aJZ}L1

for all a P Rq. This follows from the results of Adamczak et al. (2010) and Lata la (1999); see also Nayar and
Oleszkiewicz (2012, Corollary 3), Proposition 2.1.1 of Warsaw (2003), and Proposition 2.14 of Ledoux (2001).
In particular, Lemma 2.3 of Adamczak et al. (2010) implies that there exists a universal constant C such
that for all a P Rq

}aJZ}ψ1
ď C}aJZ}L2

.

Finally, note that since L4 ´ L2 equivalence implies L2 ´ L1 equivalence, and the RMT features as described
in Remark 2.19 satisfy L4 ´ L2 equivalence, they in turn satisfy L2 ´ L1 equivalence.

Remark 2.21 (Model-free nature of assumptions). It is worth emphasizing that we do not require a
well-specified linear model for Propositions 2.16 and 2.17. Hence, our results are model agnostic.

Propositions 2.16 to 2.18 imply that, under the stated assumptions, for any collection of predictors
t pfξ : pfξpxq “ xJ

pβξ, ξ P Ξu, pκΞ is bounded if pX0, Y0q satisfies a requisite moment equivalence assumption.

On the other hand, the control of pσΞ depends crucially on behavior of maxξPΞ }pβξ ´ β0}Σ. Because pκΞ is

bounded with probability 1, Lemmas 2.9 and 2.10 can be used to conclude ∆mul
n “ OppKX,Y

a

logp|Ξ|q{nteq,
where KX,Y is the constant in the moment equivalence. Hence, the multiplicative form of the oracle inequality
from Proposition 2.1 can be used to conclude the following general result for an arbitrary collection of linear
predictors.
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Theorem 2.22 (Oracle inequality for arbitrary linear predictors). Fix any collection of predictors t pfξ :
pfξpxq “ xJ

pβξ, ξ P Ξu. Let pf cv be the output of Algorithm 1 with pfξ, ξ P Ξ as the ingredient predictors.
Suppose one of the following conditions hold:

1. The loss is squared error, pX0, Y0q satisfies ψ2 ´L2 equivalence when CEN “ AVE and L4 ´L2 equivalence
when CEN “ MOM.

2. The loss is absolute error, pX0, Y0q satisfies ψ1´L2 equivalence when CEN “ AVE and L2´L1 equivalence
when CEN “ MOM.

3. The loss is logistic error and pmin ď ErY0 | X “ xs ď 1 ´ pmin for some pmin P p0, 1q, X0 satisfies
ψ1 ´ L1 equivalence when CEN “ AVE and L2 ´ L1 equivalence when CEN “ MOM.

Then, there exists a constant C depending only on the moment equivalence condition such that for any A ą 0
and for pf cv returned by Algorithm 1, we have with probability at least 1 ´ n´A,

ˇ

ˇ

ˇ

ˇ

ˇ

Rp pf cvq

minξPΞRp pfξq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď C

d

logp|Ξ|nAq

nte
.

Here, for CEN “ AVE, there are no restrictions on A. For CEN “ MOM, we need η to be n´A{|Ξ| in Algorithm 1.

Theorem 2.22 implies that a multiplicative form of oracle inequality holds true for any collection of linear
predictors with three commonly used loss functions – square, absolute, or logistic loss – under certain moment
equivalence conditions on the underlying data. It is worth stressing that Theorem 2.22 does not require any
parametric model assumption on the data. The moment equivalence conditions required are quite mild as
indicated in Remarks 2.19 and 2.20. Theorem 2.22 can be used to argue that tuning of hyperparameters for
an arbitrary linear predictor using Algorithm 1 leads to an “optimal” linear predictor. In particular, this
includes variable selection in linear regression, and penalty selection in ridge regression or lasso.

Remark 2.23 (Divergence of ∆add
n ). As mentioned above, control of pσΞ for a collection of linear predictors

depends crucially on maxξPΞ }pβξ ´ β0}Σ. Controlling this maximum is not difficult in the “low-dimensional”
regime, where the number of features is asymptotically negligible compared to the number of observations. If,
however, the collection of linear predictors involves the least squares estimator with the number of features
approximately same as the number of observations, then Corollaries 1 and 3 of Hastie et al. (2019) implies

that maxξPΞ }pβξ ´ β0}Σ Ñ 8 almost surely under some regularity assumptions. The case of number of
features approximately the same as the number of observations can be seen in the problem of tuning the
number of basis functions in series regression (see also Mei and Montanari (2019); Bartlett et al. (2021) for
similar results on random features regression and kernel regression). In this case, ∆add

n diverges while ∆mul
n is

bounded hinting the advantages of the multiplicative form of the oracle inequality over the additive form.

2.4 Illustrative prediction procedures

In the following two sections, we provide concrete applications of the results from this section in the context
of overparameterized learning. The main motivation of our applications is to synthesize a predictor whose
prediction risk is approximately monotonically non-increasing in the sample size. Although this represents
the basic idea of “more data does not hurt,” many commonly studied predictors such as minimum ℓ2-norm
least squares, minimum ℓ1-norm least squares in the overparameterized regime do not satisfy this property.
In the following sections, we will provide two different ways to synthesize a predictor with this property
starting from any given base prediction procedure.

Definition 2.24 (Prediction procedure). A prediction procedure, denoted by rf is a real-valued map, with
two arguments: (1) a feature vector; and (2) a dataset. If Dm “ tpXi, Yiq : 1 ď i ď mu represents a dataset

of size m, then rfpx;Dmq represents prediction at x of the prediction procedure rf trained on the dataset Dm.
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Example 2.25 (Minimum ℓ2-norm least squares prediction procedure). Suppose Dm “ tpXi, Yiq P Rp ˆ R :
1 ď i ď mu. The minimum ℓ2-norm least squares (MN2LS) estimator trained on Dm is defined as

rβmn2pDmq :“ arg min
βPRp

"

}β}2 : β is a minimizer of the function θ ÞÑ

m
ÿ

i“1

pYi ´XJ
i θq2

*

.

The estimator can be written explicitly in terms of pXi, Yiq, i “ 1, . . . ,m as

rβmn2pDmq “

˜

1

m

m
ÿ

i“1

XiX
J
i

¸: ˜

1

m

m
ÿ

i“1

XiYi

¸

, (20)

where A: denotes the Moore-Penrose inverse of A. It is also the “ridgeless” least squares estimator because of
the fact that rβmn2pDmq “ limλÑ0`

rβridge,λpDmq, where rβridge,λpDmq is the ridge estimator at a regularization
parameter λ ą 0 trained on Dm:

rβridge,λpDmq :“ arg min
θPRp

"

1

m

m
ÿ

i“1

pYi ´XJ
i θq2 ` λ}θ}22

*

. (21)

The MN2LS estimator has attracted attention in the last few years and its risk behavior has been studied by
Bartlett et al. (2020); Belkin et al. (2020); Hastie et al. (2019); Muthukumar et al. (2020), among others.
The MN2LS predictor is now defined as

rfmn2px;Dq :“ xJ
rβmn2pDq, (22)

for any vector x P Rp and dataset D containing random vectors from Rp ˆ R.

Example 2.26 (Minimum ℓ1-norm least squares prediction procedure). Suppose Dm “ tpXi, Yiq P Rp ˆ R :
1 ď i ď mu. The minimum ℓ1-norm least squares (MN1LS) estimator trained on Dm is defined as

rβmn1pDmq “ arg min
βPRp

"

}β}1 : β is a minimizer of the function θ ÞÑ

m
ÿ

i“1

pYi ´XJ
i θq2

*

. (23)

It is also the “lassoless” least squares estimator because of the fact that rβmn1pDmq “ limλÑ0`
rβlasso,λ, where

rβlasso,λpDmq is the lasso estimator at a regularization parameter λ ą 0 trained on Dm:

rβlasso,λpDmq :“ arg min
θPRp

"

1

2m

m
ÿ

i“1

pYi ´XJ
i θq2 ` λ}θ}1

*

. (24)

The MN1LS estimator connects naturally to the basis pursuit estimator in compressed sensing literature
(e.g. Candes and Tao (2006); Donoho (2006)) and its risk in the proportional regime has been recently
analyzed in Mitra (2019); Li and Wei (2021). The MN1LS predictor is now defined as

rfmn1px;Dq :“ xJ
rβmn1pDq, (25)

for any vector x P Rp and dataset D containing random vectors from Rp ˆ R.

Note that the MN2LS and MN1LS estimators coincide when there is a unique minimizer of the function
θ ÞÑ

řm
i“1pYi ´XJ

i θq2, in which case both the estimators become the least squares estimator.
We focus mostly on the case of linear predictors and squared error loss, although all our results are easily

extendable to general predictors and loss functions. (See Remark 3.16 later in the paper for more details.)

19



3 Application 1: Zero-step prediction procedure

3.1 Motivation

Figure 2: Illustration of risk monotonization.

Suppose Rn represents the prediction risk of a given
prediction procedure rf on a dataset containing n i.i.d.
observations. It is desirable that Rn as a function
of n ě 1 is non-increasing. As described above, this
however may not hold for an arbitrary procedure
rf . If we have access to Rk for 1 ď k ď n, then one
could just return the predictor obtained by applying
the prediction procedure rf on a subset of k‹

n i.i.d.
observations where k‹

n “ arg mintRk : 1 ď k ď nu.

This procedure, (denoted by, say) rf zs‹, essentially
returns a predictor whose risk is the largest non-
increasing function that is below the risk of rf ; see
Figure 2 for an illustration.

It is trivially true that the risk of the prediction procedure rf zs‹ as a function of n ě 1 is non-increasing
and its risk at the sample size n is given by minkďnRk. This procedure rf zs‹ is, however, not actionable in

practice because one seldom has access to the true risk Rn of rf .
The goal of this section is to develop a prediction procedure pf zs starting with the base prediction procedure

rf such that the risk of pf zs is the largest non-increasing function that is below the risk of rf (asymptotically).

We achieve this goal by applying Algorithm 1 with the ingredient predictors being the prediction procedure rf
applied on the subsets of the original data of varying sample sizes.

Remark 3.1 (Conditional versus unconditional risk). There are two versions of the prediction risk Rn that
one can consider: conditional (on the dataset Dn) and unconditional/non-stochastic. The conditional risk
is not just a function of sample size, but also of the data Dn. Hence, the conditional risk Rk, for k ď n, is
ill-defined as just a function of the sample size k. Therefore, the motivation above should be considered with
respect to a non-stochastic approximation of the conditional risk. See Section 3.3 for a precise definition of a
non-stochastic approximation of the conditional risk which respect to which we talk of risk monotonization in
the sample size.

3.2 Formal description

Formally, let the original dataset be denoted by Dn “ tpX1, Y1q, . . . , pXn, Ynqu. As in Algorithm 1, consider
the training and testing datasets Dtr and Dte, respectively. Note that our choice of nte as described in
Remark 2.13 satisfies nte “ opnq, and hence, the risk of rf trained on Dtr is expected to be asymptotically the

same as the risk of rf trained on Dn.
To achieve the goal described in Section 3.1, one can define the ingredient predictors required in Algorithm 1

as follows: Let Dk
tr denote a subset of Dtr with ntr´k observations for 1 ď k ď ntr. For Ξn “ t1, 2, . . . , ntr´1u

and ξ P Ξn, define rfξpxq “ rfpx;Dξ
trq as the predictor obtained by training rf on Dξ

tr. Proposition 2.1 along

with Lemmas 2.4 and 2.5 and Lemmas 2.9 and 2.10 can be used to imply that pf cv thus obtained has a
non-increasing risk as a function of the sample size.

There are two important points to note here:

1. The external randomness of choosing a subset Dξ
tr Ď Dn of size ξ. Observe that there are

`

ntr

ξ

˘

different

subsets each with ntr ´ ξ i.i.d. observations. Asymptotically, the prediction risk of rf trained on any of
these subsets would be the same. To reduce such external randomness and make use of many different
subsets of the same size, we take the ingredient predictor pfξ to be:

pfξpxq “
1

M

M
ÿ

j“1

rfpx;Dξ,j
tr q, (26)
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where Dξ,j
tr , 1 ď j ď M are M sets drawn independently (with replacement) from the collection of

`

ntr

ξ

˘

3 subsets of Dtr of size ntr ´ ξ. With M “ 8, pfξ becomes the average of rf trained on all possible
subsets of Dtr of size ntr ´ ξ. This choice of M removes any potential external randomness in defining
pfξ. The choice of M “ 1 has the largest amount of external randomness. Based on the theory of
U -statistics (Serfling, 2009, Chapter 5), we expect the choice M “ 8 to yield a predictor with the

smallest variance; see (63). Observe that the expected value pfξpxq remains constant as M changes

because the distribution of Dξ,j
tr remains identical across j ě 1. However, the computation of pfξ with

M “ 8 is infeasible, and hence, we use a finite M ě 1.

2. In the description above, we have ntr predictors to use in Algorithm 1. Note that the risk of a predictor
trained on m ` 1 observations is asymptotically no different from that of a predictor trained on m
observations. The same comment holds true for predictors trained on m` opmq and m observations.
For this reason, we can replace Ξn “ t1, 2, . . . , ntr ´ 1u with

Ξn “

"

1, 2, . . . ,

R

ntr
tnνu

´ 2

V*

4, for some ν P p0, 1q, (27)

and consider predictors obtained by training rf on subsets of sizes ntr ´ ξtnνu for ξ P Ξn. This helps

in reducing the computational cost of obtaining pf cv using Algorithm 1. This further helps in the
theoretical properties of pf cv in our application of union bound in the results of Section 2.

Taking into account the remarks above, with Ξ as in (27), for ξ P Ξn, we define pfξ as in (26), but with an

important change that Dξ,j
tr , 1 ď j ď M , now represent randomly drawn subsets of Dtr of size nξ “ ntr ´ξtnνu.

The ingredient predictors used in Algorithm 1 are given by pfξ, ξ P Ξn. We call the resulting predictor
obtained from Algorithm 1 as the zero-step predictor based on rf and we denote the corresponding prediction
procedure to be pf zs. The zero-step procedure is summarized in Algorithm 2.

Algorithm 2 Zero-step procedure

Inputs:

– all inputs of Algorithm 1 other than the index set Ξ;
– a positive integer M .

Output:

– a predictor pf zs

Procedure:

1. Let ntr “ n´ nte. Construct an index set Ξn per (27).

2. Construct train and test sets Dtr and Dte per Step 1 of Algorithm 1.

3. Let nξ “ ntr ´ ξtnνu. For each ξ P Ξn and j “ 1, . . . ,M , draw random subsets Dξ,j
tr of size nξ from Dtr.

For each ξ P Ξ, fit predictors pfξ per (26) using prediction procedure rf and tDξ,j
tr : 1 ď j ď Mu.

4. Run Steps 3–5 of Algorithm 1 using index set Ξ “ Ξn and set of predictors t pfξ, ξ P Ξu.

5. Return pf zs as the resulting pf cv from Algorithm 1.

3Here,
`n
r

˘

denotes the binomial coefficient representing the number of distinct ways to pick r elements from a set of n
elements for positive integers n and r.

4The subtraction of 2 in right end point in the definition (27) of Ξn is for technical reasons.
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3.3 Risk behavior of pf zs

As alluded to before, in order to talk about risk monotonization, one needs to consider a non-stochastic
approximation to the conditional risk that depends only on the prediction procedure, the sample size, and
properties of the data distribution. The definition below makes this precise.

Definition 3.2 (Deterministic approximation of conditional prediction risk). For any prediction procedure
rf , we call a map Rdetp¨; rfq : N Ñ Rě0 a deterministic (or non-stochastic) approximation of the conditional

risk of rf if for all datasets Dm of m i.i.d. random vectors,

|Rp rfp¨;Dmqq ´Rdetpm; rfq|

Rdetpm; rfq
“ opp1q, (28)

as m Ñ 8. (Recall that Rp rfp¨,Dmqq “
ş

ℓpy; rfpx;DmqqdP px, yq.)

It is important to recognize that Rdetpm; pfq is only a function of the sample size m, the prediction

procedure rf , and the underlying distribution P , and not the dataset Dm. Note that we do not necessarily
require Rdetpm; rfq to be the expected value of Rp rfp¨;Dmqq. Furthermore, a non-asymptotic approximation

Rdetp¨; rfq of the conditional risk may not be unique.

Remark 3.3 (Relative convergence in Definition 3.2). In (28), the division by Rdetpm; rfq ensures that

the deterministic approximation to the conditional risk of rfp¨;Dmq is non-trivial (i.e., non-zero) even if
the conditional risk converges in probability to zero. If the conditional risk is bounded away from zero,
asymptotically, then (28) is trivially implied by

|Rp rfp¨;Dmqq ´Rdetpm; rfq| “ opp1q,

as m Ñ 8. In most settings of overparameterized learning, the conditional prediction risk is asymptotically
bounded away from zero (see (36), for example).

Because |Ξn| ď n, the results of Section 2 imply that with appropriate choices of CEN and η in Algorithm 1

we obtain pf zs that satisfies the following risk bound:

Rp pf zsq “

#

minξPΞn Rp pfξq `Opp1q
a

log n{nte if pσΞ “ Opp1q

minξPΞn
Rp pfξq

`

1 `Opp1q
a

log n{nte
˘

if pκξ “ Opp1q.
(29)

Assume now there exists a function Rdet : N Ñ Rě0 such that the following holds:

lim
nÑ8

sup
ξnPΞn

P

˜

|Rp rfp¨;Dξn,j
tr qq ´Rdetpnξn ; rfq|

Rdetpnξn ; rfq
ą ϵ

¸

“ 0 for all ϵ ą 0. (DET)

Recall that Dξn,j
tr for 1 ď j ď n are identically distributed, and hence, rfp¨,Dξn,j

tr q are also identically distributed
predictors. This implies that assuming (DET) for j “ 1 is the same as assuming it for all 1 ď j ď M .
Note that (DET) is essentially the same as (28), but with a different sequence of sample sizes tnξnuně1

with ξn P Ξn. In accordance with our goal of monotonizing the non-stochastic approximation Rdetp¨; rfq of

the prediction procedure rf , we aim to show that the zero-step prediction procedure pf zs has its conditional
prediction risk approximated by minξPΞn

Rdetpnξ; rfq. For notational convenience, set

Rdet
Õ pn; rfq :“ min

ξPΞn

Rdetpnξ; rfq and ξ‹
n P arg min

ξPΞn

Rdetpnξ; rfq. (30)

Note the notation above is meant to reflect that the index ξ‹
n can be chosen to be any element of the

minimizing set. If Ξn “ t1, . . . , ntr ´ 1u, and ν “ 0, then Rdet
Õ pn; rfq “ mintRdetpk; rfq : 1 ď k ď ntr ´ 1u.

Although it might be tempting to take Ξn “ t1, . . . , ntr ´ 1u and ν “ 0, instead of the one in (27), assumption
(DET) for all non-stochastic sequences tnξnuně1 with ξn P Ξn becomes almost certainly unreasonable. To see
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this, observe that ξn “ ntr ´ 1 belongs to Ξn for every n, and for this choice, nξn “ 1. Hence, the predictor
rfp¨;Dξ,j

tr q is computed based on one observation, and cannot satisfy (DET). In the following calculations,
however, we only require assumption (DET) for the non-stochastic sequence tξ‹

nuně1. If nξ‹
n

is known to
diverge to 8 and the distribution of the data stays constant, then assumption (DET) is reasonable and is

exactly the same as the existence of a deterministic approximation to the conditional risk of rf in the sense of
Definition 3.2. In this favorable case of nξ‹

n
diverging to 8 with n, one can take Ξn “ t1, . . . , ntr ´ 1u, and

ν “ 0. Note that with Ξn as defined in (27), nξn Ñ 8 for all ξn P Ξn, and thus in particular nξ‹
n

Ñ 8 as
n Ñ 8.

It should be stressed that (DET) is an assumption on the base prediction procedure rf and not on the

ingredient predictors pfξ. In general, the risk behavior of rf does not necessarily imply that of pfξ which is an
average of M predictors obtained from rf . However, the risk of pfξ can be bounded in terms of the risk rf for
loss functions ℓp¨, ¨q that are convex in the second argument. Observe that

Rp pfξq “ R

˜

1

M

M
ÿ

j“1

rfp¨;Dξ,j
tr q

¸

ď
1

M

M
ÿ

j“1

Rp rfp¨;Dξ,j
tr qq. (31)

The inequality (31) follows from Jensen’s inequality. It becomes an equality if M “ 1 without the requirement
that the loss function is convex.

Inequality (31) along with the non-stochastic risk approximation (DET) can be used to control minξPΞn
Rp pfξq

in (29). From (30), we obtain

min
ξPΞn

Rp pfξq
paq

ď min
ξPΞn

1

M

M
ÿ

j“1

Rp rfp¨;Dξ,j
tr qq

pbq

ď
1

M

M
ÿ

j“1

Rp rfp¨;Dξ‹
n,j

tr qq

“ Rdetpnξ‹
n
; rfq

˜

1 `
1

M

M
ÿ

j“1

Rp rfp¨,Dξ‹
n,j

tr qq ´Rdetpnξ‹
n
; rfq

Rdetpnξ‹
n
; rfq

¸

pcq
“ min

ξPΞn

Rdetpnξ; rfqp1 ` opp1qq

“ Rdet
Õ pn; rfqp1 ` opp1qq.

(32)

Inequality paq in (32) follows from using Jensen’s inequality. Inequality pbq follows because ξ‹
n P Ξn. Equality

pcq follows for any fixed M ě 1 from the non-stochastic risk approximation (DET); this can be seen from the
fact that the sum of a finite number of opp1q random variables is opp1q.

All the inequalities in (32) can be made equalities for M “ 1, if instead of (DET) we make the stronger
assumption that

lim
nÑ8

P

˜

sup
ξnPΞn

|Rp rfp¨;Dξn,j
tr qq ´Rdetpnξn ; rfq|

Rdetpnξn ; rfq
ą ϵ

¸

“ 0 for all ϵ ą 0. (DET*)

This is clearly a stronger assumption than required for (32), where we only required such relative convergence
for a specific ξ‹

n P Ξn. Under (DET*), we can write

min
ξPΞn

1

M

M
ÿ

j“1

Rp rfp¨;Dξ,j
tr qq “ min

ξPΞn

Rdetpnξ; rfq

˜

1 `
1

M

M
ÿ

j“1

Rp rfp¨;Dξ,j
tr qq ´Rdetpnξ; rfq

Rdetpnξ; rfq

¸

ž Rdet
Õ pn; rfq

˜

1 ˘
1

M

M
ÿ

j“1

sup
ξPΞn

ˇ

ˇ

ˇ

ˇ

ˇ

Rp rfp¨;Dξ,j
tr qq ´Rdetpnξ; rfq

Rdetpnξ; rfq

ˇ

ˇ

ˇ

ˇ

ˇ

¸

“ Rdet
Õ pn; rfqp1 ` opp1qq.

We now conclude that for M “ 1,

min
ξPΞn

Rp pfξq “ min
ξPΞn

Rp rfp¨;Dξ,1
tr qq “ Rdet

Õ pn; rfqp1 ` opp1qq. (33)
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This proves that all the inequalities in (32) can be made equalities for M “ 1 under the stronger assumption
(DET*). Combined with (29), this implies that

Rp pf zsq “

#

Rdet
Õ pn; rfqp1 ` opp1qq `Opp1q

a

log n{nte if pσΞ “ Opp1q

Rdet
Õ pn; rfqp1 ` opp1qq if pκΞ “ Opp1q

“ Rdet
Õ pn; rfq

#

1 ` opp1q `
a

log n{nte{Rdet
Õ pn; rfq if pσΞ “ Opp1q

1 ` opp1q if pκΞ “ Opp1q.

(34)

As mentioned before, assumption (DET*) is significantly stronger than (DET). In the absence of (DET*),
inequality (32) combined with (29) implies that (34) holds with inequalities instead of equalities. For simplicity,
denote:

(O1) pσΞ “ Opp1q and Rdet
Õ pn; rfq

a

nte{ log n Ñ 8.

(O2) pκΞ “ Opp1q.

Hence, we have proved the following result:

Theorem 3.4 (Monotonization by zero-step procedure). For M “ 1, if assumption (DET*) and either (O1)

or (O2) hold true, then Rdet
Õ p¨; rfq is a deterministic approximation of the prediction procedure pf zs, i.e.,

|Rp pf zsq ´Rdet
Õ pn; rfq|

Rdet
Õ pn; rfq

“ opp1q.

For M ě 1, if ℓp¨, ¨q is convex in the second argument, assumption (DET), and either (O1) or (O2) hold true,
then

pRp pf zsq ´Rdet
Õ pn; rfqq`

Rdet
Õ pn; rfq

“ opp1q.

Remark 3.5 (Choice of Ξn). All the calculations presented in this section hold for any set Ξn with |Ξn| ď n.
As long as either (DET) (for ξn “ ξ‹

n in (30)) or (DET*) holds true, then one can use Ξn “ t1, 2, . . . , ntr ´ 1u

and ν “ 0. For this choice, Rdet
Õ p¨; rfq is the monotonized risk as illustrated in Figure 2. With the choice of

Ξn mentioned in (27), Rdet
Õ p¨; rfq is not a complete monotonization but it serves as an approximate monotone

risk.

Remark 3.6 (Exact risk pf zs). For M “ 1 (under (DET*)), Theorem 3.4 essentially implies that the risk
of the zero-step procedure closely tracks the monotonized deterministic approximation to the conditional
prediction risk of rf trained on Dtr. For M ě 1 (under (DET)), Theorem 3.4 does not imply the risk of the
zero-step predictor is monotonic or even that a non-stochastic approximation of the risk exists in the sense of
Definition 3.2. However, our simulations in limited settings presented in Section 3.4 suggest that the risk of
the zero-step prediction procedure is monotone even for M ě 1.

Remark 3.7 (Verification of assumptions in Theorem 3.4). The bound on pσΞ and pκΞ in Assumptions (O1)
and (O2) can be verified for some common loss functions and predictors as discussed in Section 2.3. The
verification of assumption (DET) or (DET*) is very much tied to the exact prediction procedure. We verify
(DET) in a specific setting in Section 3.3.1.

3.3.1 Risk behavior of pf zs under proportional asymptotics

In the discussion leading up to Theorem 3.4, we have not made a specific reference to the growth or non-growth
of the dimension of the features. Technically, Theorem 3.4 does allow for the dimension p of the features to
change with the sample size n, i.e., one can have p “ pn.

Risk monotonization is an interesting phenomenon to study in light of the double (or multiple) descent
results in the overparameterized setting where pn{n Ñ γ as n Ñ 8. In our previous discussion of non-
stochastic approximation of the conditional prediction risk, we did not stress the dependence on the dimension
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of features. In the following, we consider the implications of Theorem 3.4 in the context of overparameterized
learning and hence consider the following setting.

Recall that the original dataset Dn consists of n i.i.d. observations pXi, Yiq P Rp ˆ R, 1 ď i ď n from
distribution P . In the following as we allow the dimension p of the features to change with the sample size n
and assume that p “ pn satisfies

(PA(γ)) pn{n Ñ γ P p0,8q as n Ñ 8.

The above asymptotic regime, which is standard in random matrix theory (Bai and Silverstein, 2010), is used
in the overparameterized learning literature, where it has been referred to as proportional asymptotics (see
e.g., Dobriban and Wager (2018); Hastie et al. (2019); Mei and Montanari (2019); Bartlett et al. (2021)). Note
that under assumption (PA(γ)) the underlying distribution P of the observations in Dn should be indexed by
the sample size n. We suppress this dependence for convenience. Under the proportional asymptotics regime
for commonly studied prediction procedures, a deterministic approximation to the conditional prediction
risk of a subset Dm Ď Dn depends not on m but on pn{m, among other properties of the distribution P .
For this reason, in any discussion of the deterministic approximation of the conditional prediction risk, we
write Rdetppn{m; rfq instead of Rdetpm; rfq. Now the goal of this subsection is to derive the deterministic
approximation of the conditional risk of the zero-step predictor under (PA(γ)).

Recall that from the crucial calculation in (32) leading to the risk of zero-step predictor, we require

Rp rfp¨,Dξ‹
n,j

tr qq ´Rdetpnξ‹
n
; rfq

Rdetpnξ‹
n
; rfq

“ opp1q, (35)

with ξ‹
n defined as in (30). Except for (35), all the remaining steps in (32) hold true even in the overparam-

eterized setting. In the following, we will provide simple sufficient condition for verification of (35) under
(PA(γ)). As mentioned above, the deterministic risk under (PA(γ)) often depends not only on the sample
size alone, but also on the ratio of the number of features to the sample size. Therefore, we find it helpful to
rewrite (35) as

Rp rfp¨;Dξ‹
n,j

tr qq ´Rdetppn{nξ‹
n
; rfq

Rdetppn{nξ‹
n
; rfq

“ opp1q, where ξ‹
n P arg min

ξPΞn

Rdetppn{nξ; rfq. (DETPA-0)

Note that assumption (PA(γ)) does not imply that pn{nξ‹
n

converges to a fixed limit as n Ñ 8.

Under assumption (DETPA-0), Theorem 3.4 readily implies the risk behavior of pf zs. However, the
possibility that pn{nξ‹

n
does not converge to a fixed limit necessitates a closer examination of assumption

(DETPA-0). We provide a two-fold reduction of assumption (DETPA-0). Firstly, it suffices to verify that the

absolute difference between Rp rfp¨;Dξ‹
n,j

tr qq and Rdetppn{nξ‹
n
; rfq converges to 0 when Rdetp¨; rfq is uniformly

bounded away from 0. This is a reasonable assumption in practice because several loss functions under
mild conditions on the response have risk lower bounded by the unavoidable error which is strictly positive.
For example, assuming the loss ℓ is the squared loss and that ErpY0 ´ ErY0 | X0sq2s ą 0, we have for any

prediction procedure rf and any training dataset Dm containing m observation,

Rp rfp¨;Dmqq “ ErpY0 ´ rfpX0;Dmqq2
ˇ

ˇDms ě ErpY0 ´ ErY0|X0sq2s ą 0. (36)

Hence, in this case, if there exists a deterministic function Rdet : p0,8s Ñ r0,8s such that under (PA(γ)), as
n Ñ 8,

Rp rfp¨;Dξ‹
n,j

tr qq ´Rdetppn{nξ‹
n
; rfq “ opp1q, where ξ‹

n P arg min
ξPΞn

Rdetppn{nξ; rfq, (37)

then (DETPA-0) is satisfied. Secondly, the following lemma shows that under (PA(γ)), (37) is satisfied if
there exists a deterministic approximation for the conditional risk with datasets having a converging aspect
ratio (i.e., datasets for which the ratio of the number of features to the sample size converges to a constant).

For any γ ą 0, define
Mzs

γ :“ arg min
ζ:ζěγ

Rdetpζ; rfq.

25



Lemma 3.8 (Reduction of (DETPA-0)). Let Dkm be a dataset with km observations and pm features.

Consider a prediction procedure rf trained on Dkm . Assume the loss function ℓ is such that Rp rfp¨;Dkmqq

is uniformly bounded from below by 0. Let γ ą 0 be a real number. Suppose there exists a proper, lower
semicontinuous function Rdetp¨; rfq : rγ,8s Ñ r0,8s such that

Rp rfp¨;Dkmqq
p

ÝÑ Rdetpϕ; rfq, (DETPAR-0)

as km, pm Ñ 8 and pm{km Ñ ϕ P Mzs
γ . Further suppose that Rdetp¨; rfq is continuous on the set Mzs

γ . Then,
(DETPA-0) is satisfied.

We prove Lemma 3.8 using the real analysis fact that a sequence tanuně1 converges to 0 if and only if for
any subsequence tank

ukě1, there exists a further subsequence tankl
ulě1 that converges to 0 (see, for example,

Problem 12 of Royden (1988); also see Lemma S.6.3 for a self-contained proof). We apply this fact to the
sequence

anpϵq “ P
´
ˇ

ˇ

ˇ
Rp rfp¨;Dξ‹

n,j
tr qq ´Rdetppn{nξ‹

n
; rfq

ˇ

ˇ

ˇ
ě ϵ

¯

,

for every ϵ ą 0. A crucial component in applying this technique is to first produce a subsequence tnklulě1

such that pnkl
{nξ‹

nkl

converges to a point in arg minζPrγ,8s R
detpζ; rfq. A few remarks on the assumptions of

Lemma 3.8 are in order.

• In most cases, the set of minimizers of Rdetp¨; rfq is a singleton set. For such a scenario, Lemma 3.8 only
requires the deterministic approximation of the conditional prediction risk for a single limiting aspect
ratio (i.e., (DETPAR-0) is only required for a single ϕ). Several commonly studied predictors satisfy
(DETPAR-0) as discussed below.

• Assuming lower semicontinuity of Rdetp¨; rfq is a mild assumption. In particular, it does not preclude the
possibility that Rdet diverges to 8 at several values in the domain as shown in Proposition 3.9. Such risk
diverging behavior is a common occurrence for several popular predictors in overparameterized learning,
for example, MN2LS, MN1LS, etc. The requirement of the lower semicontinuity stems from the goal of
monotonizing Rdet from below.

Proposition 3.9 (Verifying lower semicontinuity for diverging risk profiles). Suppose h : ra, cs Ñ R is
continuous on ra, bq Y pb, cs and limxÑb´ hpxq “ limxÑb` hpxq “ 8. Then, h is lower semicontinuous on
ra, cs.

Proposition 3.9 implies that if Rdet is continuous on a set except for a point where it diverges to 8, then
Rdet is lower semicontinuous on that set. In this sense, Proposition 3.9 relates the lower semicontinuity
assumption of Lemma 3.8 to the continuity assumption of the lemma.

• Continuity assumption on Rdetp¨; rfq at the argmin set arg minζPrγ,8s R
detpζ; rfq is also mild. Proposition 3.10

below shows that (DETPAR-0) holding for ϕ in any open set I implies continuity of Rdet on I. In
particular, this implies continuity on the sets of the type I “ pa,8s. If the set of minimizers of Rdet

is a singleton set, then (DETPAR-0) itself does not suffice to guarantee the continuity of Rdet at the
minimizer. Proposition 3.10 in such a case requires verifying (DETPAR-0) on an open interval containing
the minimizer.

Proposition 3.10 (Certifying continuity from continuous convergence). Let Dkm be a dataset with km
observations and pm features, and consider a prediction procedure rf trained on Dkm . Let I be an open set in
p0,8q. Suppose there exists a function Rdet : p0,8s Ñ r0,8s such that

Rp rfp¨;Dkmqq
p

ÝÑ Rdetpϕ; rfq (38)

as km, pm Ñ 8 and pm{km Ñ ϕ P I. Then, Rdetp¨; rfq is continuous on I.

Combining the results and the discussion above, the verification of (DETPA-0) under (PA(γ)) can proceed
with the following two-step program.
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(PRG-0-C1) For ϕ such that Rdetpϕ; rfq ă 8, verify that for all datasets Dkm with limiting aspect ratio ϕ,

Rp rfp¨;Dkmqq
p

ÝÑ Rdetpϕ; rfq.

(PRG-0-C2) Whenever Rdetpϕ; rfq “ 8,

lim
ϕ1Ñϕ´

Rdetpϕ1; rfq “ lim
ϕ1Ñϕ`

Rdetpϕ1; rfq “ 8.

The continuity of Rdet at points where it is finite follows from (PRG-0-C1) via Proposition 3.10. This kind
of convergence is verified in the literature for several commonly used prediction procedures, such as ridge
regression and MN2LS (Hastie et al., 2019), lasso and MN1LS (Li and Wei, 2021), etc; see Remark 3.16 for
more details. This combined with (PRG-0-C2) via Proposition 3.9 implies lower semicontinuity of Rdet on
rγ,8s. If there is more than one ϕ at which Rdet is 8, then Proposition 3.9 should be applied separately by
splitting the domain to only contain one point of divergence. A more general result of this flavour can be
found in Proposition 4.2 in Section 4.3.1.

We will follow these steps to verify (DETPA-0) for the ridge and lasso prediction procedures in Section 3.3.2.

But first we will complete the derivation of the deterministic approximation to the conditional risk of pf zs

under (DETPA-0) following (32). Lemma 3.8 combined with Theorem 3.4 proves that the zero-step prediction

procedure approximately monotonizes the risk of the base prediction procedure rf as shown in the following
result:

Theorem 3.11 (Asymptotic risk profile of zero-step predictor). For any prediction procedure rf , suppose
(PA(γ)), either (O1) or (O2), and the assumptions of Lemma 3.8 hold true. In addition, if the loss function
is convex in the second argument, then for any M ě 1,

ˆ

Rp pf zs;Dnq ´ min
ζěγ

Rdetpζ; rfq

˙

`

“ opp1q.

Remark 3.12 (Monotonicity in the limiting aspect ratio and improvement over base procedure). If we
replace assumption (DETPA-0) with the stronger version

sup
ξPΞn

|Rp rfp¨;Dξ,j
tr qq ´Rdetppn{nξ; rfq|

Rdetppn{nξ; rfq
“ opp1q, (DETPA-0*)

as n Ñ 8, then for M “ 1, the conclusion of Theorem 3.11 can be strengthened to

ˇ

ˇ

ˇ

ˇ

Rp pf zs;Dnq ´ min
ζěγ

Rdetpζ; rfq

ˇ

ˇ

ˇ

ˇ

“ opp1q. (39)

This implies that the risk of the zero-step procedure is monotonically non-decreasing in γ. Under the
assumptions of Theorem 3.11, one can only conclude that the risk of zero-step procedure is asymptoti-
cally bounded above by a monotonically non-decreasing function in γ in general. It is trivially true that
minζďγ R

detpζ; rfq ď Rdetpγ; rfq. Hence, the asymptotic risk of zero-step procedure is no worse than that of
the base procedure.

Remark 3.13 (Finiteness of the risk of pf zs). Predictors such the MN2LS or MN1LS undergo divergence in
the prediction risk. The zero-step prediction procedure does not have such a divergence in the risk under
general regularity conditions. In particular, as long as Erℓpy, 0qs ă 8, then the risk of pf zs is asymptotically
bounded by Erℓpy, 0qs. Observe that Erℓpy, 0qs is the risk of the null predictor which always returns 0 as its

prediction. By including the zero predictor in Algorithm 1, the risk of pf zs will always be asymptotically
bounded by this null risk.

3.3.2 Verifying deterministic profile assumption (DETPAR-0)

In the following, we will restrict ourselves to the case of linear predictors and squared error loss, and verify
assumption (DETPAR-0) for MN2LS and MN1LS base procedures.
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Suppose Dkm “ tpXi, Yiq P Rpm ˆ R : 1 ď i ď kmu. Recall the MN2LS and MN1LS predictor procedures
defined in Examples 2.25 and 2.26. It is now well-known that the MN2LS and MN1LS prediction procedures
has a non-monotone risk as a function of sample size n (Nakkiran et al., 2020; Hastie et al., 2019; Li and
Wei, 2021). The following two results verify assumption (DETPAR-0) for these two procedures under some
regularity conditions stated in Hastie et al. (2019); Li and Wei (2021).

Proposition 3.14 (Verification of (DETPAR-0) for MN2LS procedure). Assume the setting of Theorem 3

of Hastie et al. (2019). Then, there exists a function Rdetp¨; rfmn2q : p0,8s Ñ r0,8s such that (PRG-0-C1)
holds for all ϕ ‰ 1 and (PRG-0-C2) holds for ϕ “ 1.

Proposition 3.15 (Verification of (DETPAR-0) for MN1LS procedure). Assume the setting of Theorem 2

of Li and Wei (2021). Then, there exists a function Rdetp¨; rfmn1q : p0,8s Ñ r0,8s such that (PRG-0-C1)
holds for all ϕ ‰ 1 and (PRG-0-C2) holds for ϕ “ 1.

Remark 3.16 (Extending Propositions 3.14 and 3.15 to other predictors). Theorem 3 of Hastie et al. (2019)
only provides the asymptotic behavior of the prediction risk computed conditional only on tXi, 1 ď i ď kmu.
The proof in Section S.3 of Proposition 3.14 extends the calculations of Hastie et al. (2019) for prediction risk
conditional on Dkm . These calculations can be further extended in a straightforward manner to cover the
case of λ ą 0, i.e., the ridge regression procedure. See Proposition 3.14 for more details. Similar comments
apply to Proposition 3.15 where the proposition can be easily extended to cover the case of λ ą 0, i.e., the
lasso prediction procedure.

Additionally, most results in the literature under (PA(γ)) derive the risk behavior as pm{km Ñ ϕ ă 8.
Propositions 3.14 and 3.15 also extend the existing results to the case when pm{km Ñ 8 as m Ñ 8.

We present Propositions 3.14 and 3.15 as example results to show the verification of our assumptions follow
rather easily from the existing asymptotic profile results in the literature. In the proportional asymptotic
regime, the risk profiles have been characterized for various other prediction procedures including, high
dimensional robust M -estimator (Karoui, 2013, 2018; Donoho and Montanari, 2016), the Lasso estimator
(Miolane and Montanari, 2021; Celentano et al., 2020), and various classification procedures (Montanari et al.,
2019; Liang and Sur, 2020; Sur et al., 2019). Our results can be suitably extended to verify (DETPA-0) for
these other predictors. Note that for our results, we only need to know that the asymptotic risk exists, which
can potentially hold true under weaker assumptions.

3.4 Numerical illustrations

In this section, we provide numerical illustration of the risk monotonization of zero-step prediction procedure
in the overparameterized setting, when the base prediction procedures are minimum ℓ2-norm least squares
(MN2LS) and minimum ℓ1-norm least squares (MN1LS). In order to illustrate risk monotonization as in

Theorem 3.11, we need to show the risk behavior of pf zs at different aspect ratios. We use the following
simulation setups for the two predictors.

Minimum ℓ2-norm least squares (MN2LS). We fix n “ 1000 and vary the dimension p of the features
from 100 to 10000 (for a total of 20 values of γ “ p{n logarithmically spaced between 0.1 to 10). This
will show the risk behavior of zero-step procedure for aspect ratios between 0.1 to 10. For every pair of
sample size n “ 1000 and dimension p, we generate 100 independent datasets each with n i.i.d. observations
from the linear model Yi “ XJ

i β0 ` εi, where Xi „ N p0p, Ipq, β0 „ N p0p, ρ
2{pIpq and εi „ N p0, σ2q drawn

independently of Xi. The model represents a dense signal regime with average signal energy ρ2. We define
the signal-to-noise ratio (SNR) to be ρ2{σ2. On each dataset, we apply the MN2LS baseline procedure as
well as the zero-step procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations from
the same p` 1 dimensional distribution described above in order to approximate the true risk of the zero-step
and the base prediction procedure. Figure 3 shows the risks of the baseline MN2LS procedure and the
zero-step prediction procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes; we take
σ2 “ 1 and ρ2 “ SNR. We also present the null risk (ρ2 ` σ2), i.e., the risk of the zero predictor as a baseline
in both the plots. We observe from the figure that the risk of the zero-step procedure for every M ě 1 is
non-decreasing in γ. Theorem 3.11 implies that the risk of the zero-step prediction procedure for every M ě 1
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Figure 3: Illustration of the zero-step prediction procedure with MN2LS as the base predictor with varying
M . The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR regime (SNR
= 1). Here, n “ 1000, ntr “ 900, nte “ 100, nν “ 50. The features are drawn from an isotropic Gaussian
distribution, the response follows a linear model. The figure show averaged risk over 100 dataset repetitions.

is asymptotically bounded by the risk of the base prediction procedure at each aspect ratio pγq. Although
this is somewhat evident from Figure 3, it is not satisfied for all γ, especially for M “ 1. This primarily
stems from the smaller sample size at hand and the fact that we are comparing MN2LS trained on full data
(n “ 1000) to the zero-step predictor computed on the train data pntr “ 900q. With an increased sample size
(to say, n “ 2500), this finite-sample discrepancy vanishes.

Figure 3 shows that the zero-step procedure with M “ 1 attains risk monotonization in a precise sense that
its risk is the largest non-increasing function (of γ) below the risk of the MN2LS predictor. For M ą 1, our
results do not characterize the risk of zero-step predictor, but Figure 3 shows that averaging has a significant
effect in further reducing the risk. As mentioned before, this is expected from the theory of U -statistics as
U -statistics are UMVUE’s of their expectations (see, e.g., Chapter 5 of Serfling (2009)). All these comments
hold for both low and high SNR alike.

Note that the base predictor has unbounded risk near γ “ 1. The risk of the zero-step procedure, on the
other hand, is always bounded for all M ě 1 and all γ. In this sense, the zero-step procedure can also be
used as a general procedure for mitigating the surprising descent behavior in the prediction risk.

Minimum ℓ1-norm least squares (MN1LS). We fix n “ 500 and vary the dimension p of the features
from 50 to 50000 (for a total of 30 values of γ “ p{n logarithmically spaced between 0.1 to 100). This will
show risk behavior of zero-step procedure for aspect ratios between 0.1 and 100. For every pair of sample
size n “ 500 and dimension p, we generate 250 independent dataset each with n i.i.d. observations from the
linear model Yi “ XJ

i β0 ` εi, where Xi P N p0p, Ipq, β0 has coordinates generated i.i.d. from the distribution
Bδr{

?
pπ ` p1 ´Bqδ0, where B „ Bernoullipπ “ 0.005q and εi „ N p0, σ2q is independent of Xi. The model

represents a sparse signal regime (with linear sparsity level π) with average signal energy ρ2. We again
define SNR to be ρ2{σ2. On each dataset, we apply the MN1LS baseline procedure as well as the zero-step
procedure.

In each run, we additionally generate independent test datasets each with 10000 i.i.d. observations from
the same p` 1 dimensional distribution described above in order to approximate the true risk of the zero-step
and the base prediction procedure. Figure 4 shows the risks of the baseline MN1LS procedure and the
zero-step procedure for high (left, SNR = 4) and low (right, SNR = 1) SNR regimes. We take σ2 “ 1 and
ρ2=SNR. We also present the null risk (ρ2 ` σ2), i.e., the risk of the zero predictor as a baseline in both the
plots. We again observe that the risk of the zero-step procedure for every M ě 1 is non-decreasing in γ.

Similar to Figure 3, we observe in Figure 4 that the zero-step procedure with M “ 1 attains precise risk
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Figure 4: Illustration of the zero-step prediction procedure with MN1LS as the base predictor with varying
M . The left panel shows a high SNR regime (SNR = 4), while the right panel shows a low SNR regime
(SNR = 1). Here, n “ 500, ntr “ 420, nte “ 80, nν “ 42. The features are drawn from an isotropic Gaussian
distribution, the response follows a linear model with sparse signal (sparsity level = 0.005). The risks are
averaged over 250 dataset repetitions.

monotonization while zero-step with M ą 1 improves significantly upon the M “ 1 when γ is near one. All
these comments hold for both low and high SNR alike.

As with Figure 3, note that the base predictor MN2LS has unbounded risk near γ “ 1 in Figure 4. The
risk of the zero-step procedure, on the other hand, is always bounded for all M ě 1 and all γ.

4 Application 2: One-step prediction procedure

4.1 Motivation

The zero-step procedure introduced in Section 3 provides the desired asymptotic monotonization of the
conditional prediction risk under certain regularity conditions. It takes advantage of the fact that we can
train our predictors on a smaller subset of the data when it is appropriate. In addition, it uses repeated
sampling and averaging in order to remove the external randomness in the choice of the subset.

In this section, we introduce a variant of the zero-step procedure motivated by the classical statistical idea
of one-step estimation (see, e.g., Section 5.7 of Van der Vaart, 2000). In the simplest case of linear regression
where the feature dimension is fixed, the idea of one-step estimation is that we can start with an arbitrary
linear predictor and add to it an adjustment computed based on the residuals of the initial linear predictor.
More precisely, starting with any initial estimator rβinit and the associated linear predictor rfpxq “ xJ

rβinit, we
have

XJ
rβinit

looomooon

initial predictor

` XJ

˜

1

n

n
ÿ

i“1

XiX
J
i

¸´1˜

1

n

n
ÿ

i“1

XipYi ´XJ
i
rβinitq

¸

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

one-step adjustment

“ XJ
rβols, (40)

where the final resulting predictor corresponds to the ordinary least squares (OLS) estimator rβols that enjoys
n´1{2 rate and risk optimality under a well-specified linear model.

This idea of one-step estimation is not specific to ordinary least squares. It can be generalized to other
estimators that are solutions to estimating equation Ψnpβq “ 0 where Ψn : Rp Ñ Rp. The general idea is to

solve a linear approximation to the estimating equation, i.e., given an initial estimator rβinit, the one-step
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estimator is the solution (in β) to the linearized estimating equation (around rβinit)

Ψnprβinitq ` ∇Ψnprβinitqpβ ´ rβinitq “ 0.

The solution can be expressed as

rβ “ rβinit
loomoon

initial estimator

´ p∇Ψprβinitqq´1Ψprβinitq
looooooooooooomooooooooooooon

one-step adjustment

. (41)

Here ∇Ψ : Rp Ñ Rp ˆ Rp denotes the Jacobian of Ψ.
One can also view the one-step estimator from the point of view of the Newton’s algorithm. The classical

one-step estimator starts at an initial estimator rβinit and takes a Newton’s step on the empirical risk
minimization problem. For a parametric predictor fp¨; rβinitq, starting with a base estimator rβinit, we can

define the corresponding one-step predictor as fp¨; rβq, where rβ is the Newton’s step update starting with
rβinit given by

rβ “ rβinit

loomoon

initial estimator

´

˜

1

n

n
ÿ

i“1

∇2ℓpYi, fpXi; rβ
initqq

¸´1˜

1

n

n
ÿ

i“1

∇ℓpYi, fpXi; rβ
initqq

¸

looooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooon

Newton’s step

. (42)

Here, for 1 ď i ď n, ∇ℓpYi, fpXi; ¨qq : Rp Ñ Rp denotes the gradient of the prediction loss function
ℓpYi, fpXi;βqq with respect to β, and ∇2ℓpYi, fpXi; ¨qq : Rp Ñ Rpˆp denotes the Hessian of the prediction
loss function with respect to β. In the special case of a linear predictor, where fpx;βq “ xTβ, the one-step
estimator becomes

rβ “ rβinit ´

˜

1

n

n
ÿ

i“1

XiX
T
i ℓ

2pYi, X
T
i
rβinitq

¸´1˜

1

n

n
ÿ

i“1

Xiℓ
1pYi, X

T
i
rβinitq

¸

,

where ℓ1 : R ˆ R Ñ R is the first derivative of the loss function ℓp¨, ¨q in the second coordinate, and
ℓ2 : R ˆ R Ñ R is the second derivative of the loss function in the second coordinate.

Our goal in this section is to build upon this idea of one-step estimation towards risk-monotonization and
improve on the zero-step procedure. We will restrict ourselves to one-step adjustment with respect to the
square error loss and linear predictors (per (40)). We leave extension to a more general one-step adjustment
(per (41) or (42)) for future work. For more discussion, see Section 5.

There are two points to note when defining (40).

1. The inverse of the sample covariance matrix
řn
i“1XiX

J
i {n in (40) need not always exist. In particular,

when the feature dimension p ą n, the sample covariance matrix is guaranteed to be rank deficient.

2. In the overparameterized regime, the residuals Yi ´XJ
i
rβinit for i “ 1, . . . , n in (40) are identically zero

for several commonly used estimators such MN2LS or MN1LS, if rβinit and the residuals are computed
on the same dataset.

In order to overcome these two limitations, we consider a variant of the idea of one-step estimation, in
which we make the following changes:

11. We use a Moore-Penrose pseudo-inverse in place of regular matrix inverse. Note that this is the same
as adding a MN2LS component fitted on the residuals Yi ´XJ

i
rβinit.

21. We split the training data and use one part to compute rβinit and use the other part to compute the
residuals Yi ´XJ

i
rβinit. This ensures that the residuals are not identically zero in the overparameterized

regime.

In summary, to construct the one-step predictor, we start with a base predictor computed on a subset of
data, evaluate the residuals of this predictor on a different subset of data, and add to the base predictor a
MN2LS fit on the residuals. We formalize this construction next.
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4.2 Formal description

As before, let the original dataset be denoted by Dn “ tpX1, Y1q, . . . , pXn, Ynqu and let rf be a base prediction
procedure. As per Algorithm 1, let the train and test datasets be Dtr and Dte, respectively. We define the
ingredient predictors to be used in Algorithm 1 constructed using the one-step methodology as follows: Define
the index set Ξn as

Ξn :“
!

pξ1, ξ2q : ξ1 P t0, 1, . . . , ntr ´ 1u, ξ2 P t0, 1, . . . , ξ1 ´ 1u

)

.

Let Dξ1
tr and Dξ2

tr be disjoint subsets of Dtr with ntr ´ ξ1 (for 0 ď ξ1 ď ntr ´ 1) and ξ2 (for 0 ď ξ2 ď ξ1)

observations, respectively. Let Iξ1tr and Iξ2tr denote the corresponding index sets of Dξ1
tr and Dξ2

tr , respectively.

For each index ξ “ pξ1, ξ2q P Ξn, define the ingredient predictor rfξ to be used in Algorithm 1 in three steps:

1. Fit a base prediction procedure rf on Dξ1
tr . Call this rfp¨;Dξ1

tr q.

2. Compute the residuals of predictor rfp¨;Dξ1
tr q on Dξ2

tr , i.e., rj “ Yj ´ rfpXj ;Dξ1
tr q for j P Iξ2tr .

3. Fit the MN2LS predictor on tpXj , rjq : j P Iξ2tr u. This is the one-step adjustment.

The final ingredient predictor rfξ is given by

rfξpx;Dξ1
tr ,D

ξ2
tr q :“ rfpx;Dξ1

tr q ` xJ

¨

˝

ÿ

jPIξ2
tr

XjX
J
j

˛

‚

: ¨

˝

ÿ

jPIξ2
tr

Xjrj

˛

‚.

If ξ2 “ 0, then Iξ2tr is an empty set and there are no residuals rj computed. In this case, we adopt the
convention that there is no one-step adjustment. Therefore, the ingredient predictors for our one-step
procedure includes the ingredient predictors for the zero-step procedure. As with the zero-step procedure,
two remarks are in order:

• There is external randomness in choosing subsets Dξ1
tr and Dξ2

tr of sizes ntr ´ ξ1 and ξ2, respectively. To
reduce such randomness, we make use of many different subsets of the same sizes and average such
different one-step predictors. More precisely, for each ξ “ pξ1, ξ2q P Ξ, draw m disjoint pairs of sets

pDξ1,j
tr ,Dξ2,j

tr q, . . . , pDξ1,j
tr ,Dξ2,j

tr q from Dtr. Formally, for 1 ď j ď m, we randomly draw a subset Dξ1,j
tr from

Dtr of size ntr ´ ξ1 and a subset Dξ2,j
tr from DtrzDξ1,j

tr of size ξ2. We then fit different one-step predictors
rfp¨;Dξi,j

tr ,Dξ2,j
tr q on pDξ1,j

tr ,Dξ2,j
tr q for 1 ď j ď M , and take the final ingredient predictor pfξ to be the

average of M such predictors:

pfξpxq “
1

M

M
ÿ

j“1

rfpx;Dξ1,j
tr ,Dξ2,j

tr q. (43)

As before, when M “ 8, pfξ becomes the average of all possible pairs of disjoints subsets Dtr of sizes ntr ´ξ1
and ξ2, while the case of M “ 1 has the largest amount of external randomness. Based on the theory of
U -statistics, we again expect the choice of M “ 8 to provide a predictor with the smallest variance. For
computational reasons, we use a finite value of M ě 1.

• In the description above, we have ntrpntr ` 1q{2 predictors to use in Algorithm 1. Similar to the zero-step
procedure, we replace Ξn with

Ξn :“

"

pξ1, ξ2q : ξ1 P

"

2, . . . ,

R

ntr
tnνu

´ 2

V*

, ξ2 P t1, . . . , ξ1 ´ 1u

*

, for some ν P p0, 1q, (44)

and consider predictors obtained by training components of rf on subsets of sizes ntr ´ ξ1tnνu and ξ2tnνu.

Such a change helps in reducing the cost of computing pf cv using Algorithm 1. In addition, this also helps
in the statistical properties of pf cv when applying the union bound in the results of Section 2.

32



With these two modifications, with Ξn as defined in (44), for ξ P Ξn, we define pfξ as in (43) with the

subsets Dξ1,j
tr , Dξ2,j

tr (for 1 ď j ď M) now representing disjoints subsets of sizes ntr ´ ξ1tnνu and ξ2tnνu,

respectively. The ingredients predictors to be used in Algorithm 1 are given by pfξ, ξ P Ξn. We call the
resulting predictor obtained from Algorithm 1 as the one-step predictor based on rf , and we denote the
corresponding prediction procedure to be pfos. The one-step procedure is summarized in Algorithm 3.

Algorithm 3 One-step procedure

Inputs:

– all inputs of Algorithm 1 other than the index set Ξ;
– a positive integer M .

Output:

– a predictor pfos

Procedure:

1. Let ntr “ n´ nte. Construct an index set Ξn per (44).

2. Construct train and test sets Dtr and Dte per Step 1 of Algorithm 1.

3. Let n1,ξ1 “ ntr ´ξ1tnνu and n2,ξ2 “ ξ2tnνu. For each pξ1, ξ2q P Ξn and j “ 1, . . . ,M , draw random pairs

of disjoint subsets pDξ1,j
tr ,Dξ2,j

tr q of sizes n1,ξ1 and n2,ξ2 from Dtr, respectively. For each pξ1, ξ2q P Ξn,

fit predictors pfξ as described by (43) using prediction procedure rf and tpDξ1,j
tr ,Dξ2,j

tr q : 1 ď j ď Mu.

4. Run Steps 3–5 of Algorithm 1 using index set Ξ “ Ξn and set of predictors t pfξ, ξ P Ξu.

5. Return pfos as the resulting pf cv from Algorithm 1.

4.3 Risk behavior of pf os

In this section, we examine the risk behavior of one-step predictor pfos. Similar treatment as done for the
zero-step procedure in Section 3.3 applies in general. To avoid repetition, we will primarily restrict ourselves
to the proportional asymptotics regime in this section.

4.3.1 Risk behavior of pfos under proportional asymptotics

Define n1,ξ1 “ ntr ´ ξ1tnνu and n2,ξ2 “ ξ2tnνu. Assume that there exists a deterministic profile Rdetp¨, ¨; rfq :

R ˆ R Ñ R of rf such that the following holds:
ˇ

ˇ

ˇ

ˇ

ˇ

R
`

rfp¨;Dξ‹
1,n,j

tr ,Dξ‹
2,n,j

tr q
˘

´Rdet

˜

p

n1,ξ‹
1,n

,
p

n2,ξ‹
2,n

; rf

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1qRdet

˜

p

n1,ξ‹
1,n

,
p

n2,ξ‹
2,n

; rf

¸

, (DETPA-1)

where pξ‹
1,n, ξ

‹
2,nq are the indices that minimize the deterministic profile Rdetp¨, ¨; rfq:

pξ‹
1,n, ξ

‹
2,nq P arg min

pξ1,ξ2qPΞn

Rdet

ˆ

p

n1,ξ1
,

p

n2,ξ2
; rf

˙

. (45)

Because logp|Ξn|q ď 2 logpnq, following the arguments in Section 3.3, we conclude that if (DETPA-1) and
either (O1)5 or (O2) hold, then

ˆ

Rp pfosq ´ min
pξ1,ξ2qPΞn

Rdet

ˆ

p

n1,ξ1
,

p

n2,ξ2
; rf

˙˙

`

“ opp1q ¨ min
pξ1,ξ2qPΞn

Rdet

ˆ

p

n1,ξ1
,

p

n2,ξ2
; rf

˙

. (46)

5Here, we need (O1) with Rdet
Õ

pn, rfq replaced with the minimum appearing in (46).
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Just as we reduced verification of (DETPA-0) to (DETPAR-0), we state below a reduction of the
verification of (DETPA-1) that only considers non-deterministic sequences for which the aspect ratios of the
split datasets for the constituent one-step predictors converge.

For any γ ą 0, define
Mos

γ :“ arg min
pζ1,ζ2q:ζ´1

1 `ζ´1
2 ďγ´1

Rdetpζ1, ζ2; rfq.

Lemma 4.1 (Reduction of (DETPA-1)). Suppose Dk1,m and Dk2,m are dataset with k1,m and k2,m observa-

tions and pm features. Assume the loss function ℓ is such that Rp rfp¨;Dk1,m ,Dk2,mqq is uniformly bounded
away from 0. Let γ ą 0 be a real number. Suppose there exists a proper, lower semicontinuous function
Rdet : rγ,8s ˆ rγ,8s Ñ r0,8s such that the following holds true:

R
`

rfp¨;Dk1,m ,Dk2,mq
˘ p

ÝÑ Rdetpϕ1, ϕ2; rfq (DETPAR-1)

as k1,m, k2,m, pm Ñ 8 and ppm{k1,m, pm{k2,mq Ñ pϕ1, ϕ2q P Mos
γ . Furthermore, suppose that Rdetp¨, ¨; rfq is

continuous on the set Mos
γ . Then, (DETPA-1) is satisfied.

The proof of Lemma 4.1 follows analogously to that of Lemma 3.8 where we show that even though the
sequence tΦn “ ppn{n1,ξ‹

1,n
, pn{n2,ξ‹

2,n
quně1 may not converge, there exists a subsequence tΦnkl

ulě1 that

converges to some pϕ1, ϕ2q P Mos
γ . Below we provide some commentary on the assumptions of Lemma 4.1.

• We note that assuming lower semicontinuity of Rdetp¨, ¨; rfq is a mild assumption. In particular, it does not
preclude the possibility that Rdet diverges to 8 at several values in the domain as shown in Proposition 4.2.
For example, the proposition implies that if Rdetp¨, ¨; rfq is continuous on a set except for when ϕ1 “ 1 or
ϕ2 “ 1, then Rdet is lower semicontinuous, provided Rdet diverges to 8 when either ϕ1 or ϕ2 converges to 1.
The condition of lower semicontinuous deterministic approximation Rdetp¨; ¨; rfq follows from the continuity

of the domain of Rdetp¨, ¨; rfq (i.e., points of finite function value). This is similar to Proposition 3.9 discussed
in the context of the zero-step predictor. The formal statement for the one-step predictor is as follows.

Proposition 4.2 (Verifying lower semicontinuity for diverging risk profiles). Let pM,dq be a metric space.
Let C be a closed set. Suppose h : M Ñ R is a function such that hpxq ă 8 for x P MzC, and hpxq “ 8

for x P C. In addition, if h restricted to MzC (denoted by h|MzCp¨q) is continuous, and for any sequence
txnuně1 that converges to a point in C, thpxnquně1 converges to 8. Then, h is lower semicontinuous on M .

• Continuity assumption on Rdetp¨, ¨; rfq at the argmin set Mos
γ is also mild. Proposition 4.3 below shows

that (DETPAR-0) holding for pϕ1, ϕ2q in any open set I implies continuity of Rdet on I.

Proposition 4.3 (Certifying continuity from continuous convergence). Let Dk1,m and Dk2,m be datasets
with k1,m and k2,m observations and pm features, and consider one-step ingredient prediction procedure
rf trained on Dk1,m and Dk2,m . Fix a open set I Ď p0,8s ˆ p0,8s. Suppose there exists a function
Rdet : p0,8s ˆ p0,8s Ñ r0,8s such that

Rp rfp¨;Dk1,m ,Dk2,mqq
p

ÝÑ Rdetpϕ1, ϕ2; rfq (47)

as k1,m, k2,m, pm Ñ 8 and ppm{k1,m, pm{k2,mq Ñ pϕ1, ϕ2q P I. Then, Rdetp¨, ¨; rfq is continuous on I.

Combining the results and the discussion above, the verification of (DETPAR-1) under (PA(γ)) can
proceed the following three-point program:

(PRG-1-C1) For pϕ1, ϕ2q such that Rdetpϕ1, ϕ2; rfq ă 8, verify that for all datasets Dk1,m and Dk2,m with

limiting aspect ratios pϕ1, ϕ2q, Rp rfp¨, ¨;Dk1,m,Dk2,m
qq

p
ÝÑ Rdetpϕ1, ϕ2; rfq.

(PRG-1-C2) Whenever Rdetpϕ1, ϕ2; rfq “ 8, it obeys that

lim
pϕ1

1,ϕ
1
2qÑpϕ1,ϕ2q

Rdetpϕ1
1, ϕ

1
2; rfq “ 8.
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(PRG-1-C3) The set of all points where Rdetpϕ1, ϕ2; rfq “ 8 is a closed set.

We will follow these steps to verify (DETPAR-1) for the MN2LS and MN1LS prediction procedures in
Section 4.3.2. But we will first complete the derivation of the deterministic approximation to the conditional
risk of pfos under (DETPAR-1). Following similar arguments as those in Section 3.3 for the zero-step procedure,
Lemma 4.1 along with (46) provides the following monotonization result for the one-step procedure:

Theorem 4.4 (Asymptotic risk profile of one-step predictor). For any prediction procedure rf suppose (PA(γ)),
either (O1) or (O2), and the assumptions of Lemma 4.1 hold true. In addition, if the loss function is convex
in the second argument, then for any M ě 1,

ˆ

Rp pfos;Dnq ´ min
1{ζ1`1{ζ2ď1{γ

Rdetpζ1, ζ2; rfq

˙

`

“ opp1q. (48)

Theorem 4.4 hinges on (DETPA-1) and continuity of Rdetp¨, ¨; rfq which we will verify below in a specific
model setting. Before doing that, let us briefly remark about the extensions and implications of (48).

Remark 4.5 (Exact risk of pfos). For M “ 1 under (DETPA-1), (48) only guarantees that the risk of pfos

is bounded above by the minimum in (48). Considering a stricter version (DETPA-1*) of (DETPA-1) that
requires the opp1q in (DETPA-1) to be uniform over all pξ1,n, ξ2,nq P Ξn, conclusion (48) can be extended to
imply for M “ 1 that

ˇ

ˇ

ˇ

ˇ

Rp pfos;Dnq ´ min
1{ζ1`1{ζ2ď1{γ

Rdetpζ1, ζ2; rfq

ˇ

ˇ

ˇ

ˇ

“ opp1q. (49)

This shows that the risk of the one-step procedure with M “ 1 under the stricter assumption of (DETPA-1*)
is exactly the same as the minimum in the display above. This is the characterization of the risk of the
one-step procedure in the same vein as (39) is the characterization of the risk of the zero-step procedure.

Remark 4.6 (Monotonicity in the limiting aspect ratio). Observe that the following map

γ ÞÑ min
1{ζ1`1{ζ2ď1{γ

Rdetpζ1, ζ2; rfq

is non-decreasing in γ. This is because

tpζ1, ζ2q : 1{ζ1 ` 1{ζ2 ď 1{γuu Ď tpζ1, ζ2q : 1{ζ1 ` 1{ζ2 ď 1{γlu for γl ď γu,

and hence the minimum can only be larger as γ increases. This implies that the risk of the one-step procedure
in asymptotically bounded above by a monotonically non-decreasing function in γ under the assumptions of
Theorem 4.4.

Remark 4.7 (Comparison with pf zs). Observe that

min
1{ζ1`1{ζ2ď1{γ

Rdetpζ1, ζ2; rfq ď min
1{ζ1ď1{γ

Rdetpζ1; rfq, (50)

where the left hand side is the asymptotic risk of pfos (with M “ 1 and under (DETPA-1*)), the right hand

side is the asymptotic risk of pf zs (with M “ 1 under (DETPA-0*)). Hence, under some regularity conditions,
the one-step procedure is as good as the zero-step procedure if not better. See Remark 4.12 for more details.
For M ą 1 such a comparison is not readily plausible from our results.

4.3.2 Verification of (DETPAR-1)

We now verify the assumption (DETPAR-1) in a specific model setting when the base prediction procedure
is either MN2LS or MN1LS. But first, we provide a general result describing the asymptotic risk profile of
Rp rfp¨;Dk1,m ,Dk2,mqq when the base prediction procedure is linear.

Let rf be a linear base prediction procedure given by rfpx;Dk1,mq “ xJ
rβpDk1,mq, for some rβpDk1,mq P Rp

computed on Dk1,m . If Dk2,m “ tpXi, Yiq : 1 ď i ď k2,mu, the ingredient predictor rfp¨;Dk1,m ,Dk2,mq for the
one-step prediction procedure is given by

rfpx;Dk1,m ,Dk2,mq “ xJ
rβpDk1,mq ` xJ

rβmn2ptpXi, Yi ´XJ
i
rβpDk1,mqq : 1 ď i ď k2,muqq. (51)
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The following result characterizes the conditional prediction risk of rfp¨;Dk1,m ,Dk2,mq for the squared error

loss in terms of the risk behavior of rβpDk1,mq. This is possible because the one-step adjustment is fixed
to be the MN2LS prediction procedure and its risk behavior can be completely characterized as done in
Section 3.3.1.

Consider the setting of Proposition 3.14. Let Σ “ WRWJ denote the eigenvalue decomposition of
the covariance matrix Σ “ CovpX0q, where R P Rpmˆpm is a diagonal matrix containing eigenvalues
r1 ě r2 ě ¨ ¨ ¨ ě rpm ě 0, and W P Rpmˆpm is an orthonormal matrix containing the corresponding
eigenvectors w1, w2, . . . , wpm P Rpm . In preparation for the statement to follow, define the following
(random) probability distribution on Rě0:

pQnprq :“
1

Rp rfp¨;Dk1,mqq ´ σ2

pm
ÿ

i“1

pprβpDk1,mq ´ β0qJwiq
2ri1tri ď ru. (52)

Let Hpm denote the empirical spectral distribution of Σ, whose value at any r P R is given by

Hpmprq “
1

pm

pm
ÿ

i“1

1triďru, (53)

and let H denote the corresponding limiting spectral distribution, i.e., Hpm
d

ÝÑ H as pm Ñ 8. See (ℓ2A5) in
the proof of Proposition 3.14 for more details.

Lemma 4.8 (Continuous convergence of squared risk for one-step procedure). Let rf be any linear prediction
procedure, and assume the setting of Proposition 3.14. Let k1,m, k2,m, pm Ñ 8 such that ppm{k1,m, pm{k2,mq Ñ

pϕ1, ϕ2q. Suppose there exists a deterministic approximation Rdetpϕ1; rfq to the conditional squared prediction

risk of rfp¨;Dk1,mq such that Rp rfp¨;Dk1,mqq
p

ÝÑ Rdetpϕ1; rfq for ϕ1 that satisfy Rdetpϕ1; rfq ă 8. Assume the

distribution pQn as defined in (52) converges weakly to a fixed distribution Q, in probability. Then, for

ϕ2 P p0, 1q Y p1,8s, we have Rp rfp¨;Dk1,m ,Dk2,mqq
p

ÝÑ Rdetpϕ1, ϕ2; rfq, where Rdetpϕ1, ϕ2; rfq is given by

Rdetpϕ1, ϕ2; rfq “

$

’

’

’

&

’

’

’

%

Rdetpϕ1; rfq if ϕ2 “ 8

Rdetpϕ1; rfqΥbpϕ1, ϕ2q ` σ2p1 ´ Υbpϕ1, ϕ2qq ` σ2
rvgp0;ϕ2q if ϕ2 P p1,8q

σ2

ˆ

1

1 ´ ϕ2

˙

if ϕ2 P p0, 1q.

(54)

Here, the scalars vp0;ϕ2q, rvp0;ϕ2q, rvgp0;ϕ2q, and Υbpϕ1, ϕ2q, for ϕ2 P p1,8q, are defined as follows:

– vp0;ϕ2q is the unique solution to the fixed-point equation:

vp0;ϕ2q “

ˆ

ϕ2

ż

r

vp0;ϕ2qr ` 1
dHprq

˙´1

, (55)

– rvp0;ϕ2q is defined in terms of vp0;ϕ2q by the equation:

rvp0;ϕ2q “

ˆ

1

vp0;ϕ2q2
´ ϕ2

ż

r2

pvp0;ϕ2qr ` 1q2
dHprq

˙´1

, (56)

– rvgp0;ϕ2q is defined in terms of vp0;ϕ2q and rvp0;ϕ2q by the equation:

rvgp0;ϕ2q “ rvp0;ϕ2qϕ2

ż

r2

pvp0;ϕ2qr ` 1q2
dHprq, (57)

– Υbpϕ1, ϕ2q is defined in terms of vp0;ϕ2q and rvgp0;ϕ2q by the equation:

Υbpϕ1, ϕ2q “ p1 ` rvgp0;ϕ2qq

ż

1

pvp0;ϕ2qr ` 1q2
dQprq. (58)
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Lemma 4.8 provides a deterministic risk approximation for the ingredient one-step predictor rfp¨;Dk1,m ,Dk2,mq

in terms of the deterministic risk approximation of the base prediction procedure rf . In case of isotropic
covariates, i.e., Σ “ Ipm , the distribution H is degenerate at 1, and Rdetpϕ1, ϕ2; rfq can be simplified because
Υbpϕ1, ϕ2q “ p1 ´ 1{ϕ2q, and rvgp0;ϕ2q “ 1{pϕ2 ´ 1q. See the proof of Proposition 4.11 for more details.

Note that the assumed limiting distribution Q in general depends on ϕ1, ϕ2, and hence Υbpϕ1, ϕ2q is in
general a function of ϕ1, ϕ2, and the distribution of the data. On the other hand, vp0;ϕ2q defined in (55),
is a function of ϕ2 alone, and hence rvgp0;ϕ2q is just a function of ϕ2. Furthermore, it can be verified that
rvgp0; ¨q is a continuous function on p1,8q and limϕ2Ñ1` rvgp0;ϕ2q “ 8; see Lemma S.6.13 (4). This implies

that Rdetpϕ1, ϕ2; rfq satisfies (PRG-1-C1)–(PRG-1-C3), if the base prediction procedure satisfies (PRG-0-C2).
Hence, any prediction procedure that can be used for zero-step can also be used for one-step as long as the
convergence assumption on pQn is satisfied. We make this precise in the following result.

Corollary 4.9 (Verification of one-step deterministic profile program). Assume the setting of Lemma 4.8.

In addition, suppose Rdetpϕ1; rfq satisfies (PRG-0-C2). Then, rfp¨;Dk1,m ,Dk2,mq satisfies (PRG-1-C1)–(PRG-
1-C3) and hence satisfies (DETPAR-1).

Therefore, the prediction procedures mentioned in Remark 3.16 can be easily shown to satisfy (DETPAR-1).

Although we assume that pQn converges weakly to Q in probability, we only need in probability convergence
of

ş

fprq d pQnprq to
ş

fprq dQprq for fprq “ r{pvp0;ϕ2qr ` 1q2, which is a weaker requirement. Intuitively, this

assumption comes from the representation of rfpx;Dk1,m ,Dk2,mq in (51) as rfpx;Dk1,m ,Dk2,mq “ xJ
pArβpDk1,mq`

xJ
rβmn2pDk2,mq for some random matrix pA; see Lemma S.5.1. Hence, the risk of rf can be written in terms of

a weighted prediction error of rβpDk1,mq with the weights depending on fp¨q; see (E.69).

Proposition 4.10 (Verification of (DETPAR-1) for the MN2LS base procedure). Assume the setting of
Proposition 3.14. Then, the one-step ingredient predictor constructed from the MN2LS base prediction
procedure satisfies (DETPAR-1).

Proposition 4.11 (Verification of (DETPAR-1) for the MN1LS base procedure). Assume the setting of
Proposition 3.15. Then, the one-step ingredient predictor constructed from the MN1LS base prediction
procedure satisfies (DETPAR-1).

Remark 4.12 (Comparison of zero and one-step procedure for isotropic covariance). In order to get
an intuition about the risk of one-step procedure, consider the case of isotropic features. In this case,
Rdetpϕ1, ϕ2; rfq simplifies to

Rdetpϕ1, ϕ2; rfq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Rdetpϕ1; rfq if ϕ2 “ 8

Rdetpϕ1; rfq

ˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2
`

1

ϕ2 ´ 1

˙

if ϕ2 P p1,8q

σ2

ˆ

1

1 ´ ϕ2

˙

if ϕ2 P p0, 1q.

(59)

Note that ϕ2 “ 8 corresponds to simply using the base predictor without any one-step residual adjustment.
This is the same as the ingredient predictor used in the zero-step prediction procedure. The one-step prediction
procedure would minimize the expression shown in (59), over ϕ1 and ϕ2 satisfying ϕ´1

1 ` ϕ´1
2 ď γ´1. If the

optimal ϕ2 turned out to be 8, then one-step predictor and the zero-step predictor become the same, and
the resulting limiting risk is Rdetpϕ1; rfq. From (59), the risk for ϕ2 P p1,8q can be decomposed as

Rdetpϕ1; rfq `

˜

σ2

ϕ2
`

σ2

ϕ2 ´ 1
´
Rdetpϕ1; rfq

ϕ2

¸

.

If the quantity in the parenthesis is negative for some pϕ1, ϕ2q satisfying the condition ϕ´1
1 `ϕ´1

2 ď γ´1, then
the one-step prediction procedure will yield a strictly better risk than the zero-step prediction procedure (for
M “ 1).

One can gain more insight into how one-step procedure improves on the zero-step by considering the case
of isotropic covariance and MN2LS base prediction procedure. The intriguing finding in this case is that the
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one-step prediction procedure with base MN2LS procedure is effectively the same as applying MN2LS on new
data with reduced signal energy and with a larger limiting aspect ratio.

Formally, under isotropic covariance with MN2LS base procedure, Rdet can be written as follows. Recall
ρ2 denotes the limit of }β0}22 and σ2 is the noise variance. Then, one has

Rdetpϕ1, ϕ2; rfmn2q

“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

„

ρ2
ˆ

1 ´
1

ϕ1

˙

` σ2

ˆ

1

ϕ1 ´ 1

˙ȷˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2 ´ 1

˙

` σ2 if pϕ1, ϕ2q P p1,8s ˆ p1,8s

„

σ2

ˆ

ϕ1
1 ´ ϕ1

˙ȷˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2 ´ 1

˙

` σ2 if pϕ1, ϕ2q P p0, 1q ˆ p1,8q

σ2

ˆ

ϕ2
1 ´ ϕ2

˙

` σ2 if pϕ1, ϕ2q P p0,8q ˆ p0, 1q.

Here, we treat 1{x and 1{px´ 1q to be 0 when x “ 8.
Let Rdet

mn2pϕ; ρ2, σ2q denote the asymptotic risk profile of the MN2LS predictor at aspect ratio ϕ, signal
energy ρ2, and noise energy σ2; from the proof of Proposition 3.14 (see also Hastie et al., 2019, Theorem 1),
we have

Rdet
mn2pϕ; ρ2, σ2q “

$

&

%

ρ2
´

1 ´ 1
ϕ

¯

` σ2
´

1
ϕ´1

¯

` σ2 if ϕ P p1,8s

σ2
´

ϕ
1´ϕ

¯

` σ2 if ϕ P p0, 1q.

Let Rdet
mn2pϕ1, ϕ2; ρ2, σ2q denote the asymptotic risk profile of the one-step ingredient predictor with MN2LS

base predictor with signal and noise energy ρ2 and σ2, respectively – which above we have denoted with
Rdetpϕ1, ϕ2; rfmn2q. Then, we can write

Rdet
mn2pϕ1, ϕ2; ρ2, σ2q “ Rdet

mn2pϕ2;Rdet
mn2pϕ1; ρ2, σ2q ´ σ2, σ2q. (60)

Thus, the limiting risk of the one-step predictor computed on a data with limiting aspect ratio γ is given by

Rdet
mn2pϕ2pγq;Rdet

mn2pϕ1pγq; ρ2, σ2q ´ σ2, σ2q, (61)

where pϕ1pγq, ϕ2pγqq represents the minimizer of Rdet
mn2pζ1, ζ2; ρ2, σ2q over ζ´1

1 ` ζ´1
2 ď γ´1. Now the

risk expression (61) can be interpreted as follows: The one-step prediction procedure with base MN2LS
procedure is effectively the same as applying MN2LS on new data with reduced signal energy (because
Rdet

mn2pϕ1pγq; ρ2, σ2q ă ρ2 ` σ2) and with a larger limiting aspect ratio ϕ2pγq ą γ. Note that reducing the
signal energy reduces the risk for MN2LS due to a reduction in the estimation bias; see Figure S.6 and
Lemma S.6.18 (5). Recall that the effect of the zero-step procedure would just be applying MN2LS on a data
set with a large limiting aspect ratio, but with the original signal energy ρ2. Hence, the improvement of the
one-step procedure over the zero-step procedure (which only takes place in the overparametrized regime)
essentially stems from reducing the signal energy and thus the bias, which “boosts” the asymptotic risk.

In this case, we can also explicitly carry out the optimization of minimizing Rdetpζ1, ζ2; rfq subject to
the constraint ζ´1

1 ` ζ´1
2 ď γ´1. See Section S.6.7 for the details. See Figure 5 for an illustration of the

comparison the limiting risk of the one-step prediction procedure with the the zero-step prediction procedure.
Finally, we comment that for base predictors other than the MN2LS, the risk of one-step procedure may

not have as nice an interpretation as “boosting” the asymptotic risk by reducing the signal energy in addition
to increasing aspect ratio. However, the message is that the one-step procedure adds another knob to the
zero-step procedure which leads to an improved risk.

4.4 Numerical illustrations

In this section, we provide numerical illustration of the risk monotonization of one-step prediction procedure
in the proportional asymptotic regime, when the base prediction procedures are MN2LS and MN1LS
prediction procedures, and the one-step adjustment is always performed via MN2LS. In order to illustrate
risk monotonization as in Theorem 4.4, we need to show the risk behavior of pfos at different aspect ratios. We
use the same simulation settings used for the illustration of the zero-step procedure in Section 3.4. Figures 6
and 7 present our simulation results. The conclusions are essentially the same as those stated for the zero-step
procedure in Section 3.4.
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Figure 5: Comparison of zero-step and one-step procedures with MN2LS base procedures under isotropic
feature covariance, and low, moderate, and high SNR regimes. Observe that for SNR = 1, zero-step and
one-step both have the same risk profile with M “ 1. This holds true even for SNR ď 1, as shown in
Theorem S.6.16. For SNR ą 1, there exists a range of γ for which one-step is strictly better than zero-step.
See Theorem S.6.16 for more details.

Minimum ℓ2-norm least squares (MN2LS). Figure 6 shows the risks of the baseline MN2LS procedure
and the one-step prediction procedure with MN2LS as the base prediction procedure for high and low SNR
regimes (left: SNR = 4; right: SNR = 1); we take σ2 “ 1, so that ρ2=SNR. We also present the null risk
(ρ2 ` σ2), i.e., the risk of the zero predictor as a baseline in both the plots.

Similar to the behavior of the zero-step procedure we observe that the risk of the one-step procedure is
non-decreasing in γ for every M ě 1. Although the risk of the one-step procedure is close to being below the
risk of the base procedure, Figure 6 shows the effects of working with a finite sample. (The risk of one-step
for M “ 1 is sometimes above the risk of the base procedure.)

Figure 6 also shows that the one-step prediction procedure can be strictly better than the zero-step
prediction procedure. In particular, the left panel of Figure 6 shows that around the interpolation threshold of
1, the risk of one-step prediction procedure is not flat. It is strictly increasing. The risk of one-step procedure
for M ą 1 is once again seen to be a strict improvement over M “ 1.
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Figure 6: Illustration of the one-step procedure with the MN2LS as the base predictor and MN2LS one-step
adjustment with varying M . The left panel shows a high SNR setting (SNR = 4), while the right panel shows
a low SNR setting (SNR = 1). The setup has n “ 1000, ntr “ 900, nte “ 100, nν “ 50. The features are
drawn from an isotropic Gaussian distribution, the response follows a linear model with dense signal. The
risks are averaged over 100 dataset repetitions.
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Figure 7: Illustration of the one-step procedure with MN1LS as the base procedure and MN2LS one-step
adjustment with varying M . The left panel shows a high SNR setting (SNR = 4), while the right panel shows
a low SNR setting (SNR = 1). In the setup, n “ 500, ntr “ 420, nte “ 80, nν “ 42. The features are drawn
from an isotropic Gaussian distribution, the response follows a linear model with sparse signal (sparsity level
= 0.0005). The risks are averaged over 100 dataset repetitions.

Minimum ℓ1-norm least squares (MN1LS). Figure 7 shows the risks of the baseline MN1LS procedure
and the one-step procedure with MN1LS as the base prediction procedure for high (left, SNR = 4) and low
(right, SNR = 1) SNR regimes. We take σ2 “ 1 and ρ2 “ SNR. We also present the null risk (ρ2 ` σ2), i.e.,
the risk of the zero predictor as a baseline in both the plots. We again observe that the risk of the one-step
procedure for every M ě 1 is non-decreasing in γ. As before, once again we observe in Figure 7 that the
one-step procedure with M “ 1 attains precise risk monotonization while zero-step with M ą 1 improves
significantly upon the M “ 1 case when γ is near one. All these comments hold for both low and high SNR
regimes.

5 Discussion

In this paper, we have proposed a generic cross-validation framework to monotonize any given prediction
procedure in terms of the sample size. We studied two concrete methodologies: zero-step and one-step
prediction procedures. The ingredient predictors for the zero-step prediction procedure is the base procedure
applied on a subset of the data. The ingredient predictor for the one-step prediction procedure can be thought
of as boosting applied to the base procedure learned on a subset of data (Schapire and Freund (2013)). In
both cases, we also introduced averaging over the subsets of the data (via the parameter M). This particular
averaging step can be seen as bagging, which is known to have a variance reduction effect.

We have analyzed the properties of zero-step and one-step prediction procedures in a model-free setting
under mild regularity assumptions. This is in contrast to many other works in this literature that require
strong distributional assumptions. In part this is possible because we assume the existence of the limiting
risk and monotonize it (in a data-driven way) without requiring the knowledge/form of the risk.

Monotonization of asymptotic risk also has implications for minimax risk. If the base prediction procedure
has a finite asymptotic risk R and R, respectively, at the limiting aspect ratios of 0 and 8, then both zero-step
and one-step prediction procedures applied to such a base procedure yield predictors whose asymptotic risk
lies between rR,Rs for all limiting aspect ratios. For example, for the squared error loss and a linear model,
the MN1LS and MN2LS predictors have R “ σ2 and R “ }β0}2Σ ` σ2, where σ2 is the noise energy, which is
also the unavoidable prediction risk, and }β0}2Σ is the effective signal energy. Because σ2 is the unavoidable
prediction risk, and hence a minimax lower bound, the zero-step and one-step predictors based on MN1LS
and MN2LS are minimax optimal up to a multiplicative factor of 1 ` SNR “ 1 ` }β0}2Σ{σ2 over all aspect
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ratios ranging from 0 to 8. Any base prediction procedure that leads to the null predictor (i.e., pfpxq “ 0 for
all x) for the limiting aspect ratio of 8 also has the same property. (Most reasonable prediction procedures
would yield the null predictor as the limiting aspect ratio tends to 8.) Furthermore, for every procedure,
there exists another procedure (such as the zero-step) whose risk is at least as good and is monotone. Thus,
the minimax risk is a monotone function of the limiting aspect ratio. To our knowledge, the minimax risk in
the proportional asymptotics regime under generic signal structure is not available in the literature.

Although the focus of the current paper is exclusively on choosing optimal sample size, one could apply the
cross-validation framework proposed for selecting optimal predictors from any collection. In particular, one
can use our methodology to find optimal penalty parameter for ridge regression or lasso. It can also be used
to select the number of random features in random features regression or kernel features in kernel regression,
or more generally, the number of parameters in a neural network. In the latter case, our procedures will yield
model-wise monotonicity (Nakkiran et al., 2019).

There are several interesting future directions that one can pursue. We will discuss three specific directions
below.

Theoretical characterization of the effect of bagging. We have only characterized the risk of the
zero-step and one-step with M “ 1 in terms of the limiting risk of the base procedure. In this sense, we did
not fully analyze the effect of bagging (M ą 1) for both zero-step and one-step procedures. It is of interest to
characterize the effect of bagging:

What is the limiting risk of the zero-step and one-step procedures when M ą 1?

From the theory of U -statistics, it is expected that the risk for M ą 1 is non-increasing in M . It is hard
to however argue that the risk of zero/one-step predictors is monotone in the limiting aspect ratio when
M ą 1. The main difficulty lies in proving that the ingredient predictors for the zero-step procedure have an
asymptotic risk profile for M ě 1. Once this is guaranteed, the theory developed in Section 3.3.1 will readily
imply that the zero-step procedure with M ą 1 has an asymptotic monotonic risk profile. We now briefly
mention the difficulty in proving the existence of the asymptotic risk profile for the ingredient predictor when
M ą 1.

For concreteness, consider the ingredient predictor of the zero-step prediction procedure with M ą 1 that
uses kn ď n observations. This is given by

rfM pxq “
1

M

M
ÿ

j“1

rfpx;Dj
trq with |Dj

tr| “ kn.

Note that we take subsets Dj
tr as independent and identically distributed subsets of size kn from the data

and hence for M “ 8, we get

rf8px;Dtrq “
1

`

n
kn

˘

ÿ

1ďi1ă...ăiknďntr

rfpx; tpXij , Yij q : 1 ď j ď knuq. (62)

This is a U -statistics of order kn for every fixed x in terms of the training data. If Rp rfp¨;Dj
trqq

p
ÝÑ Rdetpϕq

whenever p{kn Ñ ϕ, then from the theory developed in Section 3.3.1, it follows that Rp pf zsM q
p

ÝÑ minζěγ R
detpζq

under (PA(γ)). Hence, the main difficulty in characterizing the effect of bagging lies in proving the existence

of limit of Rp rfq. For the squared error loss, it can be proved that (see Section S.6.11)

Rp rfM q “ Rp rf8p¨;Dtrqq `
1

M

1
`

n
kn

˘

ÿ

i1,...,ikn

ż

´

rfpx; tpXij , Yij q : 1 ď j ď knuq ´ rf8px;Dtrq

¯2

dPX0
pxq. (63)

It is interesting to note that the risk of rfM only depends on M as a linear function of 1{M . If the base

predictor rf is non-zero almost surely, then the risk of rfM is a strictly decreasing function of M . Observe
that (63) holds true even for M “ 1 and from our results, we know that the right hand side with M “ 1
has a finite deterministic approximation. This implies that each of the components in (63) is asymptotically

bounded. Hence, as M Ñ 8, we can conclude that Rp rfM q ´Rp rf8q
p

ÝÑ 0.

41



Because kn Ñ 8 and p{kn Ñ ϕ, the second term in (63) above could be analyzed using deterministic

representation for rfpX0; tpXij , Yij q : 1 ď j ď knuq (e.g., Theorem 1 of Liu and Dobriban (2019) for ridge

regression) and the theory of U -statistics. On the other hand, Rp rf8q could also be similarly analyzed using
deterministic representations and the theory of U -statistics. We leave this for future work.

Other variants of boosting. In our empirical studies, we found that the one-step predictor (for M “ 1)
which is a boosted version of the subsampled predictor has a much better performance than the zero-step
predictor (with M “ 1), especially around the interpolation threshold. For reasons unclear to us currently, the
performance of one-step predictor (for M “ 1) can be matched, at least in shape, by a zero-step predictor with
some M ą 1. In this sense, the effect of one iterate boosting can be matched by the effect of multi-subsample
bagging. Furthermore, as M increases, both zero-step and one-step seem to approach the same limit in our
empirical studies. The interesting aspect is that the work done by M subsample bagging is achieved by one
boosting iterate. This begs the question: is there a better boosting mechanism that can match zero-step
predictors performance at M “ 8. In particular:

What are the other choices of one-step residual adjustments? And what is the “best” choice?

We have only analyzed the one-step residual adjustment done via MN2LS. Other choices are certainly possible:
for instance, one could do MN1LS or minimum ℓp-norm least squares or minimum ℓ2 robust least squares in
the context of linear regression. It seems cumbersome to analyze each one of these residuals adjustments
case-by-case and find the best choice. For general models, one can think of the residuals adjustment we
proposed as a variant of Newton’s step for the squared error loss under homoscedasticity as mentioned in (41).
The discussion of the “best” choice of the residual adjustment very much hinges on the question of what
is the best predictor in a given model in the proportional asymptotics regime. Although we do not know
the answer to this question, one can potentially target the question of deriving a residual adjustment that
yields an asymptotic risk performance similar to that of the zero-step predictor with M “ 8. For any given
predictor, is there a one iterate boosted version (i.e., one-step predictor with M “ 1) that achieves the same
asymptotic performance as the M -subsample bagging with M “ 8?

Similar to the one-step predictor one can develop a k-step predictor by splitting the data into potentially
pk ` 1q batches and optimizing over the number of observations in each batch. This is analogues to k-iterate
boosting as our one-step procedure (with M “ 1) is analogues to the one iterate boosting. This gets
computationally intensive very quickly as k increases. Furthermore, we believe that k-step predictor combined
with bagging would yield the same asymptotic risk profile as the zero- and one-step predictors with M “ 8.
In this sense, it seems a worth problem to investigate a better one iterate booster than to investigate the
k-step predictor precisely.

Comparison with other regularization strategies. On the surface, zero-step and one-step procedures
might seem to use only a subset of the data, and hence might appear sub-optimal. Along the same lines, one
might also wonder why not employ regularization techniques and optimize over the regularization parameter.
To the first point, note that we make use of the whole data in estimating the risk and comparing predictors
at different sample sizes, and hence make use of the full data. To the second point, it is somewhat surprising
to report that optimally-regularized procedures such as ridge regression with optimal choice of penalty need
not have monotone risk (in the limiting aspect ratio); see, for example, Figure 1 of Hastie et al. (2019).
But our procedure will always lead to a monotone risk and hence makes better use of the data compared
to optimum regularization procedures in general. Irrespective, it is still interesting to consider the relation
between zero-step and one-step, and the optimum regularization procedures in cases where the latter has a
monotone risk. In our empirical studies we found that in a well-specified linear model, zero-step and one-step
procedures (with the MN2LS base procedure) with a large enough M have asymptotic risk very close to the
risk of the optimum ridge regression procedure. See the left panel of Figure 8. In a sparse linear regression
model, zero-step and one-step procedures (with the MN1LS base procedure) with a large enough M has
asymptotic risk very close to the risk of the optimum lasso regression. It is also interesting to observe that
the risk is monotone for optimally tuned lasso. See the right panel of Figure 8. The effect of both bagging
and boosting with large M in this case appears to be similar. In other words, thinking of the base procedures
MN2LS and MN1LS as ridge and lasso, respectively, with zero penalty parameter, the zero- and one-step
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Figure 8: Comparison of different regularization strategies of zero-step, one-step, optimal ridge, and optimal
lasso. The left panel shows a dense signal regime and the right panel shows a sparse signal regime. The setup
has n “ 100, SNR = 4. The features are drawn from an isotropic Gaussian distribution, the response follows
a linear model with dense (left panel) and sparse signal (right panel, sparsity level = 0.0005). The risks are
averaged over 100 dataset repetitions.

predictors with M large attaining the same asymptotic risk as optimum ridge or lasso can be considered
as finding optimal regularization for these procedures. Without explicitly formalizing the regularization
predictor, zero- and one-step perform “optimal” implicit regularization. To what extent such similarity
extends to other settings is an interesting future direction:

Under what conditions, do zero- and one-step predictors with MN2LS/MN1LS base predictor
match the asymptotic risk profile of optimized regularization of ridge/lasso regression? What
other base predictors (and corresponding classes of regularized predictors) does this phenomenon
extend to?
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Supplement to “Mitigating multiple descents:
A model-agnostic framework for risk monotonization”

This document serves as a supplement to the paper “Mitigating multiple descents: A model-agnostic
framework for risk monotonization.” The section and equation numbers in this document begin with the
letters “S” and “E” to differentiate them from those in the main paper. The content of the document is
organized as follows.

• In Section S.1, we present proofs of results related to general cross-validation and model selection from
Sections 2.1 to 2.3.

• In Section S.2, we present proofs of results related to risk monotonization behavior of the zero-step
procedure from Section 3.3.

• In Section S.3, we present proofs for the verification of the deterministic risk profile assumption for the
MN2LS and MN1LS prediction procedures from Section 3.3.2.

• In Section S.4, we present proofs of results related to risk monotonization behavior of the one-step
procedure from Section 4.3.1.

• In Section S.5, we present proofs for the verification of the deterministic risk profile assumption
for arbitrary linear prediction procedures, and the MN2LS and MN1LS prediction procedures from
Section 4.3.2.

• In Section S.6, we collect various technical helper lemmas and their proofs that are used in proofs in
Sections S.2 to S.5, and other miscellaneous details.

• In Section S.7, we list calculus rules for a certain notion of asymptotic equivalence of sequences of
matrices that are used in proofs in Sections S.3 and S.5.

• In Section S.8, we record statements of useful concentration results available in the literature that are
used in proofs in Sections S.1, S.3 and S.5.

• In Section S.9, we list some of the main notation used in the paper.

S.1 Proofs related to general cross-validation and model selection

S.1.1 Proof of Proposition 2.1

Additive form. We will first prove the oracle risk inequalities (7) in additive form. Recall Algorithm 1

returns pf cv “ pf
pξ. Adding and subtracting minξPΞRp pfξq and minξPΞ

pRp pfξq to Rp pf cvq, we can break Rp pf cvq

into the following additive form:

Rp pf cvq “ min
ξPΞ

Rp pfξq ` min
ξPΞ

pRp pfξq ´ min
ξPΞ

Rp pfξq ´ min
ξPΞ

pRp pfξq `Rp pf
pξq. (E.1)

An application of triangle inequality then lets us upper bound Rp pf cvq into sum of three terms:

Rp pf cvq ď min
ξPΞ

Rp pfξq `

ˇ

ˇ

ˇ
min
ξPΞ

pRp pfξq ´ min
ξPΞ

Rp pfξq
ˇ

ˇ

ˇ

looooooooooooooomooooooooooooooon

paq

`

ˇ

ˇ

ˇ
Rp pf

pξq ´ min
ξPΞ

pRp pfξq
ˇ

ˇ

ˇ

loooooooooooomoooooooooooon

pbq

. (E.2)

We will next upper bound both terms (a) and (b) by ∆add
n to finish the first inequality of (7).

By definition (6a) of ∆add
n , for every ξ P Ξ, we can write

Rp pfξq ď pRp pfξq ` ∆add
n and pRp pfξq ď Rp pfξq ` ∆add

n . (E.3)
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Taking minimum on both sides of the inequalities in (E.3) then yields

min
ξPΞ

pRp pfξq ď min
ξPΞ

Rp pfξq ` ∆add
n and min

ξPΞ
Rp pfξq ď min

ξPΞ

pRp pfξq ` ∆add
n .

Combining the two inequalities, we arrive at the desired bound for term (a):

ˇ

ˇ

ˇ
min
ξPΞ

pRp pfξq ´ min
ξPΞ

Rp pfξq
ˇ

ˇ

ˇ
ď ∆add

n . (E.4)

Since pξ P arg minξPΞ
pRp pfξq, we can obtain the following upper bound for term (b):

ˇ

ˇ

ˇ
Rp pf

pξq ´ min
ξPΞ

pRp pfξq
ˇ

ˇ

ˇ
“

ˇ

ˇ

ˇ
Rp pf

pξq ´ pRp pf
pξq

ˇ

ˇ

ˇ
ď ∆add

n , (E.5)

where the inequality follows from the definition of ∆add
n .

Substituting the bounds (E.4) and (E.5) into (E.2), we conclude that

ˇ

ˇ

ˇ
Rp pf cvq ´ min

ξPΞ
Rp pfξq

ˇ

ˇ

ˇ
ď 2∆add

n . (E.6)

This implies the first inequality of (7). Taking expectations on the both sides of the first inequality of (7), we
obtain

E
“

Rp pf cvq
‰

ď E
“

min
ξPΞ

Rp pfξq
‰

` 2E
“

∆add
n

‰

. (E.7)

It is clear that the first term on the right hand side is bounded above by minξPΞ ErRp pfξqs, and thus we obtain
the second inequality of (7). This completes the proof of the oracle risk inequalities in additive form.

Multiplicative form. We now turn to prove the oracle risk inequality (8) in multiplicative form. Recall

again that Algorithm 1 returns pf cv “ pf
pξ. In contrast to the proof of Proposition 2.1, we now break Rp pf cvq

into the following multiplicative form:

Rp pf cvq “
Rp pf cvq

pRp pf cvq
¨ pRp pf cvq “

Rp pf cvq

pRp pf cvq
¨ pRp pf

pξq

piq
“
Rp pf cvq

pRp pf cvq
¨ min
ξPΞ

pRp pfξq

“
Rp pf cvq

pRp pf cvq
¨ min
ξPΞ

«

pRp pfξq

Rp pfξq
¨Rp pfξq

ff

piiq
ď

Rp pf cvq

pRp pf cvq
¨ min
ξPΞ

«˜

max
ρPΞ

pRp pfρq

Rp pfρq

¸

¨Rp pfξq

ff

ď
Rp pf cvq

pRp pf cvq
¨

˜

max
ξPΞ

pRp pfξq

Rp pfξq

¸

¨ min
ξPΞ

Rp pfξq

piiiq
ď

1

min
ξPΞ

pRp pfξq

Rp pfξq

¨

˜

max
ξPΞ

pRp pfξq

Rp pfξq

¸

¨ min
ξPΞ

Rp pfξq

“

max
ξPΞ

pRp pfξq

Rp pfξq

min
ξPΞ

pRp pfξq

Rp pfξq

¨ min
ξPΞ

Rp pfξq. (E.8)
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In the chain above, equality piq follows from the definition of pξ in Algorithm 1, inequality piiq follows from the
inequality aibi ď pmaxj ajqbi for any two sequences ai, bi, 1 ď i ď m, and inequality piiiq follows by noting
that

Rp pf cvq

pRp pf cvq
“

1

pRp pf cvq

Rp pf cvq

“
1

pRp pf
pξq

Rp pf pξq

ď
1

min
ξPΞ

pRp pfξq

Rp pfξq

.

Now, from the definition of ∆mul
n , for all ξ P Ξ, we have

1 ´ ∆mul
n ď

pRp pfξq

Rp pfξq
ď 1 ` ∆mul

n .

In addition, since the loss function is assumed to be non-negative, both Rp pfξq and pRp pfξq are non-negative
for all ξ. Hence, we can bound

p1 ´ ∆mul
n q` ď min

ξPΞ

pRp pfξq

Rp pfξq
ď max

ξPΞ

pRp pfξq

Rp pfξq
ď 1 ` ∆mul

n . (E.9)

Using (E.9) in (E.8) then implies the desired upper bound:

Rp pf cvq ď
1 ` ∆mul

n

p1 ´ ∆mul
n q`

¨ min
ξPΞ

Rp pfξq.

This completes the proof of the oracle risk inequality in multiplicative form.

S.1.2 Proof of Lemma 2.4

Tail bound. We begin by applying the Bernstein inequality (see Lemma S.8.1 for the exact statement) on

the random variables ℓpYj , pf
ξpXjqq, j P Ite with mean Rp pfξq conditionally on Dtr. (Note that the random

variables are i.i.d. conditionally on Dtr.) For any 0 ă η ă 1 and ξ P Ξ, we have the tail bound

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

|Dte|

ÿ

jPIte

ℓpYj , pf
ξpXjqq ´Rp pfξq

ˇ

ˇ

ˇ

ˇ

ˇ

ě C1 max

#

d

pσ2
ξ

log p2{ηq

|Dte|
, pσξ

log p2{ηq

|Dte|

+
ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď η. (E.10)

Taking expectation on both sides, we get that the unconditional probability is also bounded by η. Denoting
the prediction risk estimate by pRp pfξq, and choosing η “ η{|Ξ|, for any ξ P Ξ, we can equivalently write the
bound as

P

˜

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě C1pσξ max

#

d

log p2|Ξ|{ηq

nte
,

log p2|Ξ|{ηq

nte

+¸

ď
η

|Ξ|
.

Applying union bound over ξ P Ξ, for any 0 ă η ă 1{|Ξ|, we get uniform bound

P

˜

max
ξPΞ

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě C1 max

ξPΞ
pσξ max

#

d

log p2|Ξ|{ηq

nte
,

log p2|Ξ|{ηq

nte

+¸

ď η.

Using the definition of ∆add
n , and setting pσΞ :“ maxkPΞ pσξ, so far we have that

P

˜

∆add
n ě C1pσΞ max

#

d

log p2|Ξ|{ηq

nte
,

log p2|Ξ|{ηq

nte

+¸

ď η. (E.11)

Choosing η “ n´A for A ą 0 provides the desired tail bound (for a modified constant C1 ą 0)

P

¨

˝∆add
n ě C1pσΞ max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

˛

‚ď n´A.
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Expectation bound. We now turn to bounding Er∆add
n s. Define the event

BA
n :“

$

&

%

∆add
n ě C1C2 max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

,

.

-

.

Since Pppσn ě C2q ď n´A, combining this with (E.11), we conclude that PpBA
nq ď 2n´A. For the case of

CEN “ MOM, the proof follows from that of Lemma 2.5. This follows because bounded ψ1 norm implies bounded
L2 norm.

We can bound Er∆add
n s by breaking the expected value as

Er∆add
n s “ Er∆add

n 1Bn
s ` Er∆add

n 1BA
n

s

ď C1C2 max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

`
`

Erp∆add
n qts

˘1{t
pPpBcnqq1{r

ď C1C2 max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

`
`

Erp∆add
n qts

˘1{t
p2n´Aq1{r,

(E.12)

for Hölder conjugates t, r ě 2 satisfying 1{t` 1{r “ 1. Observe now that

Erp∆add
n qts ď |Ξ| max

ξPΞ
E
”

ˇ

ˇ pRp pfξq ´Rp pfξq
ˇ

ˇ

t
ı

ď |Ξ| max
ξPΞ

E
”

E
”

ˇ

ˇ pRp pfξq ´Rp pfξq
ˇ

ˇ

t ˇ
ˇ Dtr

ıı

ď C3|Ξ| max
ξPΞ

E

«

pσtξ max

#

ˆ

t

nte

˙t{2

,

ˆ

t

nte

˙t
+ff

,

where the last inequality follows from integrating the quantile bound in (E.10) and C3 is a constant potentially
larger than C1. Substituting this bound in (E.12), we obtain the desired expectation bound

Er∆add
n s ď C1C2 max

$

&

%

d

log p|Ξ|nAq

nte
,

log
`

|Ξ|nA
˘

nte

,

.

-

` C3n
´A{r|Ξ|1{t max

"
c

t

nte
,
t

nte

*

max
ξPΞ

`

Erpσtξs
˘1{t

.

for t, r ě 2 such that 1{r ` 1{t “ 1. This completes the proof.

S.1.3 Proof of Lemma 2.5

Tail bound. The proof is similar to the proof of Lemma 2.4. Our main workhorse is going to be

Lemma S.8.2. We use η “
`

|Ξ|nA
˘´1

in Algorithm 1. Applying the lemma with such η on the random

variables ℓpYj , pf
ξpXjqq, j P Ite conditionally on Dtr, for each ξ P Ξ we get the tail bound

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

|Dte|

ÿ

jPIte

ℓpYj , pf
ξpXjqq ´Rp pfξq

ˇ

ˇ

ˇ

ˇ

ˇ

ě C1pσξ

d

logp|Ξ|nAq

|Dte|

ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď
n´A

|Ξ|

for some absolute constant C1 ą 0. In other words,

P

¨

˝

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě C1pσξ

d

logp|Ξ|nAq

nte

ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

˛

‚ď
n´A

|Ξ|
.

Integrating out Dtr and applying union bound over ξ P Ξ then leads to the uniform bound

P

¨

˝max
ξPΞ

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě C1 max

ξPΞ
pσξ

d

logp|Ξ|nAq

nte

˛

‚ď n´A. (E.13)
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Substituting for the definitions of ∆add
n and pσΞ gives the desired tail bound

P

¨

˝∆add
n ě C1pσΞ

d

logp|Ξ|nAq

nte

˛

‚ď n´A. (E.14)

Expectation bound. For bounding Er∆add
n s, we again follow similar strategy as in the proof of Lemma 2.4.

In order to bound certain expectations, we begin by extending the tail bound (E.14). From the assumption,
PppσΞ ě C2q ď n´A for a constant C2 ą 0. For such a constant, consider the event

BA
n :“

$

&

%

∆add
n ě C1C2

d

logp|Ξ|nAq

nte

,

.

-

.

Conditioning on the event tpσΞ ě C2u, we can bound the probability of BA
n as follows:

PpBA
nq “ P

¨

˝∆add
n ě C1C2

d

logp|Ξ|nAq

nte
, pσΞ ď C2

˛

‚` P

¨

˝∆add
n ě C1C2

d

logp|Ξ|nAq

nte
, pσΞ ě C2

˛

‚

ď P

¨

˝∆add
n ě C1pσΞ

d

logp|Ξ|nAq

nte

˛

‚` P ppσn ě C2q ď
2

nA
,

where we used the bound from (E.14). We are now ready to bound Er∆add
n s by splitting using the event BA

n.
We have

E
“

∆add
n

‰

“ E
“

∆add
n 1Bn

‰

` E
“

∆add
n 1BA

n

‰

ď C1C2

d

logp|Ξ|nAq

nte
`
`

PpBA
nq
˘1{2 `Er|∆add

n |2s
˘1{2

ď C1C2

d

logp|Ξ|nAq

nte
`
`

2n´A
˘1{2 `Er|∆add

n |2s
˘1{2

(E.15)

where in the first inequality, we used Cauchy-Schwartz inequality for the second term. It remains to bound
Er|∆add

n |2s, which we do below. We have

Er
ˇ

ˇ∆add
n

ˇ

ˇ

2
s “ E

„

max
ξPΞ

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ

2
ȷ

ď |Ξ| max
ξPΞ

E
”

| pRp pfξq ´Rp pfξq|2
ı

.

For bounding the second term, recall that the MOM procedure computes pRp pfξq as the median of empirical
means computed on B partitions of the test data. For each of the B partitions, the variance of the empirical
mean is pσ2

ξ{pnte{Bq. To bound the variance of the median of means on B partitions, we invoke Theorem 1 of
Gribkova (2020) (with k “ 2, ρ “ 1, and i corresponding to the median position). Note that each of the B
empirical means are independent and identically distributed. This provides

E
„

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ

2 ˇ
ˇ

ˇ
Dtr

ȷ

ď C

˜

pσ2
ξ

nte{B

¸

ď C
Bpσ2

ξ

nte
.

for some absolute constant C. Thus,

`

E
“

|∆add
n |2

‰˘1{2
ď C

ˆ

|Ξ|
B

nte
max
ξPΞ

Erpσ2
ξ s

˙1{2

ď C|Ξ|1{2

c

B

nte
max
ξPΞ

´

Erpσ2
ξ s

¯1{2
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Recalling B “ r8 logp|Ξ|nAqs and combining this bound with (E.15), we finally have the desired expectation
bound

E
“

∆add
n

‰

ď C1C2

d

logp|Ξ|nAq

nte
` C3n

´A{2|Ξ|1{2

d

logp|Ξ|nAq

nte
max
ξPΞ

´

Erpσ2
ξ s

¯1{2

.

for some absolute constant C3 ą 0. This completes the proof.

S.1.4 Proof of Lemma 2.9

As argued in the proof of Lemma 2.4, using Lemma S.8.1, for any A ą 0, we have the tail bound:

P

˜

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě Cpσξ max

#

d

logp|Ξ|nAq

|Dte|
,

logp|Ξ|nAq

|Dte|

+
ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď
n´A

|Ξ|

for some universal constant C ą 0. By diving Rp pfξq on the both side of error event, and denoting pσξ{Rp pfξq
by pκξ, equivalently we have

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

pRp pfξq

Rp pfξq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ě Cpκξ max

#

d

logp|Ξ|nAq

|Dte|
,

logp|Ξ|nAq

|Dte|

+
ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď
n´A

|Ξ|
.

Integrating over randomness in Dtr, and applying union bound over ξ P Ξ, we obtain

P

¨

˝max
ξPΞ

ˇ

ˇ

ˇ

ˇ

pRp pfξq

Rp pfξq
´ 1

ˇ

ˇ

ˇ

ˇ

ě C max
ξPΞ

pκξ max

$

&

%

d

logp|Ξ|nAq

nte
,

logp|Ξ|nAq

nte

,

.

-

˛

‚ď n´A.

In other words, in terms ∆mul
n and pκΞ, we have

P

¨

˝∆mul
n ě CpκΞ max

$

&

%

d

logp|Ξ|nAq

nte
,

logp|Ξ|nAq

nte

,

.

-

˛

‚ď n´A,

as desired. This completes the proof.

S.1.5 Proof of Lemma 2.10

As argued in the proof of Lemma 2.5, using Lemma S.8.2, for any A ą 0, we have the following tail bound:

P

˜

ˇ

ˇ

ˇ

pRp pfξq ´Rp pfξq
ˇ

ˇ

ˇ
ě Cpσξ

d

logp|Ξ|nAq

|Dte|

ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď
n´A

|Ξ|

for some universal constant C ą 0. By diving Rp pfξq on the both side of error event, and denoting pσξ{Rp pfξq
by pκξ, we obtain

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

pRp pfξq

Rp pfξq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ě Cpκξ

d

logp|Ξ|nAq

|Dte|

ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

¸

ď
n´A

|Ξ|
.

Integrating over randomness in Dtr, and applying union bound over ξ P Ξ, this implies that

P

¨

˝max
ξPΞ

ˇ

ˇ

ˇ

ˇ

pRp pfξq

Rp pfξq
´ 1

ˇ

ˇ

ˇ

ˇ

ě C max
ξPΞ

pκξ

d

logp|Ξ|nAq

nte

˛

‚ď n´A.

Writing in terms ∆mul
n and pκΞ, we arrive at the desired bound:

P

¨

˝∆mul
n ě CpκΞ

d

logp|Ξ|nAq

nte

˛

‚ď n´A.

This finishes the proof.
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S.1.6 Proof of Proposition 2.14

Part 1. For the first part, observe that |ℓpY0, pfpX0qq| “ maxt0, 1 ´ Y0 pfpX0qu ď 2 assuming |Y0| ď 1 and

| pfpX0q| ď 1. For a bounded random variable Z, }Z}ψ2
À }Z}8 (see, e.g., Example 2.5.8 of Vershynin

(2018)). Thus, the random variable ℓpY0, pfpX0qq is conditionally sub-Gaussian with sub-Gaussian norm 2 (up
to constants), and consequently sub-exponential with the same sub-exponential norm upper bound. The
conditional L2 norm bound follows similarly.

Part 2. The second part follows in the same vein by noting that ℓpY0, pfpX0qq “ 1Y0‰ pfpX0q
only takes values

0 or 1, and Bernoulli random variables are sub-Gaussian with sub-Gaussian norm 1 (up to constants) and
hence sub-exponential with the same sub-exponential norm upper bound. The bound on the conditional L2

norm follows analogously.

S.1.7 Proof of Theorem 2.15

An outline for the proof is already provided in Section 2.3. The theorem follows by combining the additive form
of the oracle inequality from Proposition 2.1, along with the probabilistic bounds on ∆add from Lemmas 2.4
and 2.5, and the bounds on conditional ψ1 and L2 norm bounds from Proposition 2.14.

S.1.8 Proof of Proposition 2.16

Part 1. For the first part, we bound the ψ1 norm of the squared error by the squared ψ2 norm of the error
to get

}ℓpY0, pfpX0qq}ψ1|Dn
“ }pY0 ´XJ

0
pβq2}ψ1|Dn

ď }Y0 ´XJ
0
pβ}2ψ2|Dn

, (E.16)

where the inequality follows by Lemma 2.7.7 of Vershynin (2018). Note that for any β P Rp, we have

pY0 ´XJ
0
pβq “ pY0 ´XJ

0 βq `XJ
0 pβ ´ pβq. (E.17)

Because }Z1 ` Z2}ψ2
ď }Z1}ψ2

` }Z}ψ2
we can bound

}Y0 ´XJ
0
pβ}ψ2|Dn

ď }Y0 ´XJ
0 β}ψ2

` }XJ
0 pβ ´ pβq}ψ2|Dn

. (E.18)

Noting that Y0 ´XJ
0 β “ pY0, X0qJp1,´βq and pβ ´ pβq is a fixed vector conditioned on Dn, by using ψ2 ´L2

equivalence on pX0, Y0q, we have

}Y0 ´XJ
0 β}ψ2

ď τ}Y0 ´XJ
0 β}L2

and }XJ
0 pβ ´ pβq}ψ2|Dn

ď τ}XJ
0 pβ ´ pβq}L2|Dn

“ τ}pβ ´ β}Σ, (E.19)

where in the last inequality we used the fact that ErX0s “ 0 and ErX0X
J
0 s “ Σ. Thus, combining (E.16),

(E.18), and (E.19), for β P Rp, we have

}ℓpY0 ´XJ
0
pβq}ψ1|Dn

ď p}Y0 ´XJ
0 β}ψ2 ` }pβ ´ β}Σq2.

Taking infimum over β, we have that for squared loss

}ℓpY0, pfpX0qq}ψ1|Dn
ď τ2 inf

βPRp
p}Y0 ´XJ

0 β}ψ2
` }pβ ´ β}Σq2,

as desired. This completes the proof of the first inequality in (15). For the second inequality in (15), using
the ψ2 ´ L2 equivalence on the vector pX0, Y0q, observe that

ErℓpY0, pfpX0qq | Dns “ ErpY0 ´XJ
0
pβq2 | Dns “ }Y0 ´XJ

0 }2L2|Dn
. (E.20)

Hence, from (E.16) and (E.20), we have

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď

}Y0 ´XJ
0
pβ}2ψ2|Dn

}Y0 ´XJ
0
pβ}2L2|Dn

“

˜

}pY0, X0qp1,´pβq}ψ2|Dn

}pY0, X0qp1,´pβq}L2|Dn

¸2

ď τ2,

as desired. This completes the proof of the first part.
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Part 2. We now turn to the second part to bound the conditional L2 norm of the square loss. For the
square loss, note that

}ℓpY0, pfpX0qq}2L2|Dn
“ ErpY0 ´ pfpX0qq4 | Dns. (E.21)

Using the decomposition (E.17) and triangle inequality with respect to the L4 norm, we have

ErpY0 ´XJ
0
pβq4 | Dns1{4 ď ErpY0 ´XJ

0 βq4 | Dns1{4 ` ErXJ
0 pβ ´ pβq4 | Dns1{4 (E.22)

Using the L4 ´ L2 equivalence for pY0, X0q, we can bound

}Y0 ´XJ
0 β}L4

ď τ}Y0 ´XJ
0 β}L2

and }XJ
0 pβ ´ pβq}L4|Dn

ď τ}XJ
0 pβ ´ pβq}L2|Dn

. (E.23)

Thus, combining (E.21), (E.22), and (E.23), we have for any β P Rp,

}pY0, pfpX0qq}L2|Dn
ď pτ}Y0 ´XJ

0 β}L2
` τ}pβ ´ β}Σq2 ď τ2p}Y0 ´XJ

0 β}L2
` }pβ ´ β}Σq2.

This completes the proof of first inequality in (16). For the second inequality of (16), note that

}ℓpY0, pfpX0qq}L2|Dn

ErℓpY0, pfpX0qq | Dns
ď

}Y0 ´ pfpX0q}2L4|Dn

}Y0 ´ pfpX0q}2L2|Dn

“

˜

}pY0, X0qp1,´pβq}L4|Dn

}pY0, X0qp1,´pβq}L2|Dn

¸2

ď τ2.

This concludes the proof of the second part.

S.1.9 Proof of Proposition 2.17

The proof is similar to that of Proposition 2.16.

Part 1. From the decomposition (E.17) and the triangle inequality on ψ1 norm, we have for any β P Rp,

}Y0 ´XJ
0
pβ}ψ1|Dn

ď }Y0 ´XJ
0 β}ψ1

` }XJ
0 pβ ´ pβq}ψ1|Dn

. (E.24)

Using the ψ1 ´ L1 equivalence of pX0, Y0q, note that

}Y0 ´XJ
0 β}ψ1

ď τ}Y0 ´XJ
0 β}L1

and }XJ
0 pβ ´ pβq}ψ1|Dn

ď τ}XJ
0 pβ ´ pβq}ψ1|Dn

. (E.25)

Thus, from (E.24) and (E.25), for any β P Rp, we have

}Y0 ´XJ
0
pβ}ψ1|Dn

ď τp}Y0 ´XJ
0 β}L1

` }XJ
0 ppβ ´ βq}L1|Dn

q.

Now taking infimum over β P Rp yields the first inequality of (18). To show the second inequality, observe
that

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď

}Y0 ´XJ
0
pβ}ψ1|Dn

}Y0 ´XJ
0
pβ}L1|Dn

ď τ,

as desired. This finishes the proof.

Part 2. The second part follows analogously to the first part by using the L2 ´ L1 equivalence on pX0, Y0q.

S.1.10 Proof of Proposition 2.18

We start by writing the loss as

ℓpY0, pfpX0qq “ Y0 logp1 ` e´XJ
0
pβq ` p1 ´ Y0q logp1 ` eX

J
0
pβq

“ KLpY0, p1 ` expp´XJ
0
pβqq´1q.

Observe that the loss is non-negative since logp1 ` etq ě 0 for all t.
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Upper bounds on ψ1 and L2 norms. We will first obtain an upper on the loss and consequently on the
ψ1 and L2 norms of the loss. Because Y0 takes values 0 or 1, we have that

ℓpY0, pfpX0qq ď max
␣

logp1 ` e´XJ
0
pβq, logp1 ` eX

J
0
pβq
(

ď logp1 ` e|XJ
0
pβ|q,

where the second inequality follows since t ÞÑ et is monotonically increasing in t. Now using the following
bound on logp1 ` e|t|q:

logp1 ` e|t|q ď

#

log 2 if e|t| ď 1

logp2e|t|q “ log 2 ` |t| otherwise,

we can upper bound the loss by
ℓpY0, pfpX0qq ď |XJ

0
pβ| ` log 2.

Hence, we can upper bound the ψ1 and L2 norm of the loss as follows:

}ℓpY0, pfpX0qq}ψ1|Dn
ď logp2q ` }XJ

0
pβ}ψ1|Dn

, (E.26)

pErℓ2pY0, pfpX0qq | Dnsq1{2 ď logp2q ` pEr|XJ
0
pβ|2 | Dnsq1{2. (E.27)

Lower bound on expectation. Next we obtain a lower bound on ErℓpY0, pfpX0qq | Dns. Setting ppxq “

ErY0|X0 “ xs, it is clear that

ErℓpY0, pfpX0qq | Dn, X0s “ ppX0q logp1 ` expp´XJ
0
pβqq ` p1 ´ ppX0qq logp1 ` exppXJ

0
pβqq.

Because 0 ă pmin ď mintppxq, 1 ´ ppxqu for all x, we have

ErℓpY0, pfpX0qq | Dns ě pmin Ermaxtlogp1 ` expp´XJ
0
pβqq, logp1 ` exppXJ

0
pβqqu | Dns

“ pmin Erlogp1 ` expp|XJ
0
pβ|qq | Dns

ě
pmin

2
Erlogp2q ` |XJ

0
pβ| | Dns “

pmin

2
plogp2q ` E|XJ

0
pβ|q, (E.28)

where the second equality follows since t ÞÑ et is monotonically increasing in t P R, and the last inequality
follows from the fact that 1{2 ď logp1 ` exppxqq{plogp2q ` xq ď 1 for all x ě 0.

Using (E.26) and (E.28), we have

}ℓpY0, pfpX0qq}ψ1|Dn

ErℓpY0, pfpX0qq | Dns
ď

}XJ
0
pβ}ψ1|Dn

` logp2q

pminpEr|XJ
0
pβ| | Dns ` logp2qq{2

ď
τ}XJ

0
pβ}L1|Dn

` logp2q

pminpτ}XJ
0
pβ}L1|Dn

` logp2qq{2
“ 2τp´1

min.

This proves the first part of Proposition 2.18. A similar bound holds for the second inequality of Proposi-
tion 2.18 using upper bound from (E.27) and lower bound (E.28). This completes the proof.

S.1.11 Proof of Theorem 2.22

An outline for the proof is provided in Section 2.3. The theorem follows by combining the multiplicative
form of the oracle inequality from Proposition 2.1, along with probabilistic bounds on ∆mul from Lemmas 2.9
and 2.10, and the bounds on ratio of conditional ψ1 and L1 norms, and L2 and L1 norms from Proposition 2.16.

S.2 Proofs related to risk monotonization for zero-step procedure

S.2.1 Proof of Theorem 3.4

An outline for the proof is already provided in Section 3.3. For the sake of completeness, we briefly summarize
the main steps below.
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The deterministic additive and multiplicative oracle risk inequalities from Proposition 2.1, along with
probabilistic bounds from Lemmas 2.4, 2.5, 2.9 and 2.10, provide the following bound on the risk of the
zero-step predictor

Rp pf zsq “

#

minξPΞn
Rp pfξq `Opp1q

a

log n{nte if pσΞ “ Opp1q,

minξPΞn
Rp pfξq

`

1 `Opp1q
a

log n{nte
˘

if pκξ “ Opp1q.
(E.29)

Depending on the value of M , we now bound the term minξPΞn Rp pfξq under the assumptions (DET*) or
(DET).

Case of M “ 1. Under (DET*), we have from (33),

min
ξPΞn

Rp pfξq “ min
ξPΞn

Rp rfp¨;Dξ,1
tr qq “ Rdet

Õ pn; rfqp1 ` opp1qq. (E.30)

Combining (E.30) with (E.29) yields

Rp pf zsq “

#

Rdet
Õ pn; rfqp1 ` opp1qq `Opp1q

a

log n{nte if pσΞ “ Opp1q

Rdet
Õ pn; rfqp1 ` opp1qq if pκΞ “ Opp1q

“ Rdet
Õ pn; rfq

#

1 ` opp1q `
a

log n{nte{Rdet
Õ pn; rfq if pσΞ “ Opp1q

1 ` opp1q if pκΞ “ Opp1q.

(E.31)

Thus, under (O1) or (O2), we have |Rp pf zsq ´Rdet
Õ pn; rfq|{Rdet

Õ pn; rfq “ opp1q as desired.

Case of M ą 1. Under (DET), we have from (32),

min
ξPΞn

Rp pfξq ď Rdet
Õ pn; rfqp1 ` opp1qq. (E.32)

Now similar to the case of M “ 1, combining (E.32) with (E.29), and under (O1) or (O2), we have that

pRp pf zsq ´Rdet
Õ pn; rfqq`{Rdet

Õ pn; rfq “ opp1q as claimed. This finishes the proof.

S.2.2 Proof of Lemma 3.8

Our goal is to verify (DETPA-0), i.e., existence of a deterministic profile Rdetp¨; rfq such that for all non-

stochastic sequences ξ‹
n P arg minξPΞn

Rdetppn{nξ; rfq and 1 ď j ď M ,

Rp rfp¨;Dξ‹
n,j

tr qq ´Rdetppn{nξ‹
n
; rfq

Rdetppn{nξ‹
n
; rfq

p
ÝÑ 0,

as n Ñ 8 under (PA(γ)). Recall here rfp¨;Dξ‹
n,j

tr q, 1 ď j ď M , is a predictor trained on the dataset Dξ‹
n,j

tr

of sample size nξ‹
n

“ ntr ´ ξ‹
ntnνu and feature dimension pn. We will make a series of reductions to verify

(DETPA-0) from the assumptions of Lemma 3.8.

First, note that Rp rfp¨;Dξn,j
tr qq for 1 ď j ď M are identically distributed. It thus suffices to pick j “ 1,

which we will do below and drop the index for notational brevity. Second, since Rp rfp¨;Dkmqq ą 0 for all km,
it suffices to show that as n Ñ 8 under (PA(γ)),

Rp rfp¨;Dξ‹
n

tr qq ´Rdetppn{nξ‹
n
; rfq

p
ÝÑ 0, where ξ‹

n P arg min
ξPΞn

Rdetppn{nξ; rfq.

More explicitly, that for all ϵ ą 0, it suffices to verify that as n Ñ 8 under (PA(γ)),

P
`

|Rp rfp¨;Dξ‹
n

tr qq ´Rdetppn{nξ‹
n
; rfq| ě ϵ

˘

Ñ 0, where ξ‹
n P arg min

ξPΞn

Rdetppn{nξ; rfq.
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Now, we will do our final reduction. Fix ϵ ą 0. Define a sequence thnpϵquně1 as follows:

hnpϵq :“ P
`

|Rp rfp¨;Dξ‹
n

tr qq ´Rdetppn{nξ‹
n
; rfq| ě ϵ

˘

.

From the discussion in Section 3.3.1, we know that pn{nξ‹
n

may not necessarily converge as n Ñ 8. But
applying Lemma S.6.3 on the sequence thnpϵquně1, in order to verify that hnpϵq Ñ 0 as n Ñ 8, it suffices
to show that for any index subsequence tnkukě1, there exists a further subsequence tnklulě1 such that
hnkl

pϵq Ñ 0 as l Ñ 0. Towards that goal, fix an arbitrary index subsequence tnkukě1. We will appeal to
Lemma S.6.5 to construct the desired subsequence tnklulě1 along which we will argue that hnkl

Ñ 0 provided
the assumptions of Lemma 3.8 are satisfied. In particular, from Lemma S.6.1, note that since ntr{n Ñ 1 as

n Ñ 8, we have ΠΞn
pζq Ñ ζ for any ζ P rγ,8s as n Ñ 8. Now applying Lemma S.6.5 on Rdetp¨; rfq and the

grid Ξn guarantees that for any subsequence tpnk
{nξ‹

nk
ukě1, there exists a subsequence tpnkl

{nξ‹
nkl

ulě1 such

that as l Ñ 8,
pn
nξ‹

nkl

Ñ ϕ P arg min
ζPrγ,8s

Rdetpζ; rfq. (E.33)

We will now show that hnkl
pϵq Ñ 0 as l Ñ 8 if the profile convergence assumption (DETPAR-0) of Lemma 3.8

is satisfied, i.e., for a dataset Dkm with km observations and pm features, there exists Rdetp¨; rfq such that

Rp rfp¨;Dkmqq
p

ÝÑ Rdetpϕ; rfq whenever
pm
km

Ñ ϕ P arg min
ζPrγ,8s

Rdetpζ; rfq. (E.34)

This follows easily because the profile convergence condition (E.34) implies that as l Ñ 8,

P
ˆ
ˇ

ˇ

ˇ

ˇ

Rp rfp¨;D
ξ‹
nkl

tr qq ´Rdetpϕ; rfq

ˇ

ˇ

ˇ

ˇ

ě ϵ

˙

Ñ 0 whenever
pn
nξ‹

nkl

Ñ ϕ P arg min
ζPrγ,8s

Rdetpζ; rfq.

But since Rdetp¨; rfq is continuous at ϕ, and pn{nξ‹
nkl

Ñ ϕ P arg minζPrγ,8s R
detpζ; rfq as l Ñ 8 from (E.33)

this implies that, as l Ñ 8,

P
ˆ
ˇ

ˇ

ˇ

ˇ

Rp rfp¨;D
ξ‹
nkl

tr qq ´Rdetppn{nξ‹
nkl

; rfq

ˇ

ˇ

ˇ

ˇ

ě ϵ

˙

“ hpnklq Ñ 0.

This concludes the proof.

S.2.3 Proof of Proposition 3.9

In order to verify lower semicontinuity of h, if suffices to show that for any t P Rě0, the set tx : hpxq ď tu is
closed. Because limxÑb´ hpxq “ 8 and h continuous on ra, bq, there exists b´ptq ă b such that hpxq ą t for
all x ą b´ptq. Similarly, there exists b`ptq ą b such that hpxq ą t for all x ă b`ptq. Note that

tx : hpxq ď tu “ tx : h|ra,b´ptqspxq ď tu Y tx : h|rb`ptq,cspxq ď tu.

Because h is continuous on ra, b´ptqs and rb`ptq, cs, it is also lower semicontinuous on these intervals, and
hence the corresponding level sets are closed. Because the intersection of two closed sets is closed, the
statement follows.

S.2.4 Proof of Proposition 3.10

The proof builds on similar idea as that in the proof of Lemma S.6.7 and employs a proof by contradiction.
However, since the random functions in this case (which are conditional prediction risks) are not simply
indexed by n (but also by other properties of the data distributions), we will need to do a bit more work.

We wish to show that Rdetp¨; rfq is continuous on I P p0,8q. We will first show that Rdetp¨; rfq is Q-
continuous (see Definition S.6.8) on I and use Lemma S.6.9 to lift Q-continuity to R-continuity. Towards

showing Q-continuity, for the sake of contradiction, suppose Rdetp¨; rfq is Q-discontinuous at some point
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ϕ8 P I. This implies that there exists a sequence tϕrurě1 in Qą0 such that ϕr Ñ ϕ8, but for some ϵ ą 0
and all r ě 1,

Rdetpϕr; rfq R rRdetpϕ8; rfq ´ 2ϵ, Rdetpϕ8; rfq ` 2ϵs. (E.35)

(Note that Rdetpϕr; rfq Ñ Rdetpϕ8; rfq as ϕr Ñ ϕ8.) The proof strategy is now to construct a sequence
of datasets tD1

km
umě1 whose aspects ratios pm{km converge to ϕ8, but the conditional prediction risks

Rp rfp¨;D1
km

qq of predictors rfp¨;D1
km

q trained on these datasets do not converge to Rdetpϕ8; rfq, thereby

supplying a contradiction to the hypothesis of continuous convergence of Rp rfp¨;D1
km

qq to Rdetpϕ8; rfq. We
will construct such a sequence of datasets below.

For every r ě 1, construct a sequence of datasets tDϕr

km
umě1 with km observations and pm “ ϕikm features.

(Since ϕr P Qą0, the resulting pm is a positive integer.) See Figure S.1 for a visual illustration. For every
r ě 1, from the assumption of Proposition 3.10, we have that

Rp rfp¨;Dϕr

km
qq

p
ÝÑ Rdetpϕr; rfq (E.36)

as km, pm Ñ 8 because pm{km Ñ ϕr as m Ñ 8. Now, fix p P p0, 1q. For r “ 1, the convergence in (E.36)
guarantees that there exists an integer m1 ě 1 such that the event

Ωm1 :“ t|Rp rfp¨;Dϕ1

km1
qq ´Rdetpϕ1; rfq| ď ϵu (E.37)

has probability at least p. In addition, on the event Ωm1
, by the triangle inequality we have that

|Rp rfp¨;Dϕ1

km1
qq ´Rdetpϕ8; rfq| ě |Rdetpϕ1; rfq ´Rdetpϕ8; rfq| ´ |Rp rfp¨;Dϕ1

km1
qq ´Rdetpϕ1; rfq| ą ϵ, (E.38)

where the second inequality follows by using (E.35) and (E.37). Next, for r ě 2, let mr ą mr´1 be an integer
such that the event

Ωmr
:“ t|Rp rfp¨;Dϕr

kmr
qq ´Rdetpϕr; rfq| ď ϵu (E.39)

has probability at least p. Such sequence of integers tmrurě2 and the associated events tΩmr
urě2 indeed

exist as a consequence of the convergence in (E.36) for r ě 2. On each Ωmr

|Rp rfp¨;Dϕr

kmr
qq ´Rdetpϕ8; rfq| ą ϵ

by similar reasoning as that for (E.38) using (E.35) and (E.39) for r ě 2. Moreover, note that since mr ą m,
mr Ñ 8 as r Ñ 8.

Consider now a sequence of datasets tD1
km

umě1 such that:

1. The first m1 datasets are tDϕ1

km
u
m1
m“1 that have km number of observations and pm “ ϕ1km number of

features for m “ 1, . . . ,m1.

2. The next m2 ´m1 datasets are tDϕ2

km
u
m2
m“m1`1 that have km number of observations and pm “ ϕ2km

number of features for m “ m1 ` 1, . . . ,m2.

3. The next m3 ´m2 datasets are tDϕ3

km
u
m3
m“m2`1 that have km number of observations and pm “ ϕ3km

number of features for m “ m2 ` 1, . . . ,m3.

4. And so on ...

We will argue now that the sequence of datasets tD1
km

umě1 works for our promised contradiction. Observe
that in the construction above the aspect ratios pm{km Ñ ϕ8 because ϕr Ñ ϕ8. However, we have that for
all r ě 1,

Pp|Rp rfp¨;D1
kmr

qq ´Rdetpϕ8; rfq| ą ϵq “ Pp|Rp rfp¨;Dkmr
qq ´Rdetpϕ8; rfq| ą ϵq ě p.

Therefore, there exists an ϵ ą 0 for which there is no M ě 1 such that for m ě M ,

Pp|Rp rfp¨;D1
kmqq ´Rdetpϕ8; rfq| ą ϵq ă p{2.
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Hence, we get the desired contraction that

Rp rfp¨;D1
kmqq 

p
ÝÑ Rdetpϕ8, rfq

as km, pm Ñ 8 and pm{km Ñ ϕ8. This completes the proof.
It is worth pointing out that the proof above bears similarity to the proof of Lemma S.6.9. It is possible

to combine the two and not have to go through the route of Q-continuity. We, however, find it easier to
break them so that the main ideas are easier to digest even though it leads to some repetition of overall proof
strategies.

Figure S.1: Illustration of construction of grid of datasets used in the proof of Proposition 3.10. (Side note:
as can be seen from the figure, the argument bears similarity to the standard diagonalization argument.)

S.2.5 Proof of Theorem 3.11

We will split the proof depending on the value of M .

Case of M “ 1. Consider first the case when M “ 1. In this case, for every ξ P Ξ, pfξ “ rfξ1 (and thus,
rf‹ “ pf cv), which we denote by rfξ for simplicity of notation. To bound the desired difference, we break it

62



into three terms:
ˆ

Rp pf cvq ´ min
ζěp{n

Rdetp rf ; ζq

˙

`

“

ˆ

Rp pf cvq ´ min
ξPΞ

Rp rfξq

˙

`

`

ˆ

min
ξPΞ

Rp rfξq ´ min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙˙

`

`

ˆ

min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙

´ min
ζěp{n

Rdetp rf ; ζq

˙

`

.

(E.40)

This inequality follows from the fact that pa ` b ` cq` ď paq` ` pbq` ` pcq` for any a, b, c P R. We show
below that each of the three terms asymptotically vanish in probability as n Ñ 8 with p{n ď Γ.

Term 1: Because |Ξ| ď n1´ν ď n, and pσΞ “ opp
a

nν{ logpnqq, following Remark 2.8, under the assumptions
of Lemma 2.4 or Lemma 2.5, we have

ˇ

ˇ

ˇ

ˇ

Rp rf cvq ´ min
ξPΞ

Rp rfξq

ˇ

ˇ

ˇ

ˇ

“ opp1q, (E.41)

which proves that the first term on the right hand side of (E.40) converges to zero in probability.
Term 2: To deal with the second term on the right hand side of (E.40), define

ξ‹
n P arg min

ξPΞ
Rdet

ˆ

rf ;
pn
nξ

˙

.

Because Rdetp¨; ¨q is a non-stochastic function, tξ‹
nuně1 is a non-stochastic sequence and further, trivially,

ξ‹
i P Ξ for all n ě 1. Observe now that

min
ξPΞ

Rp rfξq ď Rp rfξ
‹
nq

“ Rp rfξ
‹
nq ´Rdet

ˆ

rf ;
pn
nξ‹

n

˙

` min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙

.
(E.42)

Hence, assumption (DETPA-0) implies that

ˆ

min
ξPΞ

Rp rfξq ´ min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙˙

`

“ opp1q, (E.43)

as n Ñ 8.
Term 3: Finally, because the risk profile ζ ÞÑ Rdetp rf ; ζq is assumed to be continuous at ζ‹, Lemma S.6.1

with the grid Ξ yields
ˇ

ˇ

ˇ

ˇ

min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙

´ inf
ζěγ

Rdetp rf ; ζq

ˇ

ˇ

ˇ

ˇ

“ op1q. (E.44)

Combining (E.41), (E.43), and (E.44), we have the desired result that

ˇ

ˇ

ˇ

ˇ

Rp pf cvq ´ min
ζěγ

Rdetp rf ; ζq

ˇ

ˇ

ˇ

ˇ

p
ÝÑ 0.

Case of M ą 1. Consider now the case when M ą 1. Note that px` yq` ď pxq` ` pyq` since maxtz, 0u is
a convex function of z. Thus, we can break and bound the desired difference as:

ˆ

Rp pf cvq ´ min
ζěp{n

Rdetp rf ; ζq

˙

`

ď

ˆ

Rp pf cvq ´ min
ξPΞ

Rp pfξq

˙

`

`

˜

min
ξPΞ

Rp pfξq ´ min
ξPΞ

1

M

M
ÿ

j“1

Rp rfξj q

¸

`

63



`

˜

min
ξPΞ

1

M

M
ÿ

j“1

Rp rfξj q ´ min
ξPΞ

Rdet

ˆ

rfξ;
pn
nξ

˙

¸

`

`

ˆ

min
ξPΞ

Rdet

ˆ

rf ;
pn
nξ

˙

´ min
ζěγ

Rdetp rf ; ζq

˙

`

.

As before, we show below that each of these terms are asymptotically vanishing in probability.
Term 1: Note that pσΞ ď rσΞ (from the triangle inequality for L2 and ψ1 norms). Thus, as argued above

for the case of m “ 1, the first term is opp1q.
Term 2: For the second term, observe that, for all ξ P Ξ,

R
´

pfξ
¯

“ R

˜

1

M

M
ÿ

j“1

rfξj

¸

“ E

«

ℓ

˜

Y0,
1

M

M
ÿ

i“1

rfξj pX0q

¸

ˇ

ˇ

ˇ
D1

ff

ď
1

M

M
ÿ

j“1

E
”

ℓpY0, rf
ξ
j pX0qq

ˇ

ˇ D1

ı

ď
1

M

M
ÿ

j“1

Rp rfξj q.

Therefore, we have

min
ξPΞ

Rp pfξq ď min
ξPΞ

1

M

M
ÿ

j“1

Rp rfξj q

and the second term is 0.
Term 3: For the third term, as before, note that

˜

min
ξPΞ

1

M

M
ÿ

j“1

Rp rfξj q ´ min
ξPΞ

Rdet

ˆ

rfξ;
p

nξ

˙

¸

`

ď

˜

1

M

M
ÿ

j“1

Rp rf
ξ‹
n
j q ´Rdet

ˆ

rf ;
pn
nξ‹

n

˙

¸

`

,

with the right hand side being opp1q because of (DETPA-0).
Term 4: Analogous to the argument for the m “ 1 case, the fourth term is op1q.
Combined together, we have the final result. This completes the proof. For an overview, a schematic for

the proof of Theorem 3.11 is provided in Figure S.2.

Figure S.2: Schematic of the proof of Theorem 3.11.

S.3 Proofs related to deterministic profile verification for zero-step
procedure

In this section, we verify the assumption (DETPAR-0) for the MN2LS and MN1LS prediction procedures.
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S.3.1 Proof of Proposition 3.14

Recall Dkm is a dataset with km observations and pm features. Theorem 3 of Hastie et al. (2019) assumes
the following distributional assumptions on the dataset Dkm .

(ℓ2A1) The observations pXi, Yiq, 1 ď i ď km, are sampled i.i.d. from the model Yi “ XJ
i β0 ` εi for some

(deterministic) unknown signal vector β0 P Rpm and (random) unobserved error εi, assumed to be
independent of Xi P Rpm , with mean 0, variance σ2, and bounded moment of order 4 ` δ for some
δ ą 0.

(ℓ2A2) The feature vector Xi, 1 ď i ď km, decomposes as Xi “ Σ1{2Zi, where Σ P Rpmˆpm is a positive
semidefinite (covariance) matrix and Zi P Rpmˆ1 is a random vector containing i.i.d. entries with mean
0, variance 1, and bounded moment of order 4 ` δ for some δ ą 0.

(ℓ2A3) The norm of the signal vector }β0}2 is uniformly bounded in p, and limpmÑ8 }β0}22 “ ρ2 ă 8.

(ℓ2A4) There exist real numbers rmin and rmax with 0 ă rmin ď rmax ă 8 such that rminIpm ĺ Σ ĺ rmaxIpm .

(ℓ2A5) Let Σ “ WRWJ denote the eigenvalue decomposition of the covariance matrix Σ, where R P Rpmˆpm

is a diagonal matrix containing eigenvalues (in non-increasing order) r1 ě r2 ě ¨ ¨ ¨ ě rpm ě 0, and
W P Rpmˆpm is an orthonormal matrix containing the associated eigenvectors w1, w2, . . . , wpm P Rpm .
Let Hpm denote the empirical spectral distribution of Σ (supposed on Rą0) whose value at any r P R is
given by

Hpmprq “
1

pm

pm
ÿ

i“1

1triďru.

Let Gpm denote a certain distribution (supported on Rą0) that encodes the components of the signal
vector β0 in the eigenbasis of Σ via the distribution of (squared) projection of β0 along the eigenvectors
wj , 1 ď j ď pm, whose value any r P R is given by

Gpmprq “
1

}β0}22

pm
ÿ

i“1

pβJ
0 wiq

2
1triďru.

Assume there exist fixed distributions H and G (supported on Rą0) such that Hpm
d

Ñ H and Gpm
d

Ñ G
as pm Ñ 8.

Under assumptions (ℓ2A1)–(ℓ2A5), we will verify that, for the MN2LS base prediction procedure rfmn2,

there exists a deterministic risk approximation Rdetp¨; rfmn2q : p0,8s Ñ r0,8s that satisfy the two conditions

stated in Proposition 3.14. In particular, we will show that the function Rdetp¨; rfmn2q defined below satisfies
the required conditions:

Rdetpϕ; rfmn2q “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

σ2 1

1 ´ ϕ
if ϕ P p0, 1q

8 if ϕ “ 1

ρ2p1 ` rvgp0;ϕqq

ż

r

p1 ` vp0;ϕqrq2
dGprq

` σ2

ˆ

ϕrvp0;ϕq

ż

r2

p1 ` vp0;ϕqrq2
dHprq ` 1

˙

if ϕ “ p1,8q

ρ2
ż

r dGprq ` σ2 if ϕ “ 8,

(E.45)

where the scalars vp0;ϕq, rvp0;ϕq, and rvgp0;ϕq, for ϕ P p1,8q, are defined as follows:

• vp0;ϕq is the unique solution to the fixed-point equation:

1

ϕ
“

ż

vp0;ϕqr

1 ` vp0;ϕqr
dHprq, (E.46)
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• rvp0;ϕq is defined through vp0;ϕq by the equation:

rvp0;ϕq “

ˆ

1

vp0;ϕq2
´ ϕ

ż

r2

p1 ` vp0;ϕqrq2
dHprq

˙´1

, (E.47)

• rvgp0;ϕq is defined through vp0;ϕq and rvp0;ϕq by the equation:

rvgp0;ϕq “ rvp0;ϕqϕ

ż

r2

p1 ` vp0;ϕqrq2
dHprq. (E.48)

We will verify the two conditions of Proposition 3.14 below.
The limiting risk for the MN2LS predictor provided in (E.45), although in a different notation, matches

the one obtained in Theorem 3 of Hastie et al. (2019). We believe our notation makes the subsequent analysis
for the one-step procedure easy to follow for the reader. It is worth mentioning, however, that Hastie et al.
(2019) only explicitly consider ϕ P p0, 1q Y p1,8q. We extend the analysis to show that the risk continuously
diverges to 8 as ϕ Ñ 1 and also continuously converges to the null risk as ϕ Ñ 8. In addition, as mentioned
in Remark 3.16, we analyze the prediction risk conditioned on both pX,Y q as opposed to only on X as
done in Hastie et al. (2019). Furthermore, we also establish continuity properties of the deterministic risk
approximation in the aspect ratio that is needed for our analysis.

Condition 1: Continuous convergence of conditional risk over ϕ P p0, 1q Y p1,8s.

Let X P Rkmˆpm denote the design matrix and Y P Rkm denote the response vector associated with the
dataset Dkm . Let ε P Rkm denote the error vector containing errors εi, 1 ď i ď km. Write the data model
from assumption (ℓ2A1) as Y “ XJβ0 ` ε, and the MN2LS estimator (20) as

rβmn2pDkmq “ pXJX{kmq:XJY {km. (E.49)

The associated predictor rfmn2p¨;Dkmq is given by (22). Recall the prediction risk RX,Y p rfmn2p¨;Dkmqq (where

we use the subscripts X,Y to explicitly indicate the dependence of Rp rfmn2p¨;Dkmqq on the training data
pX,Y q) under the squared error loss is given by

RX,Y p rfmn2p¨;Dkmqq “ ErpY0 ´ rfmn2pX0;Dkmqq2 | X,Y s, (E.50)

where pX0, Y0q is sampled independently from the same distribution as the training data pX,Y q.

Our goal is to show that as km, pm Ñ 8, if pm{km Ñ ϕ P p0, 1q Y p1,8s, RX,Y p rfmn2p¨;Dkmqq
a.s.

ÝÝÑ

Rdetpϕ; rfmn2q. The proof follows by combining Propositions S.3.1 to S.3.3. Specifically:

1. Propositions S.3.1 and S.3.2 combined together imply that RX,Y p rfmn2p¨;Dkmqq
a.s.

ÝÝÑ Rdetpϕ; rfmn2q as
pm, km Ñ 8 and pm{km Ñ ϕ P p0, 1q Y p1,8q.

2. Proposition S.3.3 imply that RX,Y p rfmn2p¨;Dkmqq
a.s.

ÝÝÑ Rdetp8; rfmn2q as pm, km Ñ 8 and pm{km Ñ 8.

Below we prove Propositions S.3.1 to S.3.3.
In preparation for the statements to follow, denote by pΣ :“ XJX{km the sample covariance matrix. Let

the singular value decomposition of X{
?
km be X{

?
km “ USV J, where U P Rkmˆkm and V P Rpmˆpm

are orthonormal matrices, and S P Rkmˆp is a diagonal matrix containing singular values in non-increasing
order s1 ě s2 ě . . . .

The proposition below provides conditional convergence for the prediction risk (E.50) when pm{km Ñ ϕ P

p0, 1q Y p1,8q as pm, km Ñ 8.

Proposition S.3.1 (Conditional convergence of squared prediction risk of MN2LS predictor). Suppose
assumptions (ℓ2A1)–(ℓ2A4) hold. Then, as km, pm Ñ 8, if pm{km Ñ ϕ P p0, 1q Y p1,8q, then

RX,Y p rfmn2p¨;Dkmqq ´ βJ
0 pIpm ´ pΣ:

pΣqΣpIpm ´ pΣ:
pΣqβ0 ´ σ2 trrpΣ:Σs{km ´ σ2 a.s.

ÝÝÑ 0. (E.51)
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Proof. Under assumption (ℓ2A1), the squared prediction risk (E.50) decomposes into

RX,Y p rfmn2p¨;Dkmqq “ prβmn2pDkmq ´ β0qJΣprβmn2pDkmq ´ β0q ` σ2. (E.52)

Similarly, under assumption (ℓ2A1), the estimator (E.49) decomposes into

rβmn2pDkmq “ pXJX{kmq:XJX{km β0 ` pXJX{kmq:XJε{km.

Consequently, the difference between the estimator and the true parameter decomposes as

rβmn2pDkmq ´ β0 “
␣

pXJX{kmq:XJX{km ´ Ipm
(

β0 ` pXJX{kmq:XJε{km. (E.53)

Substituting (E.53) into (E.52), we can split the first term on the right hand side of (E.52) into three
component terms:

prβmn2pDkmq ´ β0qJΣprβmn2pDkmq ´ β0q “ B0 ` V0 ` C0,

where the component terms are given by:

B0 “ βJ
0

␣

pXJX{kmq:XJX{km ´ Ipm
(

Σ
␣

pXJX{kmq:XJX{km ´ Ipm
(

β0

“ βJ
0 pIpm ´ pΣ:

pΣqΣpIpm ´ pΣ:
pΣqβ0,

C0 “ βJ
0

␣

pXJX{kmq:XJX{km ´ Ipm
(

ΣpXJX{kmq:XJε{km

“ ´βJ
0 pIpm ´ pΣ:

pΣqΣpΣ:XJε{km,

V0 “ εJX{kmpXJX{kmq:ΣpXJX{kmq:XJε{km

“ εJpX pΣ:ΣpΣ:XJ{kmqε{km.

To finish the proof, we will show concentration of the terms C0 and V0 below.
Term C0: We will show that C0

a.s.
ÝÝÑ 0 as km, pm Ñ 8 such that pm{km Ñ ϕ P p0, 1q Y p1,8q. Note that

}X pΣ:ΣpIpm ´ pΣ:
pΣqβ0}22{km “ βJ

0 pIpm ´ pΣ:
pΣqΣpΣ:XJX pΣ:ΣpIpm ´ pΣ:

pΣqβ0{km

ď }β0}22}}pIpm ´ pΣ:
pΣqΣpΣ:

pΣpΣ:ΣpIpm ´ pΣ:
pΣq}op

ď }β0}22} ¨ r2max ¨ }pΣ:}op, (E.54)

where in the last inequality (E.54), we used the fact that }Ipm ´ pΣ:
pΣ}op ď 1, }Σ}op ď rmax, and that

pΣ:
pΣpΣ: “ pΣ:, along with the submultiplicativity of the operator norm. Now, note that lim inf min1ďiďp s

2
i ě

rminp1´
?
ϕq2 almost surely from Bai and Silverstein (2010) for ϕ P p0, 1qYp1,8q. Therefore, lim sup }pΣ:}op ď

C for some constant C ă 8 almost surely. Applying Lemma S.8.5, we thus have that C0
a.s.

ÝÝÑ 0.
Term V0: We will show that V0´trrpΣ`Σs{km

a.s.
ÝÝÑ 0 as km, pm Ñ 8 such that pm{km Ñ ϕ P p0, 1qYp1,8q.

Observe that
}X pΣ:ΣpΣ:XJ{km}op ď rmax}pΣ}op}pΣ:}2op. (E.55)

Now, note that lim sup }pΣ}op ď lim sup max1ďiďp s
2
i ď rmaxp1 `

?
ϕq2, almost surely for ϕ P p0, 1q Y p1,8q

from Bai and Silverstein (2010). In addition, as argued above, }pΣ:}op ď C almost surely for some constant

C ă 8. Thus, using Lemma S.8.6, it follows that V0 ´ σ2 trrX pΣ`ΣpΣ`XJs{k2m
a.s.

ÝÝÑ 0. Finally, since

trrX pΣ`ΣpΣ`XJs{k2m “ trrpΣ:
pΣpΣ:Σs{km “ trrpΣ:Σs{km, we obtain that V0 ´ σ2 trrpΣ:Σs{km

a.s.
ÝÝÑ 0.

The next proposition provides deterministic limits of the conditional risk functionals in Proposition S.3.1
when pm{km Ñ ϕ P p0, 1q Y p1,8q as km, pm Ñ 8.

Proposition S.3.2 (Limits of conditional risk functionals over ϕ P p0, 1q Y p1,8q). Suppose assumptions
(ℓ2A2)–(ℓ2A5) hold. Then, as km, pm Ñ 8, and pm{km Ñ ϕ P p0, 1q Y p1,8q, the following holds:
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• Bias functional:

βJ
0 pIpm ´ pΣ:

pΣqΣpIpm ´ pΣ:
pΣqβ0

a.s.
ÝÝÑ

$

&

%

0 if ϕ P p0, 1q

ρ2p1 ` rvgp0;ϕqq

ż

r

p1 ` vp0;ϕqrq2
dGprq if ϕ P p1,8q,

• Variance functional:

σ2 trrpΣ:Σs{km
a.s.

ÝÝÑ

$

’

’

&

’

’

%

σ2 ϕ

1 ´ ϕ
if ϕ P p0, 1q

σ2ϕrvp0;ϕq

ż

r2

p1 ` vp0;ϕqrq2
dHprq if ϕ P p1,8q,

where vp0;ϕq, rvp0;ϕq, and rvgp0;ϕq are as defined in (E.46), (E.47), and (E.48), respectively.

Proof. We will consider the bias and functionals separately below.

Bias functional. Consider first the bias functional βJ
0 pIpm ´ pΣ:

pΣqΣpIpm ´ pΣ:
pΣqβ0. Since rmin ą 0,

the smallest eigenvalue of pΣ: is almost surely positive, and the matrix pΣ is almost surely invertible as
km, pm Ñ 8 and pm{km Ñ ϕ P p0, 1q. Therefore, in this case, pΣ:

pΣ “ Ipm almost surely, and βJ
0 pIpm ´

pΣ:
pΣqΣpIpm ´ pΣ:

pΣqβ0
a.s.

ÝÝÑ 0. For the case when km, pm Ñ 8 and pm{km Ñ ϕ P p1,8q, from the second
part of Corollary S.6.12 by taking fpΣq “ Σ, we have

pIpm ´ pΣ:
pΣqΣpIpm ´ pΣ:

pΣq » p1 ` rvgp0;ϕqqpvp0;ϕqΣ ` Ipmq´1Σpvp0;ϕqΣ ` Ipmq´1,

where vp0;ϕq and rvgp0q are as defined by (E.46) and (E.48), respectively. Note that from Lemma S.6.13 (1)
vp0;ϕq is bounded for ϕ P p1,8q, and the function r ÞÑ r{p1 ` rvp0;ϕqq2 is continuous. Hence, under (ℓ2A3)
and (ℓ2A5), using Lemma S.7.2 (4), we have

βJ
0 pIpm ´ pΣ:

pΣqΣpIpm ´ pΣ:
pΣqβ0

a.s.
ÝÝÑ lim

pmÑ8

pm
ÿ

i“1

p1 ` rvgp0;ϕqq
ri

p1 ` rivp0;ϕqq2
pβJ

0 wiq
2

“ lim
pmÑ8

}β0}22p1 ` rvgp0;ϕqq

ż

r

p1 ` rvp0;ϕqq2
dGpmprq

“ ρ2p1 ` rvgp0;ϕqq

ż

r

p1 ` rvp0;ϕqq2
dGprq,

where in the last line we used the fact that Gpm and G have compact supports, and limpmÑ8 }β0}22 “ ρ2.
This completes the proof of the first part.

Variance functional. Consider next the variance functional trrpΣ:Σs{km. As km, pm Ñ 8 and pm{km Ñ

ϕ P p0, 1q, pΣ is almost surely invertible as explained above. In this case, trrpΣ:Σs{km´trrpZJZ{kmq´1s{km
a.s.

ÝÝÑ

0, where Z P Rkmˆpm is matrix with rows Zi, 1 ď i ď km. From the proof of Proposition 2 of Hastie et al.
(2019), this limit is given by ϕ{p1 ´ ϕq. In the case when km, pm Ñ 8 and pm{km Ñ ϕ P p1,8q, from
Corollary S.6.12, we have

pΣ:Σ » rvp0;ϕqpvp0;ϕqΣ ` Ipq´2Σ2.

Along the same lines as above, from Lemma S.6.13 (1), vp0;ϕq is bounded for ϕ P p1,8q, and the the function
r ÞÑ r2{p1 ` vp0;ϕqrq2 is continuous. Thus, under (ℓ2A5), using Lemma S.7.2 (4), we have

σ2 trrpΣ:Σs{km
a.s.

ÝÝÑ lim
pmÑ8

pm
km

1

pm
rvp0;ϕq

pm
ÿ

i“1

r2i
p1 ` vp0;ϕqriq2

“ lim
pmÑ8

pm
km

rvp0;ϕq

ż

r2

p1 ` vp0;ϕqrq2
dHprq

“ ϕrvp0;ϕq

ż

r2

p1 ` vp0;ϕqrq2
dHprq.

This completes the proof of the second part.
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We remark that Corollary S.6.12 used in the proof of Proposition S.3.2 assumes existence of moments of
order 8 `α for some α ą 0 on the entries of Zi, 1 ď i ď km, mentioned in assumption (ℓ2A1). As done in the
proof of Theorem 6 of Hastie et al. (2019) (in Appendix A.1.4 therein), this can be relaxed to only requiring
existence of moments of order 4 ` α. This being a simple truncation argument, we omit the details and refer
the readers to Hastie et al. (2019).

The proposition below covers the case when pm{km Ñ 8 as pm, km Ñ 8.

Proposition S.3.3 (Limits of risk and deterministic risk approximation as ϕ Ñ 8). Suppose assumptions
(ℓ2A1)–(ℓ2A5) hold. Then, as km, pm Ñ 8 and pm{km Ñ 8, we have

RX,Y p rfmn2p¨;Dkmqq ´ βJ
0 Σβ0 ´ σ2 a.s.

ÝÝÑ 0.

In addition,

lim
ϕÑ8

Rdetp¨; rfmn2q “ lim
pmÑ8

β0Σβ0 ` σ2 “ ρ2
ż

r dGprq ` σ2.

Proof. From (E.52), note that

RX,Y p rfmn2p¨;Dkmqq ´ p}β0}2Σ ` σ2q “ }rβmn2pDkmq}2Σ ´ 2rβmn2pDkmqJΣβ0

ď r´1
min}rβmn2}22 ` 2}rβmn2pDkmq}2}Σβ0}2

ď r´1
min}rβmn2pDkmq}22 ` 2rmaxr}rβmn2pDkmq}2,

where the first inequality follows by using the lower bound rmin on the smallest eigenvalue of Σ, and the
Cauchy-Schwarz inequality, and the second inequality follows by using the upper bound rmax on the largest
eigenvalue of Σ. Thus, for the first part it suffices to show that }rβmn2}2 Ñ 0 as km, p Ñ 0 and p{km Ñ 8.
Towards that end, note that

}rβmn2pDkmq}2 “ }pXJX{kmq:XJY {km}2

ď }pXJX{kmq:X{
a

km}op}Y {
a

km}2

ď C}pXJX{kmq:X{
a

km}op

a

ρ2 ` σ2,

where the last inequality holds eventually almost surely since (ℓ2A1) and (ℓ2A3) imply that the entries of Y have
bounded 4-th moment, and thus from the strong law of large numbers, }Y {

?
km}2 is eventually almost surely

bounded above by
a

ErY 2s “
a

ρ2 ` σ2. Observe that operator norm of the matrix pXJX{kmq:X{
?
km is

upper bounded by the inverse of the smallest non-zero singular value smin of X. As km, pm Ñ 8 such that
pm{km Ñ 8, smin Ñ 8 almost surely (e.g., from results in Bloemendal et al. (2016)) and therefore, }β}2 Ñ 0
almost surely. This completes the proof of first part.

Now, from Lemma S.6.13 (1) limϕÑ8 vp0;ϕq “ 0, and from Lemma S.6.13 (4) limϕÑ8 rvgp0;ϕq “ 0. Thus,

lim
ϕÑ8

ρ2p1 ` rvgp0;ϕqq

ż

r

p1 ` vp0;ϕqrq2q
dGprq “ ρ2

ż

r dGprq.

On the other hand, from Lemma S.6.13 (4),

lim
ϕÑ8

σ2ϕrvp0;ϕq

ż

r

p1 ` vp0;ϕqrq2
dHprq “ 0.

This proves the second part, and finishes the proof.

Condition 2: Left and right limits of deterministic risk approximation as ϕ Ñ 1.

Next we verify that limϕÑ1R
detpϕ; rfmn2q “ 8. First note that limϕÑ1´ Rdetpϕ; rfmn2q “ limϕÑ1´ 1{p1 ´ϕq “

8. Now, from Lemma S.6.13 (4), observe that

lim
ϕÑ1`

ϕrvp0;ϕq

ż

r2

p1 ` vp0;ϕqrq2
dHprq “ 8.

Since limϕÑ1´ Rdetpϕq “ limϕÑ1` Rdetpϕq “ 8, we have that limϕÑ1R
detpϕq “ 8, as claimed. This finishes

the verification.
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S.3.2 Proof of Proposition 3.15

Recall that Dkm is a dataset with km observations and pm features. Li and Wei (2021) makes the following
distributional assumptions on the dataset Dkm . We adapt the scalings of Li and Wei (2021) to match the
current paper for easy comparisons.

(ℓ1A1) pXi, Yiq for 1 ď i ď km are i.i.d. observations from the model: Y “ XJβ0 ` ε for some fixed unknown

vector β0 P Rpmˆ1 and unobserved error ε where εi
i.i.d.
„ N p0, σ2q independent of X.

(ℓ1A2) Each design vector is independently drawn by Xi
i.i.d.
„ N p0, Ipq.

(ℓ1A3) The signal vector β0 is random such that the scaled coordinates t
?
pm ¨ βi0u

pm
i“1 converge weakly to a

probability measure PΘ, where ErΘ2s ă 8 and PpΘ ‰ 0q ą 0.

Under these assumptions, Theorem 2 of Li and Wei (2021) demonstrates that the prediction risk of the
MN1LS estimator obeys 6

lim
p{nÑϕ
n, pÑ8

Rp rfmn1p¨;Dkmqq “ τ‹2, (E.56)

almost surely with respect to X and Y. Here, pτ‹, α‹q stands for the unique solution to the following system
of equations

τ2 “ σ2 ` E
”

`

ηpΘ ` τZ;ατq ´ Θ
˘2
ı

, (E.57a)

ϕ´1 “ P
`

|Θ ` τZ| ą ατ
˘

, (E.57b)

where Θ „ PΘ, and Z „ N p0, 1q and is independent of Θ. Here, ηp¨; bq is the soft-thresholding function at
level b ě 0 that maps x P R to

ηpx; bq “ p|x| ´ bq` sgnpxq.

The existence and uniqueness of the equation set (E.57) is established in Li and Wei (2021). To facilitate
accurate characterization of τ‹ as a function of ϕ, we make assumption on how the ground true is generated
as follows.

(ℓ1A4) Suppose that each coordinate of β0 “ rβi0s1ďiďp is identically and independently drawn as follows

βi0
i.i.d.
„ ϵPM{

?
pm ` p1 ´ ϵqP0, (E.58)

where Pc corresponds to the Dirac measure at point c P R, and M ą 0 is some given scalar that
determines the magnitude of a non-zero entry.

Under the above four assumptions, it is proved in Lemma 2 (p. 50) of Li and Wei (2021) that

lim
ϕÑ1`

τ‹2pϕq “ 8, (E.59)

and Lemma 1 (p. 51) of Li and Wei (2021) that

lim
ϕÑ8

τ‹2pϕq “ σ2 ` E}β0}22 “ σ2 ` ϵM2.

We remark that the above results are stated slight differently therein due to a different scaling, where a global
1{

?
km is applied to the design matrix and

?
pm is applied to the ground truth parameter β0. Here, we adapt

a global scaling to allow for convenient comparisons with the MN2LS estimator.
From the discussion above, it is therefore clear that, one can set

Rdetp¨; rfmn1q “

$

’

’

’

’

’

&

’

’

’

’

’

%

σ2 1

1 ´ ϕ
if ϕ P p0, 1q

8 if ϕ “ 1

τ‹2 if ϕ P p1,8q

σ2 ` ϵM2 if ϕ “ 8

(E.60)

6Li and Wei (2021) assumes p{n “ ϕ for simplicity, but the proof goes through literatim as p{n Ñ ϕ.
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which satisfies the conditions of Proposition 3.15.
In order to see this, first recognizing that the convergence (E.56) holds almost surely, the first condition

of Proposition 3.15 is satisfied naturally. Additionally, as established in Section S.3.1 and in (E.59), one has

lim
ϕÑ1`

Rdetpϕ; rfmn1q “ 8, and lim
ϕÑ1´

Rdetpϕ; rfmn1q “ 8, (E.61)

which validates the second condition of Proposition 3.15. Putting everything together completes the proof of
Proposition 3.15.

S.4 Proofs related to risk monotonization for one-step procedure

S.4.1 Proof of Lemma 4.1

The idea of the proof is similar to proof of Lemma 3.8. We wish to verify that there exists a deterministic

approximation Rdet : R ˆ R Ñ R to the conditional prediction risk of the predictor rfp¨;Dξ1,n,j
tr ,Dξ2,n,j

tr q,
1 ď j ď M that satisfy

ˇ

ˇ

ˇ

ˇ

ˇ

Rp rfp¨;Dξ‹
1,n,j

tr ,Dξ‹
2,n,j

tr qq ´Rdet

˜

pn
n1,ξ‹

1,n

,
pn

n2,ξ‹
2,n

; rf

¸
ˇ

ˇ

ˇ

ˇ

ˇ

“ opp1qRdet

˜

pn
n1,ξ‹

1,n

,
pn

n2,ξ‹
2,n

; rf

¸

as n Ñ 8 under (PA(γ)), where pξ‹
1,n, ξ

‹
2,nq are indices such that

pξ‹
1,n, ξ

‹
2,nq P arg min

pξ1,ξ2qPΞn

Rdet

ˆ

pn
n1,ξ1

,
pn
n2,ξ2

; rf

˙

.

Following the arguments in the proof of Lemma 3.8, using the lower bound on Rp rfp¨;Dξ1,n,j

tr ,Dξ2,n,j

tr qq and
identical distribution across j, it suffices to show that for all ϵ ą 0,

P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

Rp rfp¨;Dξ‹
1,n

tr ,Dξ‹
2,n

tr qq ´Rdet

˜

pn
n1,ξ‹

1,n

,
pn

n2,ξ‹
2,n

; rf

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

Ñ 0

as n Ñ 8 under (PA(γ)). Note that here we have dropped the superscript j for brevity. Now we will show

that (DETPAR-1) along with the assumed continuity behavior of Rdetp¨, ¨; rfq implies desired conclusion. Fix
ε ą 0 and define a sequence hnpϵq as follows:

hnpϵq :“ P

˜
ˇ

ˇ

ˇ

ˇ

ˇ

Rp rfp¨;Dξ‹
1,n

tr ,Dξ‹
2,n

tr qq ´Rdet

˜

pn
n1,ξ‹

1,n

,
pn

n2,ξ‹
2,n

; rf

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ě ϵ

¸

.

We want to show that hnpϵq Ñ 8 as n Ñ 8 under (PA(γ)). We first note that using Lemma S.6.3, it
suffices to show that for an arbitrary subsequence tnkukě1, there exists further subsequence tnklulě1 such
that hnkl

Ñ 0 as n Ñ 8. Also, note that since ntr{n Ñ 1, the grid Ξn satisfies the space-filling property from

Lemma S.6.2 that ΠΞn
pζ1, ζ2q Ñ pζ1, ζ2q for any pζ1, ζ2q that satisfy ζ´1

1 ` ζ´1
2 ď γ´1 and the set of pζ1, ζ2q

that satisfy this condition is compact. Now, we apply Lemma S.6.5 on the function Rdetp¨, ¨; rfq and the grid
Ξn. Let sequence txnuně1 be such that xn :“ ppn{n1,ξ‹

1,n
, pn{n2,ξ‹

2,n
q for n ě 1. Lemma S.6.5 guarantees that

for any arbitrary subsequence txnk
ukě1, there exists a further subsequence txnkl

ulě1 such that

xnkl
Ñ pϕ1, ϕ2q P arg min

ζ´1
1 `ζ´1

2 ďγ´1

Rdetpζ1, ζ2; rfq. (E.62)

We will now show that hnkl
Ñ 0 as l Ñ 8 if assumption (DETPAR-1) Lemma 4.1 is satisfied. It is easy to

see that the assumption implies

Rp rfp¨;Dξ‹
1,n

tr ,Dξ‹
2,n

tr qq
p

ÝÑ Rdetpϕ1, ϕ2; rfq
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as n, pn, ξ
‹
1,n, ξ

‹
2,n Ñ 8, whenever

ppn{n1,ξ‹
1,n
, pn{n2,ξ‹

2,n
q Ñ pϕ1, ϕ2q P arg min

ζ´1
1 `ζ´1

2 ďγ´1

Rdetpζ1, ζ2; rfq.

But using the continuity of Rdetp¨, ¨; rfq on the set arg minζ´1
1 `ζ´1

2 ďγ´1 Rdetpζ1, ζ2; rfq and the fact that the

sequence txnkl
ulě1 converges to a point in this minimizing set from (E.62), it follows that that hnkl

Ñ 0 as
l Ñ 8 as desired. This finishes the proof.

S.4.2 Proof of Proposition 4.2

Fix t ă 8. We will verify that the set Ct :“ tx : hpxq ď tu is closed. Note that Ct Ď MzC because hpxq ă 8

for x P Ct. Now consider any converging sequence txnuně1 in Ct with limit point p. We will argue that p P Ct.
First note that the function h is continuous over Ct because Ct Ď MzC. Note that p R C, because if it does
then hpxnq Ñ 8 as n Ñ 8, which in turn implies that for infinitely many k ě 1, hpxkq ą t, contradicting
xn P Ct for all n ě 1. Hence, p P MzC and xn P MzC for all n ě 1. Therefore, continuity of h on MzC yields
hpxnq Ñ hppq. Moreover, hpxnq ď t implies that limnÑ8 hpxnq ď t, which in turn implies that hppq ď t.
Hence p P C, finishing the proof.

S.4.3 Proof of Proposition 4.3

The proof uses a similar contradiction strategy employed in the proof of Proposition 3.10. We only sketch the
proof, and omit the details.

Suppose Rdetp¨, ¨; rfq is discontinuous at some point pϕ1,8, ϕ2,8q. This gives us a sequence tpϕ1,r, ϕ2,rqurě1

such that for some ϵ ą 0 and all r ě 1,

Rdetpϕ1,r, ϕ2,r; rfq R rRdetpϕ1,8, ϕ2,8; rfq ´ 2ϵ, Rdetpϕ1,8, ϕ2,8; rfq ` 2ϵs, (E.63)

while pϕ1,r, ϕ2,rq Ñ pϕ1,8, ϕ2,8q as r Ñ 8. From the continuous convergence hypothesis, for each r ě 1, one

can then construct a sequence of datasets tpDϕ1,r

k1,m
,Dϕ2,r

k2,m
qumě1 with pm features and pk1,m, k2,mq observations

for which
Rp rfp¨;Dϕ1,r

k1,m
,Dϕ2,r

k2,m
qq

p
ÝÑ Rdetpϕ1,r, ϕ2,r; rfq (E.64)

as pm, k1,m, k2,m Ñ 8 and ppm{k1,m, pm{k2,mq Ñ pϕ1,r, ϕ2,rq. From (E.63) and (E.64), one can obtain a
sequence of increasing integers tmrurě1 such that for each r ě 1, with probability 0 ă p ă 1,

|Rp rfp¨;Dϕ1,r

k1,m
,Dϕ2,r

k2,m
qq ´Rdetpϕ1,8, ϕ2,8; rfq| ą ϵ.

This then lets us construct a sequence of datasets tpD1
k1,m

,D1
k2,m

qumě1 similar as done in the proof of
Proposition 3.10 for which

Rp rfp¨;D1
k1,m ,D

1
k2,mqq 

p
ÝÑ Rdetpϕ1,8, ϕ2,8; rfq

as pm, k1,m, k2,m Ñ 8 and ppm{k1,m, pm{k2,mq Ñ pϕ1,8, ϕ2,8q. This supplies the required contradiction to
the continuous convergence hypothesis.

S.4.4 Proof of Theorem 4.4

The idea of the proof is similar to that of the proof of Theorem 3.11. We will break the proof in two cases.

Case of M “ 1. Consider first the case when m “ 1. In this case, pf cv “ rfξ1 , which we denote by rfξ for
notational simplicity. Bound the desired difference as

ˇ

ˇ

ˇ

ˇ

Rp pf cvq ´ min
1{ζ1`1{ζ2ďn{p

Rdetp pf ; ζ1, ζ2q

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

Rp pf cvq ´ min
ξPΞ

Rp rfξq

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

min
ξPΞ

Rp rfξq ´ min
ξPΞ

Rdet

ˆ

rf ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙
ˇ

ˇ

ˇ

ˇ
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`

ˇ

ˇ

ˇ

ˇ

min
ξPΞ

Rdet

ˆ

rf ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙

´ min
1{ζ1`1{ζ1ďn{p

Rdetp rf ; ζ1, ζ2q

ˇ

ˇ

ˇ

ˇ

We show below that each of the terms asymptotically go to zero. Observe that

ˇ

ˇΞ
ˇ

ˇ “

rn{tnν
u´2s

ÿ

ξ1“2

pξ1 ´ 1q ď n2.

Since pσΞ “ rσΞ “ opp
a

nν{ logpnqq, under the setting of Lemma 2.4 or Lemma 2.5, Remark 2.8 hold so that

ˇ

ˇ

ˇ

ˇ

Rp pf cvq ´ min
ξPΞ

Rp rfq

ˇ

ˇ

ˇ

ˇ

“ opp1q.

The assumption on the asymptotic risk profile (DETPA-1) leads to

ˇ

ˇ

ˇ

ˇ

min
ξPΞ

Rp rfξq ´ min
ξPΞ

Rdet

ˆ

rf ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙
ˇ

ˇ

ˇ

ˇ

“ opp1q.

Since the risk profile Rdetp rf ; ζ1, ζ2q is assumed be continuous at its minimizer, applying Lemma S.6.2 we get

min
ξPΞ

Rdet

ˆ

rf ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙

Ñ min
1{ζ1`1{ζ2ďn{p

Rdetp rf ; ζ1, ζ2q.

Combining the above three convergences, we have the desired conclusion.

Case of M ą 1. When m ą 1, we bound the desired difference as

ˆ

Rp pf cvq ´ min
1{ζ1`1{ζ2ďn{p

Rdetp rf ; ζ1, ζ2q

˙

`

ď

ˆ

Rp pf cvq ´ min
ξPΞ

Rp pfξq

˙

`

`

˜

min
ξPΞ

Rp pfξq ´
1

M

M
ÿ

j“1

min
ξPΞ

Rp rfξj q

¸

`

`

˜

1

M

M
ÿ

j“1

min
ξPΞ

Rp rfξj q ´ min
ξPΞ

Rdet

ˆ

rfξ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙

¸

`

`

ˆ

min
ξPΞ

Rdet

ˆ

rf ;
pn

n´ ξ1tnνu
,

pn
ξ2tnνu

˙

´ min
1{ζ1`1{ζ2ďn{p

Rdetp rf ; ζ1, ζ2q

˙

`

As before, we show below that each of the terms asymptotically vanish. Noting that pσΞ ď rσΞ, application
of Remark 2.8 shows that the first term is opp1q. The second term is 0 exactly as argued in the proof of
Theorem 3.11. The third term is opp1q by noting that (DETPA-1) holds for all j “ 1, . . . ,m. Finally, the
fourth term is 0 as argued for the case of m “ 1.

S.5 Proofs related to deterministic profile verification for one-step
procedure

In this section, we verify the assumption (DETPAR-1) for the one-step procedure, where the base prediction
procedure is linear, under some regularity conditions. We also specifically consider the cases of MN2LS and
MN1LS base prediction procedures.

S.5.1 Predictor simplifications and risk decompositions

In this section, we first provide preparatory lemmas that will be useful in the proofs of Lemma 4.8 and
Corollary 4.9.
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Let X1 P Rk1,mˆpm and Y1 P Rk1,m denote the feature matrix and response vector corresponding to the
first split dataset Dk1,m . Similarly, let X2 P Rk2,mˆpm and Y2 P Rk2,m denote the feature matrix and response
vector corresponding to the second split dataset Dk2,m .

The following lemma gives an alternative representation for the ingredient one-step predictor assuming
that the base prediction procedure is linear.

Lemma S.5.1 (Alternate representation for the ingredient one-step predictor). Suppose the base prediction

procedure rf is linear such that rfpx;Dk1,mq “ xJ
rβpDk1,mq for some estimator rβpDk1,mq trained on Dk1,m . Let

rfp¨;Dk1,m ,Dk2,mq denote the ingredient one-step predictor (51). Then, rfp¨;Dk1,m ,Dk2,mq is a linear predic-

tor such that rfpx;Dk1,m ,Dk2,mq “ xJ
rβpDk1,m ,Dk2,mq with the corresponding ingredient one-step estimator

rβpDk1,m ,D2,mq given by

rβpDk1,m ,Dk2,mq “
␣

Ip ´ pXT
2 X2{k2,mq:pXT

2 X2{k2,mq
(

rβpDk1,mq ` rβmn2pDk2,mq, (E.65)

where rβmn2pDk2,mq is the MN2LS estimator fit on Dk2,m . Furthermore, suppose assumption (ℓ2A1) holds true

for Dk2,m . Then, the error between rβpDk1,m ,Dk2,mq and β0 can be expressed as

rβpDk1,m ,Dk2,mq ´ β0

“
␣

Ip ´ pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq
(

prβpDk1,mq ´ β0q ` pXJ
2 X2{k2,mq:XJ

2 ε2{k2,m. (E.66)

Proof. For the first part, start by re-arranging the ingredient one-step predictor (51) as follows:

rfpx;Dk1,m ,Dk2,mq “ rfpx;Dk1,mq ` xJpXJ
2 X2{k2,mq:XJ

2 pY2 ´ X2
rβpDk1,mqq{k2,m

“ xJ
rβpDk1,mq ` xJpXJ

2 X2{k2,mq:XJ
2 pY2 ´ X2

rβpDk1,mqq{k2,m

“ xJ
␣

Ip ´ pXJ
2 X{k2,mq:pXJ

2 X2q{k2,m
(

rβpDk1,mq ` xJpXJ
2 X2{k2,mq:XJ

2 Y2{k2,m

“ xJ
␣

Ip ´ pXJ
2 X{k2,mq:pXJ

2 X2q{k2,m
(

rβpDk1,mq ` xJ
rβmn2pDk2,mq,

where rβmn2pDk2,mq “ pXJ
2 X2{k2,mq:XJ

2 Y2{k2,m is the MN2LS estimator fit on Dk2,m . Thus, rfp¨;Dk1,m ,Dk2,mq

is a linear predictor with the corresponding ingredient one-step estimator rβpDk1,m ,D2,mq given by (E.65).
This completes the proof of the first part.

For the second part, note that under linear model Y2 “ X2β0 ` ε2 (from (ℓ2A1) for Dk2,m), the ingredient

one-step estimator rβpDk1,m ,Dk2,mq can be further simplified to

rβpDk1,m ,Dk2,mq

“
␣

Ip ´ pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq
(

rβpDk1,mq ` pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mqβ0

` pXJ
2 X2{k2,mq:XJ

2 ε2{k2,m.

Hence, the error between rβpDk1,m ,Dk2,mq and β0 can be expressed as

rβpDk1,m ,Dk2,mq ´ β0

“
␣

Ip ´ pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq
(

rβpDk1,mq ` pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mqβ0

` pXJ
2 X2{k2,mq:XJ

2 ε2{k2,m ´ β0

“
␣

Ip ´ pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq
(

rβpDk1,mq `
␣

pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq ´ Ip
(

β0

` pXJ
2 X2{k2,mq:XJ

2 ε2{k2,m

“
␣

Ip ´ pXJ
2 X2{k2,mq:pXJ

2 X2{k2,mq
(

prβpDk1,mq ´ β0q ` pXJ
2 X2{k2,mq:XJ

2 ε2{k2,m.

This completes the proof of the second part.

Recall that we are interested in the conditional squared prediction risk of rfp¨;Dk1,m ,Dk2,mq:

RX1,Y1,X2,Y2
p rfp¨;Dk1,m ,Dk2,mqq “ ErpY0 ´ rfpX0;Dk1,m ,Dk2,mqq2 | X1,Y1,X2,Y2s, (E.67)
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where pX0, Y0q is sampled independently and from the same distribution as the training data pX1,Y1q and

pX2,Y2q. We are being explicit about the dependence of Rp rfp¨;Dk1,m ,Dk2,mqq on pX1,Y1,X2,Y2q as we will

consider concentration of Rp rfp¨;Dk1,m ,Dk2,mqq conditional on pX1,Y1q first, followed by that on pX2,Y2q.

For notational convenience, let pΣ1 :“ XT
1 X1{k1,m and pΣ2 :“ XT

2 X2{k2,m denote the sample covariance
matrices for the two data splits Dk1,m and Dk2,m , respectively. The next lemma gives conditional concentration
of the squared prediction risk (E.67) of the one-step ingredient predictor under the additional assumptions
(ℓ2A2)–(ℓ2A4) on Dk2,m .

Lemma S.5.2 (Conditional concentration of squared prediction risk of one-step ingredient predictor).
Assume the setting of Lemma S.5.1. In addition, suppose assumptions (ℓ2A2)–(ℓ2A4) hold for Dk2,m . Let

k1,m, k2,m, pm Ñ 8 such that pm{k2,m Ñ ϕ2 P p0, 1q Y p1,8q and assume lim sup }rβpDk1,mq ´ β0}2 ă 8

almost surely. Then, we have

RX1,Y1,X2,Y2
p rfp¨;Dk1,m ,Dk2,mqq

´ prβpDk1,mq ´ β0qJpIp ´ pΣ:
2
pΣ2qΣpIp ´ pΣ:

2
pΣ2qprβpDk1,mq ´ β0q ´ σ2 trrpΣ:

2Σs{k2,m ´ σ2 a.s.
ÝÝÑ 0.

Proof. The proof follows similar steps as those in the proof of Proposition S.3.1. We start by decomposing
the squared prediction risk:

RX1,Y1,X2,Y2p rfp¨;Dk1,m ,D2,mqq “ prβpDk1,m ,D2,mq ´ β0qJΣprβpDk1,m ,Dk2,mq ´ β0q ` σ2. (E.68)

Under (ℓ2A1), from Lemma S.5.1, we have

rβpDk1,m ,Dk2,mq ´ β0 “ pIp ´ pΣ:
2
pΣ2qprβpDk1,mq ´ β0q ` pΣ:

2X
J
2 ε2{k2,m.

Thus, the first term in the squared prediction risk (E.68) of rfp¨;Dk1,m ,Dk2,mq can be split into:

prβpDk1,m ,Dk2,mq ´ β0qJΣprβpDk1,m ,Dk2,mq ´ β0q “ B1 ` C1 ` V1,

where the terms B1, C1, and V1 are given as follows:

B1 “ prβpDk1,mq ´ β0qJpIp ´ pΣ:
2
pΣ2qΣpIp ´ pΣ:

2
pΣ2qprβpDk1,mq ´ β0q,

C1 “ prβpDk1,mq ´ β0qJpIp ´ pΣ:
2
pΣ2qpΣ:

2X
J
2 ε2{k2,m,

V1 “ ε2pX2
pΣ:
2ΣpΣ:

2X
J
2 {k2,mqε2{k2,m.

The rest of the proof shows concentration for the terms C1 and V1.
As argued in the proof of Proposition S.3.1, appealing to Lemma S.8.5 we have that C1

a.s.
ÝÝÑ 0 as

pm, km Ñ 8 such that pm{k2,m Ñ ϕ P p0, 1q Y p1,8q, assuming lim sup }rβpDk1,mq ´ β0}2 ă 8. This is
because, from a bounding similar to (E.54), we have

lim sup }X2
pΣ:
2pIp ´ pΣ:

2
pΣ2qprβpDk1,mq ´ β0q}22{k2,m ď C lim sup }rβpDk1,m ´ β0q}22 ď C,

almost surely for a constant C ă 8. Similarly, for the term V1, using Lemma S.8.6 along with the bound
from (E.55), we have V1 ´ σ2 trrpΣ:

2Σs{k2,m
a.s.

ÝÝÑ 0. This finishes the proof.

Lemma S.5.3 (Conditional deterministic approximation of squared risk of ingredient one-step predictor).
Assume the setting of Lemma S.5.2. Let k1,m, k2,m, pm Ñ 8 such that pm{k2,m Ñ ϕ2 P p0, 1q Y p1,8s. Then,
we have

RX1,Y1,X2,Y2
p rfp¨;Dk1,m ,Dk2,mqq ´Rg

X1,Y1
p rfp¨;Dk1,mqq

a.s.
ÝÝÑ 0,

where Rg
X1,Y1

p rfp¨;Dk1,mqq is a certain generalized squared prediction risk of the predictor rfp¨;Dk1,mq, fit on
the first split data Dk1,m , given by

Rg
X1,Y1

p rfp¨;Dk1,mqq “

$

’

’

’

&

’

’

’

%

prβpDk1,mq ´ β0qJΣprβpDk1,mq ´ β0q ` σ2 if ϕ2 “ 8

prβpDk1,mq ´ β0qJgpΣqprβpDk1,mq ´ β0q ` σ2 trrhpΣqs{k2,m ` σ2 if ϕ P p1,8q

σ2 1

1 ´ ϕ2
if ϕ P p0, 1q,

(E.69)
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where gpΣq and hpΣq are matrix functions of Σ given explicitly as follows:

gpΣq “ p1 ` rvgp0;ϕ2qqpvp0;ϕ2qΣ ` Ipmq´1Σpvp0;ϕ2qΣ ` Ipmq´1, hpΣq “ rvp0;ϕ2qpvp0;ϕ2qΣ ` Iq´2Σ2,

and vp0;ϕ2q, rvp0;ϕ2q, and rvgp0;ϕ2q are as defined in (55), (56), and (57), respectively.

Proof. We will start with the functionals derived in Lemma S.5.2 and obtain corresponding asymptotic
deterministic equivalents conditioned on X1 and Y1 as k1,m, k2,m, pm Ñ 8, and pm{k2,m Ñ ϕ P p0, 1qYp1,8s.
We will split into three cases depending on where ϕ falls.

• ϕ2 P p0, 1q: When k1,m, k2,m, pm Ñ 8 such that pm{k2,m Ñ ϕ2 P p0, 1q, pIp ´ pΣ:
2
pΣq “ 0 almost surely and

trrpΣ:Σs{k2,m ´ ϕ2{p1 ´ ϕ2q
a.s.

ÝÝÑ 0, as argued in the proof of Proposition S.3.2.

• ϕ P p1,8q: Next we consider the case when k1,m, k2,m, pm Ñ 8, such that pm{k2,m Ñ ϕ P p1,8q.

Consider the bias functional prβpDk1,mq ´ β0qJpIp ´ pΣ:
2
pΣ2qΣpIp ´ pΣ:

2
pΣ2qprβpDk1,mq ´ β0q. Invoking Part 1

of Corollary S.6.12 with fpΣq “ Σ, as k2,m, pm Ñ 8 such that pm{km Ñ ϕ2 P p1,8q, we have

pIp ´ pΣ:
2
pΣ2qΣpIp ´ pΣ:

2
pΣ2q » p1 ` rvgp0;ϕ2qqpvp0;ϕ2qΣ ` Ipmq´1Σpvp0;ϕ2qΣ ` Ipmq´1,

where vp0;ϕ2q and rvgp0;ϕ2q are as defined in (55) and (57), respectively. Now, note that the vector

prβpDk1,mq ´ β0q is independent of pΣ:
2. Thus, from the definition of asymptotic equivalence, we have

prβpDk1,mq ´β0qJpIp ´ pΣ:
2
pΣ2qΣpIp ´ pΣ:

2
pΣ2qprβpDk1,mq ´β0q ´ prβpDk1,mq ´β0qJgpΣqprβpDk1,mq ´β0q

a.s.
ÝÝÑ 0.

Consider now the variance resolvent pΣ:
2Σ. From Part 2 of Corollary S.6.12 with fpΣq “ Σ, as k2,m, pm Ñ 8

such that pm{k2,m Ñ ϕ2 P p1,8q, we have

pΣ:
2Σ » rvp0;ϕ2qpvp0;ϕ2qΣ ` Ipmq´2Σ2.

Hence, using Lemma S.7.2 (4), we have

σ2 trrpΣ:
2Σs{k2,m ´ σ2 trrrvp0;ϕ2qpvp0;ϕ2qΣ ` Ipmq´2Σ2s{k2,m

a.s.
ÝÝÑ 0.

• ϕ2 “ 8: Finally, consider the case when k1,m, k2,m, pm Ñ 8 and pm{k2,m Ñ 8. We start by expressing
the ingredient one-step estimator (51) as

rβpDk1,m ,Dk2,mq “ rβpDk1,mq ` pXJ
2 X2{k2,mq:XJ

2 pY2 ´ X2
rβpDk1,mqq{k2,m.

Using triangle inequality, note that

}rβpDk1,m ,Dk2,mq ´ rβpDk1,mq}2 “ }pXJ
2 X2{k2,mq:XJ

2 pY2 ´ X2
rβpDk1,mqq{k2,m}2

ď }pXJ
2 X2{k2,mq:X2{

a

k2,m}op}Y2 ´ X2
rβpDk1,mq{

a

k2,m}2.

Under the setting of Lemma S.5.2, the second term in the display above is almost surely bounded. Hence,
following the proof of Proposition S.3.3, it follows that }rβpDk1,m ,Dk2,mq ´ rβpDk1,mq}2

a.s.
ÝÝÑ 0. From the

analogous reasoning in the proof of Proposition S.3.3, this in turn implies that

RX1,Y1,X2,Y2p rfp¨;Dk1,m ,Dk2,mqq ´ prβpDk1,mq ´ β0qJΣprβpDk1,mq ´ β0q ´ σ2 a.s.
ÝÝÑ 0.

This completes all three cases and finishes the proof.
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S.5.2 Proof of Lemma 4.8

The idea of the proof is to use the conditional deterministic risk approximation derived in Lemma S.5.3 and
obtain a limiting expression for the deterministic approximation in terms of the assumed limiting distribution
(52).

We start by noting that
}rβpDk1,mq ´ β0}22 ď r´1

min}rβpDk1,mq ´ β0}2Σ.

Thus, under the assumption that there exists a deterministic approximation Rdetpϕ1; rfq to the conditional risk

of rfp¨;Dk1,mq such that Rp rfp¨;Dk1,mqq
p

ÝÑ Rdetpϕ1; rfq as k1,m, pm Ñ 8 and pm{k1,m Ñ ϕ1, for ϕ1 satisfying

Rdetpϕ1; rfq ă 8, it follows that lim sup }rβpDk1,mq ´ β0}2 ă 8. We can now invoke Lemma S.5.3. Let
k2,m Ñ 8 such that pm{k2,m Ñ ϕ2 P p0, 1q Y p1,8s. We will split into various cases depending on ϕ2.

1. The limit for ϕ2 “ 8 is clear from the ϕ2 “ 8 case in (E.69).

2. When ϕ2 P p1,8q, we need to obtain limiting expressions for the quantities prβpDk1,mq´β0qJgpΣqprβpDk1,mq´

β0q and trrhpΣqs{k2,m “ trrrvp0;ϕ2qΣ2pvp0;ϕ2qΣ ` Iq´2s{k2,m in terms of the limiting distributions Q
and H.

For the former, we start by expanding the quadratic form:

prβpDk1,mq ´ β0qJgpΣqprβpDk1,mq ´ β0q

“ prβpDk1,mq ´ β0qJWgpRqWJprβpDk1,mq ´ β0q

“

pm
ÿ

i“i

pprβpDk1,mq ´ β0qJwiq
2gpriq

“

pm
ÿ

i“1

pprβpDk1,mq ´ β0qJwiq
2ri

pm
ÿ

i“1

pprβpDk1.mq ´ β0qJwiq
2ri ¨ gpriq{ri

řpm
i“1pprβpDk1,mq ´ β0qJwiq2ri

“ pRp rfp¨;D1,mqq ´ σ2q

ż

rgprq d pQnprq, (E.70)

where rgprq is given by

rgprq “
gprq

r
“ p1 ` rvgp0;ϕ2qq

1

pvp0;ϕ2qr ` 1q2
.

Under the assumption that pQn
d

ÝÑ Q in probability, we have
ż

rgprq d pQnprq
p

ÝÑ

ż

rgprq dQprq “

ż

p1 ` rvgp0;ϕ2qq

pvp0;ϕ2qr ` 1q2
dQprq. (E.71)

Observe that rg is continuous. Since Rp rfp¨;Dk1,mqq
a.s.

ÝÝÑ Rdetpψ1; rfq, from (E.70) and (E.71), we have

prβpDk1,mq ´ β0qJgpΣqprβpDk1,mq ´ β0q
p

ÝÑ pRdetpϕ1; rfq ´ σ2qp1 ` rvgp0;ϕ2qq

ż

1

pvp0;ϕ2qr ` 1q2
dQprq

“ Rdetpϕ1; rfqΥbpϕ1, ϕ2q ´ σ2Υbpϕ1, ϕ2q, (E.72)

where Υbpϕ1, ϕ2q is as defined in (58).

For the latter, using Lemma S.7.2 (4) and noting that the integrand is continuous, we have

trrhpΣqs{k2,m “
pm
k2,m

rvp0;ϕ2q

ż

r2

p1 ` vp0;ϕ2qrq2
dHpmprq

a.s.
ÝÝÑ ϕ2rvp0;ϕ2q

ż

ρ2

pvp0;ϕ2qr ` 1q2
dHprq

“ rvgp0;ϕ2q, (E.73)

where rvgp0;ϕ2q is as defined in (57).

Putting (E.69), (E.72), and (E.73) together, the result follows for ϕ2 P p1,8q.

3. The final case of ϕ2 P p0, 1q follows analogous argument as in the proof of Proposition S.3.2.

This completes the proof.
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S.5.3 Proof of Corollary 4.9

We will show that there exists a deterministic risk approximation Rdetp¨, ¨; rfq : p0,8s ˆ p0,8s Ñ r0,8s to the

conditional prediction risk Rp rfp¨;Dk1,m ,Dk2,mqq of the one-step ingredient predictor rfp¨;Dk1,m ,Dk2,mq that
satisfies the three-point program (PRG-1-C1)–(PRG-1-C3). In particular, we will show that the following

Rdetp¨, ¨; rfq, that is a continuation of (54), satisfies the required conditions:

Rdetpϕ1, ϕ2; rfq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Rdetpϕ1; rfq if ϕ2 “ 8

pRdetpϕ1; rfq ´ σ2qΥbpϕ1, ϕ2q ` σ2p1 ´ Υbpϕ1, ϕ2qq ` σ2
rvgp0;ϕ2q if ϕ2 P p1,8q

8 if ϕ2 “ 1

σ2 ϕ2
1 ´ ϕ2

if ϕ2 P p0, 1q,

whereRdetp¨; rfq is the assumed deterministic risk approximation to the conditional prediction riskRp rfp¨;Dk1,mqq

of the base predictor rfp¨;Dk1,mq, and Υbp¨; ¨q and rvgp0; ¨q are as defined in (58). Below we split the three
verifications:

1. Let Φ8
1 :“ tϕ1 P p0,8s : Rdetpϕ1; rfq “ 8u denote the set of limiting aspect ratios greater than

one, where the deterministic risk approximation to the base procedure is 8. By the hypothe-
sis of Lemma 4.8, we have Rp rfp¨;Dk1,mqq

p
ÝÑ Rdetpϕ1; rfq as k1,m, pm Ñ 8 and pm{k1,m Ñ ϕ1 P

p0,8szΦ8
1 . Now observe that Rdetpϕ1, ϕ2; rfq “ 8 only at Φ8 :“ tpϕ1, ϕ2q : ϕ1 P Φ8

1 or ϕ2 “ 1u.
This is because Υbpϕ1, ϕ2q, rvgp0;ϕ2q ă 8 for ϕ2 P p1,8q from Lemma S.6.13 (5). Note from the

conclusion of Lemma 4.8 that Rp rfp¨;Dk1,m ,Dk2,mqq
p

ÝÑ Rdetpϕ1, ϕ2; rfq as k1,m, k2,m, pm Ñ 8 and
ppm{k1,m, pm{k2,mq Ñ pϕ1, ϕ2q P p0,8s ˆ p0,8szΦ8, or in other words, continuous convergence of the

risk to the deterministic approximation holds for all limiting pϕ1, ϕ2q for which Rdetpϕ1, ϕ2; rfq ă 8.
This verifies (PRG-1-C1).

2. From the argument above, we have Rdetpϕ1, ϕ2; rfq “ 8 over Φ8. Pick any pϕ1, ϕ2q P Φ8. We will show

that Rdetpϕ1
1, ϕ

1
2; rfq Ñ 8 as pϕ1

1, ϕ
1
2q Ñ pϕ1, ϕ2q. From the definition of Φ8, the point pϕ1, ϕ2q falls into

either of the following two cases:

• ϕ2 “ 1: In this case, observe thatRdetpϕ1
1, ϕ

1
2q Ñ 8 as pϕ1

1, ϕ
1
2q Ñ pϕ1, 1

`q because limϕ1
2Ñ1´ ϕ1

2{p1´

ϕ1
2q “ 8, and Rdetpϕ1

1, ϕ
1
2q Ñ 8 as pϕ1

1, ϕ
1
2q Ñ pϕ1, 1

`q because, from Lemma S.6.13 (5),
limϕ1

2Ñ1` rvgp0;ϕ1
2q “ 8. Thus, Rdetpϕ1

1, ϕ
1
2q Ñ 8 as pϕ1

1, ϕ
1
2q Ñ pϕ1, ϕ2q.

• ϕ1 P Φ8
1 : In this case, Rdetpϕ1

1q Ñ 8 as ϕ1
1 Ñ ϕ1 from the assumption that Rdetp¨; rfq satisfies

(PRG-0-C2). Because Υbpϕ
1
1, ϕ

1
2q, rvgp0;ϕ1

2q ą 0 over pϕ1
1, ϕ

1
2q P p0,8s ˆ p1,8s from arguments in

Lemma S.6.13 (4) and Lemma S.6.13 (5), it follows that

lim
pϕ1

1,ϕ
1
2qÑpϕ1,ϕ2q

Rdetpϕ1
1, ϕ

1
2; rfq “ lim

ϕ1
1Ñϕ1

Rdetpϕ1
1; rfq “ 8.

Thus, Rdetpϕ1
1, ϕ

1
2q Ñ 8 as pϕ1

1, ϕ
1
2q Ñ pϕ1, ϕ2q.

Therefore, whenever pϕ1
1, ϕ

1
2q Ñ pϕ1, ϕ2q, we have Rdetpϕ1

1, ϕ
1
2; rfq Ñ 8, and thus Rdetp¨, ¨; rfq satisfies

(PRG-1-C2).

3. Finally, the set of pϕ1, ϕ2q such that Rdetpϕ1, ϕ2; rfq “ 8 is Φ8. Because Φ8 is product of two sets each

of which is closed in R, this set is closed in R2. Therefore, Rdetp¨, ¨; rfq satisfies (PRG-1-C3).

Put together, all of (PRG-1-C1)–(PRG-1-C3) hold, and this in turn implies that rfp¨;Dk1,m ,Dk2,mq satisfies
(DETPAR-1). This finishes the proof.
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S.5.4 Proof of Proposition 4.10

It suffices to verify the hypothesis of Lemma 4.8 and then appeal to Corollary 4.9. We will use Corollary S.6.12
along with the Portmanteau theorem to certify existence of a limiting distribution Q assumed in Lemma 4.8.
The form of Q is defined through limiting formulas for the generalized prediction risks of the base predictor.

Let f be any continuous and bounded function. We will show that
ş

fprq d pQnprq converges to a deterministic
limit that is a function of H and G, and show existence of Q through this limit. We start by noting that

ż

fprq d pQnprq “ prβpDk1,mq ´ β0qJfpΣqprβpDk1,mq ´ β0q, (E.74)

where fpΣq “ WfpRqWJ, and fpRq is a matrix obtained by applying f component-wise to the diagonal
entries of R. We will now obtain a limiting expression for the term on the right hand side of (E.74), which

has the form of a generalized prediction risk of rβpDk1,mq. Similar to the proof of Proposition 3.14, we will
first obtain a deterministic equivalent for the generalized prediction risk. Following similar steps as in the
proof of Proposition S.3.1, we have that

prβpDk1,mq ´β0qJfpΣqprβpDk1,mq ´β0q ´βJ
0 pIp´ pΣ:

1
pΣ1qfpΣqpIp´ pΣ:

1
pΣ1qβ0 ` trrpΣ:

1fpΣqs{k1,m
a.s.

ÝÝÑ 0. (E.75)

Now, using first part of Corollary S.6.12, we can write

pIp ´ pΣ:
1
pΣ1qfpΣqpIp ´ pΣ:

1
pΣ1q » p1 ` rvgp0;ϕ1qqpvp0;ϕ1qΣ ` Ipmq´1Σpvp0;ϕ1qΣ ` Ipmq´1.

Using Property 4 of Section S.7, this then yields

βJ
0 pIp ´ pΣ:

1
pΣ1qfpΣqpIp ´ pΣ:

1
pΣ1qβ0

a.s.
ÝÝÑ p1 ` rvgp0;ϕ1qq

ż

fprq

pvp0;ϕ1qr ` 1q2
dGprq. (E.76)

Similarly, using second part of Corollary S.6.12, we have

pΣ:
1fpΣq » rvp0;ϕ1qpvp0;ϕ1qΣ ` Ipmq´2ΣfpΣq.

Hence, appealing to Property 4 of Section S.7 again, we have

trrpΣ:
1fpΣqs{k1,m

a.s.
ÝÝÑ ϕ1rvp0;ϕ1q

ż

rfprq

pvp0;ϕ1qr ` 1q2
dHprq. (E.77)

Therefore, from (E.74)–(E.77), it follows that

ż

fprq d pQnprq
a.s.

ÝÝÑ p1 ` rvgp0;ϕ1qq

ż

fprq

pvp0;ϕ1qr ` 1q2
dGprq ` ϕ1rvp0;ϕ1q

ż

rfprq

pvp0;ϕ1qr ` 1q2
dHprq.

Observe that this defines a distribution Q because one can take fprq “ eitr “ cosptrq ` i sinptrq, which then
implies convergence of the characteristic function at all points. This finishes the proof. To get more insight
into the risk behaviour of the ingredient one-step predictor, we can also write out an explicit formula for the
deterministic approximation Rdetp¨, ¨; rfmn2q. We will do so below.

For the particular functional Rp rfp¨;Dk1,m ,Dk2,mqq, we have a specific f given by

fprq “ p1 ` rvgp0;ϕ2qq
r

pvp0;ϕ2qr ` 1q2
.

Thus, the final expression for Rdetpϕ1, ϕ2q can be written explicitly as follows:

Rdetpϕ1, ϕ2q
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“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Rdetpmintϕ1, ϕ2uq if ϕ1 “ 8 or ϕ2 “ 8

ρ2p1 ` rvgp0;ϕ1, ϕ2qqp1 ` rvgp0;ϕ2qq

ż

r

p1 ` vp0;ϕ1qrq2p1 ` vp0;ϕ2qrq2
dGprq

` σ2p1 ` rvgp0;ϕ2qqϕ1rvp0;ϕ1q

ż

r

pvp0;ϕ1qr ` 1q2pvp0;ϕ2qr ` 1q2
dHprq

` σ2

ˆ

ϕ2rvp0;ϕ2q

ż

r

p1 ` vp0;ϕ2qrq2
dHprq ` 1

˙

if pϕ1, ϕ2q P p1,8q ˆ p1,8q

σ2

ˆ

ϕ2rvp0;ϕ2q

ż

r

p1 ` vp0;ϕ2qrq2
dHprq ` 1

˙

if pϕ1, ϕ2q P p0, 1q ˆ p1,8q

σ2 1

1 ´ ϕ2
if pϕ1, ϕ2q P p0,8q ˆ p0, 1q,

where vp0;ϕq is as defined in (E.46), rvp0;ϕq is as defined in (E.47), rvgp0;ϕq is as defined in (E.48), and
rvgp0;ϕ1, ϕ2q is as defined below:

rvgp0;ϕ1, ϕ2q “

p1 ` rvgp0;ϕ2qqϕ1

ż

r2

p1 ` vp0;ϕ2qrq2p1 ` vp0;ϕ1qrq2
dHprq

1

vp0;ϕ1q2
´ ϕ1

ż

r2

p1 ` vp0;ϕ1qrq2
dHprq

.

Here, Rdetp¨q is Rdetp¨; rfmn2q as defined in (E.45).

S.5.5 Proof of Proposition 4.11

Verification of the hypothesis of Lemma 4.8 is easy in this case because Σ “ Ip. Observe that under (ℓ1A2),

the distribution pQn is simply a point mass at 1. Thus, the hypothesis of Lemma 4.8 is trivially satisfied.
Moreover, we can explicitly write expressions for the functions rvgp0; ¨q and Υbp¨; ¨q. Towards that end, we will
first obtain expressions for the ingredient functions vp0; ¨q and rvp0; ¨q.

• vp0;ϕ2q: The fixed-point equation (55) can be solved explicitly since H is a point mass at 1. The
fixed-point equation in this case simplifies to

1

vp0;ϕ2q
“ ϕ2

1

vp0;ϕ2q ` 1
. (E.78)

Solving (E.78) for vp0;ϕ2q, we get

vp0;ϕ2q “
1

ϕ2 ´ 1
, and 1 ` vp0;ϕ2q “

ϕ2
ϕ2 ´ 1

. (E.79)

• rvp0;ϕ2q: Using (E.79), we can compute the inverse of rvp0;ϕ2q per (56) as

rvp0;ϕ2q´1 “ pϕ2 ´ 1q2 ´ ϕ2
pϕ2 ´ 1q2

ϕ22
“ pϕ2 ´ 1q2 ´

pϕ2 ´ 1q2

ϕ2
“ pϕ2 ´ 1q2

ϕ2 ´ 1

ϕ2
“

pϕ2 ´ 1q3

ϕ2
.

Thus, we have

rvp0;ϕ2q “
ϕ2

pϕ2 ´ 1q3
, and rvp0;ϕ2qϕ2 “

ϕ22
pϕ2 ´ 1q3

. (E.80)

Using (E.79) and (E.80), we can explicitly write out expressions for Υbpϕ1, ϕ2q and rvgp0;ϕ2q.

• rvgp0;ϕ2q: Substituting (E.79) and (E.80) into (57), we obtain

rvgp0;ϕ2q “
ϕ22

pϕ2 ´ 1q3

pϕ2 ´ 1q2

ϕ22
“

1

ϕ2 ´ 1
, and p1 ` rvgp0;ϕ2qq “

ϕ2
ϕ2 ´ 1

. (E.81)
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• Υbpϕ1, ϕ2q: Substituting (E.79) and (E.80) into (58), we get

Υbpϕ1, ϕ2q “
ϕ2

ϕ2 ´ 1

pϕ2 ´ 1q2

ϕ22
“
ϕ2 ´ 1

ϕ2
, and 1 ´ Υbpϕ1, ϕ2q “

1

ϕ2
. (E.82)

Observe that since the distribution Q does not depend on ϕ1 in this case, Υbpϕ1, ϕ2q in turn also does
not depend on ϕ1.

Therefore, using (E.81) and (E.82), the deterministic risk approximation from (54) simplifies in this case
as follows:

Rdetpϕ1, ϕ2; rfq Ñ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ρ2 ` σ2 if ϕ1 “ ϕ2 “ 8

Rdetpϕ1q if ϕ2 “ 8

ρ2
ˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2 ´ 1

˙

` σ2 if ϕ1 “ 8

Rdetpϕ1q

ˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2 ´ 1

˙

` σ2 if pϕ1, ϕ2q P p1,8q ˆ p1,8q

σ2

ˆ

ϕ1
1 ´ ϕ1

˙ˆ

1 ´
1

ϕ2

˙

` σ2

ˆ

1

ϕ2 ´ 1

˙

` σ2 if pϕ1, ϕ2q P p0, 1q ˆ p1,8q

σ2

ˆ

ϕ2
1 ´ ϕ2

˙

` σ2 if pϕ1, ϕ2q P p0,8q ˆ p0, 1q.

Here, Rdetp¨q is Rdetp¨; rfmn1q as defined in (E.60).

S.6 Technical helper lemmas, proofs, and miscellaneous details

In this section, we gather various technical lemmas along with their proofs, and other miscellaneous details.
Specific pointers to which lemmas are used in which proofs are provided at the start of each section.

S.6.1 Lemmas for verifying space-filling properties of discrete optimization grids

In this section, we collect supplementary lemmas that are used in the proofs of Theorems 3.11 and 4.4 in
Sections S.2 and S.4, respectively.

Lemma S.6.1 (Verifying space-filling property of the discrete grid used in the zero-step procedure). Let
tpnu, tm1,nu, tm2,nu are three sequences of positive integers such that m2,n ď m1,n for n ě 1. Suppose

pn
m1,n

Ñ γ P p0,8q and
m2,n

m1,n
Ñ 0

as n Ñ 8. Define a sequence of grids Gn as follows:

Gn :“

"

pn
m1,n ´ km2,n

: 1 ď k ď

R

m1,n

m2,n
´ 2

V*

.

Then, for any ζ‹ P rγ,8s, ΠGnpζ‹q Ñ ζ‹ as n Ñ 8, where ΠGnpyq “ arg minxPGn
|y ´ x| is the point in the

grid Gn closest to y. In particular, in the context of Algorithm 2, taking m1,n “ ntr and m2,n “ tnνu for
ν P p0, 1q, we get the aspect ratios used in Algorithm 2 “converge” to rγ,8s when ntr{n Ñ 1 under (PA(γ)).

Proof. We will consider different cases depending on where ζ‹ P rγ,8s lands. See Figure S.3.

1. Consider the first case when
γ ď ζ‹ ď

pn
m1,n ´m2,n

.
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Figure S.3: Illustration of different cases of ζ P rγ,8s and the corresponding projection ΠGnpζ‹q.

In this case, ΠGn
pζ‹q is simply the first point in the grid. Observe that in this case

ΠGn
pζ‹q ´ ζ‹ ď

pn
m1,n ´m2,n

´ γ “

pn
m1,n

1 ´
m2,n

m1,n

´ γ Ñ γ ´ γ “ 0

as n Ñ 8 under the assumptions that pn{m1,n Ñ γ and m2,n{m1,n Ñ 0.

2. Consider the second case when
pn

m1,n ´

R

m1,n

m2,n
´ 2

V ď ζ‹ ď 8.

In this case, ΠGnpζ‹q is simply the last point in the grid. We will show eventually the only ζ‹ in
this case is ζ‹ “ 8. Note that pn{pm1,n ´ km2,nq increases with k ě 0. If ζ‹ “ 8, then ΠGn

pζ‹q “

pn{pm1,n ´ k‹m2,nq for k˚ “ rm1,n{m2,n ´ 2s. Hence, it suffices to prove that pn{pm1,n ´ k‹m2,nq Ñ 8

as n Ñ 8. This follows from the fact that

m1,n

m2,n
´

R

m1,n

m2,n
´ 2

V

ď 2,

and thus

pn
m1,n ´ k‹m2,n

“
pn

m2,npm1,n{m2,n ´ rm1,n{m2,n ´ 2sq
ě

pn
2m2,n

Ñ 8 “ ζ˚,

as n Ñ 8 and pn{m1,n Ñ γ P p0,8q.

3. Consider the third case when

pn
m1,n ´ km2,n

ď ζ‹ ď
pn

m1,n ´ pk ` 1qm2,n
for some 1 ď k ď

R

m1,n

m2,n
´ 2

V

. (E.83)

From the first inequality in (E.83), we have

pn
m1,n ´ km2,n

ď ζ‹ ùñ
pn

m1,nζ‹
ď 1 ´ k

m2,n

m1,n
ùñ k

m2,n

m1,n
ď 1 ´

pn
m1,nζ‹

. (E.84)

Similarly, from the second inequality of (E.83), we have

pn
m1,nζ‹

ě 1 ´
pk ` 1qm2,n

m1,n
ùñ k

m2,n

m1,n
ě 1 ´

pn
m1,nζ‹

´
m2,n

m1,n
. (E.85)

The upper and lower bounds from (E.85) and (E.84) together imply that

1 ´
pn

m1,nζ‹
´
m2,n

m1,n
ď
km2,n

m1,n
ď 1 ´

pn
m1,nζ‹

.
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Because limnÑ8 m2,n{m1,n “ 0, we conclude that

lim
nÑ8

km2,n

m1,n
“ 1 ´

γ

ζ‹
P p0, 1q. (E.86)

Now, note that since ΠGnpζ‹q is either of the two points of the grid partition, we have

|ΠGnpζ‹q ´ ζ‹| ď
pn

m1,n ´ pk ` 1qm2,n
´

pn
m1,n ´ km2,n

“
pn

m1,n ´ pk ` 1qm2,n

m2,n

m1,n ´ km2,n

“

pn
m1,n

1 ´
pk ` 1qm2,n

m1,n

m2,n

m1,n

1 ´
km2,n

m1,n

Ñ
γ

1 ´

ˆ

1 ´
γ

ζ‹

˙

0
ˆ

1 ´

ˆ

1 ´
γ

ζ‹

˙˙ “ 0,

as n Ñ 8 and pn{m1,n Ñ γ and m2,n{m1,n Ñ 0, where the limiting in the convergences on the last
line follow from (E.86).

This completes all the cases.
Finally, observe that for Algorithm 2, when m2,n “ tnνu for some ν P p0, 1q and m1,n “ ntr such that

ntr{n Ñ 1 as n Ñ 8, pn{m1,n Ñ γ P p0,8q, and m2,n{m1,n Ñ 0, and hence the statement follows.

Lemma S.6.2 (Verifying space-filling property of the discrete grid used in the one-step procedure). Let tpnu,
tm1,nu, tm2,nu are three sequences of positive integers such that m2,n ď m1,n for n ě 1, and n Ñ 8,

pn
m1,n

Ñ γ P p0,8q and
m2,n

m1,n
Ñ 0.

Define a sequence of grids Gn as follows:

Gn :“

"ˆ

pn
m1,n ´ k1m2,n

,
pn

k2m2,n

˙

: k1 P

"

2, . . . ,

R

m1,n

m2,n
´ 2

V*

, k2 P t0, . . . , k1 ´ 1u

*

.

Let ζ‹
1 and ζ‹

2 be two non-negative real numbers such that

1

ζ‹
1

`
1

ζ‹
2

ď
1

γ
.

Let ΠGn
pζ‹

1 , ζ
‹
2 q “ pπ1,n, π2,nq denote the projection of the point pζ‹

1 , ζ
‹
2 q on the grid Gn with respect to the ℓ1

distance. Then, π1,n Ñ ζ‹
1 and π2,n Ñ ζ‹

2 as n Ñ 8. In particular, in the context of Algorithm 3, taking
m1,n “ ntr, m2,n “ tnνu for some ν P p0, 1q, we get the aspect ratios used in Algorithm 3 “converge” to the
set tpζ1, ζ2q : ζ´1

1 ` ζ´1
2 ď γ´1u when ntr{n Ñ 1 under (PA(γ)).

Proof. The proof follows the general strategy employed in the proof Lemma S.6.1 and uses the result as
ingredient.

Fix any point pζ‹
1 , ζ

‹
2 q that satisfies the constraint

1

ζ‹
1

`
1

ζ‹
2

ď
1

γ
.

We will construct a pair pg‹
1 , g

‹
2q in the grid Gn such that pg‹

1 , g
‹
2q Ñ pζ‹

1 , ζ
‹
2 q. Because

}ΠGn
pζ‹

1 , ζ
‹
2 q ´ pζ‹

1 , ζ
‹
2 q}ℓ1 ď }pg‹

1 , g
‹
2q ´ pζ‹

1 , ζ
‹
2 q}ℓ1 ,
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such a choice shows the desired result.
Define

pk‹
1, k

‹
2q “

ˆR

m1,n ´ pn{ζ‹
1

m2,n

V

,

Z

pn{ζ‹
2

m2,n

^˙

, and pg‹
1 , g

‹
2q “

ˆ

p

m1,n ´ k‹
1m2,n

,
p

k‹
2m2,n

˙

.

By appealing to Lemma S.6.1, it follows that π1,n Ñ ζ‹
1 as n Ñ 8. Note that the value of k‹

1 is exactly
the right point of the grid interval in Figure S.3 in the proof of Lemma S.6.1. Since ζ‹

1 P rγ,8s and the
first coordinate of the grid Gn is the same as that in Lemma S.6.1, we have that g‹

1 is a feasible choice and
g‹
1 Ñ ζ‹

1 . It remains to verify the conditions for g‹
2 .

Note that when ζ‹
2 “ 8, k‹

2 “ 0, which satisfies the desired condition. Assume that ζ‹
2 ă 8. We verify

below that k‹
2 ă k‹

1 so that k‹
2 is a feasible choice and that

k‹
2m2,n

pn
Ñ

1

ζ‹
2

,

which implies the desired convergence of the reciprocal.
Observe that

k‹
2 ď

pn
ζ‹
2m2,n

ď
pn
m2,n

ˆ

m1,n

pn
´

1

ζ‹
1

˙

ď
m1,n ´ pn{ζ‹

1

m2,n
“ k‹

1.

This verifies the first condition. For the second part, consider

0 ď

ˇ

ˇ

ˇ

ˇ

k‹
2m2,n

pn
´

1

ζ‹
2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

Z

pn{ζ‹
2

m2,n

^

m2,n

pn
´

1

ζ‹
2

ˇ

ˇ

ˇ

ˇ

ď
m2,n

pn
Ñ 0

under (PA(γ)) as n Ñ 8.
Finally, note that for Algorithm 3, when m2,n “ tnνu for some ν P p0, 1q and m1,n “ ntr such that

ntr{n Ñ 1 as n Ñ 8, pn{m1,n Ñ γ P p0,8q, and m2,n{m1,n Ñ 0, and therefore the statement follows.

S.6.2 Lemmas for restricting arbitrary sequences to specific convergent sequences

In this section, we collect supplementary lemmas that are used in the proofs of Lemmas 3.8 and 4.1 in
Sections S.2 and S.4, respectively.

Lemma S.6.3 (From subsequence convergence to sequence convergence). Let tamumě1 be a sequence in R.
Suppose for any subsequence tamk

ukě1, there is a further subsequence tamkl
ulě1 such that limmÑ8 amkl

“ 0.
Then limmÑ8 am “ 0.

Proof. Let α :“ lim supmÑ8 am and β :“ lim infmÑ8 am. This means that there is subsequence tamk
ukě1

such that limmÑ8 amk
“ α. Similarly, there is a (different) subsequence taml

ulě1 such that limmÑ8 aml
“ β.

But since every converging sequence has a further subsequence that converges to the same limit, the lemma
follows.

Lemma S.6.4 (Limit of minimization over finite grids in a metric space). Let pM,dq be a metric space, and
C be a subset of M . Suppose h : M Ñ R is a function that attains its infimum over C at ζ‹. Let G be a
finite set of points in C. Then, the following inequalities hold:

0 ď min
xPG

hpxq ´ inf
xPC

hpxq ď hpΠGpζ‹qq ´ hpζ‹q, (E.87)

where ΠGpyq “ arg minxPG dpx, yq is the point in the grid closest to y. Consequently, if Gn is a sequence of
grids such that ΠGnpζ‹q Ñ ζ‹, and hp¨q is continuous at ζ‹, then

min
xPGn

hpxq ´ inf
xPC

hpxq Ñ 0. (E.88)
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Proof. Since G Ď C and ΠGpζ‹q P G, we have the following chain of inequalities:

hpζ‹q “ inf
xPC

hpxq ď min
xPG

hpxq ď hpΠGpζ‹qq.

Subtracting hpζ‹q throughout, we get the desired result (E.87). In addition, if Gn is a sequence of grids such
that ΠGpζ‹q Ñ ζ‹, then continuity of hp¨q at ζ‹ implies hpΠGpζ‹qq Ñ hpζ‹q leading to (E.88).

Lemma S.6.5 (Limit points of argmin sequence over space-filling grids). Let pM,dq be a metric space and
C be a compact subset of M . Let Gn be a sequence of grids such that for any ζ P C, ΠGn

pζq Ñ ζ as n Ñ 8

where ΠGn
pyq “ arg minxPGn

dpx, yq is the point in the grid Gn closest to y. Let h : C Ñ r0,8s be a lower
semicontinuous function, and let xn P arg minxPGn

hpxq. Then, for any arbitrary subsequence txnk
ukě1 of

txnuně1, there exists a further subsequence txnkl
ulě1 such that xnkl

converges to a point in arg minζPC hpζq

as l Ñ 8.

Proof. Because h is lower semicontinuous and C is compact, h attains its minimum on C (see, e.g., Section
1.6 of Pedersen (2012) and also see Theorem 1.9 of Rockafellar and Wets (2009) with the domain Rn replaced
with any metric space.). Let M “ arg minζPC hpζq, which is non-empty. Because C is compact, for any
arbitrary subsequence txnk

ukě1, there is a further subsequence txnkl
ulě1 that converges to some point p P C.

Lower semicontinuity of h now implies that

lim inf
lÑ8

hpxnkl
q ě hppq. (E.89)

See, e.g., Section 1.5 of Pedersen (2012). By definition, hpxnkl
q “ minxPGnkl

hpxq and because ΠGnkl
pζq Ñ ζ

for any ζ P C, Lemma S.6.4 implies that

lim
lÑ8

hpxnkl
q “ min

ζPC
hpζq.

Combined with (E.89), we conclude that hppq “ minζPC hpζq, and hence p P M “ arg minζPC hpζq.

S.6.3 Lemmas for certifying continuity from continuous convergence

In this section, we collect supplementary lemmas that are used in the proofs of Propositions 3.10 and 4.3 in
Section S.2 and Section S.4, respectively.

Lemma S.6.6 (Deterministic functions; see, e.g., Problem 57, Chapter 4 of Pugh (2002), converse of Theorem
21.3 in Munkres (2000)). Suppose fn and f are (deterministic) functions from I Ď R to R. For any x P I
and any arbitrary sequence txnuně1 in I for which xn Ñ x, assume that fnpxnq Ñ fpxq as n Ñ 8. Then, f
is continuous on I.

Proof. The following is a standard proof by contradiction. Assume f is discontinuous at a P I. Then, there
exists a sequence xn Ñ a such that

fpxnq R rfpaq ´ 2ϵ, fpaq ` 2ϵs

for some ϵ ą 0. Note that fnpxq Ñ fpxq for all x P I. Now, consider another sequence yn such that

y1 “ y2 “ ¨ ¨ ¨ “ yN1
“ x1, where |fN1

px1q ´ fpaq| ą ϵ

yN1`1 “ yN1`2 “ ¨ ¨ ¨ “ yN2
“ x2, where |fN2

px2q ´ fpaq| ą ϵ,N2 ą N1

...

Observe that yn Ñ a, however fnpynq Ñ fpaq. Hence, a contradiction.

Lemma S.6.7 (Extension of Lemma S.6.6 to random functions). Suppose fn is a sequence of random real-
valued functions from I Ď R such that, for every deterministic sequence txnuně1 in I such that xn Ñ x P I,
fnpxnq Ñ fpxq in probability, for a deterministic function f on I. Then, f is continuous on I.
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Proof. The idea of the proof is similar to that of an analogous statement for fixed functions; see Lemma S.6.6.
We will use proof by contradiction. Assume that f is discontinuous at a P I. Then, as in the proof of
Lemma S.6.6 for deterministic functions, there exists a ϵ ą 0 and a sequence txnu Ă I such that xn Ñ a and

fpxnq R rfpaq ´ 2ϵ, fpaq ` 2ϵs. (E.90)

From the hypothesis, we have that, for each x P I, fnpxq Ñ fpxq in probability. Let p P p0, 1q be a fixed
number. Then, there exists an integer N1 ě 1 such that the event

ΩN1 “ t|fN1px1q ´ fpx1q| ă ϵu

holds with probability at least p. Thus, on ΩN1
, by the triangle inequality,

|fN1
px1q ´ fpaq| ě |fpx1q ´ fpaq| ´ |fN1

px1q ´ fpx1q| ą ϵ, (E.91)

where last inequality stems from (E.90). Next, for i “ 2, 3, . . . , let Ni ě Ni´1 ` 1 be an integer such that the
event

ΩNi
“ t|fNi

pxiq ´ fpxiq| ă ϵu

has probability at least p. These sequences of numbers tNiu and events tΩNi
u exist because, by hypothesis,

fnpxiq Ñ fpxiq in probability for each i. Furthermore Ni Ñ 8 and, on each ΩNi
, |fNi

pxiq ´ fpaq| ą ϵ by the
same argument used in (E.91).

Consider the sequence tynu given by

y1 “ y2 “ ¨ ¨ ¨ “ yN1
“ x1

yN1`1 “ yN1`2 “ ¨ ¨ ¨ “ yN2
“ x2

...

such that, by construction, yn Ñ a. We will derive a contradiction by showing that it cannot be the case
that fnpynq Ñ a in probability, thus violating the hypothesis. Indeed, the sequence of probability values
tPp|fnpynq ´ fpaq| ą ϵqu does not converge to zero since, for each n, there exist infinitely many Ni ą n such
that

Pp|fNipyNiq ´ fpaq| ą ϵq ě PpΩNiq ą p ą 0.

Thus, it must be the case that f is continuous at a. Continuity of f over I readily follows.

S.6.4 A lemma for lifting Q-continuity to R-continuity
The following lemma is used in the proofs of Propositions 3.10 and 4.3 in Sections S.2 and S.4, respectively.

Recall that a function f : R Ñ R is continuous at a point x8 P R, if for all sequences txnuně1 in R for
which xn Ñ x8 as n Ñ 8, we have fpxnq Ñ fpx8q as n Ñ 8. Call this R-continuity of f at the point x8,
and call a function is R-continuous if it is R-continuous on its domain. Define a variant of continuity with
respect to rational sequences, dubbed Q-continuity, as follows.

Definition S.6.8 (Q-continuity). A function f : R Ñ R is Q-continuous at a point x8 P R, if for all sequences
txnuně1 in Q for which xn Ñ x8 as n Ñ 8, we have fpxnq Ñ fpx8q as n Ñ 8. A function is Q-continuous
if it is Q-continuous over its domain.

The following lemma shows that Q-continuity implies R-continuity.

Lemma S.6.9 (Q-continuity implies R-continuity). Suppose f : R Ñ R is a Q continuous function. Then f
is R-continuous.

Proof. To prove R-continuity of f , fix any y8 P R, and consider any arbitrary sequence tynuně1 in R such
that yn Ñ y8 as n Ñ 8. For any ϵ ą 0, if we can produce nϵ such that |fpynq ´ fpy8q| ď ϵ for all n ě nϵ,
then R-continuity of f follows. We will produce such nϵ below.
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For every m ě 1, construct a sequence txk,mukě1 in Q such that xk,m Ñ ym as k Ñ 8; see Figure S.4.
(Note this is possible because Q is dense in R.) Now, for every m ě 1, using Q-continuity of f at ym, we
have fpxk,mq Ñ fpymq as k Ñ 8. Fix ϵ ą 0. Let k0pϵq “ 1 and for m ě 1, define a positive integer kmpϵq by

kmpϵq “ mintk ą km´1pϵq : |fpxk,mq ´ fpymq| ď ϵ{2u.

Such a kmpϵq always exists because xk,m Ñ ym as k Ñ 8 and f is Q-continuous at ym. Note that
kmpϵq ą km´1pϵq, which in turn implies that kmpϵq ě m and thus kmpϵq Ñ 8 as m Ñ 8. Hence, as m Ñ 8,
xkmpϵq,m Ñ y8. Using the Q-continuity of f at y8, there exists a positive integer mϵ such that for all m ě mϵ,
we have |fpxkmpϵq,mq ´ fpy8q| ď ϵ{2. For all m ě mϵ, by the triangle inequality, observe that

|fpymq ´ fpy8q| ď |fpymq ´ fpkmpϵqq| ` |fpkmpϵqq ´ fpy8q| ď ϵ.

Therefore, choosing nϵ “ mϵ completes the proof.

Figure S.4: Illustration of the grid of rational sequences used in the proof of Lemma S.6.9.

S.6.5 Lemmas on asymptotic deterministic equivalents for generalized bias and
variance resolvents

In this section, we collect lemmas on asymptotic deterministic equivalents for generalized bias and variance
resolvents associated with ridge and ridgeless regression that are used in the proof of Proposition 3.14 in
Section S.3, and Proposition 4.10 and Lemma 4.8 in Section S.5.

Lemma S.6.10 (Deterministic equivalents for generalized bias and variance ridge resolvents). Suppose
Xi P Rp, 1 ď i ď n, are i.i.d. random vectors with each Xi “ ZiΣ

1{2, where Zi P Rp contains i.i.d. random
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variables Zij, 1 ď j ď p, each with ErZijs “ 0, ErZ2
ijs “ 1, and Er|Zij |

8`αs ď Mα for some constants
α ą 0 and Mα ă 8, and Σ P Rpˆp is a positive semidefinite matrix such that rminIp ĺ Σ ĺ rmaxIp for
some constants rmin ą 0 and rmax ă 8 (independent of p). Let X P Rnˆp be the random matrix with Xi,

1 ď i ď n, as its rows and let pΣ P Rpˆp denote the p ˆ p random matrix XJX{n. Let A P Rpˆp be any
deterministic positive semidefinite matrix that commutes with Σ such that aminIp ĺ A ĺ amaxIp for some
constants amin ą 0 and amax ă 8 (independent of p). Let γn :“ p{n. Then, for λ ą 0, as n, p Ñ 8 with
0 ă lim inf γn ď lim sup γn ă 8, the following asymptotic deterministic equivalences hold:

1. Generalized variance of ridge regression:

ppΣ ` λIpq´2
pΣA » rvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2ΣA, (E.92)

where vp´λ; γnq ě 0 is the unique solution to the fixed-point equation

vp´λ; γnq´1 “ λ` γn trrΣpvp´λ; γnqΣ ` Ipq´1s{p, (E.93)

and rvp´λ; γnq is defined via vp´λ; γnq by the equation

rvp´λ; γnq´1 “ vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ ` Ipq´2s{p. (E.94)

2. Generalized bias of ridge regression:

λ2ppΣ ` λIpq´1AppΣ ` λIpq´1 » pvp´λ; γnqΣ ` Ipq´1prvgp´λ; γnqΣ `Aqpvp´λ; γnqΣ ` Ipq´1, (E.95)

where vp´λ; γnq as defined in (E.98), and rvgp´λ; γnq is defined via vp´λ; γnq by the equation

rvgp´λ; γnq “
γn trrAΣpvp´λ; γnqΣ ` Ipq´2s{p

vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ ` Ipq´2s{p
. (E.96)

Proof. The main idea for both the first and second parts is to use Corollary S.7.4 as the starting point, and
apply the calculus rules for asymptotic deterministic equivalents listed in Section S.7 to manipulate into the
desired equivalents.

Part 1. For the first part, observe that we can express the resolvent of interest (associated with the
generalized variance of ridge regression) as a derivative (with respect to λ) of a certain resolvent:

ppΣ ` λIpq´2
pΣA “ ppΣ ` λIpq´1A´ λppΣ ` λIpq´2A “

B

Bλ
rλppΣ ` λIpq´1Aqs. (E.97)

To find a deterministic equivalent for ppΣ ` λIpq´2
pΣA, it thus suffices to obtain a deterministic equivalent for

the resolvent λppΣ ` λIpq´1A and take its derivative, thanks to the differentiation rule from Lemma S.7.2 (5).
Similar derivative trick is used in the proof of Theorem 2.1 in Liu and Dobriban (2019) and Theorem 2.1
in Dobriban and Wager (2018) to compute the standard variance of ridge regression, by Dobriban and
Sheng (2020) in the context of distributed ridge regression, and in the earlier works by Karoui and Kösters
(2011); Rubio and Mestre (2011); Ledoit and Péché (2011), among others, to compute certain limiting trace
functionals.

Starting with Corollary S.7.4, we have

λppΣ ` λIpq´1 » pvp´λ; γnqΣ ` Ipq´1,

where vp´λ; γnq is the unique solution to the fixed point equation

vp´λ; γnq´1 “ λ` γn trrΣpvp´λ; γnqΣ ` Ipq´1s{p. (E.98)

Since A has bounded operator norm (uniformly in p), from Lemma S.7.2 (3), we have

λppΣ ` λIpq´1A » pvp´λ; γnqΣ ` Ipq´1A, (E.99)
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where vp´λ; γnq is as defined by (E.98). It now remains to take the derivative of the right hand side of (E.99)
with respect to λ. Before doing so, we will briefly argue that the differentiation rule indeed applies in this
case. Let T P Rpˆp be a matrix with trace norm uniformly bounded in p. Note that

trrTλppΣ ` λIpq´1As “ trrT pIp ´ pΣppΣ ` λIpq´1qAs

ď }pIp ´ pΣppΣ ` λIpq´1qA}op trrT s

ď }Ip ´ pΣppΣ ` λIpq´1}op}A}op trrT s

ď }A}op trrT s ď C,

for some constant C ă 8. Here, the first inequality follows from Proposition 3.4.10 of Pedersen (2012) (see
also, Problem III.6.2 of Bhatia (1997)), and the second inequality follows from the submultiplicativity of the
operator norm. Similarly, note that

trrT pvp´λ; γnqΣ ` Ipq´1As ď }pvp´λ; γnqΣ ` Ipq´1}op}A}op trrT s ď C,

for some constant C ă 8. Thus, we can safely apply the differentiation rule from Lemma S.7.2 (5) to get

ppΣ ` λIpq´2
pΣA »

B

Bλ
rpvp´λ; γnqΣ ` Ipq´1As.

Taking derivative, we have

B

Bλ
rpvp´λ; γnqΣ ` Ipq´1As “ ´

B

Bλ
rvp´λ; γnqspvp´λ; γnqΣ ` Ipq´2ΣA. (E.100)

We can write - B{Bλrvp´λ; γnqs in terms of vp´λ; γnq by taking derivative of (E.98) with respect to λ and
solving for - B{Bλrvp´λ; γnqs. Taking the derivative of (E.98) yields the following equation:

´
B

Bλ
rvp´λ; γnqsvp´λ; γnq´2 “ 1 ` γn ´

B

Bλ
rvp´λ; γnqs trrΣ2pvp´λ; γnqΣ ` Ipq´2s{p. (E.101)

Denoting - B{Bλrvp´λ; γnqs by rvp´λ; γnq and solving for rvp´λ; γnq in (E.101), we get

rvp´λ; γnq´1 “ vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ ` Ipq´2s{p. (E.102)

Combining (E.97), (E.100), and (E.102), the statement follows. This completes the proof of the first part.

Part 2. For the second part, observe that we can express the resolvent of interest (appearing in the
generalized bias of ridge regression) as a derivative of a certain parameterized resolvent at a fixed value of the
parameter:

λ2ppΣ ` λIpq´1AppΣ ` λIpq´1 “ λ2ppΣ ` λIp ` λρAq´1AppΣ ` λIp ` λρAq´1|ρ“0

“ ´
B

Bρ
rλppΣ ` λIp ` λρAq´1s

ˇ

ˇ

ˇ

ρ“0
.

(E.103)

It is worth remarking that in contrast to Part 1, we needed to introduce another parameter ρ for this part to
appropriately pull out the matrix A in the middle. This trick has been used in the proof of Theorem 5 in
Hastie et al. (2019) in the context of standard bias calculation for ridge regression. Our strategy henceforth

will be to obtain a deterministic equivalent for the resolvent λppΣ ` λIp ` λρAq´1, take its derivative with
respect to ρ, and set ρ “ 0. Towards that end, we first massage it to make it amenable for application of
Lemma S.7.3 as follows:

λ
`

pΣ ` λIp ` λρA
˘´1

“ λ
`

pΣ ` λpIp ` ρAq
˘´1

“ pIp ` ρAq´1{2λ
`

pIp ` ρAq´1{2
pΣpIp ` ρΣq´1{2 ` λIp

˘´1
pIp ` ρAq´1{2

“ pIp ` ρAq´1{2λ
`

pΣρ,A ` λIp
˘´1

pIp ` ρAq´1{2, (E.104)
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where pΣρ,A :“ Σ
1{2
ρ,ApZJZ{nqΣ

1{2
ρ,A and Σρ,A :“ pIp ` ρAq´1{2ΣpIp ` ρAq´1{2. We will now obtain a deter-

ministic equivalent for λppΣρ,A ` λIpq´1, and use the product rule to arrive at the deterministic equivalent for

λppΣ ` λIp ` λρAq´1.
Using Corollary S.7.4, we have

λppΣρ,A ` λIpq´1 » pvgp´λ, ρ; γnqΣρ,A ` Ipq´1, (E.105)

where vgp´λ, ρ; γnq is the unique solution to the fixed-point equation

vgp´λ, ρ; γnq´1 “ λ` γn trrΣρ,Apvgp´λ, ρ; γnqΣρ,A ` Ipq´1s{p. (E.106)

Combining (E.104) with (E.105), and using the product rule from Lemma S.7.2 (3) (which is applicable since
pIp ` ρAq´1{2 is a deterministic matrix), we get

λppΣ ` λIp ` λρAq´1 “ pIp ` ρAq´1{2λppΣρ,A ` λIpq´1pIp ` ρAq´1{2

» pIp ` ρAq´1{2pvgp´λ, ρ; γnqΣρ,A ` Ipq´1pIp ` ρAq´1{2

“ pIp ` ρAq´1{2pvgp´λ, ρ; γnqpIp ` ρAq´1{2ΣpIp ` ρAq´1{2 ` Ipq´1pIp ` ρAq´1{2

“ pvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1.

Similarly, the right hand side of the fixed-point equation (E.106) can be simplified by substituting back for
Σρ,A to yield

vgp´λ, ρ; γnq´1 “ λ` γn trrpIp ` ρAq´1{2ΣpIp ` ρAq´1{2pvgp´λ, ρ; γnqΣρ,A ` Ipq´1s{p

“ λ` γn trrΣpvgp´λ, ρ; γnqpIp ` ρAq1{2Σρ,ApIp ` ρAq1{2 ` pIp ` ρAqq´1s{p

“ λ` γn trrΣpvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1s{p. (E.107)

Finally, we will now use the differentiation rule from Lemma S.7.2 (5) (with respect to ρ this time). The
applicability of the differentiation rule follows analogously to first part for ρ ą ´1{amin. Additionally, it is
easy to verify that both sides of (E.107) are analytic in ρ. Taking derivative with respect to ρ, we get

´
B

Bρ
rpvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1s

“ pvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1

ˆ

B

Bρ
rvgp´λ, ρ; γnqsΣ `A

˙

pvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1.

(E.108)

Setting ρ “ 0 and observing that vgp´λ, 0; γnq “ vp´λ; γnq, where vp´λ; γnq is as defined in (E.98), we have

B

Bρ
rpvgp´λ, ρ; γnqΣ ` Ip ` ρAq´1s

ˇ

ˇ

ˇ

ρ“0

“ pvp´λ; γnqΣ ` Ipq´1

ˆ

B

Bρ
rvgp´λ, ρ; γnqs

ˇ

ˇ

ˇ

ρ“0
Σ `A

˙

pvp´λ; γnqΣ ` Ipq´1.

(E.109)

To obtain an equation for B{Bρrvgp´λ, ρ; γnqs|ρ“0, we can differentiate the fixed-point equation (E.107) with
respect to ρ to yield

´
B

Bρ
rvgp´λ, ρ; γnqsvgp´λ, ρ; γnq´2

“ ´γn
B

Bρ
rvgp´λ, ρ; γnqs trrΣ2pvgp´λ, ρ; γnqΣ ` Ip ` ρAq´2s{p

´ γn trrAΣpvgp´λ, ρ; γnqΣ ` Ip ` ρAq´2s{p.

Setting ρ “ 0 in the equation above, and using the fact that vgp´λ, 0; γnq “ vp´λ; γnq, and denoting
B{Bρrvgp´λ, ρ; γnqs|ρ“0 by rvgp´λ; γnq, we get that

rvgp´λ; γnq “
γn trrAΣpvp´λ; γnqΣ ` Ipq´2s{p

vp´λ; γnq´2 ´ γn trrΣ2pvp´λ; γnqΣ ` Ipq´2s{p
. (E.110)
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Therefore, from (E.103) and (E.109), we finally have

λ2ppΣ ` λIpq´1AppΣ ` λIpq´1 » pvp´λ; γnqΣ ` Ipq´1prvgp´λ; γnqΣ `Aqpvp´λ; γnqΣ ` Ipq´1,

where vp´λ; γnq is as defined in (E.98), and rvgp´λ; γnq is as defined in (E.110). This completes the proof of
the second part.

Lemma S.6.11 (Deterministic equivalents for generalized bias and variance ridgeless resolvents). Assume
the setting of Lemma S.6.10 with γn P p1,8q. Then, the following deterministic equivalences hold:

1. Generalized variance of ridgeless regression:

pΣ`A » rvp0; γnqpvp0; γnqΣ ` Ipq´2ΣA, (E.111)

where vp0; γnq is the unique solution to the fixed-point equation

γ´1
n “ trrvp0; γnqΣpvp0; γnqΣ ` Ipq´1s{p, (E.112)

and rvp0; γnq is defined through vp0; γnq via

rvp0; γnq “
`

vp0; γnq´2 ´ γn trrΣ2pvp0; γnqΣ ` Ipq´2s{p
˘´1

. (E.113)

2. Generalized bias of ridgeless regression:

pIp ´ pΣ`
pΣqApIp ´ pΣ`

pΣq » pvp0; γnqΣ ` Ipq´1prvgp0; γnqΣ `Aqpvp0; γnqΣ ` Ipq´1, (E.114)

where vp0; γnq is as defined in (E.112), and rvgp0; γnq is defined via vp0; γnq by

rvgp0; γnq “ γn trrAΣpvp0; γnqΣ ` Ipq´2s{p ¨
`

vp0; γnq´2 ´ γn trrΣ2pvp0; γnqΣ ` Ipq´2s{p
˘´1

. (E.115)

Proof. The proofs for both the parts use the results of Lemma S.6.10 and a limiting argument as λ Ñ 0`.
The results of Lemma S.6.10 are pointwise in λ, but can be strengthened to be uniform in λ over a range
that includes λ “ 0 allowing one to take the limits of the deterministic equivalents obtained in Lemma S.6.10
as λ Ñ 0`.

Part 1. We will use the result in Part 1 of Lemma S.6.10 as our starting point. Let Λ :“ r0, λmaxs where
λmax ă 8, and let T be a matrix with bounded trace norm. Note that

| trrppΣ ` λIpq´2
pΣAT s| ď }ppΣ ` λIpq´2

pΣA}op trrT s ď C}ppΣ ` λIpq´2
pΣ}op}A}op ď C (E.116)

for some constant C ă 8. Here, the last inequality follows because s2i {ps2i ` λq2 ď 1 where s2i , 1 ď i ď p, are

the eigenvalues of pΣ, and the operator norm A is assumed to be bounded. Consider the magnitude of the
derivative (in λ) of the map λ ÞÑ trrppΣ ` λIpq´2

pΣAT s given by

ˇ

ˇ

ˇ

ˇ

B

Bλ
trrppΣ ` λIpq´2

pΣAT s

ˇ

ˇ

ˇ

ˇ

“ 2| trrppΣ ` λIpq´3
pΣAT s|.

Following the argument in (E.116), for λ P Λ, observe that

| trrppΣ ` λIpq´3
pΣAT s| ď }ppΣ ` λIpq´3

pΣ}op}A}op trrT s ď C

for some constant C ă 8. Similarly, in the same interval trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2ΣAT s ď C. In
addition, from Lemma S.6.14, we have the map λ ÞÑ trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2AT s is differentiable

in λ and the derivative for λ P Λ is bounded. Therefore, the family of functions trrppΣ ` λIpq´2
pΣAT s ´

trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2ΣAT s forms an equicontinuous family in λ over λ P Λ. Thus, the convergence
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in Part 1 of Lemma S.6.10 is uniform in λ. We can now use the Moore-Osgood theorem to interchange the
limits to obtain

lim
pÑ8

!

trrpΣ`AT s ´ trrrvp0; γnqpvp0; γnqΣ ` Ipq´2ΣAT s

)

“ lim
pÑ8

lim
λÑ0`

!

trrppΣ ` λIpq´2
pΣAT s ´ trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2ΣAT qs

)

“ lim
λÑ0`

lim
pÑ8

!

trrppΣ ` λIpq´2
pΣAT s ´ trrrvp´λ; γnqpvp´λ; γnqΣ ` Ipq´2ΣAT qs

)

“ 0.

In the first equality above, we used the fact that pΣ` “ pΣ`
pΣpΣ` “ limλÑ0` ppΣ ` λIpq´1

pΣppΣ ` λIpq´1, and
that the functions vp¨; γnq and rvp¨; γnq are continuous (which follows, from say Lemma S.6.15 (1)). This
provides the right hand side of (E.111). Similarly, the fixed-point equation (E.98) as λ Ñ 0` becomes

vp0; γnq´1 “ γn trrΣpvp0; γnqΣ ` Ipq´1s{p.

Moving vp0; γnq to the other side (from Lemma S.6.13 (1), it follows that vp0; γnq ą 0 for γn P p1,8q), we
arrive at the desired result.

Part 2. As done in Part 1, it is not difficult to show that over λ P Λ the family of functions trrλ2ppΣ `

λIpq´1AppΣ ` λIpq´1T s ´ trrpvp´λ; γnqΣ ` Ipq´1prvgp´λ; γnqΣ `Aqpvp´λ; γnqΣ ` Ipq´1T s form an equicon-
tinuous family. Therefore, the convergence in Part 2 of Lemma S.6.10 is uniform in λ over Λ (that includes
0). Using the Moore-Osgood theorem to the interchange the limits, one has

lim
pÑ8

!

trrpIp ´ pΣ`
pΣqApIp ´ pΣ`

pΣqT s

´ trrpvp0; γnqΣ ` Ipq´1prvgp0; γnqΣ `Aqpvp0; γnqΣ ` Ipq´1T s

)

“ lim
pÑ8

lim
λÑ0`

!

trrλ2ppΣ ` λIpq´1AppΣ ` λIpq´1T s

´ trrpvp´λ; γnqΣ ` Ipq´1prvgp´λ; γnqΣ `Aqpvp´λ; γnqΣ ` Ipq´1T s

)

“ lim
λÑ0`

lim
pÑ8

!

trrλ2ppΣ ` λIpq´1AppΣ ` λIpq´1T s

´ trrpvp´λ; γnqΣ ` Ipq´1prvgp´λ; γnqΣ `Aqpvp´λ; γnqΣ ` Ipq´1T s

)

“ 0.

Now both (E.113) and (E.115) follow by taking λ Ñ 0` in (E.95) and (E.96), respectively.
This concludes the proof.

Corollary S.6.12 (Limiting deterministic equivalents for generalized bias and variance ridgeless resolvents).
Assume the setting of Lemma S.6.10. Let f : Rě0 Ñ Rě0 be a function. Then, as n, p Ñ 8 and p{n Ñ γ P

p1,8q, the following equivalences hold:

1. Limiting generalized variance of ridgeless regression:

pΣ`fpΣq » rvp0; γqpvp0; γqΣ ` Ipq´2ΣfpΣq, (E.117)

where vp0; γq and rvp0; γq are defined by (E.112) and (E.113), respectively.

2. Limiting generalized bias of ridgeless regression:

pIp ´ pΣ`
pΣqfpΣqpIp ´ pΣ`

pΣq » p1 ` rvgp0; γqqpvp0; γqΣ ` Ipq´1fpΣqpvp0; γqΣ ` Ipq´1, (E.118)

where vp0; γq is as defined in (E.112) and rvgp0; γq is as defined in (E.115) with A replaced by fpΣq.

Proof. The proof follows from Lemma S.6.11, in conjunction with Lemma S.6.13 ((1), (3), (4)) to provide
continuity of the functions vp0; ¨q, rvp0; ¨q, and rvgp0; ¨q (in the aspect ratio) over p1,8q.
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S.6.6 Lemmas on properties of solutions of certain fixed-point equations

In this section, we collect helper lemmas that are used in the proofs of Proposition 3.14 in Section S.3,
Corollary 4.9 in Section S.5, and Lemma S.6.11 and Corollary S.6.12 in Section S.6.

Lemma S.6.13 (Continuity and limiting behavior of functions of the solution of a fixed-point equation
in the aspect ratio). Let a ą 0 and b ă 8 be real numbers. Let P be a probability measure supported on
ra, bs. Consider the function vp0; ¨q : ϕ ÞÑ vp0;ϕq, over p1,8q, where vp0;ϕq ě 0 is the unique solution to the
fixed-point equation

1

ϕ
“

ż

vp0;ϕqr

1 ` vp0;ϕqr
dP prq. (E.119)

Then, the following properties hold:

1. The function vp0; ¨q is continuous and strictly decreasing over p1,8q. Furthermore, limϕÑ1` vp0;ϕq “ 8,
and limϕÑ8 vp0;ϕq “ 0.

2. The function ϕ ÞÑ pϕvp0;ϕqq´1 is strictly increasing over p1,8q. Furthermore, limϕÑ1` pϕvp0;ϕqq´1 “ 0
and limϕÑ8pϕvp0;ϕqq´1 “ 1.

3. The function rvp0; ¨q : ϕ ÞÑ rvp0;ϕq, where

rvp0;ϕq “

ˆ

1

vp0;ϕq2
´ ϕ

ż

r2

p1 ` rvp0;ϕqq2
dP prq

˙´1

,

is continuous over p1,8q. Furthermore, limϕÑ1` rvp0;ϕq “ 8, and limϕÑ8 rvp0;ϕq “ 0.

4. The function rvgp0; ¨q : ϕ ÞÑ rvgp0;ϕq, where

rvgp0;ϕq “ rvp0;ϕqϕ

ż

r2

p1 ` vp0;ϕqrq2
dP prq,

is continuous over p1,8q. Furthermore, limϕÑ1` rvgp0;ϕq “ 8, and limϕÑ8 rvgp0;ϕq “ 0.

5. Let Q be a (fixed) probability distribution supported on ra, bs that depends on a scalar ϕ1. Then, the
function Υbpϕ1; ¨q : ϕ ÞÑ Υbpϕ1, ϕq, where

Υbpϕ1, ϕq “ p1 ` rvgp0;ϕqq

ż

1

p1 ` vp0;ϕqrq2
dQprq,

is continuous over p1,8q. Furthermore, Υbpϕ1, ϕq ă 8 for ϕ P p1,8q, and limϕÑ8 Υbpϕ1, ϕq “ 1.

Proof. We consider the five parts separately below. Before doing so though, it is worth mentioning that
for ϕ P p1,8q, there is a unique non-negative solution vp0;ϕq to the fixed-point equation (E.119) as stated
in the statement. This follows from Lemma S.6.15 (1). The following properties refer to the function
vp0; ¨q : ϕ ÞÑ vp0;ϕq defined via this unique solution.

Part 1. We begin with the first part. Observe that the function

t ÞÑ

ż

1

1 ` tr
dP prq

is strictly decreasing and strictly convex over p0,8q. Thus, the function

T : t ÞÑ 1 ´

ż

1

1 ` tr
dP prq “

ż

t

1 ` tr
dP prq

is strictly increasing and strictly concave over p0,8q, with limtÑ0 T ptq “ 0 and limtÑ8 T ptq “ 1. Since the
inverse image of a strictly increasing and strictly concave real function is strictly increasing and strictly
convex (see, e.g. Proposition 3 of Hiriart-Urruty and Martınez-Legaz (2003)), we have that T´1 is strictly
convex and strictly increasing. This also implies that T´1 is continuous. Note that vp0;ϕq “ T´1pϕ´1q. Since
ϕ´1 is continuous, it follows that vp0; ¨q is continuous. In addition, since ϕ ÞÑ ϕ´1 is strictly decreasing, we
have that vp0; ¨q is strictly decreasing. Moreover, limϕÑ1` T´1pϕ´1q “ 8, and limϕÑ8 T´1pϕ´1q “ 0.
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Part 2. From (E.119), we have

1

ϕvp0;ϕq
“

ż

r

1 ` vp0;ϕqr
dP prq.

Because vp0;ϕq is strictly decreasing over p1,8q, the right side of the display above is strictly increasing.
Furthermore, because limϕÑ1` vp0;ϕq “ 8, we have limϕÑ1` pϕvp0;ϕqq´1 “ 0, and because limϕÑ8 vp0;ϕq “

0, we have limϕÑ8pϕvp0;ϕqq´1 “ 1.

Part 3. From Part 1, the function 1{vp0; ¨q2 is continuous. In addition, observe that the function

ϕ ÞÑ

ż

r2

p1 ` vp0;ϕqrq2
dP prq

is also continuous. Finally, note that

1

vp0;ϕq2
´ ϕ

ż

r2

p1 ` rvp0;ϕqq2
dP prq “

1

vp0;ϕq2

˜

1 ´ ϕ

ż
ˆ

rvp0;ϕq

1 ` rvp0;ϕq

˙2

dP prq

¸

ą 0,

where the last inequality holds for all ϕ P p1,8q because vp0;ϕq ą 0 over ϕ P p1,8q from Part 1, and the
term in the parenthesis is strictly positive over ϕ P p1,8q because

ϕ

ż
ˆ

rvp0;ϕq

1 ` rvp0;ϕq

˙2

dP prq ă ϕ

ż

rvp0;ϕq

1 ` rvp0;ϕq
dP prq “ 1,

where the last equality follows from (E.119). Thus, rvp0; ¨q is continuous.
Furthermore, since limϕÑ1` vp0;ϕq “ 8, it follows that limϕÑ1` rvp0;ϕq “ 8. Similarly, from limϕÑ8 vp0;ϕq “

0 and the fact that

lim
ϕÑ8

ż

r2

p1 ` rvp0;ϕqq2
dP prq ě a2 ą 0,

it follows that limϕÑ8 rvp0;ϕq “ 0.

Part 4. Similar to Part 3, continuity of rvgp0; ¨q follows from the continuity of rvp0; ¨q and vp0;ϕq. To compute
the desired limits, observe that

1 ` rvgp0;ϕq “

1

vp0;ϕq2

1

vp0;ϕq2
´ ϕ

ż

r2

p1 ` vp0;ϕqrq2
dP prq

.

We thus have

p1 ` rvgp0;ϕqq´1 “ 1 ´ vp0;ϕq2ϕ

ż

r2

p1 ` rvp0;ϕqq2
dP prq (E.120)

“ 1 ´ ϕ

ż

r2

pvp0;ϕq´1 ` rq2
dP prq. (E.121)

Because limϕÑ1` vp0;ϕq “ 8, from (E.121), we have

lim
ϕÑ1`

p1 ` rvgp0;ϕqq´1 “ 1 ´ lim
ϕÑ1`

ϕ

ż

r2

pvp0;ϕq´1 ` rq2
dP prq “ 1 ´ 1 “ 0.

It follows then that limϕÑ1` rvgp0;ϕq “ 8.
On the other hand, observe from (E.120) that

p1 ` rvgp0;ϕqq´1 “ 1 ´ ϕvp0;ϕqvp0;ϕq

ż

r2

p1 ` rvp0;ϕqq2
dP prq. (E.122)
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From Part 2, we have limϕÑ8 ϕvp0;ϕq “ 1, and from Part 1, we have limϕÑ8 vp0;ϕq “ 0. Moreover, since P
is supported on ra, bs, and vp0;ϕq ą 0 for ϕ P p1,8q from Part 1, for ϕ P p1,8q, note that

0 ă

ż

r2

p1 ` rvp0;ϕqq2
ă b2.

Thus, from (E.122), we obtain
lim
ϕÑ8

p1 ` rvgp0;ϕqq´1 “ 1 ´ 0 “ 1.

We hence conclude that limϕÑ8 rvgp0;ϕq “ 0.

Part 5. The continuity claim follows from the continuity of vp0; ¨q and rvgp0; ¨q from Parts 1 and 4, respectively.
From calculation similar to that in Part 4, it follows that p1 ` rvgp0;ϕqq ă 8 for ϕ P p1,8q. Now, since
vp0;ϕq ą 0 for ϕ P p1,8q from Part 1, and Q is supported on ra, bs, observe that

ż

1

p1 ` vp0;ϕqrq2
dQprq ď 1 ă 8.

Hence, Υbpϕ1, ϕq ă 8 for ϕ P p1,8q. Moreover, because limϕÑ8p1 ` rvgp0;ϕqq “ 1, and limϕÑ8 vp0;ϕq “ 0,
we obtain

lim
ϕÑ8

Υbpϕ1, ϕq “ lim
ϕÑ8

p1 ` rvgp0;ϕqq ¨ lim
ϕÑ8

ż

1

p1 ` vp0;ϕqrq2
dQprq “ 1.

Therefore, limϕÑ8 Υbpϕ1, ϕq “ 1, as desired.
This completes all the five parts, and finishes the proof.

Lemma S.6.14 (Bounding derivatives of the solution of a fixed-point equation in the regularization parameter).
Let a ą 0 and b ă 8 be real numbers. Let P be a probability measure supported on ra, bs. Let γ P p1,8q be a
real number. Let Λ “ r0, λmaxs for some constant λmax ă 8. For λ P Λ, let vp´λ; γq ě 0 denote the solution
to the fixed-point equation

1

vp´λ; γq
“ λ` γ

ż

r

vp´λ; γqr ` 1
dP prq.

Then, the function λ ÞÑ vp´λ; γq is twice differentiable over Λ. Furthermore, over Λ, vp´λ; γq, B{Bλrvp´λ; γqs,
and B2{Bλ2rvp´λ; γqs are bounded above. Furthermore, over Λ, absolute values of vp´λ; γq, B{Bλrvp´λ; γqs,
and B2{Bλ2rvp´λ; γqs are bounded above.

Proof. Start by re-writing the fixed-point equation as

λ “
1

vp´λ; γq
´ γ

ż

r

vp´λ; γqr ` 1
dP prq.

Define a function f by

fpxq “
1

x
´ γ

ż

r

xr ` 1
dP prq.

Observe that vp´λ; γq “ f´1pλq. The claim of twice differentiability of the function λ ÞÑ vp´λ; γnq follows
from Lemma S.6.15 (4). The claim of boundedness of the function and its first derivatives (with respect to λ)
follows from Lemma S.6.15 ((4), (5), (6)).

Lemma S.6.15 (Bounding derivatives of the solution of a fixed-point equation). Let a ą 0 and b ă 8 be two
real numbers. Let P be a probability distribution supported on ra, bs. Let γ P p1,8q be a real number. Define
a function f by

fpxq “
1

x
´ γ

ż

r

xr ` 1
dP prq. (E.123)

Then, the following properties hold:

95



1. There is a unique 0 ă x0 ă 8 such that fpx0q “ 0. The function f is twice differentiable and strictly
decreasing over p0, x0q, with limxÑ0` fpxq “ 8 and fpx0q “ 0.

2. The derivative f 1 is strictly increasing over p0, x0q, with limxÑ0` f 1pxq “ ´8 and f 1px0q ă 0.

3. The second derivative f2 is strictly decreasing over p0, x0q, with limxÑ0` f2pxq “ 8 and f2px0q ą 0.

4. The inverse function f´1 is twice differentiable, bounded over r0,8q by x0 ă 8, and strictly decreasing
over p0,8q, with f´1p0q “ x0 and limyÑ8 f´1pyq “ 0.

5. The derivative of the inverse function pf´1q1 is bounded over r0,8q by

x20

1 ´ γ

ż
ˆ

x0r

x0r ` 1

˙2

dP prq

ă 8.

6. The second derivative of the inverse function pf´1q2 is bounded over r0,8q by

2x30
˜

1 ´ γ

ż
ˆ

x0r

x0r ` 1

˙2

dP prq

¸3 ă 8.

Proof. We consider different parts separately below.

Part 1. Observe that

fpxq “
1

x
´ γ

ż

r

xr ` 1
dP prq “

1

x

ˆ

1 ´ γ

ż

xr

xr ` 1
dP prq

˙

.

The function g : x ÞÑ 1{x is positive and strictly decreasing over p0,8q with limxÑ0` gpxq “ 8 and
limxÑ8 gpxq “ 0, while the function

h : x ÞÑ 1 ´ γ

ż

xr

xr ` 1
dP prq

is strictly decreasing over p0,8q with hp0q “ 1 and limxÑ8 hpxq “ 1 ´ γ ă 0. Thus, there is a unique
0 ă x0 ă 8 such that hpx0q “ 0, and consequently fpx0q “ 0. Because h is positive over r0, x0s, f , a product
of two positive strictly decreasing functions, is strictly decreasing over p0, x0q, with limxÑ0` fpxq “ 8 and
fpx0q “ 0.

Part 2. The derivative f 1 at x is given by

f 1pxq “ ´
1

x2
` γ

ż

r2

pxr ` 1q2
dP prq “ ´

1

x2

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙2

dP prq

¸

.

The function g : x ÞÑ 1{x2 is positive and strictly decreasing over p0,8q with limxÑ0` gpxq “ 8 and
limxÑ8 gpxq “ 0. On the other hand, the function

h : x ÞÑ 1 ´ γ

ż
ˆ

xr

xr ` 1

˙2

dP prq

strictly decreasing over p0,8q with hp0q “ 1 and hpx0q ą 0. This follows because for x P r0, x0s,

γ

ż
ˆ

xr

xr ` 1

˙2

dP prq ď

ˆ

x0b

x0b` 1

˙

γ

ż
ˆ

xr

xr ` 1

˙

dP prq

ă γ

ż

xr

xr ` 1
dP prq ď γ

ż

x0r

x0r ` 1
dP prq “ 1,

(E.124)
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where the first inequality in the chain above follows as the support of P is ra, bs, and the last inequality
follows since fpx0q “ 0 and x0 ą 0, which implies that

1

x0
“ γ

ż

r

x0r ` 1
dP prq, or equivalently that 1 “ γ

ż

x0r

x0r ` 1
dP prq.

Thus, ´f 1, a product of two positive strictly decreasing functions, is strictly decreasing, and in turn, f 1 is
strictly increasing. Moreover, limxÑ0` f 1pxq “ ´8 and f 1px0q ă 0.

Part 3. The second derivative f2 at x is given by

f2pxq “
2

x3
´ 2γ

ż

r3

pxr ` 1q3
dP prq “

2

x3

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙3

dP prq

¸

.

The rest of the arguments are similar to those in Part 2. The function g : x ÞÑ 1{x3 is positive and strictly
decreasing over p0,8q with limxÑ0` gpxq “ 8 and limxÑ8 gpxq “ 0, while the function

h : x ÞÑ 1 ´ γ

ż
ˆ

xr

xr ` 1

˙3

dP prq

is strictly decreasing over p0,8q with hp0q “ 1 and hpx0q ą 0 as

γ

ż
ˆ

xr

xr ` 1

˙3

dP prq ď

ˆ

x0b

x0b` 1

˙2

γ

ż
ˆ

xr

xr ` 1

˙

dP prq

ă γ

ż

xr

xr ` 1
dP prq ď γ

ż

x0r

x0r ` 1
dP prq “ 1.

(E.125)

It then follows that f2 is strictly decreasing, with limxÑ0` f2pxq “ 8 and f2px0q ą 0.

Part 4. Because f is twice differentiable and strictly monotonic over p0, x0q, f´1 is twice differentiable
and strictly monotonic (see, e.g., Problem 2, Chapter 5 of Rudin (1976)). Since fpx0q “ 0, f´1p0q “ x0, and
since limxÑ0` fpxq “ 8, limyÑ8 f´1pyq “ 0. Hence, f´1 is bounded above over r0,8q by x0 ă 8.

Part 5. Because f 1pxq ‰ 0 over p0, x0q, by the inverse function theorem, we have

ˇ

ˇpf´1q1pfpxqq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

1

f 1pxq

ˇ

ˇ

ˇ

ˇ

ă

ˇ

ˇ

ˇ

ˇ

1

f 1px0q

ˇ

ˇ

ˇ

ˇ

“
1

1

x20

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙2

dP prq

¸ ă 8,

where the first inequality uses the fact that |f 1px0q| ă |f 1pxq| for x P p0, x0s from Part 2, and the last inequality
uses the bound from (E.124).

Part 6. Similar to Part 5, by inverse function theorem, we have

ˇ

ˇpf´1q2pfpxqq
ˇ

ˇ “

ˇ

ˇ

ˇ

ˇ

f2pxq

f 1pxq3

ˇ

ˇ

ˇ

ˇ

“

2

x3

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙3

dP prq

¸

1

x6

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙2

dP prq

¸3 ď
2x30

˜

1 ´ γ

ż
ˆ

xr

xr ` 1

˙2

dP prq

¸3 ă 8,

where the first inequality uses the bound from (E.125), and the second inequality uses the bound from
(E.124).

This finishes all the six parts, and concludes the proof.

We remark that the technique of Lemma A.2 of Hastie et al. (2019) can be applied to obtain similar
conclusions as those in Lemmas S.6.14 and S.6.15. However, since our parameterization is slightly different,
we make use of the inverse function theorem instead of the implicit function theorem employed in Hastie
et al. (2019).
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S.6.7 Proof of Theorem S.6.16 (Risk characterization of one-step procedure
with ridgeless regression)

The following theorem characterizes the risk of the one-step procedure starting with MN2LS base procedure
for isotropic features under square error. Let Rdetpγ; rfosq denote the risk of the one-step predictor starting
with the MN2LS base predictor on i.i.d. data with limiting aspect ratio γ.

Theorem S.6.16 (Limiting risk of one-step procedure with ridgeless regression). Suppose assumptions
(ℓ2A1), (ℓ2A2) with Σ “ I, (ℓ2A3) hold true. Let SNR :“ ρ2{σ2. Then, the limiting risk of the one-step
predictor starting with the MN2LS base predictor under (PA(γ)) is given as follows:

• When SNR ď 1:

Rdetpγ; pfosq

σ2
´ 1 “

$

&

%

γ

1 ´ γ
if γ ď

SNR

SNR ` 1
ă 1

SNR otherwise.

• When 1 ă SNR ď SNR‹
p« 10.7041q:

Rdetpγ; pfosq

σ2
´ 1 “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

γ

1 ´ γ
if γ ď 1 ´

1

2
a

2
?

SNR ´ 1
ă 1

2

b

2
?

SNR ´ 1 ´ 1 if 1 ´
1

2
a

2
?

SNR ´ 1
ă γ ď

˜

2 ´
1

?
SNR

´
1

a

2
?

SNR ´ 1

¸´1

"

SNR

ˆ

1 ´
1

ζ1

˙

`
1

ζ1 ´ 1

*ˆ

1 ´
1

ζ2

˙

`
1

ζ2 ´ 1
otherwise,

where SNR‹ (which is approximately 10.7041) is value of x ą 1 that solves

1 ´
1

2
a

2
?
x´ 1

“

˜

2 ´
1

x
´

1
a

2
?
x´ 1

¸´1

, (E.126)

and ζ1, ζ2 ě 1 are solutions to the equations

SNR

ˆ

1

ζ1
´

1

ζ2

˙

“
ζ21

pζ1 ´ 1q2
´

ζ22
pζ2 ´ 1q2

`
1

ζ1 ´ 1

ˆ

1 ´
ζ1
ζ2

ζ1
pζ1 ´ 1q

˙

(E.127)

1

ζ1
`

1

ζ2
“

1

γ
. (E.128)

• When SNR ą SNR‹:

Rdetpγ; pfosq

σ2
´ 1 “

$

’

’

&

’

’

%

γ

1 ´ γ
if γ ď γ‹ ă 1

"

SNR

ˆ

1 ´
1

ζ1

˙

`
1

ζ1 ´ 1

*ˆ

1 ´
1

ζ2

˙

`
1

ζ2 ´ 1
otherwise,

where SNR‹ is as defined in (E.126), γ‹ is given by

1 ´

ˆ

1 ` min
γď1

"

SNR

ˆ

1 ´
1

ζ1

˙

`
1

ζ1 ´ 1

*ˆ

1 ´
1

ζ2

˙

`
1

ζ2 ´ 1

˙´1

,

and ζ1, ζ2 ě 1 are solutions to the set of equations (E.127) and (E.128).
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Furthermore, in each case, the limiting risk is a non-decreasing function of γ.

Proof. From Proposition 4.10, it follows that that the limiting risk of the ingredient one-step predictor for
various limiting split proportions pζ1, ζ2q under isotropic features is given by

Rdetpζ1, ζ2; rfq ´ 1 “

$

’

’

’

&

’

’

’

%

!

ρ2
´

1 ´ 1
ζ1

¯

` σ2
´

1
ζ1´1

¯)´

1 ´ 1
ζ2

¯

` σ2
´

1
ζ2´1

¯

when ζ1 ą 1, ζ2 ą 1
!

σ2
´

ζ1
1´ζ1

¯)´

1 ´ 1
ζ2

¯

` σ2
´

1
ζ2´1

¯

when ζ1 ă 1, ζ2 ą 1

σ2
´

ζ2
1´ζ2

¯

when ζ2 ă 1.

Note that the last case covers both ζ1 ą 1 and ζ1 ă 1. Given a fixed γ, our goal is to minimize Rdetpζ1, ζ2; rfq

with the constraint 1
ζ1

` 1
ζ2

ď 1
γ .

To simplify the calculations below, we first scale out the factor of σ2 and express the risk in terms of

SNR :“ ρ2

σ2 to write

Rdetpζ1, ζ2; rfq

σ2
´ 1 “

$

’

’

’

&

’

’

’

%

!

SNR
´

1 ´ 1
ζ1

¯

`

´

1
ζ1´1

¯)´

1 ´ 1
ζ2

¯

`

´

1
ζ2´1

¯

when ζ1 ą 1, ζ2 ą 1
!

ζ1
1´ζ1

)´

1 ´ 1
ζ2

¯

`

´

1
ζ2´1

¯

when ζ1 ă 1, ζ2 ą 1
´

ζ2
1´ζ2

¯

when ζ2 ă 1.

The problem of minimizing Rppβosq can now be broken into three separate minimization problems, one for
each of the cases above. The final allocation is then the one that gives the minimum among the three cases.

We next notice a simple observation that lets us eliminate the third case. Any feasible allocation of ζ1
and ζ2 in the third case is also a feasible allocation for the second case. This can be seen by making ζ1 for
the second case equal to ζ2 in the third case and letting ζ2 for the second case tend to 8. Moreover, this
gives the same objective value for both the cases. Hence, the minimum of the second case is no larger than
the minimum of the third case and we can ignore the minimization of the third case.

Overall we are thus left with two minimization problems:

minimize
!

SNR
´

1 ´ 1
ζ1

¯

`

´

1
ζ1´1

¯)´

1 ´ 1
ζ2

¯

`

´

1
ζ2´1

¯

subject to 1
ζ1

` 1
ζ2

ď 1
γ

ζ1 ą 1
ζ2 ą 1

(E.129)

from the first case, and

minimize
!

ζ1
1´ζ1

)´

1 ´ 1
ζ2

¯

`

´

1
ζ2´1

¯

subject to 1
ζ1

` 1
ζ2

ď 1
γ

ζ1 ă 1
ζ2 ą 1

(E.130)

from the second case. We now in turn analyze both of these optimization problems.

Optimization problem (E.130)

Let’s start with the problem (E.130). Note that the objective function of the optimization problem (E.130)
does not depend on SNR. Hence the optimal value will only be a function of γ. In addition, the constraint
ζ1 ă 1 is only satisfied when γ ă 1. Thus, when γ ą 1, the problem is infeasible. We divide the remaining
range of γ into two main cases of 0 ă γ ă 0.5 and 0.5 ă γ ă 1. In each of the cases, we show that the
minimum value of the problem is γ

1´γ , which is achieved by setting ζ1 “ γ and ζ2 “ 8.

When γ ď 0.5. We first note that any allocation ζ1 ą 0.5 is suboptimal because when ζ1 ą 0.5, we have
ζ1

1´ζ1
ą 1 by Lemma S.6.17 (3). Thus using Lemma S.6.18 (3), the objective function in this case is always

larger than 1 for such ζ1. However, we can achieve 1 by setting ζ1 “ 0.5 and ζ2 Ñ 8. Therefore we only need
to consider ζ1 ď 0.5. For such ζ1, we have ζ1

1´ζ1
ď 1 by Lemma S.6.17 (1). Now using Lemma S.6.18 (1), the

optimal allocation is obtained by setting ζ2 Ñ 8 and choosing the least ζ1, which is γ, and the corresponding
optimal value is γ

1´γ .
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When 0.5 ă γ ă 1. We claim that the optimum value is still γ
1´γ , which is achieved by setting ζ1 “ γ

and ζ2 Ñ 8. This is a slightly more involved argument than the previous case because now ζ1
1´ζ1

will be
larger than 1 since ζ1 ą γ ą 0.5, and hence there is a possibility of optimal allocation other than ζ1 “ γ and
ζ2 “ 8. We proceed as follows.

Consider any feasible ζ1 ă 1. On one hand, using Lemma S.6.18 (2), we note that the unconstrained

optimal ζ‹
2 for this ζ1 is

b

ζ1
1´ζ1

b

ζ1
1´ζ1

´1
. On the other hand, from the constraint 1

ζ2
ď 1

γ ´ 1
ζ1

, we know that we

need to satisfy ζ2 ě 1
1
γ ´ 1

ζ1

. There are now two possible scenarios.

• When 4
7 ă γ ă 1.

In this case, we verify that any feasible ζ1 (such that γ ď ζ1 ă 1) satisfies

b

ζ1
1´ζ1

b

ζ1
1´ζ1

´ 1
ă

1
1
γ ´ 1

ζ1

.

To see this, the above inequality after separating components of γ and ζ1 reads

1

γ
ă

1

ζ1
` 1 ´

c

1

ζ1
´ 1.

It is easy to check that the function x ÞÑ 1 ` 1
x ´

b

1
x ´ 1 attains minimum value of 7

4 (at x “ 4
5 ) on

the interval 0.5 ă x ă 1. Thus whenever γ ą 4
7 , this condition will be satisfied for all feasible ζ1. In

this case, from Lemma S.6.18 (2), the optimal ζ2 that satisfy the constraint is 1
1
γ ´ 1

ζ1

. Plugging this

value into the objective function, we arrive at the objective function

"

ζ1
1 ´ ζ1

*ˆ

1 ´
1

γ
`

1

ζ1

˙

`

1
γ ´ 1

ζ1

1 ´ 1
γ ` 1

ζ1

and the overall optimization problem reduces to

minimize
!

ζ1
1´ζ1

)´

1 ´ 1
γ ` 1

ζ1

¯

`
1
γ ´ 1

ζ1

1´ 1
γ ` 1

ζ1

subject to ζ1 ě γ ě 4
7

ζ1 ă 1.

(E.131)

We can verify that the objective function is increasing in the constraint set and achieves the minimum
at ζ1 “ γ. The corresponding ζ2 then tends to 8 as desired.

• When 0.5 ă γ ă 4
7 , or equivalently 7

4 ă 1
γ ă 2.

In this case, we can check that when

2
γ ´

b

4
γ ´ 7 ´ 1

2
´

1
γ2 ´ 2

γ ` 2
¯ ď ζ1 ď

2
γ `

b

4
γ ´ 7 ´ 1

2
´

1
γ2 ´ 2

γ ` 2
¯ , (E.132)

we have
1

γ
ą

1

ζ1
` 1 ´

c

1

ζ1
´ 1

which leads to

1
1
γ ´ 1

ζ1

ă

b

ζ1
1´ζ1

b

ζ1
1´ζ1

´ 1
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Thus ζ‹
2 “

b

ζ1
1´ζ1

b

ζ1
1´ζ1

´1
is feasible. The objective at this ζ2 is 2

b

ζ1
1´ζ1

´ 1. Now note that the function

x ÞÑ 2
b

x
1´x ´ 1 is increasing for 0 ă x ă 1 and thus the optimal ζ1 in this case is the lower point of

the above interval (E.132). The optimal value for this case is thus given by

2

g

f

f

f

e

2
γ ´

b

4
γ ´ 7 ´ 1

2
γ2 ´ 4

γ ` 4 ´ 2
γ `

b

4
γ ´ 7 ` 1

´ 1.

While when

γ ă ζ1 ă

2
γ ´

b

4
γ ´ 7 ´ 1

2
´

1
γ2 ´ 2

γ ` 2
¯ , or

2
γ `

b

4
γ ´ 7 ´ 1

2
´

1
γ2 ´ 2

γ ` 2
¯ ă ζ1 ă 1,

we have
1

γ
ă

1

ζ1
` 1 ´

c

1

ζ1
´ 1.

As argued before, in this case, the optimal ζ2 is 1
1
γ ´ 1

ζ1

and the objective function at this value is given

by
"

ζ1
1 ´ ζ1

*ˆ

1 ´
1

γ
`

1

ζ1

˙

`

1
γ ´ 1

ζ1

1 ´ 1
γ ` 1

ζ1

.

This function is again increasing in ζ1 in the constrained set and hence the optimal value of ζ1 is the
lower point when ζ1 “ γ leading to the optimal value γ

1´γ . Now, we have

γ

1 ´ γ
ă 2

g

f

f

f

e

2
γ ´

b

4
γ ´ 7 ´ 1

2
γ2 ´ 4

γ ` 4 ´ 2
γ `

b

4
γ ´ 7 ` 1

´ 1

for 0.5 ă γ ă 4
7 . Thus overall, even in this case, the optimal allocation is ζ1 “ γ and ζ2 Ñ 8.

Optimization problem (E.129)

We now turn to problem (E.129). In this case, the solution depends on both SNR and γ. Note that the
objective function can be written more compactly as hpζ2;hpζ1; SNRqq where hpγ; SNRq is defined as

hpγ; SNRq “ SNR

ˆ

1 ´
1

γ

˙

`
1

γ ´ 1
.

We first consider the case when SNR ď 1. We argue that the optimum value in this case is SNR itself
and it is achieved by setting both ζ1 Ñ 8 and ζ2 Ñ 8. This can be seen as follows. For any feasible ζ1 ą 1,
the minimum value of hpγ; SNRq is SNR and it is achieved as ζ1 Ñ 8 from Lemma S.6.18 (1). Since this
minimum value is less than 1, hpζ2; SNRq is again minimized as ζ2 Ñ 8 and overall minimum is SNR.

Let us consider the case when SNR ą 1. For ease of notation, we denote SNR by s.

We first claim that we can restrict to ζ1 ě
?
s

?
s´1

without loss of generality. This is because for any

1 ă ζ1 ă
?
s

?
s´1

, there is a corresponding ζ1 ě
?
s

?
s´1

that gives either the same or smaller objective value while

enlarging the constraint set for ζ2. This claim follows from Lemma S.6.19 (1).
Next observe that the minimum without the constraint 1

ζ1
` 1

ζ2
ď 1

γ is

2

b

2
?
s´ 1 ´ 1,
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which is achieved by setting ζ1 “
?
s

?
s´1

and ζ2 “

?
2

?
s´1

?
2

?
s´1´1

. The values of γ for which this value is achievable

are:

γ ď

˜

1 ´
1

?
s

` 1 ´
1

a

2
?
s´ 1

¸´1

. (E.133)

In other words, the optimum value of problem (E.129) is 2
a

2
?
s´ 1 ´ 1 for γ satisfying (E.133) achieved by

setting ζ1 “
?
s

?
s´1

and ζ2 “

?
2

?
s´1

?
2

?
s´1´1

.

Now we consider γ bigger than (E.133). For such γ, we need to move either (or both) of ζ1 and ζ2 from
their unconstrained optimum values above. We claim that the constraint 1

ζ1
` 1
ζ2

ď 1
γ need to be satisfied with

equality in this case. This can be seen as follows. By way of contradiction, suppose the optimal allocation is
pζ‹

1 , ζ
‹
2 q, and 1

ζ‹
1

` 1
ζ‹
2

ă 1
γ . We now argue that we can strictly decrease the objective function while satisfying

the constraint by producing a feasible allocation pζ‹‹
1 , ζ‹‹

2 q that strictly dominates the assumed allocation.
We have two cases to consider.

1. ζ‹
1 ě

?
s

?
s´1

and ζ‹
2 ą

?
2

?
s´1

?
2

?
s´1´1

. In this case, observe that we can keep ζ‹‹
1 “ ζ‹

1 and decrease ζ‹
2 so

that ζ‹‹
2 “ 1

γ ´ 1
ζ‹
1

. This is feasible. Now note that

hpζ‹‹
2 ;hpζ‹‹

1 ; sqq “ hpζ‹‹
2 ;hpζ‹

1 ; sqq ă hpζ‹
2 ;hpζ‹

1 ; sqq

where the inequality follows from Lemma S.6.19 (2). Thus, the new allocation strictly decreases the
objective value.

2. ζ‹
1 ą

?
s

?
s´1

and ζ‹
2 “

?
2

?
s´1

?
2

?
s´1´1

. In this case, we can decrease ζ‹
1 first so that ζ‹‹

1 “ 1
γ ´ 1

ζ‹
2
, and keep

ζ‹‹
2 “ ζ‹

2 . Observe that this modification keeps us in the feasible region. Now note that

hpζ‹‹
2 ;hpζ‹‹

1 ; sqq “ hpζ‹
2 ;hpζ‹‹

1 ; sqq ă hpζ‹
2 ;hpζ‹

1 ; sqq

where the inequality follows from Lemma S.6.19 (1). Thus, the objective value is again strictly smaller.

Hence, in both the cases, the objective value can be strictly improved while staying within the feasible
constraint. Therefore, we must hit the constraint with equality.

With the equality constraint, we can now use the method of Lagrange multipliers. The Lagrangian is
given by

Lpζ1, ζ2, µq “ hpζ2;hpζ1; sqq ` µ

ˆ

1

ζ1
`

1

ζ2
´

1

γ

˙

.

The optimality conditions are given by the following system of equations in pζ1, ζ2, µq

"

s

ˆ

1 ´
1

ζ1

˙

`
1

ζ1 ´ 1

*

1

ζ22
´

1

pζ2 ´ 1q2
´
µ

ζ22
“ 0

ˆ

1 ´
1

ζ2

˙"

s

ζ21
´

1

pζ1 ´ 1q2

*

´
µ

ζ21
“ 0

1

ζ1
`

1

ζ2
“

1

γ
.

After minor simplifications, these lead to

s

ˆ

1 ´
1

ζ1

˙

´ µ “
ζ21

pζ1 ´ 1q2
´

1

ζ1 ´ 1

s

ˆ

1 ´
1

ζ2

˙

´ µ “
ζ21

pζ1 ´ 1q2

ˆ

1 ´
1

ζ2

˙

1

ζ1
`

1

ζ2
“

1

γ
.
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Eliminating µ, we get two equations in two unknowns pζ1, ζ2q:

s

ˆ

1

ζ1
´

1

ζ2

˙

“
ζ21

pζ1 ´ 1q2
´

ζ22
pζ2 ´ 1q2

`
1

ζ1 ´ 1

ˆ

1 ´
ζ1
ζ2

ζ1
pζ1 ´ 1q

˙

1

ζ1
`

1

ζ2
“

1

γ
,

as claimed.
Finally, to obtain various boundary cutoff points for γ and SNR in each of the cases, note that:

• When x “ SNR
SNR`1 , we have x

1´x “ SNR.

• When x “ 1 ´ 1

2
?

2
?
SNR´1

, we have x
x´γ “ 2

a

2
?

SNR ´ 1 ´ 1. In addition, from a short calculation it

follows that, when SNR « 10.704, we have 1 ´ 1

2
?

2
?
SNR´1

“

ˆ

2 ´ 1?
SNR

´ 1?
2

?
SNR´1

˙´1

.

• When x “ γ‹, we have x
1´x “ minγď1 hpγ2;hpγ1; SNRqq.

This finishes the proof. See Figure S.5 for an illustration of the optimal splitting of the aspect ratios
pζ‹

1 pγq, ζ‹
2 pγqq for a given γ for two different SNR values.
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Figure S.5: Illustration of the optimal splitting of the aspect ratios for the one-step optimization with MN2LS
base prediction procedure. Here, pζ‹

1 pγq, ζ‹
2 pγqq indicates the optimal splitting of the aspect ratio γ for the

first and second splits.

S.6.8 Lemmas on properties of risk profile of ridgeless regression

In this section, we collect helper lemmas used in the proof of Theorem S.6.16. All the lemmas in this section
are quite elementary, and only abstracted out for ease of repeated use in the proof of Theorem S.6.16.

Lemma S.6.17 (Properties of ridgeless risk profile in the underparameterized regime). The function
g : x ÞÑ x

1´x over the domain p0, 1q has the following properties:

1. The function g is increasing in x.

2. When x ď 0.5, gpxq ď 1.

3. When x ą 0.5, gpxq ą 1.
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Proof. The claims are easy to check. See Figure S.6 (the x ă 1 segment) for illustration.

Lemma S.6.18 (Properties of ridgeless risk profile in the overparameterized regime). Let hp¨; sq : x ÞÑ

s
`

1 ´ 1
x

˘

` 1
x´1 be a function defined on the domain x ą 1, parametrized by s ě 0. The function h has the

following properties:

1. When s ď 1, the function is decreasing in x and approaches the minimum value of s as x Ñ 8.

2. When s ą 1, the function attains the minimum value of 2
?
s´ 1 at x “

?
s

?
s´1

.

3. When s ą 1, hpx; sq ą 1 for all x ą 1.

4. For x ą
?
s

?
s´1

, the function is increasing in x.

5. The function s ÞÑ hpx; sq is increasing in s for s ě 0 for any fixed x ą 1.

Proof. The first property is easy to check. The second property follows elementary calculus. The third
property follows from the second property. The fourth property follows by inspecting the derivative of hp¨; sq

for x ą
?
s

?
s´1

. The fifth property is easy to check. See Figure S.6 (the x ą 1 segment) for illustration.
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Figure S.6: Illustration of ridgeless risk profile with varying SNR.

Lemma S.6.19 (Properties of ridgeless one-step ingredient risk profile in the overparameterized regime).
Let hpx; sq : x ÞÑ s

`

1 ´ 1
x

˘

` 1
x´1 be a function defined on the domain x ą 1, parameterized by s ě 1. Let

g : px, yq ÞÑ hpy;hpx; sqq be a function defined on the domain x ą 1 and y ą 1, parameterized by s ě 1. The
function g has the following properties:

1. For any fixed y ą 1, the function g is minimized at x “
?
s

?
s´1

and increasing in x for x ě
?
s

?
s´1

.

2. For any fixed x ą 1, gpx, yq is increasing over y ě

?
hpx;sq

?
hpx;sq´1

.

Proof. The first claim follows from Lemma S.6.18 (2), (4), (5). The second claim follows from Lemma S.6.18 (4).
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S.6.9 Control of additive error term in expectation

The following remark complements Remark 2.8 and specifies the growth allowed conditions on pσΞ to ensure
that Er∆add

n s “ op1q.

Remark S.6.20 (Tolerable growth rates on pσΞ for E∆add
n “ op1q). Suppose |Ξ| ď nS for some S ă 8. Under

the setting of Lemma 2.4, if for some t ě 1,

max
ξPΞ

}pσξ}Lt
“ o

˜

n
1{2
te

n´A`pA`Sq{t

¸

,

then Er∆add
n s “ op1q. On the other hand, under the setting of Lemma 2.5, if

max
ξPΞ

}pσξ}L2 “ o

˜

n
1{2
te

npS´Aq{2

¸

then Er∆add
n s “ op1q. The remark follows simply by observing that the first term in the expectation bounds

(11) and (13) for both Lemmas 2.4 and 2.5 are op1q, while the second term in Lemma 2.4 is of order

O

˜

n´A{r`S{t

n
1{2
te

¸

max
ξPΞ

}pσξ}Lt
,

for r, t ě 1 and 1{r ` 1{t “ 1, and the second term in Lemma 2.5 is of order

O

˜

n´A{2`S{2

n
1{2
te

¸

max
ξPΞ

}pσξ}L2
.

It is worth mentioning that one can also derive suitable growth rates on pκΞ that yield conditions for
Er∆mul

n s “ op1q. However, this does not directly lead to control of ErRp pf cvp¨;Dnqqs in the multiplicative
form (8). This is because of the denominator p1 ´ ∆mul

n q` appearing in (8). For every n, there is a non-zero
probability that the denominator p1 ´ ∆mul

n q` is zero. Hence, the right hand side of (8) may not have a

finite expectation in general. However, assuming ErRp pfξp¨;Dnqqs ă C for some C ă 8 for all ξ P Ξ, one can

control ErRp pf cvp¨;Dnqqs by explicitly analyzing Pp∆mul
n ą 1{2q, and using the bound

Rp pf cvp¨;Dnqq ď
1 ` ∆mul

n

p1 ´ ∆mul
n q`

¨ min
ξPΞ

Rp pfξp¨;Dtrq.1∆mul
n ď1{2 `

ÿ

ξPΞ

Rp pfξp¨;Dnqq1∆mul
n ą1{2.

S.6.10 A lemma on norm equivalence implications

The following lemma formalizes various norm equivalence implications mentioned in Remarks 2.19 and 2.20.

Proposition S.6.21 (Norm equivalence implications). The following statements hold.

1. Suppose a random X satisfies L4 ´ L2 equivalence, i.e., there exists a constant C such that ErX4s ď

CErX2s, then the random variable satisfies L2 ´ L1 equivalence, i.e., there exists a constant C such
that ErX2s ď CEr|X|s.

2. A random variable W satisfying ψ2 ´ L2 equivalence also satisfies ψ1 ´ L1 equivalence.

Proof. We will use the fact that the map p ÞÑ logEr|X|ps (p ě 1) is convex. In other words, for λ P p0, 1q, we
have

logEr|X|λr`p1´λqss ď λ logEr|X|rs ` p1 ´ λq logEr|X|ss. (E.134)

We now use r “ 4 and s “ 1, and λ “ 1{3 so that λr ` p1 ´ λqs “ 2. Plugging these choices in (E.134) yields

logErX2s ď
1

3
logErX4s `

2

3
logEr|X|s.
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In terms of norms the inequality then becomes

2 log }X}L2
ď

4

3
log }X}L4

`
2

3
log }X}L1

.

This yields
2

3
log

}X}L2

}X}L1

ď
4

3
log

}X}L4

}X}L2

.

Manipulating both sides, we end up with

}X}L2

}X}L1

ď

ˆ

}X}L4

}X}L2

˙2

as desired.
The second facts follows because ψ2 ´ L2 equivalence implies Lp ´ L2 equivalence for each p ě 1, i.e., for

each p ě 1, we have that
}W }Lp

ď C
?
p}W }L2

,

for an universal constant C; see Vershynin (2018, Proposition 2.5.2), for example. This in particular implies,
L4 ´L2 equivalence, and by the first fact implies L2 ´L1. Thus, there exists a universal constant C such that

}W }L2
ď }W }L1

.

Combining with the inequality above, we then get for p ě 1,

}W }Lp ď C
?
p}W }L1 ď Cp}W }L1 .

Now, using Vershynin (2018, Proposition 2.7.1), this implies ψ1 ´ L1 equivalence.
Alternatively, assuming ψ2 ´ L2 equivalence, observe the following chain of inequalities:

C}X}L4

paq

ď }X}ψ1

pbq

ď plog 2q1{2}X}ψ2

pcq

ď C}X}L2

where paq follows from Vershynin (2018, Proposition 2.5.2), pbq follows from Wellner and van der Vaart (2013,
Problem 2.2.5), pcq follows from the assumed ψ2 ´ L2 equivalence. Finally, since ψ2 ´ L2 equivalence implies
L4 ´ L2 equivalence, and from the fact this implies L2 ´ L1 equivalence concludes the proof.

Figure S.7 visually summarizes the norm equivalence implications.

Figure S.7: Visual illustration of norm equivalence implications discussed in Remarks 2.19 and 2.20, and in

the proof of Proposition S.6.21. In the figure, A ñ B indicates that equivalence A implies equivalence B.
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S.6.11 Proof of (63)

Below we prove the risk decomposition (63) for the ingredient zero-step predictor under squared error loss.
The proof follows from the following iterated bias-variance decomposition.

E
“

pY0 ´ rfM pX0;Dtrqq2 | Dtr

‰

“ E
”

E
“

pY0 ´ pfM pX0;Dtrqq2 | Dtr, pX0, Y0q
‰

| Dtr

ı

“ E
”´

Y0 ´ E
“

rfM pX0;Dtrq | Dtr, pX0, Y0q
‰

¯2
ˇ

ˇ Dtr

ı

` E
”

Var
`

rfM pX0;Dtrq | Dtr, pX0, Y0q
˘
ˇ

ˇ Dtr

ı

“ E

»

—

–

¨

˝Y0 ´
1

`

n
kn

˘

ÿ

i1,...,ikn

rf
`

X0; tpXij , Yij q : 1 ď j ď knu
˘

˛

‚

2
ˇ

ˇ

ˇ

ˇ

ˇ

Dtr

fi

ffi

fl

` E
„

1

M
Var

´

rfpX0;Dtr,1q
ˇ

ˇ Dtr, pX0, Y0q

¯

ˇ

ˇ

ˇ

ˇ

Dtr

ȷ

“ Rp rf8p¨;Dtrqq `
1

M
E

»

–

1
`

n
kn

˘

ÿ

i1,...,ikn

´

rf
`

X0; tpX0, Y0q : 1 ď j ď knu
˘

´ rf8pX0;Dtrq

¯2
ˇ

ˇ

ˇ

ˇ

Dtr

fi

fl ,

where in the last line f8p¨;Dtrq : Rp Ñ R is defined such that for any x P Rp

rf8px;Dtrq “
1

`

n
kn

˘

ÿ

1ďi1ă...ăiknďntr

rfpx; tpXij , Yij q : 1 ď j ď knuq.

S.7 Calculus of deterministic equivalents

We use the language of deterministic equivalents in the proofs of Proposition 3.14 and Proposition 4.11 in
Section S.3 and Section S.5, respectively. In this section, we provide a basic review of the definitions and
useful calculus rules. For more details, see Dobriban and Sheng (2021).

Definition S.7.1. Consider sequences tApupě1 and tBpupě1 of (random or deterministic) matrices of growing
dimension. We say that Ap and Bp are equivalent and write Ap » Bp if limpÑ8 | trrCppAp ´Bpqs| “ 0 almost
surely for any sequence Cp matrices with bounded trace norm such that lim sup }Cp}tr ă 8 as p Ñ 8.

An observant reader will notice that Dobriban and Sheng (2021) use the notation Ap — Bp to denote
deterministic asymptotic equivalence. In this paper, we instead prefer to use the notation Ap » Bp for such
equivalence to stress the fact that this equivalence is exact in the limit rather than up to constants as the
“standard” use of the asymptotic notation — would hint at.

Lemma S.7.2 (Calculus of deterministic equivalents, Dobriban and Wager (2018), Dobriban and Sheng
(2021)). Let Ap, Bp, and Cp be sequences of (random or deterministic) matrices. The calculus of deterministic
equivalents satisfy the following properties:

1. Equivalence: The relation » is an equivalence relation.

2. Sum: If Ap » Bp and Cp » Dp, then Ap ` Cp » Bp `Dp.

3. Product: If Ap a sequence of matrices with bounded operator norms, i.e., }Ap}op ă 8, and Bp » Cp,
then ApBp » ApCp.

4. Trace: If Ap » Bp, then trrAps{p´ trrBps{p Ñ 0 almost surely.

5. Differentiation: Suppose fpz,Apq » gpz,Bpq where the entries of f and g are analytic functions in
z P S and S is an open connected subset of C. Suppose for any sequence Cp of deterministic matrices
with bounded trace norm we have | trrCppfpz,Apq ´ gpz,Bpqqs| ď M for every p and z P S. Then we
have f 1pz,Apq » g1pz,Bpq for every z P S, where the derivatives are taken entry-wise with respect to z.

107



We record deterministic equivalent for the standard ridge resolvent.

Lemma S.7.3 (Deterministic equivalent for basic ridge resolvent, adapted from Theorem 1 of Rubio and
Mestre (2011); see also Theorem 3.1 of Dobriban and Sheng (2021)). Suppose Xi P Rp, 1 ď i ď n, are i.i.d.
random vectors where each Xi “ ZiΣ

1{2, where Zi contains i.i.d. entries Zij, 1 ď j ď p, with ErZijs “ 0,
ErZ2

ijs “ 1, and Er|Zij |
8`αs ď Mα for some α ą 0 and Mα ă 8, and Σ P Rpˆp is a positive semidefinite

matrix such that 0 ĺ Σ ĺ rmaxIp for some constant (independent of p) rmax ă 8. Let X P Rnˆp the matrix

with Xi, 1 ď i ď n as rows and pΣ P Rpˆp denote the random matrix XJX{n. Define γn “ p{n. Then, for
z P Cą0, as n, p Ñ 8 such that 0 ă lim inf γn ď lim sup γn ă 8, we have

ppΣ ´ zIpq´1 » pcpepz; γnqqΣ ´ zIpq´1, (E.135)

where cpepz; γnqq is defined as

cpepz; γnqq “
1

1 ` γnepz; γnq
, (E.136)

and epz; γnq is the unique solution in Cą0 to the fixed-point equation

epz; γnq “ trrΣpcpepz; γnqqΣ ´ zIpq´1s{p. (E.137)

Furthermore, epz; γnq is the Stieltjes transform of a certain positive measure on Rě0 with total mass trrΣs{p.

We note that in defining epλ; γnq, it is also implicitly a parameterized by Σ. We suppress this dependence
for notational simplicity, and only explicitly indicate dependence on z and γn that will be useful for our
purposes.

Corollary S.7.4. Assume the setting of Lemma S.7.3. For λ ą 0, we have

λppΣ ` λIpq´1 » pvp´λ; γnqΣ ` Ipq´1,

where vp´λ; γnq is the unique solution to the fixed-point equation

1

vp´λ; γnq
“ λ` γn trrΣpvp´λ; γnqΣ ` Ipq´1s{p.

Proof. From Lemma S.7.3, for z P Cą0, we have the basic equivalence for ridge resolvent

ppΣ ´ zIpq´1 » pcpepz; γnqqΣ ´ zIpq´1, (E.138)

where cpepz; γnqq is defined by (E.136) and and epz; γnq is the unqiue solution in Cą0 to the fixed-point
equation (E.137). Substituting for epz; γnq from (E.136) into (E.137), we can write the fixed-point equation
for cpepz; γnqq as

1

cpepz; γnqqγn
´

1

γn
“ trrΣpcpepz; γnqqΣ ´ zIpq´1s{p. (E.139)

Manipulating (E.139), we can write

1

cpepz; γnqq
´ 1 “ γn trrΣpcpepz; γnqqΣ ´ zIpq´1s{p “

γn
p´zq

trrΣpcpepz; γnqq{p´zqΣ ` Ipq´1s{p. (E.140)

Moving p´zq across in (E.140), we have equivalently the following equation for cpepz; γnqq:

p´zq

cpepz; γnqq
` z “ γn trrΣpcpepz; γnqq{p´zqΣ ` Ipq´1s{p. (E.141)

Now defining cpepz; γnqq{p´zq by vpz; γnq, the fixed-point equation (E.141) becomes

1

vpz; γnq
“ ´z ` γn trrΣpvpz; γnqΣ ` Ipq´1s{p. (E.142)
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Note that (E.142) is also known as the Silverstein equation (Silverstein, 1995), and vpz; γnq as the companion
Stieltjes transform. Along the same lines, from (E.138), we have

p´zqppΣ ´ zIpq´1 » p´zqpcpepz; γnqqΣ ´ zIpq´1 “ pcpepz; γnqq{p´zqΣ ` Ipq´1. (E.143)

Substituting for vpz; γnq, we can thus write

p´zqppΣ ´ zIpq´1 » pvpz; γnqΣ ` Ipq´1. (E.144)

Now, taking z “ ´λ in (E.142) and (E.144) yields the equivalence

λppΣ ` λIpq´1 » pvp´λ; γnqΣ ` Ipq´1,

where vp´λ; γnq is the unique solution to the fixed point equation

1

vp´λ; γnq
“ λ` γn trrΣpvp´λ; γnqΣ ` Ipq´1s{p.

Finally, since vp´λ; γnq is a Stieltjes transform of a probability measure (with support on Rě0), we have that
for Repλq ą 0, by taking Impλq Ñ 0, we have that Impvp´λ; γnqq Ñ 0, and thus the statement follows.

We remark that we will directly apply Corollary S.7.4 for a real λ ą 0 (in particular, in Lemma S.6.10).
The limiting argument to go from a complex λ to a real λ follow as done in the proof of Corollary S.7.4. See,
for example, proof of Theorem 5 in Hastie et al. (2019) (that uses Lemma 2.2 of Knowles and Yin (2017)) for
more details.

S.8 Useful concentration results

In this section, we gather statements of concentration results available in the literature that are used in the
proofs in Sections S.1, S.3 and S.5.

Non-asymptotic statements

Tail bounds. The following two tail bounds are used in the proofs of Lemmas 2.4, 2.5, 2.9 and 2.10 in
Section S.1.

Lemma S.8.1 (Bernstein’s inequality, adapted from Theorem 2.8.1 of Vershynin (2018)). Let Z1, . . . , Zn be
independent mean-zero sub-exponential random variables. Then, for every t ě 0, we have

P

#
ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ě t

+

ď 2 exp

˜

´cmin

#

t2
řn
i“1 }Zi}2ψ1

,
t

max1ďiďn }Zi}ψ1

+¸

,

where c ą 0 is an absolute constant. In other words, with probability at least 1 ´ η, we have

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ď max

$

&

%

g

f

f

e

1

c

n
ÿ

i“1

}Zi}2ψ1
log

ˆ

2

η

˙

,
1

c
max
1ďiďn

}Zi}ψ1
log

ˆ

2

η

˙

,

.

-

.

Lemma S.8.2 (Concentration for median-of-means (MOM) estimator, adapted from Theorem 2 of Lugosi
and Mendelson (2019)). Let W1, . . . ,Wn be i.i.d. random variables with mean µ and variance bounded by σ2.
Suppose we split the data tW1, . . . ,Wnu into B batches T1, . . . , TB. Let pµb be sample mean computed on Tb
for b “ 1, . . . , B. Define

pµMOMB :“ medianppµ1, . . . , pµBq.

Then, we have

P
!

ˇ

ˇ

pµMOMB ´ µ
ˇ

ˇ ą σ
a

4B{n
)

ď expp´B{8q.

Thus, letting 0 ă η ă 1 be a real number, B “ r8 logp1{ηqs, with probability at least 1 ´ η,

ˇ

ˇ

pµMOMB ´ µ
ˇ

ˇ ď σ

c

32 logp1{ηq

n
.
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With B “ r8 logp1{ηqs, we use the notation MOMptW1, . . . ,Wnu, ηq for pµMOMB , that is,

MOMptW1, . . . ,Wnu, ηq :“ pµMOMr8 logp1{ηqs. (E.145)

Moment bounds. The following two moment bounds imply Lemmas S.8.5 and S.8.6 that are used in the
proofs of Proposition 3.14 and Corollary 4.9 in Section S.3 and Section S.5, respectively.

Lemma S.8.3 (Moment bound on centered linear form, adapted from Lemma 7.8 of Erdos and Yau (2017)).
Let Z P Rp be a random vector containing i.i.d. entries Zi, i “ 1, . . . , n, such that for each i, ErZis “ 0,
ErZ2

i s “ 1, and Er|Zi|
ks ď Mk. Let a P Rp be a deterministic vector. Then,

Er|aJZ|qs ď CqMq}a}
q
2

for a constant Cq that only depends on q.

Lemma S.8.4 (Moment bound on centered quadratic form, adapted from Lemma B.26 of Bai and Silverstein
(2010)). Let Z P Rn be a random vector with i.i.d. entries Zi, i “ 1, . . . , n, such that for each i, ErZis “ 0,
ErZ2

i s “ 1, and Er|Zi|
ks ď Mk for k ą 2 and some constant Mk. Let A P Rpˆp be a deterministic matrix.

Then, for q ě 1,
E
“

|ZJAZ ´ trrAs|q
‰

ď Cq
␣

pM4 trrAAJsqq{2 `M2q trrpAAJqq{2s
(

for a constant Cq that only depends on q.

Asymptotic statements

As a consequence of Lemma S.8.3 and Lemma S.8.7, we have the following concentration of a linear form
with independent components.

Lemma S.8.5 (Concentration of linear form with independent components). Let Z P Rp be a random
vector with i.i.d. entries Zi, i “ 1, . . . , p such that for each i, ErZis “ 0, Er|Zi|

4`αs ď Mα for some constant
Mα ă 8. Let A P Rp be a random vector independent of Z such that lim supp }Ap}2{p ď Mn almost surely

for a constant Mn ă 8. Then, AJZ{p Ñ 0 almost surely as p Ñ 8.

As a consequence of Lemma S.8.4 and Lemma S.8.7, we have the following concentration of a quadratic form
with independent components.

Lemma S.8.6 (Concentration of quadratic form with independent components). Let Z P Rp be a random
vector with i.i.d. entries Zi, i “ 1, . . . , p such that for each i, ErZis “ 0, ErZ2

i s “ 1, Er|Zi|
4`αs ď Mα for

some α ą 0 and constant Mα ă 8. Let D P Rpˆp be a random matrix such that lim sup }D}op ď Mo almost
surely as p Ñ 8 for some constant Mo ă 8. Then, ZJDZ{p´ trrDs{p Ñ 0 almost surely as p Ñ 8.

Lemma S.8.7 (Moment version of the Borel-Cantelli lemma). Let tZnuně1 be a sequence of real-valued
random variables such that the sequence tE|Zn|quně1 is summable for some q ą 0. Then, Zn Ñ 0 almost
surely as n Ñ 8.
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S.9 Notation

Below we list general notation used in this paper. Table 1 at the end of the manuscript provides a comprehensive
list of some of the specific notation used throughout.

• We denote scalar random variables in regular upper case (e.g., X), and vector and matrix random
variables in bold upper case (e.g., X). We use calligraphic letters to denote sets (e.g., D), and blackboard
letters to denote some specials sets listed next.

• We use N to denote the set of natural numbers. We use Q to denote the set of rational numbers, Qą0

to denote the set of positive rational numbers; R to denote the set of real numbers, Rě0 to denote the
set of non-negative real numbers, Rą0 to denote the set of positive real numbers; C to denote the set of
complex numbers, Cą0 to denote the upper half of the complex plane, i.e., Cą0 “ tz P C : Impzq ą 0u.

• For a real number a, paq` denotes its positive part, tau denotes its floor, ras denotes its ceiling, sgnpaq

denotes its sign. For a complex number z, Repzq denotes its real part, Impzq denotes its imaginary part,
z denote its conjugate, |z| denotes its absolute value.

• For a set A, |A| denotes its cardinality, AA denotes its complement, 1A denotes its indicator function.
For a function f , B{Bxrf s denotes its partial derivative with respect to variable x. We also use f 1 to
denote derivative of f when it is clear from the context.

• For an event A, PpAq denotes its probability, and 1A its indicator random variable. For a random
variable X, ErXs denotes its expectation, VarpXq “ ErpX´ErXsq2s denotes its variance; ErXrs denotes
its r-th moment, Er|X|rs denotes its r-th absolute moment, }X}Lr “ pEr|X|rsq1{r denotes its Lr norm,
for a real number r ě 1; }X}ψ denotes its ψ norm for an Orlicz function ψ; see Section 2.2 for more
details.

• For a vector a P Rp, }a}r denotes its ℓr norm for r ě 1, }a}A “
?
aJAa denotes its norm with respect

to a positive semidefinite matrix A P Rpˆp.

• For a matrix A P Rnˆp, AJ P Rpˆn denote its transpose, A: P Rpˆn denotes the its Moore-Penrose
inverse, }A}op denotes its operator norm, }A}tr denotes its trace norm or nuclear norm (}A}tr “

trrpAJAq1{2s “
ř

i σipAqq, where σ1pAq ě σ2pAq ě . . . denote its singular values in non-increasing
order. For a square matrix A P Rpˆp, trrAs “

řp
i“1Aii denotes its trace. A p-dimensional identity

matrix is denoted as Ip or simply I when it is clear from the context.

• For a pˆp positive semidefinite matrix A with eigenvalue decomposition A “ V RV J for an orthonormal
matrix V and a diagonal matrix R, and a function f : Rě0 Ñ Rě0, we denote by fpAq the pˆp positive
semidefinite matrix V fpRqV J, where fpRq is a pˆ p diagonal matrix obtained by applying the function
f to each diagonal entry of R.

• For two sequences of matrices An and Bn, we use the notation An » Bn to denote a certain notion
of asymptotic equivalence; see Section S.7 for more details. For symmetric matrices A and B, A ĺ B
denotes the Loewner ordering to mean that the matrix B ´A is positive semidefinite.

• We write a — b when there exist absolute constants Cl and Cu such that Cl ď a{b ď Cu. We write
a À b when there exists an absolute constant C such that a ď Cb.

• We use O and o to denote the big-O and little-o asymptotic notation, respectively. We use Op and op
to denote the probabilistic big-O and little-o asymptotic notation, respectively. We denote convergence

in probability by
p

ÝÑ, almost sure convergence by
a.s.

ÝÝÑ, weak convergence by
d

ÝÑ.

• Finally, we use generic letters C,C1, C2, . . . to denote constants whose value may change from line to
line.
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Notation Meaning (Location in the paper)

pX,Y q feature vector X P Rp and response variable Y P R (Section 2.1)
Dn “ tpXi, Yiquni“1 dataset with n observations pXi, Yiq, 1 ď i ď n (Section 2.1)
pfp¨;Dnq : Rp Ñ R predictor fitted on dataset Dn using prediction procedure pf (Section 2.1)
ℓ : R ˆ R Ñ Rě0 non-negative loss function (Section 2.1)

ℓpY0, pfpX0;Dnqq prediction loss of predictor pfp¨;Dnq evaluated at test point pX0, Y0q (Section 2.1)

Rp pfp¨;Dnqq prediction risk of predictor pfp¨;Dnq (5)
pRp pfp¨;Dnqq estimator of prediction risk of pfp¨;Dnq (Section 2.1)

pf cvp¨;Dnq cross-validated predictor fitted using dataset Dn (Algorithm 1)
pfξ, ξ P Ξ collection of prediction procedures indexed by set Ξ (Algorithm 1)
ntr, nte number of train and test observations (Algorithm 1)
Dtr,Dte random split of Dn into train and test datasets with ntr and nte observations (Algorithm 1)
Itr, Ite disjoint subsets of In :“ t1, . . . , nu that are index sets for Dtr and Dte (Algorithm 1)
CEN, AVG, MOM centering procedure, averaging, median-of-means (2, 3)
η parameter in median-of-means (E.145)

∆add
n , ∆mul

n error terms in the additive and multiplicative oracle risk inequalities (6a, 6b)
pσξ, pσΞ conditional second moment of loss and their max over Ξ (Lemmas 2.4 and 2.5)
pκξ, pκΞ conditional kurtosis-like parameter of loss and their max over Ξ (Lemmas 2.9 and 2.10)

}ℓpY0, pfpX0;Dnqq}ψ1|Dn
conditional ψ1 norm of prediction loss (9)

}ℓpY0, pfpX0;Dnqq}Lr|Dn
conditional Lr norm of prediction loss (r ě 1q (10)

rβridge, rβlasso, rβmn2, rβmn1 ridge, lasso, min ℓ2, ℓ1-norm least squares estimation procedures (20–24)
rfmn2, rfmn1 min ℓ2, ℓ1-norm least squares prediction procedures (22, 25)

pf zsp¨;Dnq zero-step predictor fitted on dataset Dn (Algorithm 2)
ν P p0, 1q exponent for block sizes tnνu in zero-step prediction procedure (Algorithm 2)
nξ n´ ξtnνu (Algorithm 2)
M number of sub-samples for averaging for zero-step ingredient predictor (26)

Dξ,j
tr , 1 ď j ď M random subset of Dtr of size nξ (Algorithm 2)

rfp¨;Dξ,j
tr q zero-step ingredient predictor fitted on dataset Dξ,j

tr using base prediction procedure rf (26)

Rdetpm; rfq deterministic approximation to Rp rfp¨;Dmqq (Definition 3.2)

Rdet
Õ pn; rfq monotonized deterministic approximation at sample size n under general asymptotics (30)

PA(γ) proportional asymptotics regime (PA(γ))
DETPA-0 assumption of deterministic risk approximation to conditional risk under PA (DETPA-0)
DETPAR-0 reduction of assumption DETPA-0 (Lemma 3.8, DETPAR-0)

Rdetppm{m; rfq deterministic risk approximation at aspect ratio pm{m under PA (Section 3.3.1)
ξ‹
n optimal sequence of ξ for zero-step monotonized risk approximation (30, DETPA-0)

PRG-0-C1,C2 deterministic risk approximation program for zero-step (PRG-0-C1)–(PRG-0-C2)
km, pm sample size and feature size when verifying zero-step profile assumption (Lemma 3.8)
ρ2, σ2, SNR signal energy, noise energy, signal-to-noise ratio (ρ2/σ2) (Section 3.4)
Rdet

mn2pϕ; ρ2, σ2q MN2LS risk approximation at aspect ratio ϕ, signal energy ρ2, noise energy σ2 (60)
rf8p¨;Dtrq zero-step ingredient predictor fitted on Dn with M “ 8 (62)

pfosp¨;Dnq one-step predictor fitted on dataset Dn (Algorithm 3)
pn1,ξ1 , n2,ξ2q pn´ ξ1tnνu, ξ2tnνuq (Algorithm 3)

pDξ1,j
tr ,Dξ2,j

tr q, 1 ď j ď M random pairs of disjoint subsets of Dtr of sizes pn1,ξ1 , n2,ξ2q (Algorithm 3)
rfp¨;Dξ1,j

tr ,Dξ2,j
tr q one-step ingredient predictor fitted on datasets pDξ1,j

tr ,Dξ2,j
tr q (43)

DETPA-1, DETPA-1* assumption of deterministic risk approximation to conditional risk under PA (DETPA-1)
DETPAR-1 reduction of assumption DETPA-1 (Lemma 4.1, DETPAR-1)

Rdetpp{n1, p{n2; rfq risk approximation of ingredient one-step predictor at aspect ratios pp{n1, p{n2q (Section 4.3.1)
pξ‹

1,n, ξ
‹
2,nq optimal pair of sequence of ξ for one-step monotonized risk approximation (45)

PRG-1-C1,C2,C3 deterministic risk approximation program for one-step (PRG-1-C1)–(PRG-1-C3)
k1,m, k2,m, pm sample size and feature sizes when verifying one-step profile assumption (Lemma 4.1)
wi, ri, 1 ď i ď pm eigenvectors and eigenvalues of feature covariance matrix Σ P Rpmˆpm (Section 4.3.2)
pQn, Q a certain random distribution and its weak limit (E.69)
Hpm , H empirical distribution of eigenvalues of Σ and limiting spectral distribution (53)
vp0;ϕ2q, rvp0;ϕ2q, rvgp0;ϕ2q,Υbpϕ1, ϕ2q scalars in risk approximation of one-step procedure with linear base procedure (55–58)
Rdet

mn2pϕ1, ϕ2; ρ2, σ2q MN2LS one-step risk approx at aspect ratios pϕ1, ϕ2q, signal energy ρ2, noise energy σ2 (60)

Table 1: Summary of some of the main notation used in the paper.
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