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Abstract

We characterize the squared prediction risk of ensemble estimators obtained through sub-
agging (subsample bootstrap aggregating) regularized M-estimators and construct a consistent
estimator for the risk. Specifically, we consider a heterogeneous collection of M ≥ 1 regular-
ized M-estimators, each trained with (possibly different) subsample sizes, convex differentiable
losses, and convex regularizers. We operate under the proportional asymptotics regime, where
the sample size n, feature size p, and subsample sizes km for m ∈ [M ] all diverge with fixed lim-
iting ratios n/p and km/n. Key to our analysis is a new result on the joint asymptotic behavior
of correlations between the estimator and residual errors on overlapping subsamples, governed
through a (provably) contractible nonlinear system of equations. Of independent interest, we
also establish convergence of trace functionals related to degrees of freedom in the non-ensemble
setting (withM = 1) along the way, extending previously known cases for square loss and ridge,
lasso regularizers.

When specialized to homogeneous ensembles trained with a common loss, regularizer, and
subsample size, the risk characterization sheds some light on the implicit regularization effect
due to the ensemble and subsample sizes (M,k). For any ensemble size M , optimally tuning
subsample size yields sample-wise monotonic risk. For the full-ensemble estimator (when M →
∞), the optimal subsample size k⋆ tends to be in the overparameterized regime (k⋆ ≤ min{n, p}),
when explicit regularization is vanishing. Finally, joint optimization of subsample size, ensemble
size, and regularization can significantly outperform regularizer optimization alone on the full
data (without any subagging).

1 Introduction

Ensemble methods combine predictions of multiple models to improve predictive accuracy [HTF09].
Among these methods, bagging (bootstrap aggregating) trains individual models on bootstrapped
samples of the dataset and averages their predictions to reduce variance and mitigate overfitting
[Bre96]. A popular variant of bagging, known as subagging (subsample bootstrap aggregating),
trains models on random subsamples rather than full bootstrapped samples [BY02]. Apart from the
computational advantages, subagging can substantially improve predictive performance, especially
in the overparameterized regimes and near model interpolation thresholds [PKWR22]. In this paper,
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Table 1: Landscape of subagging risk analysis in high dimensions. We summarize the various settings
(estimator structure and data structure) of some of the recent works that characterize the prediction risk of
subagging regularized M-estimators trained with loss function loss and regularization function reg (defined in
Section 2). Convex• denotes that in addition to being convex, we require the loss function to be differentiable
and have Lipschitz continuous derivatives. By RMT features, we refer to features of the form x = Σ1/2v
where v contains independent entries of bounded moments (of order 4+) that are common in the random
matrix theory literature. Arbitrary▲ response y refers to no additional modeling assumption on the response
other than bounded moments (of order 4+). Signal and noise refer to θ and z in the linear data model:
y = x⊤θ + z. Arbitrary■ signal and noise distributions Fθ and Fz refer to general marginal distribution on
the coordinates of signal θ and noise z, respectively, subject to mild regularity conditions (Assumption D).

Loss Penalty Features Covariance Response Signal Signal Dist. Noise Dist.
Reference

(loss) (reg) (x) (Σ) (y) (θ) (Fθ) (Fz)

Square Gaussian Isotropic Linear Random Gaussian Gaussian [LJB20]
Square Ridge RMT Anisotropic Linear Deterministic Bnd. Mom. [PDK23]
Square Ridge RMT Anisotropic Arbitrary▲ [PD23]
Huber Gaussian Isotropic Linear Deterministic Arbitrary■ [BK24]
Logistic Gaussian Isotropic Logistic Deterministic [BK24]
Convex Ridge Gaussian Isotropic GLM Random Gaussian [CVD+24]

Convex• Convex Gaussian Isotropic Linear Random Arbitrary■ Arbitrary■ Corollary 3

we analyze the squared prediction risk of subagging of regularized M-estimators trained with convex
loss and regularizer.

There is growing interest in understanding the prediction risk asymptotics of ensemble methods,
particularly subagging, across different types of predictors and under various data assumptions.
For example, [LJB20] study subagging in the context of ordinary least squares regression without
any explicit regularization in the underparameterized regime (where the number of subsamples is
higher than the number of features). This is extended to ridge and ridgeless regression by [PDK23]
for both the underparameterized and overparameterized regimes (where the number of subsamples
is lower than the number of features). [PD23] further generalizes these results and identifies explicit
equivalence paths between subsampled estimators and ridge regularized estimators. Beyond linear
and ridge regression, [BK24] examines the behavior of subagging in logistic and Huber regression
models without regularization. In addition to subagging, there has also been considerable work on
feature sketching and other ensemble methods. For instance, [LGR+22] and [PL24] study feature
sketching and ensembling to optimize predictive performance in high-dimensional settings. For other
recent developments in the analysis of ensemble methods and related work details, see Section 1.2.

We generalize these previous works by characterizing the prediction risk of subagging a collection
of M regularized M-estimators and constructing a consistent estimator for this risk. We allow
the collection to be heterogeneous, consisting of estimators trained with convex differentiable loss
function loss with Lipschitz continuous derivative and convex regularization function reg, which
can be non-differentiable and non-strongly convex (that includes ℓ1-regularized Huber regression,
for instance). We operate under the proportional asymptotics regime, where the sample size n,
feature size p, and subsample sizes km for m ∈ [M ] diverge while maintaining fixed limiting ratios
n/p→ δ ∈ (0,∞) and km/n→ cm ∈ (0, 1].1 Our results assume a linear response model y = x⊤θ+z
with isotropic Gaussian features x, a random signal θ with independent coordinates drawn from
an arbitrary marginal distribution Fθ, and noise variable z with an arbitrary distribution Fz, both

1Through the paper, we refer to n/p as inverse data aspect ratio and p/n as data aspect ratio of the design
X ∈ Rn×p, viewing n as the height and p as the width of the rectangular design matrix X.
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subject to a mild regularity condition. We summarize our main results below and situate them
within the context of recent related work in Table 1.

1.1 Summary of results and paper outline

A summary of our main results along with an outline for the paper is as follows.2

(a) Risk characterization and estimation. In Section 3, we obtain a precise characterization
of the squared risk of subagging of regularized M-estimators under proportional asymptotics
(Theorem 2 and Corollary 3). The asymptotic risk is governed by two nonlinear systems of
equations (Systems 1a and 1b) that depend on the loss and regularization functions loss, reg,
and the limiting subsample ratios cm form ∈ [M ] for the component estimators and the limiting
inverse data aspect ratio δ. System 1a is a known system that characterizes the asymptotic
risk of regularized M-estimators in non-ensemble settings [TAH18] (see Section 1.2 for more
details), while System 1b is a new contribution of this paper. Each scalar unknown in the
2-dimensional System 1b is shown to be the fixed-point equation of a contraction (Theorem 1-
(2)). This property plays a crucial role in proving the existence and uniqueness of the solution
to System 1b. This contraction property is also crucial in establishing the asymptotic behavior
of the inner products between estimator errors and their residuals for estimators trained on
overlapping subsamples (Theorem 2), leading to the subagged risk asymptotics (Corollary 3).
The contractility, along with a ridge smoothing technique, also allows us to maintain weak
assumptions on the regularizer, specifically allowing it to be non-strongly convex. Moreover,
we also construct a consistent estimator of the ensemble risk (Theorem 4 and Corollary 5),
which can be employed for data-adaptive tuning of hyperparameters such as loss functions,
regularizers, and subsample sizes.

(b) Homogeneous ensembles. In Section 4, we consider homogeneous ensembles (where com-
ponents are trained on the same loss and reg functions and a common subsample size k). In
Section 4.1, we analyze (oracle) optimal ensemble optimal risk with optimal ensemble size M⋆

and subsample size k⋆. We first establish the monotonicity of the risk with respect to the ensem-
ble sizeM (Proposition 6), illustrating the benefits of ensembling, which leads toM⋆ = ∞. We
then prove that the risk at the optimal subsample size k∗ decreases as the limiting data aspect
ratio p/n decreases (Proposition 7). In particular, this implies that the optimally subsampled
risk avoids the typical “double (or multiple) descents” observed in regularized M-estimators
without subagging. In Section 4.2, we specialize our main result to convex regularized least
squares (including ℓq-regularized least squares for q ≥ 1, such as ridge and lasso estimators)
and to general M-estimators (including regularized Huber regression). These recover and gen-
eralize various known results in the literature (see Section 4.2 for more details).

(c) Subagging and overparameterization. In Section 5, we investigate subagging of estimators
with vanishing regularization (λ→ 0+) and also contrast with estimators with optimal explicit
regularization (over λ ≥ 0). Our first insight is that when subagging estimators without any
explicit regularization, the optimal subsample size k∗ is in the overparameterized regime, re-
gardless of whether the original data aspect ratio p/n is overparameterized. In other words,
the optimal subsample size k⋆ satisfies k∗ ≤ min{n, p} in such cases. We verify this for the
lassoless (minimum ℓ1-norm interpolator) ensemble (Figure 5). This highlights the advantages
of overparameterization in subagging in that full-ensemble subsampled lassoless can outper-

2The source code for experimental verifications in this paper is available at the repository subagging-asymptotics.
The risk estimator proposed in this paper is also incorporated in the Python library sklearn-ensemble-cv [DP24b].
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form the optimal lasso on the full data (without any subagging). Our second insight is that the
joint optimization of the subsample size and explicit regularization parameter can outperform
optimizing explicit regularization alone on the full data. We verify this property for ensembles
of the lasso, unregularized Huber, and ℓ1-regularizer Huber (see Figure 6, 7 and Appendix D).
This highlights the benefits of subagging on top of optimal explicit regularization.

Independent results in the non-ensemble setting. In the process of characterizing the risk of
the subagging ensemble, we also establish the convergence of certain trace functionals (in particular,
see (13) below or the last three rows of Table 2). This implies that the observable adjustments de-
veloped in [Bel22] for inference using a single estimator converge to their deterministic counterparts
defined as solutions to the System 1a, unifying the mean-field asymptotics featuring System 1a of
[TAH18] and the inference results of [Bel22]. This was known only for the lasso [CMW23, Theo-
rem 8] and unregularized M-estimators [BK24]. These convergence results are new for regularized
estimators (beyond ridge and lasso) and robust loss functions (beyond squared loss) and are of
independent interest even for a single estimator (that is, in the non-ensemble setting with M = 1).

1.2 Other related work

Resampling methods, such as bagging and subsampling, are widely used in statistics and machine
learning. Given their broad applicability, there is a vast literature on these methods. In this section,
we provide an overview of the literature related to the risk analysis of ensemble methods, particularly
in high-dimensional regimes that have received considerable recent interest.

Classical work on bagging and subagging includes the work by [Bre96, Bre01, BY02], among others.
Beyond bagging, analysis of ensemble methods of different predictors includes smooth weak pre-
dictors [BS06, FH07], nonparametric estimators [BY02, LGR+22], and classifiers [HS05, Sam12].
Historically, there are also early works by [SK95, KS97] on risk asymptotics for ridge ensembles
under Gaussian features. We also mention here some other early work on ensembles, including:
[HS90, Per93, SK95, KS97]. For a comprehensive overview of early work on bagging and ensemble
methods in general, we refer readers to [PDK23].

Substantial progress has been made in the last decade in understanding the asymptotic behavior of
regularized M-estimators in high-dimensional settings, particularly under the proportional asymp-
totic regime where the number of features scales with the number of observations. Frameworks of
Approximate Message Passing (AMP) (developed in a series of papers [DMM09, DMM11, BM11a]),
Convex Gaussian Min-Max Theorem (CGMT) (developed in a series of papers [OTH13, OH16,
TOH15, TAH18]), and leave-one-out (LOO) and martingale-based analysis common in random
matrix theory (used in [EK13, Kar18], for example) have been instrumental in deriving the limiting
test risk, often as solutions to (nonlinear) systems of self-consistent equations. More specifically,
these include analyses of unregularized estimators [EKBB+13, EK13, Kar18, DM16, BBEKY13],
ridge estimator [DW18], lasso [BM11b, MM21], bridge estimators [WMZ18], logistic regression
[SC19, MLC19, SAH19], convex regularized M-estimators [TOH15, TAH18], among others. Re-
cently, triggered by the empirical success of neural networks that interpolate, these risk analyses
have been extended to interpolating estimators with vanishing regularization (in the overparame-
terized regimes that allow for interpolation), such as ridgeless [HMRT22], lassoless [LW21], max-
margin interpolators [MRSY19, DKT22, LS22]; see the survey papers [BMR21, Bel21] for other
related references.

Beyond individual regularized M-estimators, there has now been considerable interest over the last
few years in the analysis of ensembles of estimators in high-dimensional settings, especially in the

4



overparameterized regime just mentioned. In particular, [LJB20] consider least squares ensembles
obtained by subsampling such that the final subsampled dataset has more observations than the
number of features. The work of [PDK23] provides the characterization of the asymptotic risk of en-
sembles of ridge regression using results from Random Matrix Theory (RMT). Furthermore, recent
extensions by [DPK23, PD23] expand the scope of these results by establishing risk equivalences for
both optimal and suboptimal risks, considering arbitrary feature covariance and signal structures.
Other follow-up works for subagging of ridge and ridgeless regression include [CZYS23, AK23].
This paper develops tools to study ensembles of regularized estimators with general loss and regu-
larizers, beyond ridge regularization. For instance, our theory accommodates ℓ1-regularized Huber
regression.

Another line of research focuses on ensemble methods involving random features and feature sketch-
ing rather than subsampling. In random features models, the effect of ensembling on various compo-
nents of the risk has been studied in [AP20, dRBK20, LGR+22]. Recently, [PL24] analyze ensembles
of ridge regression with sketched features with asymptotically free sketching. There are also analy-
ses of alternative resampling and averaging techniques. For example, in the context of distributed
learning, [DS20, DS21, MRRK22] consider the divide-and-conquer approach, or splagging (split
aggregating), and investigate their properties for ridge and ridgeless predictors.

Very recently, [CVD+24] analyzed the limiting equations of several resampling schemes, including
bootstrap and resampling without replacement, and characterized self-consistent equations for the
limiting bias and variance functionals of estimators obtained by minimization of the negative log-
likelihood plus an additive ridge penalty. This is related to our risk characterization as [CVD+24]
also covers sampling without replacement, but our nonlinear systems (Systems 1a and 1b) char-
acterizing the subagging risk do not appear explicitly in their work, which instead focuses on
self-consistent equations for bias and variance functionals of the specific resampling scheme. The
results of [CVD+24] relies on the general AMP analysis and state evolution laid out in [LGR+22,
Lemmas B.3 and B.5], generalizing [BM11b]. This analysis requires the existence of unique solution
to the corresponding limiting system of equations, which is granted under strong convexity (e.g.,
with a ridge penalty), but was not established until the present paper for the case of ensembling of
subsampled regularized estimators.

Finally, complementary to risk characterization, there has also been considerable interest in the
cross-validation and model selection of ensemble methods. In particular, [DPK23] study cross-
validation for bagging of ridge regression. [BDK+24] examine the consistency of generalized cross-
validation (GCV) for estimating the prediction risk of arbitrary ensembles of regularized least
squares estimators for strongly convex penalties. They show that GCV is inconsistent for any
finite ensemble of size greater than one and identify a correction to GCV that is consistent for
any finite ensemble size, termed corrected GCV (CGCV). In this paper, we generalize one of the
data-dependent estimators proposed in [BDK+24] for the general setting of this paper, allowing for
general convex losses and heterogeneous component estimators in the ensemble. While we do not
attempt to interpret the estimator as a corrected GCV for homogeneous ensembles in the general
setting, it may be possible to perform such an analysis further, which we leave for future work.

The proof strategy in this paper extends the approach of [BK24], which studies the bagging of
unregularized M-estimators. While their analysis is based on a relatively simple 1-dimensional
nonlinear system, the new System 1b below is 2-dimensional, introducing additional complexity
to the analysis. The rise in complexity is similar to that from unregularized regression [EK13,
DM16, Kar18] and its 2-dimensional system to the 4-dimensional system of regularized M-estimators
[TAH18] given in System 1a. One challenge arises from the stochastic control of the trace terms
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in (13). In the unregularized case, these trace terms can be approximated by a straightforward
product of the norms of the error vector and residuals (see [BK24, Lemma 5.7]), and the stochastic
behavior of these norms are well-understood in the existing literature (cf. [TAH18, LGC+21]).
However, in the regularized case, the trace functional cannot be approximated by such a simple
expression, which prevents the direct application of these existing results based on the CGMT.
We overcome this by showing that, with high probability, the trace term is a stationary point of a
certain (random) strongly convex function. This allows us to control the perturbation of the trace
term through the behavior of the convex function (see Appendix A.4).

1.3 Notation

We denote scalars in the regular lower or upper case (e.g., a, A), vectors in bold lower case (e.g.,
a), and matrices in bold upper case (e.g., A). For a natural number n, the shorthand notation [n]
denotes the set {1, . . . , n}. For two real numbers x and y, we use x ∧ y to denote min{x, y}. For a
vector a, ∥a∥q denotes its ℓq-norm for q ≥ 1. If no subscript is present for the norm ∥u∥ of a vector
u, then it is assumed to be the ℓ2 norm of u. For a univariate function f and a vector a ∈ Rn, with
a slight overload of notation, we use f(a) ∈ Rn to denote the component-wise application of f to a.
We use diag[a] to denote the diagonal matrix whose entries are given by the vector a. Throughout,
we use 0, 1, and I to respectively denote the all-zero vector, all-one vector, and identity matrix of
varying dimensions, depending on the context.

For any proper, closed, convex function f : R → R, the proximal operator and Moreau envelope of
f with a parameter τ > 0 at a point x ∈ R are, respectively, denoted as:3

proxf (x; τ) := argmin
y∈R

f(y) +
1

2τ
(x− y)2 and envf (x; τ) := min

y∈R
f(y) +

1

2τ
(x− y)2. (1)

For a proper, closed, convex f , the argmin in (1) exists and is unique, and consequently x 7→
proxf (x; τ) is a well-defined function. Let ∂f denote the subdifferential of f , which is the set of all
subgradients of f . We jot down two key relationships between the proximal operator, subdifferential,
and Moreau envelopes of f below for the reader’s convenience:

∂

∂x
envf (x; τ) =

x− proxf (x; τ)

τ
∈ ∂f(proxf (x; τ)). (2)

For simplicity, we often use env′f (x; τ) to denote the partial derivative ∂
∂xenvf (x; τ).

4

Finally, we use OP and oP to denote probabilistic big-O and little-o notation, respectively, while
the convergences in probability are denoted by

p−→. Most other notation we use is standard and any
other non-standard notation is defined inline. For the reader’s convenience, we also give a quick
overview of the specific notation used in this paper in Table 4.

2 Setup and assumptions

We consider the standard supervised regression setting, in which we observe n data points (xi, yi)
for i ∈ [n]. The feature matrix X ∈ Rn×p contains x⊤

i in its i-th row and the response vector
y ∈ Rn contains yi in its i-th entry. We assume the following distribution on the dataset (X,y):

3Here R is the extended real line (that does two-point (+∞ and −∞) compactification of the real line).
4In general, for a bivariate function g(·; ·), we use the notation g′(·; ·) to denote the first partial derivative with

respect to the first argument.
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Assumption A (Data distribution). The distribution of (X, y) is specified by:

1. The design matrix X ∈ Rn×p has i.i.d. entries drawn from N (0, 1/p).

2. The response vector y = Xθ + z, where θ ∈ Rp is a random signal vector and z ∈ Rn is a
random noise vector, both independent of each other and of the feature matrix X, with:

(a) The signal vector θ ∈ Rp has i.i.d. entries drawn from distribution Fθ.

(b) The noise vector z ∈ Rn has i.i.d. entries drawn from distribution Fz.

We subsample the dataset (X,y) to create M subsampled datasets. Towards that end, define M
subsample index subsets Im ⊂ [n] of cardinality km = |Im| for m ∈ [M ]. The feature matrix
and response vector associated with the subsampled dataset (xi, yi) for i ∈ Im are denoted as
(XIm ,yIm). We assume the following sampling strategy for the subsample index sets {Im}m∈[M ]:

Assumption B (Subsampling strategy). Given deterministic integers {km ≥ 1}m∈[M ], the M
subsample index sets {Im}m∈[M ] are independent of (X,y) and are independently sampled from
the uniform distribution over subsets of [n] with cardinality km for each m ∈ [M ].

It is worth noting that if Im and Iℓ (for m ̸= ℓ) are any two independent subsample sets of
cardinality km and kℓ per Assumption B, then the cardinality of intersection |Im ∩ Iℓ| follows a
hypergeometric distribution with mean kmkℓ/n. Using the properties of the hypergeometric dis-

tribution, it follows that |Im ∩ Iℓ|/n
p−→ cmcℓ as both n, km, kℓ,→ ∞ with the subsample ratios

km/n → cm and kℓ/n → cℓ for some cm, cℓ ∈ (0, 1] (this follows from Chebyshev’s inequality and
the variance formula of the hypergeometric distribution, see Section S.8.1 of [PDK23] for more
details). Intuitively, each sample lands in a subsample Im with probability cm (the limiting ratio
|Im|/n) and in the overlap of two subsamples with probability cmcℓ (the limiting ratio |Im ∩ Iℓ|/n),
as the subsamples are drawn independently. The overlap between any two subsample sets Im and
Iℓ is thus of order n with high probability. The randomness in subsampling in Assumption B is
not important. Our results can accommodate deterministic sampling where the subsample sets
{Im}m∈[M ] are selected deterministically, provided that the ratios |Im|/n, Iℓ/n, and |Im ∩ Iℓ|/n
converge to non-zero constants.

For each subsampled dataset (XIm ,yIm) for m ∈ [M ], we define the regularized M-estimator θ̂m as

θ̂m(Im) ∈ argmin
b∈Rp

∑
i∈Im

lossm(yi − x⊤
i b) +

∑
j∈[p]

regm(bj). (3)

When defining (3), we allow the argmin operator to return any one of the minimizers (as emphasized
by the element notation in (3)). Here lossm and regm are the loss and regularization functions that
satisfy the following assumption for all m ∈ [M ]:

Assumption C (Loss and regularizer structure). The loss function loss : R → R is proper, closed,
convex, and differentiable with derivative loss′ Lipschitz continuous, and minx loss(x) = loss(0). The
regularizer reg : R → R is proper, closed, convex and minx reg(x) = reg(0).

The final ensemble estimator, constructed using the component estimators (3), is defined as:

θ̃M
(
{Im}m∈[M ]

)
:=

1

M

∑
m∈[M ]

θ̂m(Im). (4)
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For brevity, we omit the dependency of the component and ensemble estimators on Im and {Im}m∈[M ]

and simply write θ̂m and θ̃M , respectively, when it is clear from the context. We evaluate the per-
formance of the ensemble estimator θ̃M with respect to the signal parameter θ via:

RM :=
1

p
∥θ̃M − θ∥22.

Note that RM is the (excess) out-of-sample squared error in our setup because of isotropic features:
For an independently sampled test feature x0 ∈ Rp with i.i.d. entries drawn from N (0, 1/p), we
have RM = E[(x⊤

0 θ̃M −x⊤
0 θ)

2 | y,X, {Im}m∈[M ]]. We will refer to RM as the risk of the ensemble.
Observe that RM is a scalar random variable that depends on both the dataset (X,y) and the
random samples Im for m ∈ [M ]. The goal of the paper is to characterize the asymptotic behavior
of this random variable RM under the proportional asymptotics regime. In this regime, the sample
size n, feature size p, and subsample size km all diverge while keeping the appropriate ratios fixed:
we will assume the inverse data aspect ratio n/p→ δ ∈ (0,∞) and for each m ∈ [M ], the subsample
ratio km/n→ cm ∈ (0, 1] as n, p, km → ∞.

3 Risk characterization and estimation

In this section, we will first describe a general technical result on the correlations of the error and
residual vectors for regularized M-estimator in Section 3.1. We then state our general result on
the risk characterization of the ensemble estimator in Section 3.3 and construct a consistent risk
estimator for this risk in Section 3.4.

3.1 Asymptotics of correlations of estimator and residual errors

To state the risk characterization of the ensemble estimator, we first introduce two important
nonlinear systems of equations: Systems 1a and 1b. Intuitively, these systems correspond to the
corner cases where the ensemble sizeM = 1 andM = ∞, respectively. As we shall see in Section 3.3,
these systems completely determine the risk asymptotics of the ensemble estimator (4).

System 1a (Error norms of individual regularized M-estimator). Given a triple (loss, reg, cδ)
where cδ ∈ (0,∞) and loss, reg : R → R are convex functions, define the following 4-scalar
system of equations in variables (α, β, κ, ν):

α2 = E
[(

1
ν env

′
reg(Θ + β

νH; 1ν )−
β
νH
)2]

(5a)

β2 = E
[
env′loss(Z + αG;κ)2

]
· cδ (5b)

κβ = E
[(

1
ν env

′
reg(Θ + β

νH; 1ν )−
β
νH
)
· (−H)

]
(5c)

να = E
[
env′loss(Z + αG;κ) ·G

]
· cδ (5d)

where H ∼ N (0, 1), G ∼ N (0, 1), Θ ∼ Fθ, Z ∼ Fz, all mutually independent.

System 1a can be found in the literature, specifically in [TAH18, Equation 15]. To be precise, we
are applying the result of [TAH18] on the subsample estimator (3) using k = |Im| observations
with k/n → c, so that the limiting inverse aspect ratio k/p = k/n · n/p → cδ. System 1a is
known to characterize the limit in probability of the risk of (3) when |Im|/p → cδ: if (α, β, κ, ν)
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is a solution to System 1a, then p−1∥θ̂m − θ∗∥2 p−→ α2. The existence and uniqueness of the fixed-
point parameters in this system are central to applying results from the Convex Gaussian Min-
Max Theorem (CGMT) to derive precise risk characterization for regularized M-estimator (under
proportional asymptotics). This is guaranteed under conditions where both loss and reg are Lipschitz
and the problem parameters are such that the perfect signal recovery is not possible, leading to
non-zero asymptotic risk. For a detailed discussion on these conditions, see [BK23b]. Next, we
describe our second system for risk characterization of the ensemble estimators.

System 1b (Error correlations of overlapped regularized M-estimator). Given c, c̃ ∈ (0, 1]

and convex pairs of functions (loss, reg), (l̃oss, r̃eg), let (α, β, κ, ν) ∈ R4
>0 and (α̃, β̃, κ̃, ν̃) be

parameters that satisfy System 1a with (loss, reg, cδ) and (l̃oss, r̃eg, c̃δ), respectively. Define the
following 2-scalar system of equations in variable (ηG , ηH ) ∈ [−1, 1]2:[

ηG
ηH

]
=

[
Freg(ηH )
Floss(ηG)

]
(6)

where Floss, Freg : [−1, 1] → R are functions defined as:

Floss(ηG
) :=

√
cc̃ ·

E
[
env′loss(Z + αG;κ) · env′˜loss(Z + α̃G̃; κ̃)

]
E
[
env′loss(Z + αG;κ)2

]1/2 · E[env′˜loss(Z + α̃G̃; κ̃)2
]1/2

Freg(ηH
) :=

E
[(

1
ν · env′reg

(
Θ+ β

νH; 1
ν

)
− β

νH
)
·
(
1
ν̃ · env′r̃eg

(
Θ+ β̃

ν̃ H̃; 1
ν̃

)
− β̃

ν̃ H̃
)]

E
[(

1
ν · env′reg

(
Θ+ β

νH; 1
ν

)
− β

νH
)2]1/2 · E[( 1ν̃ · env′r̃eg

(
Θ+ β̃

ν̃ H̃; 1
ν̃

)
− β̃

ν̃ H̃
)2]1/2

(7a)

(7b)

where

(
G

G̃

)
∼ N (

([
0
0

]
,

[
1 η

G

η
G

1

])
,

(
H

H̃

)
∼ N (

([
0
0

]
,

[
1 η

H

η
H

1

])
, Θ ∼ Fθ, Z ∼ Fz, all mutually

independent.

System 1b is new and one of the main contributions of this paper. Note that the parameters (ηG , ηH )
in the system are correlation parameters (up to scaling factors) of the two random variables visible
inside expectations in (7a) and of the two random variables in (7b), respectively. By the Cauchy–
Schwarz inequality, the function Floss and Freg are uniformly bounded as |Floss(η)| ≤

√
cc̃ and

|Freg(η)| ≤ 1 so that any solution (ηG , ηH ) to the system (6) lies in the set [−1, 1] × [−
√
cc̃,

√
cc̃].

As stated, it is not immediately clear if System 1b admits any solution and whether it is unique.
Our first result establishes that this is indeed the case:

Theorem 1 (Existence, uniqueness, and sign pattern of solutions to System 1b). The functions
Floss and Freg defined in (7) satisfy the following properties:

1. |Floss(ηG)| <
√
cc̃ for all |ηG | < 1 and |Freg(ηH )| < 1 for all |ηH | < 1.

2. Floss and Freg are non-decreasing, differentiable, and the compositions Floss ◦ Freg and
Freg ◦ Floss are min{c, c̃}-Lipschitz.

3. If min{c, c̃} < 1, then System 1b admits a unique solution (η⋆
G
, η⋆

H
) ∈ (−1, 1)×(−

√
cc̃,

√
cc̃).

9



4. The signs of the solution (η⋆
G
, η⋆

H
) are characterized by the following sign pattern:

sign
([η⋆

G

η⋆
H

])
= sign

([Freg ◦ Floss(0)
Floss ◦ Freg(0)

])
(8)

where sign(x) := 1{x>0}−1{x<0} applies component-wise.

Some remarks on Theorem 1 are in order. Among the four properties listed in Theorem 1, the most
interesting is the second property: the two maps (Floss ◦ Freg, Freg ◦ Floss) are strict contractions.
Given this property, the third property (the uniqueness and existence of the solution) easily follows
from the Banach fixed-point theorem. We briefly explain this next. Indeed, if (η⋆

H
, η⋆

G
) is a solution

to System 1b, then η⋆
H

automatically satisfies the following 1-dimensional fixed-point equation:

η⋆
H
= Floss(η

⋆
G
) = Floss ◦ Freg(η

⋆
H
).

The other direction is also true in the following sense: if η⋆
H
is a solution to the fixed-point equation

ηH = Floss ◦ Freg(ηH ), then letting η⋆
G

= Freg(η
⋆
H
), we observe that the pair (η⋆

H
, η⋆

G
) satisfies

System 1b. Since Floss ◦Freg is a contraction mapping, the Banach fixed-point theorem implies that
such η⋆

H
uniquely exists. See Appendix A.1 for the full proof details. This contraction property

also certifies that the fixed-point iteration algorithm η(k+1)
H

= Floss ◦ Freg(η
(k)
H

), which we use in
our experiments to solve System 1b, numerically converges to the correct solution η⋆

H
exponentially

fast.

Since Floss and Freg are non-decreasing, combined with the fourth property in Theorem 1, we get a
simple sufficient condition which determines the sign of (η⋆

H
, η⋆

G
):

Floss(0) and Freg(0) are non-negative ⇒ η⋆
H

and η⋆
G
are non-negative.

Simplifying the denominators of Freg and Floss by (5a) and (5b), we can write Floss(0) and Freg(0)
as follows:

Floss(0) =
cc̃δ

ββ̃
· E
[
E
[
env′loss(Z + αG;κ) | Z

]
· E
[
env′

l̃oss
(Z + α̃G; κ̃) | Z

]]
,

Freg(0) =
1

νν̃αα̃
· E
[
E
[
env′reg

(
Θ+ β

νH; 1ν
)
| Θ
]
· E
[
env′r̃eg

(
Θ+ β̃

ν̃H; 1ν̃
)
| Θ
]]
.

In particular, if the same loss and regularizer are used, i.e., loss = l̃oss and reg = r̃eg, and the
subsample sizes are the same, i.e., k = k̃, then the solutions satisfying System 1b are same, i.e.,
(α, β, κ, ν) = (α̃, β̃, κ̃, ν̃), so that it is easy to see from the above formula that Floss(0) ≥ 0 and
Freg(0) ≥ 0. This means that the solutions (η⋆

G
, η⋆

H
) are non-negative when the same loss, regularizer,

and subsample size are used.

Another case such that the solutions (η⋆
G
, η⋆

H
) are positive is when loss and l̃oss are least squares and

reg and r̃eg are ridge (but possibly different regularization parameters). This is because env′f ; (x; τ)

is linear in x for any squared loss (and regularizer) of the form f(·) = λ(·)2 so that Floss(0) =
C1E[Z2] ≥ 0 and Freg(0) = C2E[Θ2] ≥ 0 for some positive constants C1, C2.

Remark 1 (Negative estimator error correlation). Let us take reg, r̃eg as the indicator functions

reg(x) = Π(−∞,−t](x) :=

{
+∞ x > −t
0 x ≤ −t

and r̃eg(x) = Π[t̃,+∞)(x) :=

{
+∞ x < t̃

0 x ≥ t̃

10



where t, t̃ ≥ 0 are non-negative constants. Note that the two sets, (−∞,−t] and [t̃,+∞), are disjoint.
Noting proxreg(x) = min{x,−t} and proxr̃eg(x) = max{x, t̃}, we have

Freg(ηH ) =
1

νν̃αα̃
E
[(

min
{
Θ+ β

νH,−t
}
−Θ

)
·
(
max

{
Θ+ β̃

ν̃ H̃, t̃
}
−Θ

)]
.

Thus, if Θ is included in the closed set [−t, t̃] with probability 1, then we have Freg(ηH ) ≤ 0 for all
ηH so that η⋆

G
= Freg(η

⋆
H
) is non-positive. This is intuitive as we will show in Theorem 2 that ηG

characterizes the limiting behavior of the correlations between two estimators trained on reg and
r̃eg.

We next show that the correlation parameters (ηG , ηH ) from System 1b are the limiting correlations
between the estimator and residual errors of estimators trained on overlapped samples. To do
so, besides Assumptions A–C, we will need mild regularity conditions that the loss and reg in
Assumption C need to satisfy in relation to the distribution Fθ and Fz of the signal and noise
coordinates in Assumption A.

Assumption D (Regularity conditions). Let Θ ∼ Fθ and Z ∼ Fz be the signal and noise random
variables as in Assumption A, and G ∼ N (0, 1), H ∼ N (0, 1), all mutually independent. In addition
to Assumption C, the functions loss : R → R and reg : R → R satisfy the following:

1. For all c ∈ R, we have

E[loss′+(cG+ Z)2] < +∞ and E[reg′+(cH +Θ)2] < +∞

where we define f ′+(x) := sups∈∂f(x) |s| for any convex function f .

2. P(Θ ̸= 0) > 0.

3. System 1a admits a unique positive solution (α, β, κ, ν) ∈ R4
>0.

4. There exists interval I ⊂ R where loss′ is strictly increasing. For each z ∈ R, the measure pZ(z)
of Z is either a Dirac delta function or it is continuous.

The conditions in Assumption D are similar to those assumed in [TAH18] when characterizing the
asymptotics for the non-ensemble case. The main difference is that we do not require the second
moment of Θ to be finite. These conditions ensure that the individual estimator and residual error
norms converge, i.e., ∥θ̂ − θ∥22/p

p−→ α2 and ∥loss′(y −Xθ̂)∥22/p
p−→ β2 hold, where α and β are

solutions to System 1a. (See Appendices A.5 and A.6 for proofs of convergences of error vector and
loss gradient norm squared under the relaxation of the conditions.)

For the upcoming statement, recall that when used on a vector, the loss and reg functions are
assumed to be operated component-wise. In addition, we denote the feature matrix and response
vector associated with the “overlapped” dataset (xi, yi) for i ∈ I ∩ Ĩ using (X

I∩Ĩ ,yI∩Ĩ).

Theorem 2 (Estimator and residual error correlation characterization). Let θ̂I and θ̂
Ĩ
be

component estimators (3) trained on subsamples (XI ,yI) and (X
Ĩ
,y

Ĩ
) corresponding to index

sets I and Ĩ with parameters (loss, reg) and (l̃oss, r̃eg). Under Assumptions A–D, as n, p, k, k̃ →
∞ with n/p→ δ ∈ (0,∞), k/n→ c ∈ (0, 1] and k̃/n→ c̃ ∈ (0, 1] with min{c, c̃} < 1, we have

p−1(θ̂I − θ)⊤(θ̂Ĩ − θ)
p−→ ηGαα̃

p−1loss′(y
I∩Ĩ −XI∩Ĩ θ̂I)

⊤ l̃oss
′
(y
I∩Ĩ −XI∩Ĩ θ̂Ĩ)

p−→ ηHββ̃,
(10)
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where (ηG , ηH ) is the solution to System 1b. Furthermore, for any i ∈ I ∩ Ĩ and j ∈ [p], there

exists a jointly normal (Gi, G̃i) with mean 0, variance 1 and correlation ηG and (Hj , H̃j) with
mean 0, variance 1 and correlation ηH (as in System 1b) such that the residuals and estimators
are jointly approximated as follows:

max
j∈[p]

E
[
1 ∧

∥∥∥(e⊤j θ̂I
e⊤j θ̂Ĩ

)
−

(
proxreg(θj +

β
νHj ;

1
ν )

proxr̃eg(θj +
β̃
ν̃ H̃j ;

1
ν̃ )

)∥∥∥2
2

]
= o(1), (11a)

max
i∈[n]

E
[
1
i∈I∩Ĩ ∧

∥∥∥(yi − x⊤
i θ̂I

yi − x⊤
i θ̂Ĩ

)
−
(
proxloss(zi + αGi;κ)

prox
l̃oss

(zi + α̃G̃i; κ̃)

)∥∥∥2
2

]
= o(1). (11b)

The proof is given in Appendix A.2.4. Put in words, ηG and ηH from System 1b encode the cosines

of the angles between the estimator errors and loss gradient residual errors of estimators θ̂I and
θ̂
Ĩ
respectively. It is worth noting that the proximal representations in (11a) and (11b) allow one

to provide limiting behavior of other functionals of the estimator and residual errors by assuming
further moments on the signal and error distributions Fθ and Fz; for example, we can characterize
the correlation between the raw residuals (rather than after applying the loss derivative) assuming
finite second moment of Fz or consider pseudo-Lipschitz functionals other than squared error.

The main difficulty in showing Theorem 2 is the non-trivial dependence between the two estimators
θ̂I and θ̂

Ĩ
as they share the samples X

I∩Ĩ . In the case of squared loss and ridge regularizer, the

estimators θ̂I and θ̂Ĩ have closed-form expressions, and prior work in [PDK23] explicitly analyze the
overlapped resolvents by developing conditional calculus of resolvents. However, for general loss and
regularizers, the overlapped terms are more challenging to analyze due to the lack of closed-form
expressions. Our strategy in this paper is to exploit the recently developed technique in [BK24] to
analyze the overlapped terms.

To prove Theorem 2, we show that the left-hand side of (10) concentrate around scalars indepen-
dent of X, and that these two scalars are approximate fixed-point of Floss ◦ Freg and Freg ◦ Floss,
respectively. This strategy of first proving the concentration of certain quantities and then obtaining
approximate fixed-point equations is reminiscent of the leave-one-out analysis of [EKBB+13, Kar18]
and was previously used in [BK24] to characterize the ensemble risk in unregularized M-estimators
(with no explicit penalty). The setting studied here is significantly more complicated than these
works due to the presence of robust loss functions, penalty functions, and shared samples between
θ̂I and θ̂

Ĩ
.

We believe that once the contractions of Floss◦Freg and Freg◦Floss have been found and the existence
and uniqueness of the solution to System 1b has been established, different techniques than those
used here and discussed in the previous paragraph could also be used to derive asymptotic results
similar to Theorem 2. For instance, after existence and uniqueness of the solution to System 1b
is established, there is hope to carry out an AMP analysis for matrix-valued parameters (see for
instance [LGR+22, Lemmas B.3 and B.5] or [JM13, GB23]), or by using the conditional CGMT
technique of [CM24, Appendix F]. However, we emphasize that these alternate techniques would also
first require to establish the structure of System 1b (as done in Theorem 1) in order to guarantee
the existence and uniqueness of the solution to System 1b, since such existence and uniqueness
result is required for both applying CGMT results and ensuring the convergence of AMP to the
regularized M-estimator.

Even though we assume the existence and uniqueness of the solution to System 1a, such existence
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Figure 1: Illustration of the asymptotics of the estimator and residual error norms and correlations of
overlapped regularized M-estimator.

and uniqueness have been established under slightly stronger assumptions in [BK23b], namely, for
Lipschitz loss and regularizer. We conjecture that the assumptions of Theorem 2 (in particular,
Assumption D) are sufficient for existence and uniqueness of a solution to System 1a without
requiring a Lipschitz condition on the loss and penalty. We believe that extending the analysis
[BK23b] to relax the Lipschitz assumption is a good starting point for this conjecture.

3.2 Interpretation of the parameters in Systems 1a and 1b

As mentioned earlier, the six parameters (α, β, κ, ν) and (ηG , ηH ) in Systems 1a and 1b essentially
characterize the asymptotic risk of the ensemble estimator. These deterministic parameters are
limits of various stochastic (observable) quantities that we now describe (see also Figure 1 for a
visual illustration).

Here θ̂I and θ̂
Ĩ
are the component estimators (3) trained on subsamples (XI ,yI) and (X

Ĩ
,y

Ĩ
)

corresponding to index sets I and Ĩ and parameters (loss, reg) and (l̃oss, r̃eg), respectively. We
further define the scalar dfI and the matrix VI by

dfI := tr[(∂/∂yI)XI θ̂I ], VI := (∂/∂yI)loss
′(yI −XI θ̂I) ∈ R|I|×|I| (12)

and similarly for Ĩ. Two scalars of interest, that relates the behavior of θ̂I to the scalars (κ, ν) in
System 1a, are dfI and tr[VI ].

Assuming squared loss, loss′(yI −XI θ̂I) = yI −XI θ̂I is simply the residual vector, and the matrix
VI simplifies to VI = I − (∂/∂yI)XI θ̂I , so that tr[VI ] = n − dfI . That is, for the square loss
case these quantities can all be related to the usual notion of effective degrees of freedom [Ste81].
The matrix (∂/∂yI)XI θ̂I is usually referred to as the “hat” or “smoothing” matrix (for linear
smoothers), whose trace is the effective degrees of freedom.
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Table 2: Interpretations of various limiting quantities appearing in Systems 1a and 1b. See
Section 3.2 for definitions and notations.

Interpretation Stochastic quantity Limit

Error vector norm squared ∥θ̂I − θ∥22/p α2

Loss gradient norm squared ∥loss′(yI −XI θ̂I)∥22/p β2

Inner product of error vectors (θ̂I − θ)⊤(θ̂Ĩ − θ)/p η
G
αα̃

Inner product of loss gradients loss′(yI∩Ĩ −XI∩Ĩ θ̂I)
⊤ l̃oss

′
(yI∩Ĩ −XI∩Ĩ θ̂Ĩ)/p η

H
ββ̃

Degrees of freedom dfI/p where dfI := tr[(∂/∂yI)XI θ̂I ] νκ

Residual degrees of freedom tr[VI ]/p where VI := (∂/∂yI)loss
′(yI −XI θ̂) ν

Generalized resolvent trace tr[(X⊤
I diag[loss′′(yI −XI θ̂I)]XI +diag[reg′′(θ̂I)])

−1] if reg is
twice differentiable and dfI/ tr[VI ] if reg is non-smooth

κ

If loss is no the squared loss, but loss′ is 1-Lipschitz (as in the Huber loss or several robust regression

losses), the quantities loss′(yI −XI θ̂I) is still related to a notion of residual vector, and tr[VI ] is
still related to a notion of degrees of freedom. By [Bel23, Lemma 9.1], the estimator θ̂I is the first
part of a solution (θ̂I , û) to the convex optimization problem

min
b∈Rp,u∈R|I|

∥yI −XIb− u∥22 +
p∑
j=1

reg(bj) +
∑
i∈I

h(ui),

where h : R → R is a deterministic convex function related to loss. The interpretation of this new
optimization problem is that in the presence of heavy-tailed errors or outliers in some components
of yI , we add additional variables (ui)i∈I to fit those outliers. As an example, for the Huber loss,

h(·) is proportional to the absolute value. The solution satisfies loss′(yI−XI θ̂I) = yI−XI θ̂I− û =

yI − [X | II ](θ̂⊤I | û⊤)⊤. That is, loss′(yI − XI θ̂I) is the residual vector of the optimization
problem with enlarged design matrix [XI | II ] ∈ R|I|×(|I|+p)]. Consequently, tr[VI ] equals |I| minus
the effective degrees-of-freedom of the estimate (θ̂⊤I , û

⊤) fitted using this enlarged design matrix.
With this in mind, we refer in Table 2 to tr[VI ] as residual degrees of freedom in general, and robust
residual degrees of freedom for the special case of the Huber loss.

Another interpretation of the matrix VI in (12) is the Hessian, with respect to yI , of the objective
value (3) at θ̂I . More precisely, with

F (yI) =
∑
i∈I

loss(yi − x⊤
i θ̂I) +

∑
j∈[p]

reg((θ̂I)j)

being the objective value at the minimizer, the envelope theorem gives (∂/∂yi)F (yI) = loss′(yi −
x⊤
i θ̂I). Differentiating once more reveals that VI in (12) is the Hessian of F (·) at yI and tr[VI ] is

the Laplacian. Since partial minimization preserves convexity and the objective function in (3) is
jointly convex in (b,y), the function F (·) is convex. This interpretation explains why VI is a positive
semi-definite matrix in cases where closed form expressions for VI are available (see Table 5).

The convergence of the estimator and residual error norms (first two rows of Table 2) is proved in
in [TAH18, CMW23, LGC+21] using the CGMT. Convergence of the corresponding inner products
(third, fourth row of Table 2) is novel and established in Theorem 2. The convergence

tr[VI ]/p
p−→ ν, dfI/p

p−→ νκ, dfI/ tr[VI ]
p−→ κ, (13)
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was so far only known for the lasso [CMW23, Theorem 8] or the square loss [Bel23, Corollary 3.2].
To our knowledge, the present paper is the first to establish the above convergence in probability
for regularized estimators and robust loss functions beyond the square loss. The proof is given in
Appendix A.4.

Assuming twice differentiable loss and reg functions, the parameter κ is also the limiting trace of a
resolvent-like matrix AI := (X⊤

I diag[loss
′′(yI −XI θ̂I)]XI +diag[reg′′(θ̂I)])

−1, which in the further
special case of square loss and squared regularizer (with regularization level λ) simplifies to the
standard ridge resolvent: AI = (X⊤

I XI + λI)−1. We refer to AI as the generalized resolvent for
convenience in Table 2.

3.3 Asymptotics of ensemble risk

Using the parameters in Systems 1a and 1b, we are now ready for our main result on the squared
risk asymptotics of the ensemble estimator. Observe that the squared risk of the ensemble estimator
θ̃M = 1

M

∑
m∈[M ] θ̂m can be decomposed into two terms:

1

p

∥∥θ̃M − θ
∥∥2
2
=

1

M2

∑
m∈[M ]

1

p
∥θ̂m − θ∥22 +

1

M2

∑
m,ℓ∈[M ]
m̸=ℓ

1

p
(θ̂m − θ)⊤(θ̂ℓ − θ).

Noting ∥θ̂m−θ∥22/p
p−→ α2

m and applying Theorem 2 to the cross term (θ̂m−θ)⊤(θ̂ℓ−θ)/p for each
m ̸= ℓ, we arrive at the following result:

Corollary 3 (General ensemble risk characterization). Suppose the assumptions of Theorem 2
hold. For m ∈ [M ], let αm be the parameter satisfying System 1a. For m, ℓ ∈ [M ], let ηG(m, ℓ)
be the parameter satisfying System 1b. Then, as n, p, k → ∞ with n/p → δ ∈ (0,∞) and
km/n→ cm ∈ (0, 1], we have

1

p

∥∥θ̃M − θ
∥∥2
2

p−→ RM :=
1

M2

∑
m∈[M ]

α2
m +

1

M2

∑
m,ℓ∈[M ]
m ̸=ℓ

ηG(m, ℓ) · αmαℓ. (14)

Since the parameters αm and ηG(m, ℓ) implicitly depend on δ and cm, the asymptotic risk RM

also implicitly depends on these parameters. For brevity, we will simply write RM unless we wish
to explicitly point out this dependence. The factor ηG captures the benefit of ensembling. It is
worth noting that a negative ηG (which intuitively corresponds to a component that does better in
a different direction) will improve the ensemble risk if the components themselves also have small
risks. This aligns with the higher level intuition in ensembling that one should ensemble predictors
that each does well, preferably on different parts of the input space.

3.4 Risk estimation

The risk characterization in Corollary 3 depends on the population-level characteristics (such as
the signal and noise distributions Fθ and Fz) and provides useful theoretical insights into the risk
behavior of the ensemble estimator in terms of these quantities. In practical applications, however,
the statistician needs to estimate the risk accurately to tune ensemble hyperparameters effectively
using the observed data (X,y). These hyperparameters include the choice of component estimators
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(through loss and reg), their level of regularization (regularization level for reg), the subsample sizes
(k), and the ensemble size (M). For this purpose, we next construct a data-dependent proxy for
the squared risk, which one can then tune with respect to various hyperparameters.

Definition 1 (Risk estimator component). Let θ̂I and θ̂Ĩ be the component estimators (3) trained

on subsamples (XI ,yI) and (X
Ĩ
,y

Ĩ
) corresponding to index sets I and Ĩ with parameters (loss, reg)

and (l̃oss, r̃eg). Corresponding to estimators θ̂I and θ̂
Ĩ
, define:

1. Degrees of freedom: dfI = tr[(∂/∂yI)XI θ̂I ] and df
Ĩ
= tr[(∂/∂y

Ĩ
)X

Ĩ
θ̂
Ĩ
].

2. Residual errors: r = yI −XI θ̂I and r̃ = y
Ĩ
−X

Ĩ
θ̂
Ĩ
.

3. Residual degrees of freedom: traces of VI = (∂/∂yI)loss
′(yI −XI θ̂I) and VĨ = (∂/∂y

Ĩ
)l̃oss

′
(y
Ĩ
−X

Ĩ
θ̂
Ĩ
).

Using these quantities, define an observable quantity EST
I,Ĩ

as follows:

EST
I,Ĩ

:=
1

n

∑
i∈[n]

(
ri + 1{i∈I}

dfI
tr[VI ]

loss′(ri)
)(
r̃i + 1{i∈Ĩ}

df
Ĩ

tr[V
Ĩ
]
l̃oss

′
(r̃i)
)

(15)

where 1Ω denotes the indicator function associated with event Ω.

The quantities tr[VI ] and dfI have explicit closed-form expressions for special choices of loss and
reg. Some of these are summarized in Table 5. We show next that EST

I,Ĩ
approximates well the

component of prediction risk corresponding to the inner product of estimator errors of θ̂I and θ̂
Ĩ
.

We then naturally construct a risk estimator for the prediction risk of the ensemble estimator.

Theorem 4 (Consistency of risk estimator component). In addition to Assumptions A–D,
assume that reg and r̃eg are strongly convex. Then we have

1

p
(θ̂I − θ)⊤(θ̂Ĩ − θ) +

∥z∥22
n

= EST
I,Ĩ

+OP(n
−1/2)

(
1 +

∥z∥2√
n

)
.

The risk estimator EST
I,Ĩ

is a generalization of the criterion originally proposed by [BS22] for non-
ensemble regularized M-estimator. Although in this paper we focus on the isotropic Gaussian design
Σ = Ip, the same argument in the proof of Theorem 4 works in the anisotropic design Σ ̸= Ip. As a
result, we can show that the EST

I,Ĩ
(without any modification) approximates p−1(θ̂I − θ)⊤Σ(θ̂

Ĩ
−

θ) + n−1∥z∥22 under the event that (tr[VI ], tr[VĨ ]) are bounded from below by a positive constant
as in [BS22, Theorem 5.3].

We believe that the strongly convexity assumption on reg in Theorem 4 is an artifact of our proof
(see Figure 2 for an illustration where reg is not strongly convex). Note that this type of assumption
of strong convexity has already been assumed in [BS22]. This assumption guarantees for free that the
coefficient df/ tr[V ] does not blow up. However, we emphasize that Theorem 2 and Corollary 3 for
risk characterization do not require the strong convexity assumption. The approximation argument
(see Appendix A.2.1) used to prove Theorem 2 and Corollary 3 in the non-strongly convex case
is again applicable in the context of Theorem 4, although it is not currently sufficient to conclude
a version Theorem 4 for non-strongly convex regularizers due to the difficulty of establishing the
continuity of dfI and tr[VI ] with respect to the perturbation parameter µ as µ→ 0 in (28).
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Equipped with the component risk estimator (15), we can now construct a consistent risk estimator
for the ensemble estimator (4):

Corollary 5 (General ensemble risk estimation). Fix M ≥ 1 and consider the ensemble esti-
mator θ̃M = 1

M

∑
m∈[M ] θ̂m where the component estimator θ̂m is trained with (lossm, regm)

on subsample Im for m ∈ [M ] as in (3). Define an estimator EST for the squared prediction
risk:

EST :=
1

M2

∑
m,ℓ∈[M ]

ESTm,ℓ

where ESTm,ℓ is ESTI,Ĩ as defined in (15) with (loss, reg, I) = (lossm, regm, Im) and (l̃oss, r̃eg, Ĩ) =

(lossℓ, regℓ, Iℓ). Then we have

1

p

∥∥θ̃M − θ
∥∥2
2
+

∥z∥22
n

= EST+OP(n
−1/2)

(
1 +

∥z∥2√
n

)
. (16)

If the noise distribution has enough moments, the guarantee (16) implies that EST approximates
the (full) prediction risk (that includes the irreducible error) of the ensemble estimator θ̃M under
Assumption A:

E
[(
y0 − x⊤

0 θ̃M
)2 | y,X, {Im}m∈[M ]

]
=

1

p
∥θ̃M − θ∥22 + E[Z2],

where (y0,x0) ∈ R × Rp is an independent test point sampled from the same distribution as
the training data (y,X) . More precisely, if the noise has a finite second moment, then EST is
consistent for the prediction risk. Furthermore, if the noise distribution has a finite fourth moment,
by the central limit theorem (on the terms involving noise averages), EST is

√
n-consistent for the

prediction risk. This rate is not improvable because, for the single ordinary least squares (OLS)
estimator (with loss(x) = x2/2, reg = 0, |I| = |Ĩ| = n) and Fz = N (0, 1), the risk estimator gives

EST = 1
n
∥y−Xθ̂ols∥22
(1−p/n)2

d
=

χ2
n−p

n(1−p/n)2 and the standard deviation of the χ2
n−p incurs an unavoidable term

of order n−1/2.

If the noise distribution Fz does not have a finite second moment but has a finite (1+ϵ)-moment for
ϵ ∈ [0, 1), then even if the estimator EST may not track the prediction risk (because the prediction
risk does not necessarily converge), minimizing EST is approximately equivalent to minimizing the
excess squared risk p−1∥θ̃M − θ∥22 (which does converge). This is because the moment assumption
implies

∑
i∈[n] z

2
i = oP(n

2/(1+ϵ)) (cf. [hp24]) so that (16) yields

1

p
∥θ̃M − θ∥22 = EST− ∥z∥22

n
+ oP(n

− ϵ
1+ϵ ),

where the subtraction term
∥z∥22
n is independent of hyperparameters (lossm, regm, Im)m∈[M ]. We

illustrate this in Figure 2 with noise following Student’s t2 distribution (that does not have a finite
second moment).

4 Homogeneous ensembles

While Corollary 3 applies for a generic heterogeneous ensemble (where regm, lossm, |Im| are allowed
to differ for distinct m), concrete theoretical insights can be obtained for the homogeneous case

17



0.1 1 2
Subsample aspect ratio p/k

1

2

Ex
ce

ss
 p

re
di

ct
io

n 
ris

k
Small Huber threshold

0.1 1 2
Subsample aspect ratio p/k

Large Huber threshold

Theoretical risk
Empirical risk
Estimated risk

M = 1
M = 1
M = 1

M = 2
M = 2
M = 2

M = 5
M = 5
M = 5

M = 50
M = 50
M = 50

M =

Figure 2: Risk of ℓ1-regularized Huber ensemble at different subsample aspect ratios p/k with ℓ1-
regularization parameter λ = 0.2 and varying ensemble size M in the underparameterized regime when
p/n = 0.1 and n = 5000. The solid lines represent the theoretical risks, the dashed lines represent the em-
pirical risks averaged over 50 simulations, and the shaded regions represent the standard errors. The data
model is given by Appendix D.4.2 where the noise follows Student’s t distribution t2. Left : Huber threshold
parameter 1. Right : Huber threshold parameter 5.

(where regm, lossm, |Im| are the same for every m). In the general heterogeneous case, the effect of
increasing ensemble size M is not straightforward, as in general we only have:

min
m∈[M ]

{α2
m}

?

⋚
1

M2

∑
m∈[M ]

α2
m +

1

M2

∑
m,ℓ∈[M ]
m ̸=ℓ

ηG(m, ℓ) · αmαℓ ≤ max
m∈[M ]

{α2
m}.

In other words, we will do no worse than the worst component but may not do better than the
best component. More ensembles may or may not improve performance depending on the risks of
individual estimators.5 In contrast, for homogeneous ensembles, we show in the next subsection
that increasing ensemble size does indeed help reduce the risk. This uniformity allows for more
concrete analytical results and practical insights.

4.1 Risk properties

For the homogeneous ensemble of component estimators trained with the same loss, reg, and sub-
sample size k, as n, p, k → ∞ with n/p→ δ ∈ (0,∞) and k/n→ c ∈ (0, 1], the limiting risk (14) is
given by:

RM =
1

M
R1 +

(
1− 1

M

)
R∞ where

{
R1 := α2 (non-ensemble risk),

R∞ := ηGα
2 (full-ensemble risk).

(17)

5Even if a predictor complements other predictors (in the sense that it has small or negative ηG with the other
predictors in the ensemble), it is only “beneficial” for the ensemble if it also has a small risk (αm) itself.
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Observe that the limit RM is simply a convex combination of the asymptotic risk of the single
estimator R1 and of the full-ensemble estimator R∞.6 (Note that when M → ∞, RM does indeed
converge to R∞, justifying the notation for the limit for the case when m ̸= ℓ.) As a sanity check,
note that in the special case when c = 1, the above setting corresponds to the non-ensemble case
discussed in [TAH18, Section 4].

The following result shows the advantage of ensembling. In the classical bagging and subagging
literature, it is well known that the risk of the ensemble estimator decreases as the ensemble size
increases, due to the reduction in variance that comes with having more predictors in the ensemble.
In the proportional asymptotic regime that we study in this paper, since subagging also introduces
bias, this is not immediate. A general result along these lines that verifies the monotonicity of the
risk of the ensemble itself (not the asymptotic limit) follows from Proposition 3.1 of [PDK23]; see
Equation (10) of [PDK23]. Below we verify that the asymptotic risk is strictly monotonic in M by
showing that ηG < 1 in general. This implies that the asymptotic risk is strictly decreasing in M .

Proposition 6 (Improvement due to ensembling). Fix the subsample ratio c = k/n ∈ (0, 1)
and let RM be the limiting risk as defined in (17). Then RM is strictly decreasing in the
number of ensembles M , i.e., RM+1 < RM for all M ∈ N.

The proof follows immediately because of the form of the ensemble risk (17) and the fact that
ηG < 1 when c < 1, which follows from Theorem 1 with c = c̃. This monotonicity in the ensemble
size M is illustrated by Figure 2 for the ensemble of ℓ1-regularized Huber regression7.

Because the risk decreases in M , the optimal ensemble size is M = ∞.8 However, it may not be
feasible to use an ensemble size of M = ∞. In practice, it suffices to use a large enough M that
gives a suboptimal risk close to the full-ensemble risk. For this purpose, a natural idea is to estimate
the risk of non-ensemble estimator M = 1 and the full estimator M = ∞, and obtain an estimate
for the risk of M -ensemble using the relationship in (17). This is very similar to the extrapolated
cross-validation estimator (ECV) of [DPRK24] which estimates the risk of M = 1 and M = 2.

We also show that for any ensemble size M , when the subsample ratio c is optimized, the resulting
risk decreases in the inverse data aspect ratio δ = limn/p. To prepare for the forthcoming statement,
let us write the limiting riskRM in (17) byRM (δ, c) to make the dependence on the limit δ = limn/p
and subsample ratio c = k/n clear. With this notation, we can say the following about the optimally
subsampled risk.

Proposition 7 (Monotonicity of optimal subsample risk). The map δ 7→ infc∈(0,1]RM (δ, c) is
non-increasing over δ ∈ (0,∞) for all M ∈ N.

A consequence of this proposition is that the risk of the optimal ensemble estimator is decreasing in
the sample size n for a fixed (large enough) feature size p. Moreover, combined with Proposition 6,

6The reason we call this the “full” ensemble is that the ensemble estimator θ̂M when M → ∞ is almost surely
equal (coordinate-wise and conditioned on the data) to an ensemble estimator fitted on all possible (and distinct)

(
n
k

)
subsamples of size k; see Lemma A.1 of [DPK23] for a precise statement and proof.

7The Huber loss is defined as loss(x) = x2

2ρ
1(|x| ≤ ρ)+ (|x|− ρ

2
)1(|x| > ρ), where ρ is a positive constant, referred

to as the Huber parameter.
8In practice, setting M =

(
n
k

)
suffices by only averaging over estimators trained on distinct subsamples (see

Appendix A.1 of [DPK23] for more details), but this still can be quite large.
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Figure 3:Optimal subsample risk of the Huber lasso ensemble is monotonic in the data aspect ra-
tio. Risks of the ℓ1-regularized Huber and optimal ℓ1-regularized Huber ensemble, for fixed ℓ1-regularization
parameter λ = 0.5 and varying Huber parameter ρ, at different data aspect ratios p/n ranging from 0.1 to
10. The data model is given in Appendix D.4.2. Left : noise follows Student’s t distribution t2 and Huber
parameter ρ = 1. Middle: noise follows Student’s t distribution t2 and Huber parameter ρ = 5. Right : noise
follows Student’s t distribution t10 and Huber parameter ρ = 1.

we also have that this monotonic risk profile lies below the function R1(δ, 1), the risk profile of the
original predictor trained once on the full dataset (X,y) with no ensembling (the risk of which, as
we discussed above, can be non-monotonic). Such monotonicity in the inverse data aspect ratio is
important because it ensures that increasing the amount of data relative to features consistently
improves the estimator’s performance. In a sense, a monotonic decrease in risk with the optimal
subsample ratio certifies that the model effectively utilizes all the additional data, leading to better
performance as the data size grows. This result is illustrated in Figure 3 for the ℓ1-regularized
Huber regression.

4.2 Examples and connections to literature

In this section, we specialize the general risk characterization in Corollary 3 in several examples
of interest. Throughout this section, we will consider ensembles of component predictors trained
on the same loss, reg (with a tuning parameter λ), and subsample size k. We begin by considering
convex regularized least squares, with further specialization to bridge, ridge, and lasso. We then
consider general ridge regularized estimators allowing for non-squared loss in Section 4.2.2 with
further specialization to the Huber loss. For the reader’s convenience, the proximal operators, their
derivatives, Moreau envelopes, and their derivatives for the ridge and lasso regularization and Huber
loss functions are recalled in Table 6.

4.2.1 Ensembles of regularized least squares

In this section, we consider subagging regularized least squares. Given a common regularizer reg
and a regularization parameter λ > 0, the component estimators are given by:

θ̂m := argmin
b∈Rp

1

2
∥yIm −XImb∥22 + λ

∑
j∈[p]

reg(bj).

Now Assumption D-(1) translates to having a bounded second moment of the noise distribution
Fz, which we denote by σ2. Using the explicit formula proxloss(x; τ) = x/(1 + τ) for loss(x) = x2/2
and performing some change of variables, the risk convergence in (17) holds with (R1,R∞) given
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by:
R1 = τ2 − σ2 and R∞ = ξ2 − σ2,

where τ and ξ are the solutions to the following systems:

System 2 (Ensembles of regularized least square). Given λ ∈ (0,∞), δ ∈ (0,∞), c ∈ (0, 1],
σ2 ∈ [0,∞), define the following 2-scalar system of equations in variables (τ, a):

τ2 = E
[(
proxreg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)2]
+ σ2,

λ√
cδ

= aτ
(
1− 1

cδE
[
prox′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)])
,

(18a)

(18b)

where H ∼ N (0, 1) and Θ ∼ Fθ are independent. Given (τ, a) ∈ R2
>0 that satisfy the above

systems, define the following 1-scalar system of equations in variable ξ:

ξ2 = E
[(
proxreg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)
·
(
proxreg

(
Θ+ τ√

cδ
H̃; aτ√

cδ

)
−Θ

)]
+ σ2 (19a)

where

(
H

H̃

)
∼ N (

([
0
0

]
,

[
1 η

H

η
H

1

])
with ηH = c

ξ2

τ2
, and Θ ∼ Fθ independent.

Compared to Systems 1a and 1b, the parameterization in System 2 is slightly different. This is done
to match the result with some of the existing results for regularized least squares (for M = 1). The
invertible transformations are given by: a = λ

β , τ =
√
cδ βν , and ξ

2 = ηGα
2 + σ2. These parameters

also have interpretations as in Section 3.2, summarized below.

Remark 2 (Interpretation of parameters in System 2). The parameter τ2 is simply the (full)
prediction risk of the non-ensemble estimator in the limit, which is α2 + σ2. Note that τ2 ≥ σ2

and is sometimes referred to as effective “inflated” noise variance due to the high dimensionality

[DMM09, BM11b]. Moreover, the fact that τ2 = (cδ)β2

ν2
= β2/(cδ)

ν2/(cδ)2
is also at the core of consistency

of generalized cross-validation (discussed in Section 3.4) for the non-ensemble estimator. Here, the
numerator is the asymptotic training error and the denominator is the asymptotic degrees of free-
dom correction.9 The parameter aτ is the effective threshold parameter at which one applies the
proximal operator to the noise-inflated effective observation and appears in approximate message
passing (AMP) formulations [DMM09]. The parameter a serves as a proportionality constant be-
tween the effective threshold aτ and standard deviation τ of the inflated effective noise. Finally,
the parameter ξ2, which is the main contribution of this paper, is the full-ensemble predictor risk
(when M → ∞), which is also ηGα

2 + σ2.

In the following, we isolate some special cases of regularized M-estimators to compare with existing
work.

Remark 3 (Bridge ensembles). Bridge estimators are also known as ℓq-regularized least squares
and are a popular class of regularized M-estimator [FF93, Fu98]. For ℓq regularizer regq(x) = |x|q,
the risk of the bridge forM = 1 is derived in [WMZ18, WWM20] for general q ∈ [1, 2]. For instance,
we recover [WMZ18, Theorem 2.1] by changing of variables (λ′,Θ′) = (λ/

√
cδ,

√
cδΘ) such that

the limiting prediction risks match τ ′ = τ .10 Equation (19a) generalizes it for any M ≥ 1. Further

9Observe that the factors of cδ arise because both the asymptotic training error β2 and the asymptotic degrees of
freedom correction ν are defined with normalization of p in Table 2.

10The parameter a requires the following change: a′ = (cδ/τ2)(1−q)/2a in the two systems.
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special boundary cases of q = 2 (ridge) and q = 1 (lasso) are further isolated in the next two
remarks.

Remark 4 (Ridge ensembles). For ridge regression when q = 2, System 2 recovers Theorem 4.1 of
[PDK23] under isotropic features, using a slight change of variables (λ′,Θ′) = (λ/

√
cδ,

√
cδΘ). The

solution v to the (limiting) Stieltjes transform of the spectrum of the sample gram matrix therein
satisfies that v = (aτ)−1. For ridge ensembles, there is a deeper connection between R1 and R∞. It
turns out that R∞(λ, c) is exactly equal to R1(µ, 1) for a new level of regularization µ = v−1 ≥ λ
that depends on c (and properties of the data distribution). The lower the subsampling proportion
of c, the higher the value of this implicit regularization µ. There are entire paths of equivalences in
the (λ, c) plane where not only are the asymptotic squared risks the same, but also the estimators
themselves are equivalent. In a sense, one can think of the combined effect of subsampling and
ensembling as an additional (implicit) ridge regularization. The prediction risk equivalences are
first proved in [DPK23] and later generalized to other risks and estimator equivalences in [PD23].

Remark 5 (Lasso ensembles). For the lasso predictor when q = 1, the first set of equations (18)
for M = 1 in System 2 recovers [BM11b, Theorem 1.5] with a change of variables λ′ = λ/

√
cδ and

Θ′ =
√
cδΘ. On the other hand, the second set of equations in System 2 for M = ∞ is new to

the literature. We show empirically in the next section that the optimal full-ensemble subsampled
lassoless is not the same as the optimal non-ensemble lasso (on full data). Thus, the subsampling
and ensembling of the lasso are qualitatively different than the subsampling and ensembling of the
ridge regression, as pointed out in Remark 4. In particular, the effect of subsampling for lasso is
not merely additional lasso regularization.

4.2.2 Ensembles of general ridge regularized estimators

In this section, we specialize the results of Corollary 3 for ridge regularized ensembles allowing for
general loss functions. Specifically, given λ > 0, consider component estimators of the form:

θ̂m(Im) := argmin
b∈Rp

∑
i∈Im

loss(yi − x⊤
i b) + λ∥b∥22.

Recall that the risk convergence in (17) holds with R1 = α2 and R∞ = ηGα
2 where α and ηG are

solutions to System 1a and System 1b respectively. Here, using the explicit formula proxreg(x; τ) =
x/(1 + λτ) for reg(x) = λ|x|2/2, these systems can be simplified as follows:

System 3 (Nonlinear system for general ridge regularized ensembles). Given λ ∈ (0,∞),
δ ∈ (0,∞), and c ∈ (0, 1], define the following 2-scalar system of equations in variables (α, κ):

α2 = cδ·κ2E[env′loss(Z+αG;κ)2]+λ2κ2E[Θ2] and α = cδ· κ
1−λκE[env

′
loss(Z+αG;κ)·G], (20)

where G ∼ N (0, 1), Θ ∼ Fθ, Z ∼ Fz, all mutually independent. Let (β, ν) be parameters
expressed in terms of (α, κ) as:

β2 = 1
κ2
α2 − λ2E[Θ2] and ν = 1

κ − λ. (21)

Given parameters (α, β, κ, ν) that satisfy (20) and (21), define the following 2-scalar system of
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equations in variables (ηH , ηG):

ηH = c2δ
β2 E[env′loss(Z + αG;κ) · env′loss(Z + αG̃;κ)] and ηG =

η
H
β2+λ2E[Θ2]

β2+λ2E[Θ2]
, (22)

where (G, G̃) are jointly normal with E[GG̃] = ηG .

When M = 1, System 3 recovers [EK13, Theorem 2.1]. When cδ > 1 (underparameterized regime)
and λ=0 (unregularized case), we have ν = κ−1, β = κ−1α, ηH = ηG . Substituting them to (22),
we recover Theorem 2.3 in the recent work of [BK24].

5 Subagging and overparameterization

In Section 4, we discussed subagging of regularized estimators with an explicit regularization level
λ > 0. Triggered by the success of overparameterized neural networks that can (nearly) interpolate,
there has been a surge of recent work analyzing the risk behavior of estimators with vanishing reg-
ularization, such as the minimum ℓ2-norm interpolator (ridgeless), minimum ℓ1-norm interpolator
(lassoless), and max-margin interpolators, among others. In this section, we discuss subagging of
minimum ℓq-norm interpolators for q ∈ {1, 2}. We will demonstrate some interesting risk properties
in Section 5.1, showcase the benefits of subagging in overparameterized regimes in Section 5.2, and
contrast with optimal explicit regularization in Section 5.3.

5.1 Subagging of minimum ℓq-norm interpolators

We will focus in this section on subagging of bridgeless estimators, that is ℓq-norm regularized
least squares with reg(b) = ∥b∥qq. Our main cases of interest are the “ridgeless” and “lassoless”
estimators, which are the special cases when q = 1 [HMRT22] and q = 2 [LW21], respectively. The
terminology “less” is motivated by the fact that these estimators can be defined in a limiting sense
as λ→ 0+ for bridge estimators with regularization level λ. We consider the ensemble of predictors
(θ̂m)m∈[M ] of the form:11

θ̂m := lim
λ→0+

θ̂m(λ) where θ̂m(λ) ∈ argmin
b∈Rp

1

2
∥yIm −XImb∥22 + λ∥b∥qq.

In the underparameterized regime (p < n), these are simply the least squares estimators: θ̂m =
(X⊤

Im
XIm)

−1X⊤
Im
yIm . In the overparameterized regime (p > n), these correspond to the minimum

ℓq-norm interpolators: {∥θ̂m∥q : yIm = XIm θ̂m}, when XIm has independent rows to allow for
interpolation. For q = 2, when reg is the ridge penalty, this also has a closed-form expression given
by: θ̂m = (X⊤

Im
XIm)

†X⊤
Im
yIm , where A

† denotes the Moore-Penrose pseudoinverse of a matrix A.
In other cases, we do not have a closed-form expression for the minimum ℓq-norm interpolator. The
next system specializes System 2 to convex regularized least squares with vanishing regularization,
by taking the limit as λ→ 0+.

System 4 (Ensembles of minimum ℓq-norm interpolators). Given δ ∈ (0,∞), c ∈ (0, 1] such
that cδ < 1, and σ2 ∈ [0,∞), define the following 2-scalar system of equations in variables

11We refer readers to [Tib13] for details on how the sequence of estimators is defined when the estimators for λ > 0
are not unique, as in the case of the lasso.
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(τ, a):

τ2 = E
[(
proxreg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)2]
+ σ2

0 = 1− 1
cδE
[
prox′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)] (23a)

(23b)

where H ∼ N (0, 1), and Θ ∼ Fθ independent. Given (τ, a) that satisfy (23a) and (23b), define
the following 1-scalar system of equations in variable ξ:

ξ2 = E
[(
proxreg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)
·
(
proxreg

(
Θ+ τ√

cδ
H̃; aτ√

cδ

)
−Θ

)]
+ σ2 (24a)

where

(
H

H̃

)
∼ N (

([
0
0

]
,

[
1 η

H

η
H

1

])
with ηH = c

ξ2

τ2
, and Θ ∼ Fθ independent.

To the best of our knowledge, the existence and uniqueness of the solution (τ, a) to (23) are not fully
established in the literature, except for the special cases of q = 2 (ridgeless) and q = 1 (lassoless).
Assuming this is the case, the existence and uniqueness of the solution ξ to (24a) follow from
System 1b.

Observe that the equations (23a) and (24a) in System 4 are special cases of (18a) and (19a) in
System 2 for ℓq penalties. Equation (23b) is the limit of (18b) as λ→ 0+. Indeed, for q ∈ {1, 2}, the
solution to System 2 with λ > 0 converges to the solution to System 4 as λ→ 0+ (see Appendix C.2
for a proof). This means that

lim
λ→0+

p-lim
n→+∞

∥∥∥ 1

M

∑
m∈[M ]

θ̂m(λ)− θ
∥∥∥2
2
= RM :=M−1R1 + (1−M−1)R∞

where R1 = τ2 − σ2 and R∞ = ξ2 − σ2, and by the same argument, the limiting risk RM satisfies
Proposition 6 and 7 (see also Figure 9 and 10). However, it is challenging to show the above
display with the order of limλ and p-limn swapped. For the ridgeless estimator (q = 2) and any
M , this is proved in [PDK23] using a uniform convergence argument. For the lassoless estimator
(q = 1 and M = 1), this is done in [LW21] where the authors directly analyze the interpolator
by constructing a suitable AMP algorithm. We conjecture that this is, in general, true at least for
bridgeless estimators for any q ∈ [1, 2] and M . Since this is not the main focus of our paper and is
only intended as an illustrative case, we will not work towards this goal in the current paper. We
will instead investigate properties and consequences of System 4.

Further special cases of q = 2 (ridgeless) and q = 1 (lassoless) are isolated in the next two remarks.
These will serve as our two main running examples in this section.

Remark 6 (Ridgeless ensembles). For squared loss and ridge regularizer (q = 2), when cδ < 1 and
λ→ 0+, we get

R1(δ, c) + σ2 = E[Θ2](1− cδ) + σ2
1

1− cδ
, R∞(δ, c) + σ2 = E[Θ2]

(1− cδ)2

δ(δ − (cδ)2)
+ σ2

δ

δ − (cδ)2
.

The result above aligns with the risk ensemble of ridgeless estimators presented in Corollary 6.1 of
[PDK23]. This can be seen by substituting δ = 1/ϕ and c = ϕ/ψ, or equivalently cδ = 1/ψ.

Remark 7 (Lassoless ensembles). For squared loss and lasso regularizer (q = 1), when cδ < 1 and
λ→ 0+, the total risk τ2 is the solution to the following equations:

τ2 = σ2 + E
[(

soft
(

τ√
cδ
H +Θ; aτ√

cδ

)
−Θ

)2]
,

1 = 1
cδP
(
| τ√

cδ
H +Θ| > aτ√

cδ

)
,

(25)
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Figure 4: Prediction risks of the full-ensemble lassoless and ridgeless at different subsample aspect ratios
p/k ranging from 0.3 to 10. The data model is given by (50) with signal strength ρ = 2, noise level σ = 1,
data aspect ratio p/n = 0.3, and feature size p = 500. The support proportion s varies. Left : dense regime
with s = 0.9. Right : sparse regime with s = 0.01. We observe that the full-ensemble risk is continuous at the
interpolation. Also, the full-ensemble risk has a negative derivative to the right of interpolation. This implies
that the optimal subsample size is in the overparameterized regime.

and ξ2 is the solution to the following equations:

ξ2 = σ2 + E
[(

soft
(

τ√
cδ
H +Θ; aτ√

cδ

)
−Θ

)
·
(
soft

(
τ√
cδ
H̃ +Θ; aτ√

cδ

)
−Θ

)]
,

with E[HH̃] = c ξ
2

τ2
. Note that soft is the soft threshold function defined by soft(x; τ) = (|x| −

τ)+ sign(x). In the ensemble setting, the case of M = 1 corresponds to [LW21, Theorem 2] with a
slight change of variables Θ′ =

√
cδΘ. The full-ensemble case when M = ∞ is new.

Remark 8 (Avoiding risk divergence with ensembling). Note that in the underparameterized
regime when cδ > 1 is fixed, the estimator of interest is simply the ensemble of least squares.
Thus, a standard Stieltjes transform argument or the explicit formula for the expectation of inverse
Wishart matrices give

R1(δ, c) + σ2 = σ2
cδ

cδ − 1
and R∞(δ, c) + σ2 = σ2

δ

δ − 1
for all c > δ−1.

It just so happens that for the full-ensemble least squares estimators, only the inverse aspect ratio δ
of the original data matters! In particular, as c→ (δ−1)+, R1 diverges, while the full-ensemble risk
R∞ is still bounded. Now let us consider the over-parameterized regime cδ < 1. By simple algebra,
for any regularizer reg, the solution τ to the sub-system (23a)-(23b) in System 4 is uniformly
bounded from below as:

τ2 ≥ (1− cδ)−1σ2. (26)

(See Appendix C.1 for the proof.) Recalling R1 = τ2 − σ2, this means that the risk of the non-
ensemble interpolators blows up as c→ (δ−1)−. For the minimum ℓ2- and ℓ1-norm interpolators, this
is shown in [HMRT22, LW21]. For the full-ensemble cases, we experimentally observe from Figure 4
that the riskR∞ is continuous in c for the full ridgeless and lassoless ensembles. In particular, it does
not blow up around c = δ−1. For ridgeless, this claim is easy to verify (and holds more generally, as
shown in [PDK23]). For lassoless, given the solution (a, τ) to (25), in Appendix C.3, we identify that
the condition limc→(δ−1)−(aτ) = 0 is sufficient to obtain the conclusion limc→(δ−1)−(ξ

2) = δ
δ−1σ

2,
and we observe experimentally that aτ → 0 holds (Figure 8), however we are currently not able to
provably establish that limc→(δ−1)−(aτ) = 0.
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Figure 5: Optimal subsample size for the lassoless ensemble is always in the overparameterized
regime. Optimal subsample aspect ratio p/k that achieves the optimal risk for the lassoless ensemble at
different data aspect ratios p/n ranging from 0.1 to 10. The data model is as in (50) with signal strength
ρ = 2, noise level σ = 1, data aspect ratio p/n = 0.1, feature size p = 500, and varying support proportion
s. Left : dense regime with s = 0.9. Right : sparse regime with s = 0.01.

5.2 Optimal subsample size

An intriguing observation from Figure 4 concerns the optimal subsample size k∗. When the sample
size n and the number of features p are fixed with n > p, the optimal subsample size that mini-
mizes the full risk R∞ falls below p. This suggests that even when the original sample lies in the
underparameterized regime, the optimal subsample size shifts into the overparameterized regime.
This phenomenon is proved for ridgeless ensembles (reg(x) = x2) by [PDK23]. Expanding on this,
and utilizing System 4, we empirically show that this behavior extends beyond ridgeless ensembles
to lassoless ensembles (reg(x) = |x|) as well (see Figure 5).

5.3 Optimal subagging versus optimal (explicit) regularization

There are three parameters one can tune to optimize the asymptotic risk RM (λ, c) of the ensemble
estimator, as in Remarks 4 and 5: the regularization level λ, the subsample size c, and the ensemble
size M . This hyperparameter optimization is simplified for ridge regression, as shown in Theorem
2.3 of [DPK23]. Minimization with respect to all three parameters is equal to the minimization over
λ when M = 1 and c = 1 (non-ensemble setting), which is the same as minimization over M and c
when λ = 0 (ensemble of ridgeless predictors):

min
λ∈[0,∞],M∈N,c∈[0,1]

RM (λ, c)︸ ︷︷ ︸
opt regularization and opt ensemble

= min
λ∈[0,∞]

R1(λ, 1)︸ ︷︷ ︸
opt regularization but no ensemble

= min
c∈[0,1]

R∞(0, c)︸ ︷︷ ︸
opt ensemble but no regularization

.

In some situations, however, the risk minimization over all three parameters can be strictly better:

min
λ∈[0,∞],M∈N,c∈[0,1]

RM (λ, c)︸ ︷︷ ︸
opt regularization and opt ensemble

< min
λ∈[0,∞]

R1(λ, 1)︸ ︷︷ ︸
opt regularization but no ensemble

∧ min
c∈[0,1]

R∞(0, c)︸ ︷︷ ︸
opt ensemble but no regularization

.

We illustrate this through a numerical experiment with lasso. We show that the optimal full-
ensemble subsampled lassoless is not the same as the optimal non-ensemble lasso (on full data). In
Figure 6, we contrast the sparse and dense data settings. In each case, we show the full-ensemble
risk heatmap in λ and p/k. In the left panel (the sparse setting), we see that the optimal subsample
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Figure 6: Optimally subsampled lassoless regression can outperform optimal lasso regression.
Heatmaps of theoretical prediction risk in λ and p/k of full lasso ensemble in the underparameterized regime
(p/n = 0.1). The data model is given by (50) with signal strength ρ = 0.5 and noise level σ = 1 at different
sparsity levels s. Left : Dense regime with support proportion s = 0.9. Optimal subsample lassoless is better
than optimal lasso. Middle: Modest sparse regime with support proportion s = 0.5. Optimal lasso ensemble is
better than the optimal lasso and optimal subsample lassoless. Right : Sparse regime with support proportion
s = 0.2. Optimal lasso is better than optimal subsample lassoless.
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Figure 7: Optimally subsampled ensemble lasso can uniformly beat optimally tuned non-
ensemble lasso across different data aspect ratios. The theoretical prediction risk of optimal ensemble
and non-ensemble lasso at different data aspect ratios p/n is shown. The data model is given by (50) with
signal strength ρ = 0.5 and noise level σ = 1 at different sparsity levels s. Left : Dense regime with support
proportion s = 0.9. Middle: Modest sparse regime with support proportion s = 0.5. Right : Sparse regime
with support proportion s = 0.2.

lassoless is worse than the optimal lasso. This is expected because the lasso is known to perform
well in the sparse setting. In the right panel (the dense setting), we see that the optimal subsample
lassoless is better than the optimal lasso. This is interesting because it shows that the subsample
and ensemble induce an implicit regularization effect. In short, the optimal lassoless ensemble can
be better or worse than the optimal lasso. In other words, the full-ensemble lassoless when c is
optimized is not the same as the optimized lasso when λ is optimized on the full data.

A similar conclusion holds for overparameterized settings, as shown in Figure 11. In particular,
depending on the SNR and δ, the subsample optimized risk may be smaller or larger than the
optimized lasso risk. The conclusion is that, in general, it helps to optimize λ, but also to optimize
the ensemble size and subsample size. The subsample and ensemble induce an implicit regulariza-
tion effect. Once optimized, this implicit regularization can improve on the explicit regularization
provided by the regularizer.
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Finally, Figure 7 shows that the joint optimization of subsampling along with lasso penalty con-
sistently outperforms the optimization of lasso penalty on the full data (without any subsampling)
uniformly across varying data aspect ratios. Particularly, in the dense regime (s = 0.9) and mod-
est sparsity (s = 0.5) regimes, the ensemble approach leverages implicit regularization to achieve
lower prediction risk. In highly sparse scenarios (s = 0.2), this effect reduces as one would expect.
Overall, we see complementary benefits of optimizing both subsampling and explicit regularization
parameters to improve the predictive performance, with the joint optimization being the overall
clear winner.

6 Open directions

In this paper, we provide a general risk characterization for the ensemble of regularized M-estimators.
The characterization depends on the inverse data aspect ratio δ = limn/p, subsample ratio c, and
loss and regularizer pair (loss, reg). We also specialize the results for specific cases of interest, such
as the lasso and ridge regression, and analyze various properties related to optimal subsampling
and ensembling. Our goal in performing such analysis is to shed light on how subsampling and en-
sembling influence the risk of the ensemble estimator and the optimal choices of ensemble size and
subsample size. The key takeaway is that subsampling and ensembling can be beneficial in terms
of reducing the risk of the estimator, and when the subsample size c is optimized, the resulting risk
is monotonic in δ for any ensemble size M .

There are several “axes” along which our results on the asymptotics of subagging can be extended.
These are all apparent by inspecting the last row of Table 1 (our current results) and contrasting
it against the rows above (the known results in specific cases). We briefly mention some of these
open directions next to make them explicit. First, our current analysis can handle non-differentiable
and non-strongly convex regularizers, but we require a differentiable loss. Extending the analysis
to non-differentiable losses through techniques like Moreau smoothing [CMW23, Section B.7] is a
promising future direction. In addition to relaxing conditions assumed for risk characterization, we
are also interested in relaxing the assumptions for the risk estimation (Theorem 4), particularly the
strong convexity assumption on reg. A promising approach in this direction is to apply the Gaussian
smoothing technique recently proposed by [BK23a]. Additionally, it is of interest to extend the scope
beyond separable regularizers to include non-separable regularizers, which have been studied only
for special cases like generalized ridge regression [PD23]. Another potential extension is relaxing the
assumption of linear response models. Partial progress in this direction includes the recent work by
[BK24] (for logistic models), [CVD+24] (for generalized linear models), and [PD23] (for arbitrary
response with bounded moments). Furthermore, while we assume isotropic Gaussian features, it is
also of interest to extend the results to general feature distributions and anisotropic covariances.
This has been studied in special cases of ridge regression ([PDK23], any M), ridgeless regression
([HX23],M = 1), lasso regression ([CMW23],M = 1), among others; see also, e.g., [PKLS23, HS23],
for some progress towards establishing Gaussian universality (for M = 1). Finally, broadening the
scope of resampling strategies beyond subsampling without replacement to include more general
schemes like sampling with replacement or according to a specific distribution, as recently studied
in [CVD+24, DP24a], is another future direction. We hope our current analysis serves as a step
towards these open directions in various axes.
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Supplement

This serves as a supplement to the paper “Precise Asymptotics of Bagging Regularized M-estimators.” Below,
we provide an outline of the supplement along with a summary of the notation used in the main paper and the
supplement.

Organization

Section Content

Appendix A Proofs of Theorems 1, 2 and 4 from Section 3

Appendix B Proof of Proposition 7 and other miscellaneous details from Section 4

Appendix C Details of arguments in Remark 8 from Section 5

Appendix D Additional numerical illustrations and experimental details

Table 3: Outline of the supplement.

Specific notation

Notation Description

(xi, yi), i ∈ [n] Observation vector with the feature vector in Rp and the response variable in R
X,y Feature matrix in Rn×p and the response vector in Rn
θ Signal vector in the linear model in Rp with entries drawn i.i.d. from the distribution Fθ
z Noise vector in the linear model in Rn with entries drawn i.i.d. from the distribution Fz

k, M Size of each subsample and the total number of subsamples (bags) used in the ensemble
Im, m ∈ [M ] Index set (subset of [n]) of the m-th subsample, with |Im| = k
(XIm ,yIm),
m ∈ [M ]

Feature matrix in Rk×p and response vector in Rk of the subsampled dataset indexed by Im

(XIm∩Iℓ ,yIm∩Iℓ),
m ̸= ℓ ∈ [M ]

Feature matrix in R|Im∩Iℓ|×p and response vector in R|Im∩Iℓ| of the overlapped dataset
corresponding to the overlap between the subsampled datasets indexed by Im and Iℓ

loss, reg, λ
Loss function, regularization function, and regularization level used for the regularized
M-estimator

θ̂m, θ̃M Component regularized M-estimator fitted on the m-th subsample and the ensemble estimator

RM , RM Squared prediction risk of the ensemble estimator and its asymptotic limit

R1, R∞
Asymptotic risk of the non-ensemble estimator (M = 1) and the full-ensemble estimator
(M = ∞)

δ, c Inverse data aspect ratio n/p and subsample ratio k/n

(α, β, κ, ν) Parameters characterizing the ensemble risk asymptotics with M = 1 (System 1a)
G, H Standard normal random variables in the ensemble risk asymptotics with M = 1 (System 1a)
Θ, Z Random variables drawn according to distributions Fθ and Fz, respectively (System 1a)

(ηG , ηH ) Correlation parameters in the ensemble risk asymptotics with M = ∞ (System 1b)

G, G̃, H, H̃ Random variables appearing in the ensemble risk asymptotics with M = ∞ (System 1b)

(a, τ) Parameters in alternate formulation of the ensemble risk asymptotics with M = 1 (System 2)
ξ Parameter alternate formulation of the ensemble risk asymptotics with M = ∞ (System 2)

Table 4: Summary of some of the specific notation used in the paper.
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A Proofs in Section 3

A.1 Proof of Theorem 1

Part 1. By the Cauchy–Schwarz inequality, if ηG satisfies |Floss(ηG)| =
√
cc̃, then we must have

sign(Floss(ηG)) · env
′
loss(αG+ Z;κ) = env′

l̃oss
(α̃(ηGG+

√
1− η2

G
G) + Z; κ̃)

with probability 1 for any independent Gaussian G,G. Multiplying both sides by
√
1− η2

G
G and

taking expectation, using independence of (G,G) and the third equation in System 1a, we are left
with

0 =
√
1− η2

G
· (ν̃α̃)/(cδ),

which gives |ηG | = 1 since ν̃α̃ > 0. This means |Floss(ηG)| <
√
cc̃ for all |ηG | < 1. By the same

argument, if ηH satisfies |Freg(ηH )| = 1, then it holds that

sign(Freg(ηH )) ·
[1
ν
· env′reg

(β
ν
H +Θ;

1

ν

)
− β

ν
H
]
=

1

ν̃
· env′r̃eg

( β̃
ν̃
(ηHH +

√
1− η2

H
H) +Θ;

1

ν̃

)
− β̃

ν̃
H̃

with probability 1 for any independent Gaussian (H,H). Multiplying the the both side by
√
1− η2

H
H

and taking the expectation, using the independence of (H,H) and the fourth equation in System 1a,
we are left with

0 =
√
1− η2

H
(−κ̃β̃),

which gives |ηH | = 1 since κ̃β̃ > 0. This means |Freg(ηH )| < 1 for all |ηH | < 1.

Part 2. Let us prove the differentiability and contraction of compositions. By System 1a, Floss

and Freg can be written as

Floss(ηG) =
cc̃δ

ββ̃
· E[env′loss(αG+ Z;κ) · env′

l̃oss
(α̃G̃+ Z; κ̃)],

Freg(ηH ) =
1

αα̃
· E
[(1
ν
· env′reg

(β
ν
H +Θ;

1

ν

)
− β

ν
H
)
·
(1
ν̃
· env′r̃eg

( β̃
ν̃
H̃ +Θ;

1

ν̃

)
− β̃

ν̃
H̃
)]
.

We will use the following lemma to argue the differentiability of Floss and Freg.

Lemma 8. Let G and Z be independent N (0, 1) random variables. Then, for any Lipschitz func-
tions (f, f̃) with bounded second moment E[f(G)2],E[f̃(G)2] < +∞, the map

φ : [−1, 1] → R, η 7→ E[f(G)f̃(ηG+
√
1− η2Z)]

has the derivative
φ′(η) = E[f ′(G)f̃ ′(ηG+

√
1− η2Z)].

Proof. Since f̃ is Lipschitz and N (0, 1) has no point mass, f̃ is differentiable at G ∼ N (0, 1) with
probability 1. By the dominated convergence theorem, we have

φ′(η) = E
[
f(G)f̃ ′

(
ηG+

√
1− η2Z

)(
G− η√

1− η2
Z
)]
.
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Let us define A = ηG +
√
1− η2Z and B =

√
1− η2G − ηZ so that (A,B) are independent

Gaussian N (0, 1) and φ′(η) = (1− η2)−1/2E[f(ηA+
√
1− η2B)f̃ ′(A)B]. Using Stein’s formula for

B conditionally on A, we are left with

φ′(η) = E[f̃ ′(A)f ′(ηA+
√
1− η2B)] = E[f̃ ′(ηG+

√
1− η2Z)f ′(G)],

where we have used (A, ηA+
√
1− η2B)

d
= (ηG+

√
1− η2Z,G). (Here and throughout

d
= refers to

equality in distribution.)

Notice that env′loss(αG + Z;κ) and 1
ν · env′reg

(
β
νH + Θ; 1ν

)
− β

νH have finite second moments,

thanks to the existence of the solution to System 1a. Thus, applying Lemma 8 with (f(x), f̃(x)) =

(env′loss(αx+Z;κ), env
′
loss(α̃x+Z; κ̃)) and (f(x), f̃(x)) = (βν x−

1
ν envreg(

β
ν x+Θ; 1ν ),

β̃
ν̃ x−

1
ν̃ envreg(

β̃
ν̃ x+

Θ; 1ν̃ )), we find that Floss and Freg are differentiable and the derivatives are given by:

F ′
loss(ηG) =

cc̃δ

ββ̃
· E[αenv′′loss(αG+ Z;κ) · α̃env′′

l̃oss
(α̃G̃+ Z; κ̃)]

F ′
reg(ηH ) =

1

αα̃
E
[β
ν

(
1− 1

ν
· env′′reg

(β
ν
H +Θ;

1

ν

))
· β̃
ν̃

(
1− 1

ν̃
· env′′r̃eg

( β̃
ν̃
H̃ +Θ;

1

ν̃

))]
for all ηG , ηH ∈ [−1, 1]. Note that the non-expansiveness of the proximal operator implies that the
map x 7→ env′f (x; τ) = τ−1(x − proxf (x; τ)) is τ−1-Lipschitz and non-decreasing for any convex
function f . Thus, F ′

loss(ηG) and F ′
reg(ηH ) are non-negative and uniformly bounded from above as

follows:

0 ≤ F ′
loss(ηG) ≤

cc̃δ

ββ̃

α

κ
· E[α̃env′′

l̃oss
(α̃G̃+ Z; κ̃)] (0 ≤ env′′loss(αG+ Z;κ) ≤ κ−1)

=
cc̃δ

ββ̃

α

κ
· E[G̃ · env′

l̃oss
(α̃G̃+ Z; κ̃)] (by Stein’s lemma)

=
cc̃δ

ββ̃

α

κ
· ν̃α̃
c̃δ

= c · αα̃ν̃
ββ̃κ

(using System 1a);

0 ≤ F ′
reg(ηH ) ≤

1

αα̃
E
[β
ν

(
1− 1

ν
· env′′reg

(β
ν
H +Θ;

1

ν

))]
· β̃
ν̃

(0 ≤ env′′reg(
β̃

ν̃
H +Θ;

1

ν̃
) ≤ ν̃)

=
1

αα̃

β̃

ν̃
E
[(β
ν
H − 1

ν
· env′reg

(β
ν
H +Θ;

1

ν

))]
(by Stein’s lemma)

=
1

αα̃

β̃

ν̃
· βκ =

ββ̃κ

αα̃ν̃
(using System 1a).

Thus, by the chain rule, noting that (ββ̃κ)/(αα̃ν̃) is cancelled out, we have

0 ≤ (Floss ◦ Freg)
′(ηH ) ≤ c, 0 ≤ (Freg ◦ Floss)

′(ηG) ≤ c.

By switching the role of (α, β, κ, ν, c) and (α̃, β̃, κ̃, ν̃, c̃), it also holds that

0 ≤ (Floss ◦ Freg)
′(ηH ) ≤ c̃, 0 ≤ (Freg ◦ Floss)

′(ηG) ≤ c̃.

Thus, by taking the minimum of (c, c̃), we find that the compositions

ηH 7→ Floss ◦ Freg(ηH ), ηG 7→ Freg ◦ Floss(ηG)

are (c ∧ c̃)-Lipschitz.
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Part 3. Now let us show the uniqueness and existence of the solution to the system:

ηH = Floss(ηG), ηG = Freg(ηH ).

By the assumption min{c, c̃} < 1 and the fact that ηH 7→ Floss ◦ Freg(ηH ) is min{c, c̃}-Lipschitz,
Banach’s fixed-point theorem implies that the fixed-point equation

ηG = Freg ◦ Floss(ηG), ηG ∈ [−1, 1]

admits a unique solution η⋆
G

∈ [−1, 1]. If we take η⋆
H

= Floss(η
⋆
G
) ∈ [−

√
cc̃,

√
cc̃], then we have

Freg(η
⋆
H
) = Freg ◦ Floss(η

⋆
G
) = η⋆

G
so that (ηG , ηH ) = (η⋆

G
, η⋆

H
) satisfies the system: ηH = Floss(ηG)

and ηG = Freg(ηH ). This proves the existence of the solution to the system. Let us show the
uniqueness. Suppose (ηG , ηH ) and (η̃G , η̃H ) satisfy the system. Then, ηG and η̃G are the solution to
the fixed-point equation η = Freg ◦ Floss(η):

ηG = Freg(ηH ) = Freg ◦ Floss(ηG), η̃G = Freg(η̃H ) = Freg ◦ Floss(η̃G).

By the uniqueness of the solution to this fixed-point equation, we must have ηG = η̃G . By the same
argument, the contraction ∥Floss◦Freg∥Lip ≤ c∧c̃ implies that the solution to the fixed-point equation
ηH = Floss ◦Freg(ηH ) is unique so that we must have ηH = η̃H . This proves (ηG , ηH ) = (η̃G , η̃H ) and
hence the systems admit a unique solution.

Let us show |η⋆
G
| < 1. We proceed by contradiction. If |η⋆

G
| = 1 then noting η⋆

G
= Freg(η

⋆
H
), since

we have shown in part 1 that |Freg(ηH )| < 1 for all |ηH | < 1, we must have |η⋆
H
| = 1. However,

|η⋆
H
| = |Floss(η

⋆
G
)| ≤

√
cc̃ < 1 so that this is a contradiction. Thus, we must have |η⋆

G
| < 1. Noting

η⋆
H

= Floss(η
⋆
G
) and |Floss(ηG)| <

√
cc̃ for all |ηG | < 1, the strict inequality |η⋆

G
| < 1 in turn gives

|η⋆
H
| <

√
cc̃.

Part 4. Finally, let us characterize the sign of (η⋆
G
, η⋆

H
). Recall that η⋆

G
and η⋆

H
satisfies the

fixed-point equations ηG − Freg ◦ Floss(ηG) = 0 and ηH − Floss ◦ Freg(ηH ) = 0, respectively, and
the maps ηG 7→ ηG − Freg ◦ Floss(ηG) and ηH 7→ ηH − Floss ◦ Freg(ηH ) are strictly increasing since
Freg ◦ Floss and Floss ◦ Freg are (c ∧ c̃)-Lipschitz with c ∧ c̃ < 1. Then, the characterization of sign,
i.e., sign(Floss ◦ Freg(0)) = sign(η⋆

H
) and sign(Freg ◦ Floss(0)) = sign(η⋆

G
), immediately follows.

A.2 Proof of Theorem 2

In this section, for a vector w, the norm ∥w∥ indicates the ℓ2 norm unless specified otherwise.
By the assumption 0 ∈ argminx loss(x) ∩ argminx reg(x), taking lossnew(x) = loss(x) − loss(0) and
regnew(x) = reg(x)− reg(0) if necessary, we assume without loss of generality that loss and reg are
non-negative and have 0 as a minimizer.

By the change of variable b 7→ h = (b − θ)/√p, denoting G =
√
pX so that G has i.i.d. N (0, 1)

entries, the regularized M-estimator θ̂ of interest and the residual vector y−Xθ̂ can be written as

θ̂ =
√
pĥ+ θ, y −Xθ̂ = z −Gĥ

where

ĥ ∈ argmin
h∈Rp

obj(h) with obj(h) :=
∑
i∈I

loss(zi − g⊤i h) +
∑
j∈[p]

reg(
√
phj + θj). (27)

Throughout this section, we denote ψ =
∑

i∈I eiloss
′(zi − g⊤i h) ∈ Rn where ei are canonical basis

of Rn. Let ψ̃, θ̃, h̃ be the corresponding notation for another. Then, our goal is to show

ĥ⊤h̃
p−→ αα̃ηG and ψ⊤ψ̃/p

p−→ ββ̃ηH .
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A.2.1 Smoothing by adding diminishing ridge penalty

For some positive and diminishing scalar µ = µn → 0 to be specified later, we define the smoothed
regularized M-estimator ĥµ as

ĥµ ∈ argmin
h∈Rp

obj(h) +
pµ

2
∥h∥2 (28)

where obj(h) is the objective function for the original regularized M-estimator ĥ in (27). We denote
by ψµ =

∑
i∈I eiloss

′(zi − g⊤i hµ) the smoothed version of ψ. This strategy of adding and additive
ridge penalty for the mathematical analysis as a first step, and then arguing by approximation
(µ → 0) to study the original ĥ0 = ĥ is ubiquitous; see, for instance, [Kar18, CM22], [LGR+22,
Appendix B.3], [BK23a]. Here, we use the following lemma to show that (28) approximates well
the original estimator for any sequence µ = µn indexed by n and converging to 0.

Lemma 9 (Ridge smoothing). Let hµ be the smoothed M-estimator and ĥ be the original M-
estimator.

1. (Monotonicity) We have ∥ĥ− ĥµ∥22 ≤ ∥ĥ∥22 − ∥ĥµ∥22 for any µ > 0.

2. (Convergence in ∥ · ∥2) As n, p→ +∞ with n/p→ δ, |I|/n→ c, and µ = µn for any µn → 0,
we have

∥ĥµ∥22
p−→ α2,

∥ψµ∥22
p

p−→ β2, ∥ĥµ − ĥ∥22 = oP(1),
∥ψµ −ψ∥22

p
= oP(1),

where α and β are solutions to System 1a.

Proof. By the strong convexity of the ridge term pµ2/2∥h∥2, the smoothed one ĥµ also minimizes

the convex function: h 7→ obj(h) + pµ
2 ∥h∥2 − pµ

2 ∥h− ĥµ∥2. By the optimality of ĥµ and ĥ, we have

obj(ĥµ) +
pµ

2
∥ĥµ∥2 ≤ obj(ĥ) +

pµ

2
∥ĥ∥2 − pµ

2
∥ĥ− ĥµ∥2 ≤ obj(ĥµ) +

pµ

2
∥ĥ∥2 − pµ

2
∥ĥ− ĥµ∥2

so that subtracting obj(ĥµ) from the both sides and dividing by pµ/2 > 0, we obtain the first claim.

Recall ∥h∥2 p−→ α2 and ∥ψ∥2/p p−→ β2. Then, by Lemma 9-(1) and the Lipschitz condition of loss′,

it suffices to show the convergence ∥ĥµ∥2
p−→ α2 for the smoothed estimator ĥµ. Note that ĥµ

minimizes the function below

h 7→
∑
i∈I

loss(zi − g⊤i h) +
∑
j∈[p]

regµnj (
√
phj) where regµj (x) := reg(x+ θj) + µ

x2

2
.

Now we suppose that for any standard normal g = (gj)
p
j=1 ∼ N (0p, Ip), the convergence of the

Moreau envelope

1

p

∑
j∈[p]

envregµnj (cgj ; τ)− regµnj (0)
p−→ E[envreg(cH +Θ; τ)− reg(Θ)]

holds for all c ∈ R and τ > 0. Then, by [TAH18, Theorem 3.1], we have ∥ĥµ∥2
p−→ α2 and complete

the proof. By the weak law of large numbers, the above display holds with µ = 0 (see [TAH18,
Lemma 4.1] for details):

1

p

∑
j∈[p]

envregµ=0
j

(cgj ; τ)− regµ=0
j (0)

p−→ E[envreg(cH +Θ; τ)− reg(Θ)].

39



Then, noting regµ=0
j (0) = reg(θj) = regµj (0) for any µ ≥ 0, it suffices to show

1

p

∑
j∈[p]

envregµnj (cgj ; τ)−
1

p

∑
j∈[p]

envregµ=0
j

(cgj ; τ) = oP(1).

For each j, the monotonicity envregµ=0
j

(cgj ; τ) ≤ envregµn
j
(cgj ; τ) holds since the objective function

is monotone in the sense of regµ=0
j (x) ≤ regµj (x) for all x ∈ R and all µ ≥ 0. On the other hand, by

the optimality of proxregµ=0
j

(cgj ; τ) and proxregµnj (cgj ; τ), we find

envregµnj (cgj ; τ) ≤
1

2τ
(cgj − proxregµ=0

j
(cgj ; τ))

2 + regµnj (proxregµ=0
j

(cgj ; τ))

= envregµ=0
j

(cgj ; τ) +
µn
2
(proxregµ=0

j
(cgj ; τ))

2

for each j ∈ [p]. Thus, it holds that

0 ≤ 1

p

∑
j∈[p]

envregµnj (cgj ; τ)−
1

p

∑
j∈[p]

envregµ=0
j

(cgj ; τ) ≤
µn
2

· 1
p

∑
j∈[p]

(proxregµ=0
j

(cgj ; τ))
2,

where proxregµ=0
j

(cgj ; τ) = proxreg(cgj + θj ; τ) − θj by the definition of regµj . Here, under Assump-

tion D-(1), the expectation E[(proxreg(cgj + θj ; τ)− θj)2] under gj ∼ N (0, 1) and θj ∼ Θ is finite for
all c ∈ R and τ > 9 (cf. [TAH18, equation (123)]). Therefore, by the weak law of large numbers, we

have 1
p

∑
j∈[p](proxregµ=0

j
(cgj ; τ))

2 p−→ E[(proxreg(cH + Θ; τ) − Θ)2] < +∞. This means that for any

µ = µn → 0, the RHS of the previous display is oP(1).

A.2.2 Bounding norm of regularized M-estimators

For some positive scalar K to be specified later, we add another regularization term; we define ĥµ,K
as

ĥµ,K ∈ argmin
h∈Rp

obj(h) +
pµ

2
∥h∥2 + λ̂

2
F
(∥h∥2 −K

2

)
︸ ︷︷ ︸

additional term

with λ̂ := obj(0)

where F : R → R is convex, non-negative, and non-decreasing with limx→+∞ F(x) = +∞, as well
as differentiable with F′(u) = 0 if u ≤ 0 and F′(u) = 1 if u ≥ 1. For instance, we may take F as an
integral of the smoothed step function as follows:

F(x) :=

∫ x

−∞
f(u) du with f(u) :=


1 u ≥ 1

3u2 − 2u u ∈ (0, 1)

0 u ≤ 0

Note in passing that the regularization parameter λ̂ = obj(0) =
∑

i∈I loss(zi) +
∑

j∈[p] reg(θj) is
independent of the design matrix G and non-negative since loss and reg are non-negative.

Now we claim that for sufficiently large K > 0 this modified estimator ĥµ,K coincides with the

smoothed estimator ĥµ. Furthermore, thanks to the additional regularizer λ̂
2F
(
∥h∥2−K

2

)
, the norm

of hµ,K and ψµ,K are suitably bounded as follows:
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Lemma 10. The following convergences hold.

1. If we set K = 2α2 where α > 0 is the solution to System 1a, we have

P(ĥµ,K = ĥµ)
p−→ 1.

2. For any K ≥ 0, there exists a positive constant CK that only depends on K such that

∥ĥµ,K∥2 ≤ CK , ∥ψµ,K∥2 ≤ CK(1 + ∥loss′∥2Lip)(∥loss′(z)∥2 + ∥G∥2op).

Thus, the constant C∗ = 1.1CK(1 + ∥loss′∥2Lip)(E[loss
′(Z)2] + (1 + δ−1/2))2 satisfies

P
(
∥ĥµ,K∥2 ∨ (n−1∥ψµ,K∥2) ∨ sup

m≥1
E
[
∥ĥµ,K∥2m ∨ (n−1∥ψµ,K∥2)m | z,θ

]1/m
≤ C∗

)
→ 1.

Proof. Let us consider the event Ω := {∥h∥2 ≤ K} withK = 2α2, which holds with high probability,

since ∥h∥2 p−→ α2 > 0. Combined with the monotonicity ∥hµ∥2 ≤ ∥h∥2 by Lemma 9-(1), we have

∥ĥµ∥2 ≤ K under the event Ω. Since F′(u) = 0 for all u ≤ 0, combined with the Karush-Kuhn-

Tucker (KKT) condition −pµĥµ ∈ ∂obj(ĥµ) for the smoothed estimator ĥµ, we observe that ĥµ
satisfies the KKT condition for ĥµ,K under the event Ω:

−pµĥµ − λ̂F′
(∥ĥµ∥2 −K

2

)
ĥµ = −pµĥµ − 0 · ĥµ ∈ ∂obj(ĥµ).

This implies P(ĥµ = ĥµ,K) ≥ P(Ω) → 1.

By the non-negativity of (obj(·), pµ∥ · ∥2, λ̂2F(·)) and the optimality of ĥµ,K , it holds that

0 ≤ λ̂

2
F
(∥ĥµ,K∥2 −K

2

)
≤ obj(ĥµ,K) +

pµ

2
∥hµ,K∥2 + λ̂

2
F
(∥hµ,K∥2 −K

2

)
≤ obj(0) +

pµ

2
∥0∥2 + λ̂

2
F
(∥0∥2 −K

2

)
= λ̂+ 0 + 0.

When λ̂ = 0 then all inequalities above holds with equality, which means that 0 minimizes the

objective function obj(h)+ pµ
2 ∥h∥2+ λ̂

2F
(
∥h∥2−K

2

)
for ĥµ,K . Since this objective function is strongly

convex due to the ridge term, the minimizer is unique. This means ĥµ,K = 0 when λ̂ = 0. On the

other hand, if λ̂ > 0 then dividing the above display by λ̂ > 0 we are left with F
(
∥ĥµ,K∥2−K

2

)
≤ 2.

Since F is non-decreasing and coercive on the positive side, i.e., limx→+∞ F(x) → +∞, this gives
∥ĥµ,K∥2 ≤ C(K) for a constant C(K) > 0 depending on K only. Combined with the Lipschitz
condition of loss′, the norm of ψµ,K =

∑
i∈I eiloss

′(zi − g⊤i hµ,K) is bounded as

∥ψµ,K∥ ≤ ∥loss′(z)∥+ ∥loss′(z −Gĥµ,K)− loss′(z)∥ ≤ ∥loss′(z)∥+ ∥loss′∥Lip∥G∥op∥ĥµ,K∥.

Since loss′(zi)
2 has a finite second moment by Assumption D-(1), the weak law of large numbers

gives n−1∥loss′(z)∥2 p−→ E[loss′(Z)2] < +∞. Since G ∈ Rn×p is a Gaussian matrix with i.i.d. N (0, 1)

entries, we also have ∥G∥2op/n
p−→ (1 + δ−1/2)2 by standard results of the maximal singular value of

a Gaussian matrix, e.g., [DS01, Theorem II.13]. This completes the proof.
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A.2.3 Derivative formulae for strongly convex regularizer

Lemma 11 ([BS22]). Let ĥ ∈ Rp be the regularized M-estimator of the form

ĥ ∈ argmin
h∈Rp

∑
i∈I

loss(zi − g⊤i h) + R(h),

where I ⊂ [n] is a subset independent of (gi)i∈[n], loss : R → R is a convex and differentiable
function with Lipschitz derivative, R : Rp → R is a τ -strongly convex regularizer for some τ > 0,
and R is independent from (gi). Then, there exists a matrix A ∈ Rp×p satisfying ∥A∥op ≤ τ−1

and tr[A] ≥ 0 such that ĥ ∈ Rp and ψ =
∑

i∈I eiloss
′(zi − g⊤i ĥ) ∈ Rn are both differentiable as

functions of the design (G) = (gij) with the derivative given by

∀i ∈ [n],∀j ∈ [p],
∂ĥ

∂gij
= A

(
eje

⊤
i ψ −G⊤Deie

⊤
j ĥ
)
,

∂ψ

∂gij
= −DGAeje⊤i ψ − V eie⊤j ĥ. (29)

where D and V are n × n matrices defined by D =
∑

i∈I eie
⊤
i loss

′′(zi − g⊤i ĥ) and V = D −
DGAG⊤D. Furthermore, the matrix V defined above is positive semidefinite with its operator
norm bounded as ∥V ∥op ≤ ∥loss′∥Lip.

Recall that the modified estimator ĥµ,K in Appendix A.2.2 minimizes the objective function∑
i∈I loss(zi − g⊤i h) + R(h) where R is the regularizer of the form

R(h) :=
∑
j∈[p]

reg(
√
phj + θj) +

pµ

2
∥h∥2 + λ̂

2
F
(∥h∥2 −K

2

)
,

which is (pµ)-strongly convex. Thus, we can apply Lemma 11; there exists a matrix Aµ,K ∈ Rp×p
such that

∥Aµ,K∥op ≤ (pµ)−1, tr[Aµ,K ] ≥ 0, (30)

and ĥµ,K and ψµ,K =
∑

i∈I eiloss
′(zi−g⊤i ĥµ,K) are differentiable with respect to the design matrix

G = (gij) as in (29) with

Dµ,K =
∑
i∈I
eie

⊤
i loss

′′(zi − g⊤i ĥµ,K) Vµ,K =Dµ,K −Dµ,KGAµ,KG
⊤Dµ,K .

Now we claim that the trace of Vµ,K and Aµ,K are empirical quantities that converge to the
remaining solution ν and κ:

Lemma 12. For any µ→ 0 such that µ−1 = O(n1/8), we have

tr[Vµ,K ]/p
p−→ ν and tr[Aµ,K ]

p−→ κ.

Proof. See Appendix A.4.
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A.2.4 Proof of Theorem 2

Below we will take the diminishing constant µn → 0 as in Lemma 12. Dropping the dependence on
(µ,K) for simplicity, we denote h = ĥµ,K , ψ = ψµ,K , and V = Vµ,K , A = Aµ,K . In the same way,

we use the notation (h̃, ψ̃, Ṽ , Ã) for the other estimator. Then, by the convergence in ∥ · ∥2 from
Lemma 9 and Lemma 10, it suffices to show the convergence of correlation for the modified ones:

h⊤h̃/(αα̃)
p−→ ηG and ψ⊤ψ̃/(pββ̃)

p−→ ηH .

First, we will argue by the Gaussian Poincaré inequality that h⊤h̃/(αα̃) and ψ⊤ψ̃/(pββ̃) concen-
trate on random quantities that are independent of the scaled design matrixG =

√
pX. Throughout

this section, we denote by E[·] = E[·|z,θ, I, Ĩ] the conditional expectation with respect to the design
matrix G given signal θ, noise z and subsample index I, Ĩ. Since G is independent of (θ, z, I, Ĩ),
the conditional distribution of G given (θ, z, I, Ĩ) is still that of a matrix with i.i.d. N (0, 1) entries.

Lemma 13. For any µn > 0 such that µ−1
n = o(n1/2), we have

E
[
(h⊤h̃− E[h⊤h̃])2

]
= OP(n

−1µ−2) = oP(1).

E
[
(ψ⊤ψ̃ − E[ψ⊤ψ̃])2

]
= OP(nµ

−2) = oP(n
2).

Proof. By the Gaussian Poincaré inequality, noting ∂ij(h
⊤h̃) = h̃⊤∂ijh+ h⊤∂ijh̃ with ∂ij =

∂
∂gij

,

the conditional variance of h⊤h̃ is bounded from above as

E
[
(h⊤h̃− E[h⊤h̃])2

]
≤
∑
ij

E
[
(∂ij(h

⊤h̃))2
]
≤ 2

∑
ij

E
[
(h̃⊤∂ijh)

2
]
+ 2

∑
ij

E
[
(h⊤∂ijh̃)

2
]
,

where we denote by
∑

ij =
∑n

i=1

∑p
j=1 for brevity. By the derivative formula (29), the first term

on the RHS is bounded as∑
ij

(
h̃⊤∂ijh

)2
=
∑
i,j

(
h̃⊤A(ejψi −G⊤Deihj)

)2
≤ 2∥A∥2op∥h∥2∥ψ∥2 + 2∥A∥2op∥G∥2op∥D∥2op∥h̃∥2∥h∥2.

Using the upper bound ∥A∥op ≤ (pµn)
−1 from (30) and the moment bound in Lemma 10-(2), the

conditional expectation (with respect to E) of the RHS is OP(n
−1µ−2

n ). By symmetry, we also get
E[
∑

ij E[(h⊤∂ijh̃)
2]] = OP(n

−1µ−2
n ).

We use a similar argument for the variance of ψ⊤ψ̃. The Gaussian Poincaré gives E[(ψ⊤ψ̃ −
E[ψ⊤ψ̃])2] ≤ 2

∑
ij E[(ψ̃⊤∂ijψ)

2 + (ψ⊤∂ijψ̃)
2], where

∑
ij

(
ψ̃⊤∂ijψ

)2
=
∑
ij

(
ψ̃⊤(−DGAejψi − V eiwj)

)2
≲ ∥A⊤G⊤D⊤∥2op∥ψ̃∥2∥ψ∥2 + ∥V ∥2op∥ψ̃∥2∥h∥2.

by the derivative formula. Using ∥A∥op ≤ (pµn)
−1 and the moment bound in Lemma 10-(2), the

conditional expectation E[·] of the RHS is OP(nµ
−2
n + n) = OP(nµ

−2
n ).
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Let us define η̂G and η̂H as the “truncated” values of the conditional expectation of h⊤h̃ and ψ⊤ψ̃,
respectively:

η̂G := Π[−1,1]

(
E[h⊤h̃]/(αα̃)

)
, η̂H := Π[−1,1]

(
E[ψ⊤ψ̃]/(pββ̃)

)
where Π[−1,1](x) := max(min(x, 1),−1) is the projection map onto [−1, 1]. Here, we emphasize
that (η̂H , η̂G) is independent from the design matrix G since G is integrated out. Furthermore, the
absolute values of η̂G and η̂H are less than 1 due to the truncation, and hence the two matrices(

1 η̂H
η̂H 1

)
and

(
1 η̂G
η̂G 1

)
are both positive semidefinite. By the concentration from Lemma 13 and the convergence ∥h∥2 p−→
α2 > 0, ∥ψ∥2/p p−→ β2 > 0, noting the truncation x 7→ Π[−1,1](x) is continuous, we find that the
random variables (η̂H , η̂G) defined above still capture the correlations, that is,

η̂H = Π[−1,1](
ψ⊤ψ̃

∥ψ∥∥ψ̃∥
) + oP(1) =

ψ⊤ψ̃

∥ψ∥∥ψ̃∥
+ oP(1).

η̂G = Π[−1,1](
h⊤h̃

∥h∥∥h̃∥
) + oP(1) =

h⊤h̃

∥h∥∥h̃∥
+ oP(1).

where the second equation follows from the fact that the correlations are less than 1 in absolute
values by the Cauchy–Schwarz inequality.

Now, we use the multivariate normal approximation below to invite System 1b.

Lemma 14 (Proposition 5.1 in [BK24]). Let z ∼ N (0q, Iq) and let F : Rq → Rq×M be a locally
Lipschitz function with M ≤ q. Then there exists a standard normal vector w ∼ N (0M , IM ) such
that

E
[∥∥F (z)⊤z −

∑
l∈[q]

∂F (z)⊤el
∂zl

−
{
F (z)⊤F (z)

}1/2
w
∥∥2] ≤ C3

∑
l∈[q]

E
[∥∥∂F (z)

∂zl

∥∥2
F

]
,

where {·}1/2 is the square root of the positive semidefinite matrix.

For each j ∈ [p], applying Lemma 14 with F =
[
ψ√
pβ

ψ̃
√
pβ̃

]
∈ Rn×2 and z = Gej ∈ Rn, using the

derivative formula (29), we find that there exists a random vector wj ∈ R2 such that

wj | (θ, ϵ,G−j , I, Ĩ)
d
= N (02, I2)

and

E
[∥∥∥ 1

√
p

(
(ψ⊤Ge⊤j + tr[V ]hj +ψ

⊤DGAej)/β

(ψ̃⊤Ge⊤j + tr[Ṽ ]h̃j + ψ̃
⊤D̃GÃej)/β̃

)
−

(
∥ψ∥2/(pβ2) ψ⊤ψ̃/(pββ̃)

ψ⊤ψ̃/(pββ̃) ∥ψ̃∥2/(pβ̃2)

)1/2

wj

∥∥∥2]
≤ C4

∑
i∈[n]

E
[ 1

pβ2
∥ ∂ψ
∂gij

∥2 + 1

pβ̃2
∥ ∂ψ̃
∂gij

∥2
]
.

Using ∥A∥op ≤ (pµn)
−1 from (30) and Lemma 10, we have

E
[
∥ψ⊤DGA∥2

]
= OP(µ

−2),
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∑
ij

E
[
∥ ∂ψ
∂gij

∥2
]
≤ E

[
2∥DGA∥2F∥ψ∥

2 + 2∥V ∥2F∥h∥
2
]
= OP(nµ

−2).

Thus, summing over j ∈ [p] in the previous display, noting µ−2 = o(n), we are left with

∑
j∈[p]

∥∥∥ 1
√
p

(
(ψ⊤Ge⊤j + tr[V ]hj)/β

(ψ̃⊤Ge⊤j + tr[Ṽ ]hj)/β̃

)
−

(
∥ψ∥2/(pβ2) ψ⊤ψ̃/(pββ̃)

ψ⊤ψ̃/(pββ̃) ∥ψ̃∥2/(pβ̃2)

)1/2

wj

∥∥∥2 = oP(n).

By the (1/2)-Hölder continuity for the matrix square root: ∥M1/2 −N1/2∥op ≤ ∥M −N∥1/2op for

positive semidefinite matrices M ,N , combined with the convergence ∥ψ∥2/p→ β2, ∥ψ̃∥2/p→ β̃2

and the concentration η̂H = ψ⊤ψ̃/(pββ̃) + oP(1), we have

∥∥∥(|∥ψ∥2/(pβ2) ψ⊤ψ̃/(pββ̃)

ψ⊤ψ̃/(pββ̃) ∥ψ̃∥2/(pβ̃2)

)1/2

−
(

1 η̂H
η̂H 1

)1/2∥∥∥
op

= oP(1).

Combined with the previous display, we get

∑
j∈[p]

∥∥∥ 1
√
p

(
(ψ⊤Ge⊤j + tr[V ]hj)/β

(ψ̃⊤Ge⊤j + tr[Ṽ ]h̃j)/β̃

)
−
(

1 η̂H
η̂H 1

)1/2

wj

∥∥∥2 = oP(n) + oP(1)
∑
j∈[p]

∥wj∥2 = oP(n),

where the last equation follows from
∑

j∈[p] E[∥wj∥2] = 2p, which follows from the fact that the

marginal distribution of wj given (z,θ, I, Ĩ) is N (0, 1) (note, however, that we do not establish or

take for granted that (wj)j∈[p] are i.i.d.). Using tr[V ]/p
p−→ ν (Lemma 12) and ∥h∥2 = OP(1) from

Lemma 10, we can also replace tr[V ]hj by pκhj . As a consequence, we get

∑
j∈[p]

∥∥∥( 1√
pβ (ψ

⊤Ge⊤j + pνhj)
1√
pβ̃
(ψ̃⊤Ge⊤j + pν̃h̃j)

)
−
(
ŵj
w̃j

)∥∥∥2 = oP(n) where

(
ŵj
w̃j

)
:=

(
1 η̂H
η̂H 1

)1/2

wj . (31)

Here, we emphasize that the conditional distribution of (ŵj , w̃j) is given by(
ŵj
w̃j

)
| (z,θ,G−j , I, Ĩ)

d
= N

(
02,

(
1 η̂H
η̂H 1

))
since the conditional distribution of wj given (z,θ,G−j , I, Ĩ) is standard normal N (02, I2) and η̂H
is σ(z,θ, I, Ĩ)-measurable. For each j ∈ [p], let us define Ξj and Ξ̃j as

Ξj =
ψ⊤Ge⊤j + pνhj

√
pβ

− ŵj , Ξ̃j =
ψ̃⊤Ge⊤j + pν̃h̃j

√
pβ̃

− w̃j

so that the bound (31) reads
∑

j∈[p][Ξ
2
j+Ξ̃2

j ] = oP(n). By the KKT conditionsG⊤ψ ∈ √
p∂reg(

√
ph+

θ) and G⊤ψ̃ ∈ √
p∂ r̃eg(

√
ph̃+ θ) for h and h̃, respectively,

√
phj and

√
ph̃j can be written as(√

phj√
ph̃j

)
=

(
proxreg(θj +

β
ν (ŵj + Ξj); ν

−1)− θj

proxr̃eg(θj +
β̃
ν̃ (w̃j + Ξ̃j); ν̃

−1)− θj

)
.
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Now we claim that the bound
∑

j∈[p] Ξ
2
j = oP(n) also holds in the conditional expectation E, i.e.,

E[
∑

j∈[p] Ξ
2
j ] = oP(n). To this end, it suffices to show E[(p−1

∑
j∈[p] Ξ

2
j )

2] ≤ C with high probability
for a constant C. Using the upper estimate

0 ≤ 1

p

∑
j∈[p]

Ξ2
j ≤ 3

(∥G⊤ψ∥2

β2p2
+
ν2

β2
∥h∥2 + 1

p

∑
j∈[p]

(ŵj)
2
)

and the moment bound form Lemma 10, we get

E
[(1
p

∑
j∈[p]

Ξ2
j

)2]
≤ C5

(
1 + E

[(1
p

∑
j∈[p]

(ŵj)
2
)2])

with high probability. For the second term, expanding the square of the summation,

E
[(
p−1

∑
j∈[p]

(ŵj)
2
)2]

=
1

p2

∑
i,j

E[(ŵi)2(ŵj)2] ≤
1

p2

∑
i,j

√
E[(ŵi)4]

√
E[(ŵj)4] = 6.

where we have used E[(ŵj)4] = 6 for all j, which follows from the fact that the marginal law of ŵj
is N (0, 1). This gives E[(1p

∑
j∈[p] Ξ

2
j )

2] ≤ C with high probability for a constant C, and hence we

get the estimate E[1p
∑

j∈[p] Ξ
2
j ] = oP(1). The same argument yields E[1p

∑
j∈[p] Ξ̃

2
j ] = oP(1).

Combined with the proximal representation of (
√
phj ,

√
ph̃j) using (Ξj , Ξ̃j), since proxf (·) is 1-

Lipschitz for any convex function f , the upper bounds of E[1p
∑

j∈[p] Ξ
2
j ] and E[1p

∑
j∈[p] Ξ̃

2
j ] yield

the following simple proximal approximation of (
√
phj ,

√
ph̃j):

1

p

∑
j∈[p]

E
[∥∥∥(√phj√

ph̃j

)
−
(
proxreg(θj + (β/ν)ŵj ; ν

−1)− θj
proxr̃eg(θj + (β̃/ν̃)w̃j ; ν̃

−1)− θj

)∥∥∥2] = oP(1).

Noting E[∥h∥2] = OP(1), this lets us approximate E[h⊤h̃]/αα̃ by the inner product of proximal
operators:

E[h⊤h̃]

αα̃
+ oP(1) =

1

p

∑
j∈[p]

1

αα̃
E
[(

proxreg(θj + (β/ν)ŵj ; ν
−1)− θj

)(
proxr̃eg(θj + (β̃/ν̃)w̃j ; ν̃

−1)− θj

)]
=

1

p

∑
j∈[p]

Freg(η̂H ; θj),

where for the second inequality, we used the fact that the marginal law of (ŵj , w̃j) given (θ, z, I, Ĩ) is
jointly Gaussian, with zero mean, unit variance, and correlation η̂H , and where Freg(·; θj) : [−1, 1] →
R is the function defined by

Freg(η; θj) =

∫∫ (
proxreg(θj +

β
ν x;

1
ν )− θj

)(
proxr̃eg(θj +

β̃
ν̃ (ηx+

√
1− η2y); 1ν̃ )− θj

)
αα̃

φ(x)φ(y) dx dy

with φ being the standard normal probability function and
∫∫

=
∫∞
−∞

∫∞
−∞. Notice that for each η ∈

[−1, 1], the sequence (Freg(η; θj))
p
j=1 are i.i.d. random variables with mean E[Freg(η; θj)] = Freg(η).

Furthermore, by the Jensen’s inequality and the Cauchy–Schwarz inequality, the expectation of the
absolute value is finite:

E
[
|Freg(η; θj)|

]
≤ 1

αα̃
E
[
|
(
proxreg(Θ + β

νH; 1ν )−Θ
)
·
(
proxr̃eg(Θ + β̃

ν̃ H̃; 1ν̃ )−Θ
)
|
]
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≤ 1

αα̃
E
[(
proxreg(Θ + β

νH; 1ν )−Θ
)2]1/2 · E[(proxr̃eg(Θ + β̃

ν̃ H̃; 1ν̃ )−Θ
)2]1/2

= 1 (by (5a) in System 1a).

Thus, the weak law of large numbers gives p−1
∑

j∈[p] Freg(η; θj)
p−→ Freg(η) for each η ∈ [−1, 1].

Next, we claim that this convergence holds uniformly over η ∈ [−1, 1].

Lemma 15. Let I be a bounded and closed interval of R and let (fn)n≥1 : I → R be a sequence of

non-decreasing functions such that fn(x)
p−→ f(x) pointwise for some function f : I → R. If f is

non-decreasing and continuous, then the uniform convergence supx∈I |fn(x)− f(x)| p−→ 0 holds.

Note that Lemma 15 is a probabilistic analogue of a similar statement for deterministic functions: if
a sequence of real-valued monotone functions (on R) converges pointwise to a continuous function
on a compact set I ⊂ R, then the convergence is uniform on the set I. The probabilistic version is
known but in a more general setting, so to keep the treatment self-contained we give a basic proof
below which is similar to proof of Glivenko-Cantelli theorem (cf. [VdV00, Theorem 19.1]).

Proof. Let us write I = [a, b]. Since f is continuous and I is compact, f is uniformly continuous on
I. For any ϵ > 0, there exists some δϵ > 0 such that |f(x) − f(y)| < ϵ/2 for all x, y ∈ I such that
|x−y| ≤ δϵ. Now for sufficiently large integer k = kϵ ∈ N such that (b−a)/k < δϵ, let us take equally
spaced grids (xi)

k
i=0 over [a, b] such that a = x0 < x1 < · · · < xk = b and (xi − xi−1) = (b − a)/k

for all i ∈ {0, . . . k}. Let Ωϵ = ∩ki=0{|fn(xi) − f(xi)| ≤ ϵ/2} be the event under which fn and
f are sufficiently close at the finite grids. Note that this event holds with probability converging
to 1, thanks to the pointwise convergence fn(xi)

p−→ f(xi) at finitely many xi. Then, since fn is
non-decreasing while f does not move more than ϵ/2 in [xi−1, xi], for all i ∈ {0, 1, . . . , k} and for
all x ∈ [xi−1, xi] we have

fn(xi−1) ≤ fn(x) ≤ fn(xi),

−ϵ/2− f(xi−1) ≤ −f(x) ≤ −f(xi) + ϵ/2.

In the event Ωϵ, summing the two lines it holds that −ϵ ≤ fn(x)− f(x) ≤ ϵ for all i ∈ {0, 1, . . . , k}
and for all x ∈ [xi−1, xi].

Recall that we have shown in the proof of Theorem 1 that Freg is differentiable with a non-negative
derivative. By the same argument, the map η 7→ Freg(η; θj) is differentiable with a non-negative
derivative. Thus, applying Lemma 15 with fn(·) = p−1

∑
j∈[p] Freg(·; θj), f(·) = Freg(·) and I =

[−1, 1], we get the uniform convergence:

sup
η∈[−1,1]

∣∣∣1
p

∑
j∈[p]

Freg(η; θj)− Freg(η)
∣∣∣ p−→ 0.

Combined with E[h⊤h̃]
αα̃ = 1

p

∑
j∈[p] F̂reg(η̂H ; θj) + oP(1) and η̂H ∈ [−1, 1], we are left with

E[h⊤h̃]

αα̃
=

1

p

∑
j∈[p]

Freg(η̂H ; θj) + oP(1) = Freg(η̂H ) + oP(1).
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Recall the definition η̂G = Π[−1,1](
E[h⊤h̃]
αα̃ ) where Π[−1,1] is the projection onto [−1, 1]. By the

continuity of the projection map and the bound supη∈[−1,1] |Freg(η)| ≤ 1 (see Theorem 1), the
above display yields

η̂G = Π[−1,1](Freg(η̂H )) + oP(1) = Freg(η̂H ) + oP(1).

Next, let us show η̂H = Floss(η̂G) + oP(1) using the same argument. Using Lemma 14 with F =

[h/α | h̃/α̃] ∈ Rp×2 and z = gi, there exists a random vector ui ∈ R2 with conditional distribution

ui | z,θ,G−i, I, Ĩ
d
= N (02, I2)

and

E
[∥∥∥((g⊤i h− tr[A]ψi + h

⊤AG⊤Dei)/α

(g⊤i h̃− tr[Ã]ψ̃i + h̃
⊤ÃG⊤D̃ei)/α̃

)
−

(
∥h∥2/α2 h⊤h̃/αα̃

h̃⊤h/αα̃ ∥h̃∥2/α̃2

)1/2

ui

∥∥∥2]
≤ C6

p∑
j=1

E
1

α2

∥∥∥ ∂h
∂gij

∥∥∥2 + 1

α̃2

∥∥∥ ∂h̃
∂gij

∥∥∥2. (32)

Using ∥A∥op ≤ (pµ)−1 in (30) Lemma 10, noting µ−2 = o(n), it follows that

E
[
∥hAG⊤D∥2

]
= OP(n

−1µ−2) = oP(1)∑
i∈[n]

∑
j∈[p]

E
[
∥ ∂h
∂gij

∥2
]
≤ 2E

[
∥A∥2F∥ψ∥

2 + ∥AG⊤D∥2F ∥h∥2
]
= OP(µ

−2) = oP(n)

so that summing over i ∈ [n] the inequality (32), we get

∑
i∈[n]

∥∥∥((g⊤i h− tr[A]ψi)/α

(g⊤i h̃− tr[Ã]ψ̃i)/α̃

)
−

(
∥h∥2/α2 h⊤h̃/αα̃

h̃⊤h/αα̃ ∥h̃∥2/α̃2

)1/2

ui

∥∥∥2 = oP(n).

Appealing to the (1/2)-Hölder continuity for the matrix square root again, now using the two

convergences ∥h∥2 → α2, ∥h̃∥2 p−→ α̃2 and the concentration η̂G = h⊤h̃/(αα̃) + oP(1), we get

∥∥∥(∥h∥2/α2 h⊤h̃/αα̃

h̃⊤h/αα̃ ∥h̃∥2/α̃2

)1/2

−
(

1 η̂G
η̂G 1

)1/2∥∥∥
op

= oP(1).

Combined with the convergence tr[A]
p−→ κ, tr[Ã]

p−→ κ̃, noting that
∑

i∈[n] ∥ui∥2 and ∥ψ∥2 + ∥ψ̃∥2
are both OP(n), we are left with

1

n

∑
i∈[n]

∥∥∥(g⊤i h− κψi
g⊤i h̃− κ̃ψ̃i

)
−
(
αûi
α̃ũi

)∥∥∥2 = oP(1) where

(
ûi
ũi

)
=

(
1 η̂G
η̂G 1

)1/2

ui.

By the same argument that we used to bound Ξj and Ξ̃j , using Lemma 10 and the fact that the
marginal law of ûi (and ũi) is N (0, 1), we can show that the conditional expectation E of the
square of LHS is bounded from above by a constant C with high probability. Thus, the above
approximation also holds in the conditional expectation E:

1

n

∑
i∈[n]

E
[∥∥∥(g⊤i h− κψi

g⊤i h̃− κ̃ψ̃i

)
−
(
αûi
α̃ũi

)∥∥∥2] = oP(1).
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Let us define Ξi := g⊤i h − κψi − αûi and Ξ̃i := g⊤i h̃ − κ̃ψ̃i − α̃ũi so that the above display reads∑
i∈[n] E[(Ξi)2 + (Ξ̃i)2] = o(n). Since ψi = loss′(zi − g⊤i h) and ψ̃i = l̃oss

′
(z̃i − g⊤i h̃) for all i ∈ I ∩ Ĩ,

the residuals can be written as

zi − g⊤i h = proxloss(zi − αûi − Ξi;κ), zi − g⊤i h̃ = prox
l̃oss

(zi − α̃ũi − Ξ̃i; κ̃)

for all i ∈ I∩Ĩ. Since the map x 7→ env′f (x; τ) = f ′◦proxf (x; τ) is a composition of Lipschitz functions

if f is convex and differentiable with Lipschitz derivative, the moment bound
∑

i∈[n] E[(Ξi)2 +

(Ξ̃i)2] = o(n) lets us approximate ψi and ψ̃i by env′loss and env′
l̃oss

as follows:

1

n

∑
i∈I∩Ĩ

E
∥∥∥(ψi − env′loss(zi − αûi;κ)

ψ̃i − env′
l̃oss

(zi − α̃ũi; κ̃)

)∥∥∥2 = oP(1) with

(
ûi
ũi

)
|z,θ,G−i, I, Ĩ

d
= N (02,

(
1 η̂G
η̂G 1

)
)

Noting E[∥ψ∥2] = OP(n) by Lemma 10, this lets us approximate E[ψ⊤ψ̃]/(pββ̃) by the inner
product of (env′loss, env

′
l̃oss

):

E[ψ⊤ψ̃]

pββ̃
=

|I ∩ Ĩ|
pββ̃

1

|I ∩ Ĩ|
E[ψ⊤ψ̃]

=
cc̃δ

ββ̃

1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

E[env′loss(zi − αûi;κ) · env′l̃oss(zi − α̃ũi; κ̃)] + oP(1).

Since the marginal distribution of (ui, ũi) given (θ, z, I, Ĩ) is centered normal with unit variance
and correlation η̂G , the above display reads

E[ψ⊤ψ̃]

pββ̃
=

1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

Floss(η̂G ; zi) + oP(1)

where Floss(η; zi) : [−1, 1] → R is the function defined as:

Floss(η; zi) =
cc̃δ

ββ̃

∫ ∞

−∞

∫ ∞

−∞
φ(x)φ(y)env′loss(zi + αx;κ)env′

l̃oss
(zi + α̃(ηx+

√
1− η2y); κ̃) dx dy.

By the same argument for Freg(η; θj), the sequence (Floss(η; zi))i∈[n] are i.i.d. random variables with
mean E[Floss(η; zi)] = Floss(η) and the expectation of the absolute value |Floss(η; zi)| is finite. Thus,
by the weak law of large numbers, we have 1

m

∑
i∈[m] Floss(η; zi)

p−→ E[Floss(η; z1)] = Floss(η) for any
deterministic integer m = mn → +∞. Then, we have that for any ϵ > 0, denoting by

∑
K the sum

over all possible value K taken by I ∩ Ĩ,

P
(
| 1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

Floss(η; zi)− Floss(η)| > ϵ
)

=
∑
K

P
(
| 1

|K|
∑
i∈K

Floss(η; zi)− Floss(η)| > ϵ, I ∩ Ĩ = K
)

(by additivity of disjoint events)

=
∑
K

P
(
| 1

|K|
∑
i∈K

Floss(η; zi)− Floss(η)| > ϵ
)
P(I ∩ Ĩ = K) (by independence)

=
∑
m≥0

P
(
| 1
m

∑
i∈[M ]

Floss(η; zi)− Floss(η)| > ϵ
)
P(|I ∩ Ĩ| = m) (since (zi)i∈K

d
= (zi)i∈[m] for m = |K|).
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We now split the sum over m ≥ 0 into two as follows:

P
(
| 1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

Floss(η; zi)− Floss(η)| > ϵ
)

=
( ∑
m≤ncc̃/2

+
∑

m>ncc̃/2

)
P
(
| 1
m

∑
i∈[M ]

Floss(η; zi)− Floss(η)| > ϵ
)
P
(
|I ∩ Ĩ| = m

)
≤ P(|I ∩ Ĩ| ≤ ncc̃/2) + sup

m>ncc̃/2
P
(
| 1
m

∑
i∈[M ]

Floss(η; zi)− Floss(η)| > ϵ
)
P(|I ∩ Ĩ| > ncc̃/2)

where P(|I ∩ Ĩ| > ncc̃/2) ≤ 1 in the rightmost term. The second term converges to 0 by the
weak law of large numbers, and the first by Chebyshev’s inequality applied to the hypergeometric
distribution.

This gives 1

|I∩Ĩ|

∑
i∈I∩Ĩ Floss(η; zi)

p−→ Floss(η) pointwise for any η ∈ [−1, 1]. By the same argument

we used for Freg and Freg(·; θj), Floss and Floss(·; zi) are non-decreasing and continuous. Thus, we
can apply Lemma 15 with fn(·) = 1

|I∩Ĩ|

∑
i∈I∩Ĩ Floss(·; zi), f(·) = Floss(·) and obtain the uniform

convergence:

sup
η∈[−1,1]

∣∣∣ 1

|I ∩ Ĩ|

∑
i∈I∩Ĩ

Floss(η; zi)− Floss(η)
∣∣∣ = oP(1).

Combined with E[ψ⊤ψ̃]

pββ̃
= 1

|I∩Ĩ|

∑
i∈I∩Ĩ Floss(η̂G ; zi) and η̂G ∈ [−1, 1], we are left with

E[ψ⊤ψ̃]/(pββ̃) = Floss(η̂G) + oP(1).

Recalling η̂H = Π[−1,1](E[ψ⊤ψ̃]/(pββ̃)) where Π[−1,1] is the projection onto [−1, 1], by the continuity

of the projection map and |Floss(η)| ≤
√
cc̃ ≤ 1 for all η ∈ [−1, 1] (see Theorem 1), we finally obtain

η̂H = Π[−1,1](Floss(η̂G)) + oP(1) = Floss(η̂G) + oP(1).

In summary, we have shown that η̂G = Freg(η̂H )+oP(1) and η̂H = Floss(η̂G)+oP(1). By the continuity
of Freg and Floss, it holds that

η̂G = Freg ◦ Floss(η̂G) + oP(1) and η̂H = Floss ◦ Freg(η̂H ) + oP(1).

Since Freg ◦ Floss and Floss ◦ Freg are (c ∧ c̃)-Lipschitz with c ∧ c̃ < 1, we have

|η̂G − ηG | = |Freg ◦ Floss(η̂G) + oP(1)− Freg ◦ Floss(ηG)| ≤ (c ∧ c̃)|η̂G − ηG |+ oP(1),

so η̂G = ηG + oP(1), and similarly η̂H = ηH + oP(1) for the fixed points ηG and ηH satisfying

ηG = Freg ◦ Floss(ηG) and ηH = Floss ◦ Freg(ηH ). Recalling η̂G = h⊤h̃/(αα̃) + oP(1) and η̂H =

ψ⊤ψ̃/(pββ̃) + oP(1), this gives h⊤h̃/(αα̃)
p−→ ηG and ψ⊤ψ̃/(pββ̃)

p−→ ηH , thereby completing the
proof.

Finally, let us show the proximal approximation of estimators (
√
phj ,

√
ph̃j) and residuals (zi −

g⊤i h, zi− g⊤i h̃). Using the convergence ψ⊤ψ̃/(pββ̃)
p−→ ηH that we have shown, applying the above
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argument with η̂H replaced by ηH , we have

1

p

∑
j∈[p]

E
[∥∥∥(√phj√

ph̃j

)
−
(
proxreg(θj + (β/ν)ŵj ; ν

−1)− θj
proxr̃eg(θj + (β̃/ν̃)w̃j ; ν̃

−1)− θj

)∥∥∥2︸ ︷︷ ︸
LHSj

]
= oP(1).

Since |Xn| = oP(1) is equivalent to E[1∧|Xn|] = o(1) for any random variable Xn, the above display
reads

E
[
1 ∧ 1

p

∑
j∈[p]

E[LHSj ]
]
= o(1)

where the expectation E is with respect to (z,θ, I, Ĩ) (recall the definition E[·] = E[·|z,θ, I, Ĩ]).
Note that the integrand is bounded from below as

1 ∧ 1

p

∑
j∈[p]

E[LHSj ] ≥
1

p

∑
j∈[p]

(
1 ∧ E[LHSj ]

)
≥ 1

p

∑
j∈[p]

E[1 ∧ LHSj ],

where the second inequality follows from the Jensen’s inequality E[f(X)] ≤ f(E[X]) applied with
the concave function f(x) = 1∧x and X = LHSj . Taking the expectation of the above display and
using the tower property, we are left with

1

p

∑
j∈[p]

E[1 ∧ LHSj ] = o(1).

Since the marginal distribution of the integrand (1∧LHSj) is the same for all j ∈ [p] by symmetry,
the LHS equals to E[1∧LHSj′ ] for any j′ ∈ [p]. This gives maxj∈[p] E[1∧LHSj ] = o(1) and completes

the proof of the joint approximation of estimators (
√
phj ,

√
ph̃j). The joint approximation of residual

follows from the same argument so we omit the proof.

A.3 Proof of Theorem 4

We assume that reg and r̃eg are µ-strongly convex for a fixed µ > 0. Then [BS22, Theorem 5.1]
implies that

tr[A] tr[V ]− df = OP(
√
n).

On the other hand, by the same argument in the proof of Lemma 12 with the diminishing ridge
penalty µn replaced by the strongly convexity parameter µ > 0, we have tr[V ]/p

p−→ ν > 0 and

tr[A]
p−→ κ. Therefore, we get

tr[A]− df/ tr[V ] = OP(n
−1/2) and df/ tr[V ] = OP(1).

Note in passing that the same things hold for d̃f and tr[Ṽ ]. By the Cauchy–Schwarz inequality, the
error term due to the replacement of (df/ tr[V ], d̃f/ tr[Ṽ ]) by (tr[A], tr[Ã]) is∣∣∣∑
i∈[n]

(
ri +

df

tr[V ]
1{i∈I} ψi

)⊤(
r̃i +

d̃f

tr[Ṽ ]
1{i∈Ĩ} ψ̃i

)
−
∑
i∈[n]

(
ri + tr[A]1{i∈I} ψi

)⊤(
r̃i + tr[Ã]1{i∈Ĩ} ψ̃i

)∣∣∣
≤

√√√√∑
i∈[n]

(
ri +

df

tr[V ]
1{i∈I} ψi

)2 · ∣∣∣ d̃f

tr[Ṽ ]
− tr[Ã]

∣∣∣∥ψ̃∥+√∑
i∈[n]

(r̃i + tr[Ã]1{i∈Ĩ} ψ̃i)
2 ·
∣∣∣ df

tr[V ]
− tr[A]

∣∣∣∥ψ∥
51



= (∥z∥+OP(
√
n)) · OP(1)

where the last equality follows from the following fact: ∥r∥2 ≤ 2(∥z∥2 + ∥Gh∥2), ∥Gh∥2 = OP(n),
∥ψ∥2 = OP(n), and df/ tr[V ] = OP(1). Therefore, it suffcies to show

nh⊤h̃+ ∥z∥2 −
∑
i∈[n]

(zi − g⊤i h+ tr[A]1{i∈I} ψi)(zi − g⊤i h̃+ tr[Ã]1{i∈Ĩ} ψ̃i) = OP(1)∥z∥+OP(
√
n).

By simple algebra, the LHS can be decomposed into three terms ξ1 + ξ̃1 + ξ2 with:

ξ1 =
∑
i∈[n]

zi(g
⊤
i h− tr[A]1{i∈I} ψi), ξ̃1 =

∑
i∈[n]

zi(g
⊤
i h̃− tr[Ã]1{i∈Ĩ} ψ̃i)

ξ2 = nh⊤h̃−
∑
i∈[n]

(
g⊤i h− tr[A]1{i∈I} ψi

)(
g⊤i h̃− tr[Ã]1{i∈Ĩ} ψ̃i

)
For (ξ1, ξ̃1), the derivative formula (35) and the argument in the proof of [BS22, Proposition 18]
yield

E
[ |ξ1|
{∥h∥2 + p−1∥ψ∥2}1/2 · ∥z∥

]
+ E

[ |ξ̃1|
{∥h̃∥2 + p−1∥ψ̃∥2}1/2 · ∥z∥

]
≤ C(µ, δ).

Since the denominators are OP(1)∥z∥, we have ξ1 + ξ̃1 = OP(1)∥z∥.

Below we bound ξ2 using the following moment inequality, which is a variant of [Bel23, Theorem
7.2].

Lemma 16. Let ρ, ρ̃ : RK×Q → RQ be locally Lipschitz functions and ζ, ζ̃ : RK×Q → RL be locally
Lipschitz functions. If (zk)k∈[K] are i.i.d. N (0Q, IQ), we have

E
∣∣∣Kρ⊤ρ̃−

∑
k∈[K](z

⊤
k ρ−

∑
q∈Q

∂ρq
zkq

)(z⊤k ρ̃−
∑

q∈Q
∂ρ̃q
zkq

)

{∥ρ∥2 + ∥ζ∥2}1/2{∥ρ̃∥2 + ∥ζ̃∥2}1/2

∣∣∣ ≤ C7(
√
K(1 +

√
E[Ξ + Ξ̃]) + E[Ξ + Ξ̃])

where Ξ := 1
∥ρ∥2+∥ζ∥2

∑
k∈[K]

∑
q∈[Q]

(∥∥ ∂ρ
∂gkq

∥∥2 + ∥∥ ∂ζ
∂gkq

∥∥2).
(The proof of Lemma 16 is given in Appendix A.3.1.) By Lemma 16 with (ρ, ρ̃) = (h, h̃), (ζ, ζ̃) =
(ψ/

√
p, ψ̃/

√
p), and K = [n], we get

E
∣∣∣nh⊤h̃−

∑
i∈n(g

⊤
i h−

∑
j∈[p]

∂hj
∂gij

)(g⊤i h̃−
∑

j∈[p]
∂h̃j
∂gij

)

{∥h∥2 + p−1∥ψ∥2}1/2{∥h̃∥2 + p−1∥ψ̃∥2}1/2

∣∣∣ ≤ C8(
√
n(1 +

√
E[Ξ + Ξ̃]) + E[Ξ + Ξ̃]).

where

Ξ =
1

∥h∥2 + p−1∥ψ∥2
∑
i∈[n]

∑
j∈[p]

(∥∥ ∂h
∂gij

∥∥2 + 1

p

∥∥ ∂ψ
∂gij

∥∥2) (33)

Let us bound Ξ. By the derivative formula (29), we have∑
ij

∥∂ijh∥2 ≤ 2∥A∥2F∥ψ∥
2 + 2∥AG⊤D∥2F ∥h∥2,

∑
ij

∥∂ijψ∥2 ≤ 2∥DGA∥2F∥ψ∥
2 + 2∥V ∥2F∥h∥

2
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where V = D −DGAG⊤D and D = diag{loss′′(zi − g⊤i h)}. By ∥A∥op ≤ (pµ)−1 and ∥D∥op ≤
∥loss′∥Lip, Ξ is bounded from above by

Ξ ≤ 2p∥A∥2F + 2∥AG⊤D∥2F + 2∥DGA∥2F + 2p−1∥V ∥2F ≤ C(δ, ∥loss′∥Lip) · ∥A∥2op∥G∥4op (34)

By ∥A∥op ≤ (pµ)−1 in (30) and Lemma 10, we obtain E[Ξ] ≤ C9. This gives

E
∣∣∣nh⊤h̃−

∑
i∈n(g

⊤
i h−

∑
j∈[p]

∂hj
∂gij

)(g⊤i h̃−
∑

j∈[p]
∂h̃j
∂gij

)

{∥h∥2 + p−1∥ψ∥2}1/2{∥h̃∥2 + p−1∥ψ̃∥2}1/2

∣∣∣ ≤ C10

√
n

Since the denominator is OP(1), we have

nh⊤h̃−
∑
i∈[n]

(
g⊤i h−

∑
j∈[p]

∂hj
∂gij

)(
g⊤i h̃−

∑
j∈[p]

∂h̃j
∂gij

)
= OP(

√
n).

By the derivative formula (29), noting that
∂hj
∂gij

= 0 for all i /∈ I and j ∈ [p], it holds that

∑
j∈[p]

∂hj
∂gij

=

{
0 i /∈ I

tr[A]ψi − h⊤AGDei i ∈ I
(35)

Combined with ∥h⊤AGD∥2 = OP(n
−1), the Cauchy–Schwarz inequality leads to

∑
i∈[n]

(
g⊤i h−

∑
j∈[p]

∂hj
∂gij

)(
g⊤i h̃−

∑
j∈[p]

∂h̃j
∂gij

)
=
∑
i∈[n]

(
g⊤i h−tr[A]1{i∈I} ψi

)(
g⊤i h̃−tr[Ã]1{i∈Ĩ} ψ̃i

)
+OP(1).

This gives ξ2 = OP(
√
n) +OP(1) = OP(

√
n) and completes the proof.

A.3.1 Proof of Lemma 16

Let us denote f = (ρ⊤, ζ⊤)⊤ ∈ RQ+L and f̃ = (ρ̃⊤, ζ̃⊤)⊤RQ×L. Let us write the product as

ρ⊤ρ̃

∥f∥∥f̃∥
=
∥∥∥1
2

( ρ

∥f∥
+

ρ̃

∥f̃∥

)∥∥∥2 − ∥∥∥1
2

( ρ

∥f∥
− ρ̃

∥f̃∥

)∥∥∥2
Note that ρ

∥f∥ and ρ̃

∥f̃∥
are bounded by 1 in the standard Euclid norm ∥ · ∥. Applying the χ-

square type moment inequality [Bel23, Theorem 7.2] to these terms respectively, we observe that
the following two terms are bounded from above by

√
K{1 + E[Ξ + Ξ̃]}1/2 + E[Ξ + Ξ̃] up to some

universal constant:

E
∣∣∣K∥∥∥( ρ

∥f∥
+

ρ̃

∥f̃∥

)∥∥∥2 − ∑
k∈[K]

(
z⊤k

( ρ

∥f∥
+

ρ̃

∥f̃∥

)
−
∑
q∈[Q]

∂

∂zkq

( ρq
∥f∥

+
ρ̃q

∥f̃∥

))2∣∣∣
E
∣∣∣K∥∥∥( ρ

∥f∥
− ρ̃

∥f̃∥

)∥∥∥2 − ∑
k∈[K]

(
z⊤k

( ρ

∥f∥
− ρ̃

∥f̃∥

)
−
∑
q∈[Q]

∂

∂zkq

( ρq
∥f∥

− ρ̃q

∥f̃∥

))2∣∣∣
Thus, by the triangle inequality, we are left with the bound of cross terms:

E
∣∣∣K ρ⊤ρ̃

∥f∥∥f̃∥
−
∑
k∈[K]

bk b̃k

∣∣∣ ≲ √
K{1 + E[Ξ + Ξ̃]}1/2 + E[Ξ + Ξ̃] (36)
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where bk = z⊤k ρ/∥f∥ −
∑

q∈[Q](∂/∂zkq)(ρq/∥f∥). Expanding the derivative of the second term, bk
can be written as

bk =
z⊤k ρ−

∑
q∈[Q]

∂ρq
∂zkq

∥f∥︸ ︷︷ ︸
=:ak

−
∑
q∈[Q]

ρq
∂

∂zkq

1

∥f∥
= ak +

∑
q∈[Q]

ρq
f⊤

∥f∥3
∂f

∂zkq

Thus, by multiple applications of Cauchy–Schwarz inequality, using ∥ρ∥2 ≤ ∥f∥2, we find that the
error ∥b− a∥2 =

∑
k∈[K](bk − ak)

2 is bounded from above by 2Ξ:

∥a− b∥2 =
∑
k∈K

(
∑
q∈[Q]

ρq
f⊤

∥f∥3
∂f

∂zkq
)2 ≤

∑
k

∥ρ∥2
∑
q

( f⊤

∥f∥3
∂f

∂zkq

)2
≤ 1

∥f∥2
∑
k,q

∥∥∥ ∂f
∂zkq

∥∥∥2 ≤ 2Ξ.

The same argument gives ∥ã− b̃∥2 ≤ 2Ξ̃.

Now we claim the following deterministic inequality for all u, ũ,a, ã, b, b̃ ∈ RK with ∥u∥∨∥ũ∥ ≤ 1:∣∣|Ku⊤ũ− a⊤ã| − |Ku⊤ũ− b⊤b̃|
∣∣ ≤ (∥a− b∥2 + ∥ã− b̃∥2) +

√
K(∥a− b∥+ ∥ã− b̃∥)

+ 2−1(|K∥u∥2 − ∥b∥2|+ |K∥ũ∥2 − ∥b̃∥2|) (37)

We prove this inequality later. Applying this inequality with u = ρ/∥f∥ and (a, b) defined above,
using ∥a− b∥2 ≤ 2Ξ, we get

|Ku⊤ũ− a⊤ã| ≤ 2(Ξ + Ξ̃) +
√
2K(Ξ1/2 + Ξ̃1/2)

+ 2−1(|K∥u∥2 − ∥b∥2|+ |K∥ũ∥2 − ∥b̃∥2|)

+ |Ku⊤ũ− b⊤b̃|

Taking the expectation, using the moment bound (36), we are left with

E|Ku⊤ũ− a⊤ã| ≲ E[Ξ + Ξ̃] +
√
KE[(Ξ1/2 + Ξ̃1/2)]

+ {1 + E[Ξ]}1/2 + E[Ξ] + {1 + E[Ξ̃]}1/2 + E[Ξ̃]

+ {1 + E[Ξ + Ξ̃]}1/2 + E[Ξ + Ξ̃]

Using Jensen’s inequality E[X1/2] ≤
√
E[X] for any non-negative random variableX and

√
a+

√
b ≤√

2
√
a+ b for any non-negative scalars a, b, the RHS is bounded from above by

√
K{1 + E[Ξ +

Ξ̃]}1/2 + E[Ξ + Ξ̃] up to some universal constant. This finishes the proof.

Below we prove the deterministic inequality (37). By multiple applications of the triangle inequality
and Cauchy–Schwarz inequality,∣∣|Ku⊤ũ− a⊤ã| − |Ku⊤ũ− b⊤b̃|

∣∣ ≤ |a⊤ã− b⊤b̃|

≤ |(a− b)⊤(ã− b̃) + (a− b)⊤b̃+ b⊤(ã− b̃)|

≤ ∥a− b∥∥ã− b̃∥+ ∥a− b∥∥b̃∥+ ∥ã− b̃∥∥b∥

≤ ∥a− b∥2 + ∥ã− b̃∥2

2
+ ∥a− b∥∥b̃∥+ ∥ã− b̃∥∥b∥

Using ∥b∥ ≤
√
|∥b∥2 −K∥u∥2| +

√
K∥u∥2 and ∥u∥ ≤ 1, ∥a − b∥∥b̃∥ can be bounded from above

as

∥a−b∥∥b̃∥ ≤ ∥a−b∥
√

|∥b̃∥2 −K∥ũ∥2|+
√
K∥a−b∥ ≤ ∥a− b∥2

2
+

|∥b̃∥2 −K∥ũ∥2|
2

+
√
K∥a−b∥.
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The same argument gives ∥ã−b̃∥b∥ ≤ ∥ã−b̃∥2
2 + ∥b∥2−K∥u∥2|

2 +
√
K∥ã−b̃∥. Putting them all together,

we obtained the desired upper bound of
∣∣|Ku⊤ũ− a⊤ã| − |Ku⊤ũ− b⊤b̃|

∣∣.
A.4 Proof of trace convergence

We assume without loss of generality that I = [n]. Throughout this section, we denote h = ĥµ,K
and ψ = ψµ,K for simplicity.

Lemma 17. For any µ ∈ (0, 1] with µ−1 = o(n1/4),

tr[V ] = ∥h∥−2
(
∥ψ∥2 tr[A]−ψ⊤Gh

)
+OP(n

1/2µ−1)

tr[A]2 =
(ψ⊤Gh)2 + ∥h∥2(p∥ψ∥2 − ∥G⊤ψ∥2)

∥ψ∥4
+OP(n

−1/2µ−2)

and P(tr[A]2 ≤ C) → 1 for a constant C > 0 that only depend on (α, β, δ).

Proof. First we show the stochastic representation of tr[V ] by (h,ψ, tr[A]).

Lemma 18 ([BS22]). Let ρ : RK×Q → RQ and ζ : RK×Q → RK be two locally Lipschitz functions
with differentiable components. If Z ∈ RK×Q has i.i.d. N (0, 1) entries, we have

E
[(ζ⊤Zρ−

∑
kq

∂(ζkρq)
∂gkq

∥ζ∥2 + ∥ρ∥2
)2]

≤ C11(1 + E[Ξ])

where Ξ := 1
∥ρ∥2+∥ζ∥2

∑
k∈[K]

∑
q∈[Q]

(∥∥ ∂ρ
∂gkq

∥∥2 + ∥∥ ∂ζ
∂gkq

∥∥2).
By Lemma 18 with (ζ,ρ) = (p−1/2ψ,h) and Z = G, we have

E
[( 1√

pψ
⊤Gh− 1√

p

∑
ij
∂(ψihj)
∂gij

∥h∥2 + p−1∥ψ∥2
)2]

≤ C12(1 + E[Ξ])

where Ξ is the same estimate as in (33). Using the upper estimate Ξ ≤ C13∥A∥2op∥G∥4op in (34),
∥A∥op ≤ (pµ)−1 and E[∥G∥4] ≤ C(δ)n2, we find that the RHS in the above display is bounded
from away by C(δ)(1 + µ−2). Since the denominator ∥h∥2 + p−1∥ψ∥2 is OP(1), we get

ψ⊤Gh−
∑
ij

∂ψihj
∂gij

=
√
p · OP(1) · OP(µ

−1) = OP(
√
nµ−1).

For the sum of derivative
∑

ij
∂(ψihj)
∂gij

, using ∥A∥op ≤ (pµ)−1 and ∥G∥op = OP(
√
n), we have

∑
ij

∂(ψihj)

∂gij
= ∥ψ∥2 tr[A]− h⊤G⊤Dψ −ψ⊤DGAh− ∥h∥2 tr[V ]

= ∥ψ∥2 tr[A] +OP(n
1/2) +OP(µ

−1)− ∥h∥2 tr[V ]

so that we are left with

ψ⊤Gh− ∥ψ∥2 tr[A] + ∥h∥2 tr[V ] = OP(
√
nµ−1).
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Dividing by ∥h∥2, noting ∥h∥−1 = OP(1) from ∥h∥2 p−→ α2 > 0, we obtain the representation of
tr[V ].

Next, we show the stochastic representation of tr[A2] by (G,h,ψ). By the stochastic representation
of tr[V ],∣∣∥ψ∥4 tr[A]2 − (ψ⊤Gh+ tr[V ]∥h∥2)2

∣∣ ≤ OP(
√
nµ−1)

∣∣∥ψ∥2 tr[A] +ψ⊤Gh+ tr[V ]∥h∥2
∣∣

≤ OP(
√
nµ−1)OP(nµ

−1 + n+ n)

= OP(n
3/2µ−2).

By Lemma 16 with ρ = ρ̃ = ψ/
√
p and ζ = ζ̃ = h, we have

E
[∣∣p∥ ψ√p∥2 −∑j∈[p](

ψ⊤
√
pGej −

1√
p

∑
i∈[n]

∂ψ
∂gij

)2
∣∣

∥h∥2 + p−1∥ψ∥2
]
≤ C14(

√
n(1 + E[Ξ]1/2) + E[Ξ]).

where Ξ is the same estimate as in (33). Using E[Ξ] ≤ C15µ
−2 again, we get

∥ψ∥2 − 1

p

∑
j∈[p]

(ψ⊤Gej −
∑
i∈[n]

∂ψi
∂gij

)2 = OP(1) · OP(
√
n(1 + µ−1) + µ−2) = (n1/2µ−1)

Using
∑

i∈[n]
∂ψi

∂gij
= −ψ⊤DGAej − tr[V ]hj by the derivative formula (29), it holds that∥∥∥∑

j∈[p]

(ψ⊤Gej −
∑
i∈[n]

∂ψi
∂gij

)2 − ∥G⊤ψ + tr[V ]h∥2
∥∥∥

=
∣∣∣∥G⊤ψ +A⊤G⊤Dψ + tr[V ]h∥2 − ∥G⊤ψ + tr[V ]h∥2

∣∣∣
≤ ∥A⊤G⊤Dψ∥

(
∥A⊤G⊤Dψ∥+ 2∥G⊤ψ + tr[V ]h∥

)
= OP(µ

−1)(OP(µ
−1) +OP(n)) = OP(µ

−1n).

Combining the above displays, we are left with

∥ψ∥2 − p−1∥G⊤ψ + tr[V ]h∥2 = OP(n
1/2µ−1) +OP(µ

−1n−1) = OP(n
1/2µ−1).

Therefore,

∥ψ∥4 tr[A]2 = (ψ⊤Gh+ tr[V ]∥h∥2)2 +OP(n
3/2µ−2)

= (ψ⊤Gh)2 + ∥h∥2(2 tr[V ]ψ⊤Gh+ tr[V ]2∥h∥2) +OP(n
3/2µ−2))

= (ψ⊤Gh)2 + ∥h∥2(∥G⊤ψ + tr[V ]h∥2 − ∥G⊤ψ∥2) +OP(n
3/2µ−2))

= (ψ⊤Gh)2 + ∥h∥2(p∥ψ∥2 − ∥G⊤ψ∥2) +OP(n
3/2µ−1) +OP(n

3/2µ−2).

Multiplying by ∥ψ∥−4, which is OP(n
2) since ∥ψ∥2/p p−→ β2 > 0, we obtain this representation

of tr[A]2. The upper bound P(tr[A]2 ≤ C16) follows from the stochastic representation and the

convergences: ∥ψ∥2/p p−→ β2 > 0, ∥h∥2 p−→ α2 > 0, ∥G∥op/
√
n

p−→ 1 +
√
δ > 0.

Lemma 19. Letting E[·] = E[·|z,θ] be the conditional expectation with respect to the design matrix
G, for any µ ∈ (0, 1] with µ−2 = o(n), we have

(ψ⊤Gh)2 + ∥h∥2(p∥ψ∥2 − ∥G⊤ψ∥2)
∥ψ∥4

=
(E[ψ⊤Gh])2 + E[∥h∥]2(pE[∥ψ∥2 − ∥G⊤ψ∥2])

E[∥ψ∥2]2
+OP(n

−1/2µ−1).
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Proof. By the Gaussian Poincaré inequality, we claim the following:

E[(∥ψ∥2 − E[∥ψ∥2])2] ≤ C17nµ
−2,

E[(∥h∥2 − E[∥h∥2])2] ≤ C18n
−1µ−2,

E[(ψ⊤Gh− E[ψ⊤Gh])2] ≤ C19nµ
−2,

E[(∥G⊤ψ∥2 − E[∥G⊤ψ∥2])2] ≤ C20n
3µ−2.

First and second moment inequalities immediately follow from Lemma 13 with Ĩ = I = [n]. For
the third moment inequality, the Gaussian Poincaré inequality gives the upper bound E[(ψ⊤Gh−
E[ψ⊤Gh])2] ≤

∑
ij E
(
∂ψ⊤Gh
∂gij

)2
, where

RHSij :=
∂ψ⊤Gh

∂gij
=
(
−DGAejψi − V eihj

)⊤
Gh+ ψihj +ψ

⊤GA
(
ejψi −G⊤Deihj

)
= e⊤j A

⊤
(
−G⊤DGh+G⊤ψ

)
ψi − e⊤i

(
V ⊤Gh+DGA⊤G⊤ψ

)
hj + ψihj

By V =D −DGAG⊤D and ∥A∥op ≤ (pµ)−1 in (30), we have
∑

i,j E[RHS
2
ij ] ≤ C21nµ

−2. Next,

E
[(

∥G⊤ψ∥2 − E[∥G⊤ψ∥2]
)2]

≤
∑
i,j

E
(∂∥G⊤ψ∥2

∂gij

)2
= 4

∑
i,j

E(ψ⊤G
∂G⊤ψ

∂gij
)2

where

ψ⊤G
∂G⊤ψ

∂gij
= ψ⊤Gejψi +ψ

⊤GG⊤(−DGAejψi − V eihj)

= ψ⊤G(Ip −G⊤DGA)ejψi −ψ⊤GG⊤V eihj

so
∑

ij E[RHS2ij ] ≤ C22n
3µ−2. Thus, we get

∥ψ∥2 = E[∥ψ∥2] +OP(n
1/2µ−1)

∥h∥2 = E[∥h∥2] +OP(n
−1/2µ−1)

ψ⊤Gh = E[ψ⊤Gh] +OP(n
1/2µ−1)

∥G⊤ψ∥2 = E[∥G⊤ψ∥2] +OP(n
3/2µ−1)

Since µ−2 = o(n), the concentration of ∥ψ∥2 on the conditional expectation E[∥ψ∥2] and the

convergence ∥ψ∥2/p p−→ β2 yield E[∥ψ∥2]/p p−→ β2 > 0. This implies that 1/∥ψ∥2 and 1/E[∥ψ∥2] are
OP(n

−1). Then, the error from replacing the denominator ∥ψ∥4 by E[∥ψ∥2]2 is estimated as

(∥ψ∥−4 − E[∥ψ∥2]2)
(
(ψ⊤Gh)2 + ∥h∥2(p∥ψ∥2 − ∥G⊤ψ∥2)

)
=

(∥ψ∥2 − E[∥ψ∥2])(∥ψ∥2 + E[∥ψ∥2])
∥ψ∥4E[∥ψ∥2]2

· OP(n
2)

= OP(n
1/2µ−1)OP(n · n−4)OP(n

2) = OP(n
−1/2µ−1).

For the error from replacing the numerator with the conditional one, the error of replacing each
term with the conditional one is given by

(ψ⊤Gh)2 = (ψ⊤Gh)2 +OP(n
3/2µ−1)
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∥h∥2∥ψ∥2 = E[∥h∥2]E[∥ψ∥2] +OP(n
1/2µ−1)

∥h∥2∥G⊤ψ∥2 = E[∥h∥2]E[∥G⊤ψ∥2] +OP(n
3/2µ−1)

Thus, noting that E[∥ψ∥2]−1 = OP(n
−1), we get

(ψ⊤Gh)2 + ∥h∥2(p∥ψ∥2 − ∥G⊤ψ∥2)− (E[ψ⊤Gh])2 − E[∥h∥2](pE[∥ψ∥2]− E[∥G⊤ψ∥2])
E[∥ψ∥2]2

= OP(n
−1/2µ−1).

This finishes the proof.

Lemma 20. Suppose µ ∈ (0, 1] and µ−1 = O(n1/8). Then, there exist a non-negative random
variables κ̂ ≥ 0, which is independent of G, such that

P
(
| tr[A]− κ̂| ≤ 2n−1/16 and |κ̂| ≤ C

)
→ 1

where C is a constant depending on (α, β, δ) only.

Proof. By Lemma 17 and Lemma 19, there exists a random variable An, which is independent from
G, such that

tr[A]2 = An +OP(n
−1/2µ−2) +OP(n

−1/2µ−1) = An +OP(n
−1/4), and P(|An| ≤ C) → 1

Noting tr[A]2 ≥ 0 and OP(n
−1/4) = oP(n

−1/8), this implies that the event

Ω := {| tr[A]2 −An| ≤ n−1/8} ∩ {−n−1/8 ≤ An ≤ C}

holds with high probability. Let us take κ̂ :=
√
(An + 2n−1/8)+. Note in passing that under the

event Ω, we have κ̂ =
√
An + 2n−1/8 and κ̂ ≤

√
C + 1. By the non-negativeness tr[A] ≥ 0 and the

(1/2)-Hölder continuity of the square root R≥0 ∋ x 7→
√
x, under the event Ω, it holds that

| tr[A]− κ̂| = |
√

tr[A]2 −
√
An + 2n−1/8| ≤ | tr[A]2 −An − 2n−1/8|1/2

and the RHS is less than |n−1/8 + 2n−1/8|1/2 ≤ 2n−1/16 by the triangle inequality.

A.4.1 Proof of of Lemma 12

Applying Lemma 14 with M = 1 and (z,F (z)) = (gi,h) for each i ∈ [n], using
∑

ij E[∥∂ijh∥2] =
OP(µ

−2) = oP(n) we get∑
i∈[n]

(g⊤i h− tr[A]ψi − ∥h∥ûi)2 = oP(n), ûi|θ, z,G−i
d
= N (0, 1)

By Lemma 20, there exists a non-negative random variable κ̂ independent from G such that

tr[A] = κ̂+ oP(1), P(κ̂ ≤ C) → 1

for a positive constant C. Then, combined with ∥h∥ = α+ oP(1), we get

1

2n

∑
i∈[n]

(g⊤i h− κ̂ψi − αûi)
2 = oP(1) + (κ̂− tr[A])2

∥ψ∥2

n
+ (∥h∥ − α)2

∑
i∈[n] û

2
i

n
= oP(1).
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Furthermore, using the independence of (κ̂,G) and the upper bound κ̂ ≤ C, by the same argument
in the proof of Theorem 2, we can easily show that the conditional expectation E[·] = E[·|z,θ] of
the square of LHS is bounded by C with high probability for some constant C. This implies that
the conditional expectation E of LHS is also o(1), i.e.,

1

n

∑
i∈[n]

E[(g⊤i h− κ̂ψi − αûi)
2] = oP(1).

Let us define Ξi := g
⊤
i h− κ̂ψi − αûi so that the above display reads n−1

∑
i E[Ξ2

i ] = oP(1). Noting
ψi = loss′(zi − g⊤i h) for all i ∈ [n], the residual can be written as

zi − g⊤i h = proxloss(zi − αûi − Ξi; κ̂)

for all i ∈ [n]. Since proxf (·) is 1-Lipschitz for any convex function, we have

1

n

∑
i∈[n]

E
[(
zi − g⊤i h− proxloss(zi − αûi; κ̂)

)2]
≤ 1

n

∑
i∈[n]

E[Ξ2
i ] = oP(1).

Since loss′ is Lipschitz, the above display lets us approximate ψi = loss′(zi − g⊤i h) by env′loss(zi −
αûi; κ̂):

1

n

∑
i∈[n]

E
[(
ψi − env′loss(zi − αûi; κ̂)

)2]
= oP(1).

Applying this approximation to the concentration β2 = ∥ψ∥2/p + oP(1) = E[∥ψ∥2]/p + oP(1) by
Lemma 13 with I = Ĩ = [n], we get

β2 =
n

p

1

n

∑
i∈[n]

E
[
ψ2
i

]
+ oP(1) = δ

1

n

∑
i∈[n]

E
[
env′loss(zi − αûi; κ̂)

2
]
+ oP(1)

= δ
1

n

∑
i∈[n]

∫ ∞

−∞
φ(x)env′loss(zi + αx; κ̂)2 dx+ oP(1). (38)

where φ(x) is the pdf of N (0, 1). Let us define the functions F, F̂ : [0,+∞) → R by

F (τ) := β2 − δE[env′loss(Z + αG; τ)2], F̂ (τ) := β2 − δ
1

n

∑
i∈[n]

∫ ∞

−∞
φ(x)env′loss(zi + αx; τ)2 dx

so that F (κ) = 0 by (5b) in System 1a (with c = 1), while (38) reads F̂ (κ̂) = oP(1). Note in

passing that the weak law of large numbers implies F̂ (τ)
p−→ F (τ) pointwise, and F and F̂ are

strictly increasing functions in τ since −2−1env′loss(x; τ)
2 is the derivative of the convex function

τ 7→ envloss(x; τ), which is strictly convex under Assumption D-(4) (see [TAH18, Lemma 4.4]).
Then, for any ϵ > 0, we have

F (κ+ ϵ) > 0 = F (κ) > F (κ− ϵ).

By the pointwise convergence F̂ (τ)
p−→ F (τ), it holds that

F̂ (κ+ ϵ) > 2−1F (κ+ ϵ) > 0 > 2−1F (κ− ϵ) > F̂ (κ− ϵ).
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with high probability. Then, combined with F̂ (κ̂) = oP(1), we have

F̂ (κ+ ϵ) > 2−1F (κ+ ϵ) > F̂ (κ̂) > 2−1F (κ− ϵ) > F̂ (κ− ϵ).

with high probability. Since F̂ is non-decreasing with probability 1, this gives P(|κ̂− κ| ≤ ϵ) → 1.

Since we took ϵ > 0 arbitrarily, we obtain κ̂
p−→ κ.

Going back to the place where we replaced tr[A] by κ̂, now replacing tr[A] by κ instead, we obtain

1

n

∑
i∈[n]

(g⊤i h− κψi − αûi)
2 = oP(1),

and this approximation also holds in E. Thus, we get the approximation of residual and ψi

1

n

∑
i∈[n]

E
[(
zi−g⊤i h−proxloss(zi−αûi;κ)

)2]
= oP(1),

1

n

∑
i∈[n]

E
[(
ψi−env′loss(zi−αûi;κ)

)2]
= oP(1)

Let us show tr[V ]/p
p−→ ν. Using the concentration ψ⊤Gh− tr[A]∥ψ∥2 + tr[V ]∥h∥2 = oP(n) from

Lemma 17 and ∥h∥2 p−→ α2 > 0, ∥ψ∥2/p p−→ β2, tr[A]
p−→ κ, we have

p−1 tr[V ] = α−2κβ2 − α−2ψ⊤Gh/p+ oP(1).

Recall that we have shown the concentration ψ⊤Gh = E[ψ⊤Gh]+oP(n) in the proof of Lemma 19.
Applying the proximal approximation of the residual zi − g⊤i h and ψi to this, noting E[∥ψ∥2] =
OP(n) and E[∥Gh∥2] = OP(n), we are left with

1

n
ψ⊤Gh =

1

n

∑
i∈[n]

E[ψi · g⊤i h] + oP(1)

=
1

n

∑
i∈[n]

E
[
env′loss(zi − αûi;κ)(zi − proxloss(zi − αûi;κ))

]
+ oP(1)

=
1

n

∑
i∈[n]

∫ ∞

−∞
φ(x)env′loss(zi + αx;κ)(zi − proxloss(zi + αx;κ)) dx+ oP(1)

so that the weak law of large numbers yields

1

n
ψ⊤Gh = E[envloss′(Z + αG;κ)(Z − proxloss(Z + αG;κ))] + oP(1)

= E[envloss′(Z + αG;κ)(αG+ Z − proxloss(Z + αG;κ)− αG)] + oP(1)

= κE[env′loss(αG+ Z;κ)2]− αE[G · env′loss(αG+ Z;κ)]

= κ · β2/δ − α · να/δ.

where we have used (5b) and (5d) in System 1a (with c = 1) for the last equation. Combined with
p−1 tr[V ] = α−2κβ2−α−2ψ⊤Gh/p+ oP(1), this gives p

−1 tr[V ] = ν+ oP(1) and finishes the proof.

A.5 Convergence of error vector norm squared under Assumption D

In this section we verify that Assumption C and Assumption D-(1)-(3) are sufficient for [TAH18,
Theorem 4.1] to hold. Comparing our assumptions and the condition assumed in the theorem, it
suffices to show that the conditions (10) and (12) in [TAH18] can be omitted.
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Indeed, the authors used the condition (10) to show that any û ∈ ∂loss(z − GĥB)/√p belongs

to a compact set with high probability, where ĥB is a “bounded” estimator. More precisely, ĥB

is a solution to the constrained optimization problem min∥h∥≤Kα
obj(h) for a positive constant

Kα > 0 where obj(h) =
∑

i∈[n] loss(zi − g⊤i h) +
∑

j∈[p] reg(
√
phj + θj) is the objective function

for the original unconstrained M-estimator. Since loss is differentiable with Lipschitz derivative
loss′ by Assumption C, using the same argument in Lemma 10, the norm of û is bounded as
∥û∥ ≤ (∥loss′(z)∥+ ∥loss′∥Lip∥G∥opKα)/

√
p. Since G has i.i.d. N (0, 1) entries while loss′(zi) has a

finite second moment by Assumption D-(1), this gives ∥û∥2 ≤ C with probability approaching to
1 for a positive constant C.

Next, we claim that the condition (12) in [TAH18] is not necessary. Noting that the condition (12)
is used for [TAH18, Assumption 2-(b)], it suffices to show that the assumption 2-(b) is satisfied
given our assumptions. Here we restate the assumption 2-(b) for convenience:

∀τ > 0, lim
c→+∞

c2/(2τ)− E
[
envreg(cH +Θ)− reg(Θ)

]
= +∞.

By the condition P(Θ ̸= 0) > 0 in Assumption D-(3), either P(Θ > 0) > 0 or P(Θ < 0) > 0 holds.
Let us consider the case P(Θ > 0) > 0. Define a measurable function u(H,Θ) of (H,Θ) as follows:

u(H,Θ) := −min(Θ, 1)I{Θ > 0 and H < 0}.

Note that u(H,Θ) is always bounded as |u(H,Θ)| ≤ 1. By the definition of Moreau envelope, i.e.,
envreg(cH + Θ) := argminp∈R(cH + Θ − p)2/(2τ) + reg(p), taking the point p = Θ + u(H,Θ), we
get the lower estimate as follows:

c2

2τ
− E

[
envreg(cH +Θ)− reg(Θ)

]
≥ c2

2τ
− E

[(cH − u(H,Θ))2

2τ
+ reg(Θ + u(H,Θ))− reg(Θ)

]
=

E[uH]

τ
· c− E[u2]

2τ
− E

[
reg(Θ + u)− reg(Θ)

]
.

Thus it suffices to show that E[uH] > 0 and E[reg(Θ+ u)− reg(Θ)] is finite for the RHS to diverge
as c→ +∞. By the definition of u = u(Θ, H), the expectation E[uH] can be written as

E[uH] = E[−Hmin(Θ, 1)I{Θ > 0, H < 0}] = E[|H|min(Θ, 1)I{Θ > 0, H < 0}].

Here |H|min(Θ, 1) is always strictly positive under the event {Θ > 0, H > 0}, and this event has
positive probability P(Θ > 0, H > 0) = P(Θ > 0)P(H > 0) = P(Θ > 0) · 2−1 by the assumption
P(Θ > 0) > 0 and the independence of Θ and H ∼ N (0, 1). This means that E[uH] is strictly
positive. Regarding E[reg(Θ + u)− reg(Θ)], we have

E[reg(Θ + u)− reg(Θ)] = E
[{

reg(Θ−min(Θ, 1))− reg(Θ)
}
I{Θ > 0, H < 0}

]
.

Note that 0 < Θ −min(Θ, 1) < Θ for all Θ > 0. Then, by the convexity of reg and the condition
reg(0) = minx reg(x) in Assumption C, under the event I{Θ > 0, H < 0} it holds that

0 > reg(Θ−min(Θ, 1))− reg(Θ) > −dΘmin(Θ, 1) > −dΘ for all dΘ ∈ ∂reg(Θ)

By Assumption D-(1), dΘ has a finite second moment for any choice of sub-derivative dΘ. Therefore,
we have 0 > E[reg(Θ+u)−reg(Θ)] > −E[dΘI{Θ > 0, H < 0}] > −∞ so that E[reg(Θ+u)−reg(Θ)]
is finite.

In the other case P(Θ < 0) > 0, we may take u(H,Θ) := min(−Θ, 1)I{Θ < 0, H > 0}. Then the
same argument leads to E[uH] > 0 and |E[reg(Θ + u)− reg(Θ)]| < +∞.
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A.6 Convergence of loss gradient norm squared under Assumption D

Let ψ = loss′(z − Gh) and loss∗ be the conjugate of loss. By the same argument in [TAH18],
restricting the range of ψ to a compact set so that the strong duality holds, we observe that ψ is
a solution to the following min-max problem with probability approaching to 1:

max
ψ∈Rn

min
h∈Rp

ψ⊤(z −Gh)− loss∗(ψ) + reg(
√
ph+ θ) = max

ψ
ψ⊤z − loss∗(ψ) +ψ⊤Gθ/

√
p− reg∗(G⊤ψ/

√
p)

If we write û = ψ/
√
p ∈ Rn then û is the M-estimator of the form:

û ∈ argmin
u∈Rn

F(−G⊤u) + L(
√
nu), where

F : Rp 7→ R, v 7→ reg∗(−v) + θ⊤v

L : Rn 7→ R, u 7→ loss∗(

√
p

n
w)−

√
p

n
z⊤w

For any H ∼ N (0p, Ip), G ∼ N (0n, In), for all c ∈ R and τ > 0 it holds that

1

p

(
envF(cH; τ)−F(0)

) p−→ c2

2τ
− E[envreg(

c

τ
H +Θ0;

1

τ
)− reg(0)]

1

n

(
envL(cG; τ)− L(0)

) p−→ c2

2τ
− E[envloss(

√
δ
c

τ
G+ Z;

δ

τ
)− loss(0)]

Thus, letting F (c, τ) := E[envreg(cH +Θ; τ)] and L(c, τ) := E[envloss(cG+Θ; τ)], [TAH18] implies

that ∥û∥2 p−→ α̃2 where α̃ is the minimizer of the min-max optimization problem

inf
α̃,τ̃g

sup
β̃,τ̃h

β̃τ̃g
2

+ δ−1
( α̃2β̃

2τ̃g
− F (

α̃β̃

τ̃g
,
β̃

τ̃g
)
)
− α̃τ̃h

2
− α̃β̃2

2τ̃h
+
( α̃β̃2
2τ̃h

− L(
√
δβ̃, δ

τ̃h
α̃
)
)

Thus, by the change of variables (α̃, β̃, τ̃g, τ̃h) 7→ (β, α/
√
δ, τh/

√
δ, τg/δ) and multiplying the poten-

tial by −δ, we are left with ∥û∥2 p−→ β2∗ where β∗ is the minimizer of

sup
βτh

inf
α,τg

−ατh
2

− β2α

2τg
+ F (

βα

τh
,
α

τh
) +

βτg
2

+ δL(α,
τg
β
),

which is the same potential in [TAH18].
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A.7 Explicit expressions for degrees of freedom

Table 5: Explicit formulae for the degrees of freedom and residual degrees of freedom of the estimator θ̂I
defined using (3). Here the loss functions loss(r) are: 1) square loss: r2/2, 2) Huber loss: r2/2 for |r| ≤ 1
and |r| − 1/2 for |r| > 1; and the regularization functions reg(b) are: 1) ridge penalty: λ1

2 b
2, 2) lasso penalty:

λ2|b|, and 3) elastic net penalty: λ1

2 b
2 + λ2|b|. And other quantities are: 1) ŜI = {j ∈ [p] : θ̂I(j) ̸= 0}

is the set of active variables of θ̂I and XŜI
is the submatrix of XI made of columns indexed in ŜI , 2)

T̂I = {i ∈ I : loss′′(yi − x⊤
i θ̂I) > 0} is the set of detected inliers (active observations), and 3) the matrix

DI = diag(loss′′(yI −XI θ̂I)).

Loss Regularizer Degrees of freedom Residual degrees of freedom
(loss) (reg) (dfI) (tr[VI ])

Square Ridge tr
[(
X⊤

I XI + λ1I
)−1

X⊤
I XI

]
|I| − dfI

Square Lasso |ŜI | |I| − dfI

Square Elastic net tr
[(
X⊤

ŜI
XŜI

+ λ1I
)−1

X⊤
ŜI
XŜI

]
|I| − dfI

Huber Ridge tr
[(
X⊤

I DIXI + λ1I
)−1

X⊤
I DIXI

]
|T̂I | − dfI

Huber Lasso |ŜI | |T̂I | − dfI

Huber Elastic net tr
[(
X⊤

ŜI
DIXŜI

+ λ1I
)−1

X⊤
ŜI
DIXŜI

]
|T̂I | − dfI

Convex Convex tr[(∂/∂yI)XI θ̂I ] tr[(∂/∂yI)loss
′(yI −XI θ̂I)]

B Proofs in Section 4

B.1 Proof of Proposition 7

Let us fix ψ = (cδ)−1 and take the derivative of RM = M−1α2 + (1 −M−1)α2ηG with respect
to ϕ = δ−1. Note that (α, β, κ, ν) are all fixed. Below, we derive the partial derivative of ηG with
respect to ϕ. Using ψ and ϕ, we observe that ηG is the unique solution to the fixed point equation

ηG = Freg ◦ Floss(ηG ;ϕ).

Here, Freg does not depend on ϕ but Floss depends on ϕ as:

Floss(ηG ;ϕ) =
ϕ

ψ2β2
· E[env′loss(αG+ Z;κ) · env′

l̃oss
(αG̃+ Z;κ)],

Since the map ηG 7→ Freg ◦Floss(ηG ;ϕ) is differentiable and c-Lipschitz with c < 1 (see Theorem 1),
the implicit function theorem implies that ηG is differentiable with respect to ϕ and the derivative
satisfies:

∂ηG
∂ϕ

= (Freg ◦ Floss)
′(ηG)

∂ηG
∂ϕ

+ F ′
reg(ηH )

Floss(ηG)

ϕ
.

Rearranging the above display, we get

∂ηG
∂ϕ

=
F ′
reg(ηH )

ϕ

Floss(ηG)

1− (Freg ◦ Floss)′(ηG)
=
F ′
reg(ηH )

ϕ

ηH
1− (Freg ◦ Floss)′(ηG)

≥ 0.

where the last inequality follows from the fact that Freg is non-decreasing and ηH is non-negative

(see Theorem 1 for a homogeneous case). Combined with ∂ψRM = (1 −M−1)α2 ∂ηG
∂ϕ , we observe

that RM is non-decreasing in ϕ. Therefore, for any two ϕ1 ≤ ϕ2, we have that

RM (ϕ2, ψ) ≥ RM (ϕ1, ψ) ≥ inf
ψ≥ϕ2

RM (ϕ1, ψ) ≥ inf
ψ≥ϕ1

RM (ϕ1, ψ) for all all ψ ≥ ϕ2.

63



This gives infψ≥ϕ2 RM (ϕ2, ψ) ≥ infψ≥ϕ1 RM (ϕ1, ψ) for any ϕ1 ≤ ϕ2, which means the map ϕ 7→
infψ≥ϕRM (ϕ, ψ) is non-decreasing.

B.2 Derivation of System 2

We will first reformulate Systems 1a and 1b in a slightly different set of parameters. Since the
purpose of this reparameterization is to match with existing work, we will also consider regularizer
reg with an explicit regularization level λ. The mapping with respect to the parameters in Systems 1a
and 1b is as follows: a = λ

β , τ =
√
cδ βν . Under this parameterization, note that βν = τ√

cδ
and λ

ν = aτ√
cδ
.

Remark 9 (Scaling differences in design). It is worth remarking that in the literature on risk
characterization of regularized M-estimator under proportional asymptotics, the scaling of λ can
be slightly different, up to a factor of

√
cδ. One of the reasons for the differences is how the design

matrix X is scaled. We assume that the entries of X ∈ Rn×p each have variance 1/p and thus each
row has a unit average norm squared. It is also common to assume that the entries of X each have
variance 1/n and thus each column has a unit average norm squared. This brings in a factor of√
δ. For the subsampled design XI ∈ Rk×p, we get an additional factor of

√
c. Consequently, some

expressions may appear different up to this scaling.

Derivation of System 2. The derivation is straightforward. We will use some simple relationships
between proximal operators and Moreau envelopes. Recall from (2) that env′f (x; τ) = 1

τ (x −
proxf (x; τ)) so that the derivative identity env′′f (x; τ) = 1

τ (1 − prox′f (x; τ)) holds for almost ev-
ery x by the non-expansiveness of the proximal operator.

(1) Case of m = ℓ. The original system of equations is given by System 1a. For regularizers of
the form λreg, from (5a), we have

α2 = E
[(
λ
ν · env′reg

(β
νH +Θ; λν

)
− β

νH
)2]

= E
[(
proxreg

(β
νH +Θ; λν

)
−Θ

)2]
= E

[(
proxreg

(
τ√
cδ
H +Θ; aτ√

cδ

)
−Θ

)2]
(39)

where the variables τ and a are defined as:

τ =
√
cδ βν

(5b),(5d)
=======

α
√
E[env′loss(αG+ Z;κ)2]

E[env′loss(αG+ Z;κ) ·G]
, (40)

a = λ
β

(5b)
====

λ√
cδ
√
E[env′loss(αG+ Z;κ)2]

. (41)

For squared loss loss(x) = x2/2, since env′loss(x; τ) = x/(1 + τ) from Table 6, squaring the final
expression in (40) yields

τ2 = α2 + σ2. (42)

Thus, τ2 and α2 are the limiting total and excess risks, respectively. Combining (39) and (42) gives
the first desired equation (18a).

Similarly, (5c) after diving by τ yields

κβ
τ = β

ντ − λ
ντE

[
env′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)
·H
]
.

64



Multiplying both sides by
√
cδaτ and noting that aβ = λ, βν = τ√

cδ
, λν = aτ√

cδ
then gives

√
cδκλ = aτ − (aτ)2

τ E
[
env′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)
·H
]
. (43)

From Stein’s lemma, we have

E[env′reg(τH +Θ;κ) ·H] = τE[env′′reg(τH +Θ;κ)], (44)

and so (43) reduces to

√
cδκλ

(44)
==== aτ − (aτ)2√

cδ
E
[
env′′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)]
= aτ − aτE

[
1− prox′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)]
= aτE

[
prox′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)]
. (45)

Using similar manipulations as above, (40) reduces to

τ =
κ
√

E[env′loss(αG+ Z;κ)2]

E[1− prox′loss(αG+ Z;κ)]
. (46)

Combining (45) and (46), we get

0 = κλ
(
1− aτ√

cδκλ
E
[
prox′reg

(
τ√
cδ
H +Θ; aτ√

cδ

)])
. (47)

From (41), under squared loss, we also have

1 + κ =
√
cδaτ
λ . (48)

Combining (47) with (48) then leads to the second desired equation (18b).

(2) Case of m ̸= ℓ. Step 2. (ηG , ηH ) is the solution to the following 2-scalar fix-point equations:

ηG =
E
[(
λ
ν · env′reg

(β
νH +Θ; λν

)
− β

νH
)
·
(
λ
ν · env′reg

(β
ν H̃ +Θ; λν

)
− β

ν H̃
)]

E
[(
λ
ν · env′reg

(β
νH +Θ; λν

)
− β

νH
)2]

ηH = c ·
E[env′loss(αG+ Z;κ) · env′loss(αG̃+ Z;κ)]

E[env′loss(αG+ Z;κ)2]
,

where

(
G

G̃

)
∼ N

((
0
0

)
,

(
1 η

G

η
G

1

))
and

(
H

H̃

)
∼ N

((
0
0

)
,

(
1 η

H

η
H

1

))
. Similarly, by variable substitu-

tion, we can rewrite the equations as:

ηGα
2 = E

[(
proxreg

(
τ√
cδ
H +Θ; aτ√

cδ

)
−Θ

)(
proxreg

(
τ√
cδ
H̃ +Θ; aτ√

cδ

)
−Θ

)]
(49a)

ηH = c ·
E[env′loss(αG+ Z;κ) · env′loss(αG̃+ Z;κ)]

E[env′loss(αG+ Z;κ)2]
. (49b)

Since env′loss(x; τ) = x/(1 + τ) for squared loss, we obtain the third desired equation (19a).
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B.3 Proximal operators and Moreau envelopes

Table 6: Proximal operators, Moreau envelopes, and their derivatives for ridge (first row) and lasso (second
row) regularizers and Huber (third row) loss considered in Sections 4.2.1 and 4.2.2.

f(x) proxf (x; τ) prox′f (x; τ) envf (x; τ) env′f (x; τ)

1
2
x2 x

1+τ
1

1+τ
1
2

x2

1+τ
x

1+τ

|x| (|x| − τ)+ sign(x) 1{|x| ≥ τ}
{

1
2τ
x2 |x| < τ

|x| − 1
2
τ |x| ≥ τ

min
{

|x|
τ
, 1

}
sign(x)

{
x2

2
|x| ≤ 1

|x| − 1
2

|x| > 1

{
x

1+τ
|x| ≤ 1 + τ

x− τ sign(x) |x| > 1 + τ

{
1

1+τ
|x| ≤ 1 + τ

1 |x| > 1 + τ

{
1
2

x2

1+τ
|x| ≤ 1 + τ

|x| − τ − 1
2

|x| > 1 + τ

(
|x|
1+τ

− 1
)
+
sign(x)

C Proofs in Section 5

C.1 Proof of Equation (26)

Applying Stein’s lemma to (23b) and Cauchy–Schwarz inequality, we have

1 =
1

cδ
E
[
prox′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
=

1√
cδ

1

τ
E
[
H ·

(
proxreg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)]
≤ 1√

cδτ
E
[(

proxreg
(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)2]1/2
=

1√
cδτ

√
τ2 − σ2 (by (23a)).

Taking the square of both sides and rearranging the resulting τ2 term, we get the lower estimate
τ2 ≥ σ2/(1− cδ) as desired.

C.2 Derivation of System 4 as a limit of System 2 as λ → 0+

Fix reg(x) = |x|q for q ∈ {1, 2}. Let (aλ, τλ, ξλ) be the solution to System 2 for any λ > 0 and let
(a∗, τ∗, ξ∗) be the solution to System 4. Note that previous papers showed that (aλ, τλ) converges
to the solution (a∗, τ∗) as λ → (0)+; q = 1 case is given by the proof of Lemma A.1 in [LW21]
while the q = 2 case immediately follows from the explicit formulae of (aλ, τλ) and (a∗, τ∗). Below
we claim the continuity of ξ, i.e., ξλ → ξ∗. Denoting ηλ = cξ2λ/τ

2
λ and η∗ = cξ2∗/τ

2
∗ , what we want

to show is ηλ → η∗.

Observe that the systems for ξλ and ξ∗ read to ηλ = F (ηλ; τλ, aλ) and η∗ = F (η∗; τ∗, a∗) where

F (η; τ, a) :=
c

τ2

{
E
[(

proxreg
(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ

)
·
(
proxreg

(
Θ+ τ√

cδ
H̃; aτ√

cδ

)
−Θ

)]
+ σ2

}
with (H, H̃) being the mean zero jointly normals such that E[H2] = E[H̃2] = 1 and E[HH̃] = η. Note
that the map η 7→ F (η; τλ, aλ) is c-Lipschitz over [−1, 1] by the same argument in Appendix A.1,
while the map (τ, a) 7→ F (η; τ, a) is continuous over (0,∞)2 for any η ∈ [−1, 1] by the moment
assumption in Assumption D-1 and the dominated convergence theorem. Then, |ηλ−η∗| is bounded
from above as

|ηλ − η∗| = |F (ηλ; τλ, aλ)− F (η∗, τ∗, a∗)|
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Figure 8: Fixed-point quantities for lassoless at different data aspect ratios p/n. The data model is given
by (50) with signal strength ρ = 0.5 and sparsity levels s = 0.2 at different noise levels σ. Left : High SNR
σ = 0.5. Middle: Modest SNR σ = 1. Right : Low SNR σ = 1.2.

≤ |F (ηλ; τλ, aλ)− F (η∗, τλ, aλ)|+ |F (η∗, τλ, aλ)− F (η∗, τ∗, a∗)|
≤ c|ηλ − η∗|+ |F (η∗, τλ, aλ)− F (η∗, τ∗, a∗)|

so that |ηλ − η∗| ≤ (1− c)−1|F (η∗, τλ, aλ)− F (η∗, τ∗, a∗)| holds. This upper bounds converges to 0
as λ→ 0 by the continuity of F (η∗, τ, a) in (τ, a) and the convergence (τλ, aλ) → (τ∗, a∗).

C.3 Additional details for Remark 8

Expanding the product term in the fixed point equation (24a) by

prox
(
Θ+ τ√

cδ
H; aτ√

cδ

)
−Θ = τ√

cδ
H − aτ√

cδ
env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
,

we have

ξ2 − σ2 =
τ2

cδ
E[HH̃]− 2

aτ2

cδ
E
[
H̃env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
+

(aτ)2

cδ
E
[
env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
· env′reg

(
Θ+ τ√

cδ
H̃; aτ√

cδ

)]
,

where τ2

cδE[HH̃] = τ2

cδ ηH = ξ2

δ by the definition ηH = cξ2/τ2. For the second term, realizing

H̃ = ηHH +
√
1− η2

H
H for a standard normal H ∼ N (0, 1) independent of (H, H̃,Θ), noting that

env′reg(Θ + τ√
cδ
H) is bounded in second moment by Assumption D-(1), we have

E
[
H̃ · env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
= ηHE

[
H · env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
= ηH

τ√
cδ
E
[
env′′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
(by Stein’s lemma)

= ηH
τ√
cδ

√
cδ

aτ
E
[
1− prox′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)]
=
ηH
a
(1− cδ) (by (23b)).

Combined with ηH = cξ2/τ2, we have

aτ2

cδ
E
[
H̃env′reg

(
Θ+ τ√

cδ
H
)]

=
ξ2

δ
(1− cδ).
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Therefore, we get

ξ2
(
1− 1

δ
+ 2

(1− cδ)

δ

)
= σ2 +

(aτ)2

cδ
E
[
env′reg

(
Θ+ τ√

cδ
H; aτ√

cδ

)
· env′reg

(
Θ+ τ√

cδ
H̃; aτ√

cδ

)]
.

This means that ξ2 → δ
δ−1σ

2 holds if and only if the rightmost term converges to 0 as c→ (δ−1)−.
This is true if reg is Lipschitz and limc→(δ−1)− aτ = 0, as |env′reg(x; τ)| ≤ ∥reg∥Lip for all x ∈ R
and τ > 0. However, we are not able to provably establish that aτ → 0 as c → δ−1. For the lasso
regularizer, we observe in Figure 8 that aτ → 0 appears to hold as c→ δ−1.
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D Additional numerical simulations

D.1 Minimum ℓ1-norm interpolator

10 1 100 101

Subsample aspect ratio p/k
1

2

5

8

Va
lu

e

Underparameterized regime (p < n)

1.1 2 5 10
Subsample aspect ratio p/k

Overparameterized regime (p > n)

Theoretical risk
Empirical risk

M = 1
M = 1

M = 2
M = 2

M = 5
M = 5

M = 50
M = 50

M =

Figure 9: The prediction risk for lasso ensemble at different subsample aspect ratios p/k with regularization
parameter λ = 0.001 and varying ensemble size M . The solid lines represent the theoretical risks, the dashed
lines represent the empirical risks averaged over 50 simulations, and the shaded regions represent the standard
errors. The data model is given by (50) with signal strength ρ = 2, noise level σ = 1, and support proportion
s = 0.1. Left : underparameterized regime when p/n = 0.1 and n = 2000. Right : overparameterized regime
when p/n = 1.1 and n = 500.
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Figure 10: Optimal subsample risk of the lassoless ensemble is monotonic in the data aspect
ratio. Excess risk of the lasso and optimal lasso ensemble, at different data aspect ratios p/n ranging from
0.1 to 10. The data model is given by (50) with signal strength ρ = 2, noise level σ = 1, data aspect ratio
p/n = 0.1, feature size p = 500, and varying support proportion s. Left : dense regime with s = 0.9. Right :
sparse regime with s = 0.01.
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D.2 Optimal subagging versus optimal regularization

D.2.1 Square loss, lasso regularizer
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Figure 11: Heatmaps of theoretical prediction risk in λ and p/k of full lasso ensemble in the overparameterized
regime (p/n = 1.1) and sparse regime (s = 0.2). The data model is given by (50) with support proportion
s = 0.2 and noise level σ = 1 at different signal levels ρ. Left : high SNR ρ = 2 (optimal lasso is better than
optimal subsample lassoless). Middle: moderate SNR ρ = 1 (optimal subsample lasso is better than optimal
lasso and optimal subsample lassoless). Right : low SNR ρ = 0.67 (optimal subsample lassoless is better than
optimal lasso).

D.2.2 Huber loss, unregularized
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Figure 12: Heatmaps of theoretical prediction risk in Huber threshold parameter and subsample ratio k/n of
full Huber ensemble in the underparameterized regime (p/n = 0.2). Left : noise follows Student’s t distribution
t20 (optimal subsample Huberless is better than optimal Huber).Middle: noise follows Student’s t distribution
t10 (optimal subsample Huber is better than both optimal subsample Huberless and optimal Huber). Right :
noise follows Student’s t distribution t2 (optimal Huber is better than optimal subsample Huberless).
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D.3 Huber regression with ℓ1-regularization

D.3.1 Varying threshold parameter
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Figure 13: Heatmaps of theoretical prediction risk in Huber threshold parameter and subsample ratio k/n
of full ℓ1-regularized Huber ensemble with lasso regularization level 0.5 in the underparameterized regime
(p/n = 0.1). Left : noise follows Student’s t distribution t20. Middle: noise follows Student’s t distribution
t10. Right : noise follows Student’s t distribution t2.

D.3.2 Varying regularization level
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Figure 14: Heatmaps of theoretical prediction risk in lasso regularization level and subsample ratio k/n of
full ℓ1-regularized Huber ensemble with Huber threshold parameter 10 in the underparameterized regime
(p/n = 0.1). Left : noise follows Student’s t distribution t20. Middle: noise follows Student’s t distribution
t10. Right : noise follows Student’s t distribution t2.
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D.4 Details of numerical experiments

D.4.1 Data model for lasso experiments

We consider a linear model whose signal variables are generated from two-point distribution:

y = x⊤θ + z, x ∼ N (0, p−1Ip), z ∼ N (0, σ2), θ =
i.i.d.∼ sPρ/√s + (1− s)P0, (50)

where Pc denotes the Dirac measure at point c ∈ R, and ρ > 0 is some given quantity that
determines the signal magnitude. Here, s ∈ (0, 1) is the support proportion. The signal-to-noise-
ratio (SNR) under the above model obeys

snr =
E[(x⊤θ)2]

σ2
=
s · (ρ2/s)

σ2
=
ρ2

σ2
.

D.4.2 Data model for ℓ1-regularized Huber experiments

We consider the ℓ1-regularized Huber regression

θ̂I ∈ argmin
θ∈Rp

∑
i∈I

Huber(yi − x⊤
i θ; ρ) + λ∥θ∥1

where λ ≥ 0 is a regularization parameter and Huber(·; ρ) is the Huber loss with threshold parameter
ρ > 0, which is defined as follows [Hub64]:

For all x ∈ R, Huber(x; ρ) := env|·|(x; ρ) =

{
1
2ρx

2 if |x| ≤ ρ

|x| − 1
2ρ if |x| > ρ.

(51)

Observe that Huber(·; ρ) behaves like the squared loss for large ρ and like the absolute loss for small
ρ. More precisely, for all x ∈ R it holds that

lim
ρ→0+

Huber(x; τ) = |x| and lim
ρ→+∞

ρ · Huber(x; ρ) = x2/2.

We consider the linear model y = x⊤θ + z where the marginal distribution of the signal is set
to the mixture ϵN (0, 1) + (1− ϵ)P0 (recall that P0 denotes the Dirac measure at 0) with support
proportion ϵ = 0.1, while the noise z follows Student’s t-distribution td for some degree of freedom
d ≥ 2, which will be specified for each numerical simulation.
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