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Abstract

We characterize the squared prediction risk of ensemble estimators obtained through sub-
agging (subsample bootstrap aggregating) regularized M-estimators and construct a consistent
estimator for the risk. Specifically, we consider a heterogeneous collection of M ≥ 1 regular-
ized M-estimators, each trained with (possibly different) subsample sizes, convex differentiable
losses, and convex regularizers. We operate under the proportional asymptotics regime, where
the sample size n, feature size p, and subsample sizes km for m ∈ [M ] all diverge with fixed lim-
iting ratios n/p and km/n. Key to our analysis is a new result on the joint asymptotic behavior
of correlations between the estimator and residual errors on overlapping subsamples, governed
through a (provably) contractible nonlinear system of equations. Of independent interest, we
also establish convergence of trace functionals related to degrees of freedom in the non-ensemble
setting (withM = 1) along the way, extending previously known cases for square loss and ridge,
lasso regularizers.

When specialized to homogeneous ensembles trained with a common loss, regularizer, and
subsample size, the risk characterization sheds some light on the implicit regularization effect
due to the ensemble and subsample sizes (M,k). For any ensemble size M , optimally tuning
subsample size yields sample-wise monotonic risk. For the full-ensemble estimator (when M →
∞), the optimal subsample size k⋆ tends to be in the overparameterized regime (k⋆ ≤ min{n, p}),
when explicit regularization is vanishing. Finally, joint optimization of subsample size, ensemble
size, and regularization can significantly outperform regularizer optimization alone on the full
data (without any subagging).

1 Introduction

Ensemble methods combine predictions of multiple models to improve predictive accuracy [HTF09].
Among these methods, bagging (bootstrap aggregating) trains individual models on bootstrapped
samples of the dataset and averages their predictions to reduce variance and mitigate overfitting
[Bre96]. A popular variant of bagging, known as subagging (subsample bootstrap aggregating),
trains models on random subsamples rather than full bootstrapped samples [BY02]. Apart from the
computational advantages, subagging can substantially improve predictive performance, especially
in the overparameterized regimes and near model interpolation thresholds [PKWR22]. In this paper,
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Table 1: Landscape of subagging risk analysis in high dimensions. We summarize the various settings
(estimator structure and data structure) of some of the recent works that characterize the prediction risk of
subagging regularized M-estimators trained with loss function loss and regularization function reg (defined in
Section 2). Convex� denotes that in addition to being convex, we require the loss function to be differentiable
and have Lipschitz continuous derivatives. By RMT features, we refer to features of the form x = Σ1/2v
where v contains independent entries of bounded moments (of order 4+) that are common in the random
matrix theory literature. Arbitrary▲ response y refers to no additional modeling assumption on the response
other than bounded moments (of order 4+). Signal and noise refer to � and z in the linear data model:
y = x>� + z. Arbitrary� signal and noise distributions Fθ and Fz refer to general marginal distribution on
the coordinates of signal � and noise z, respectively, subject to mild regularity conditions (Assumption D).

Loss Penalty Features Covariance Response Signal Signal Dist. Noise Dist.
Reference

(loss) (reg) (x) (Σ) (y) (�) (F�) (Fz)

Square Gaussian Isotropic Linear Random Gaussian Gaussian [LJB20]
Square Ridge RMT Anisotropic Linear Deterministic Bnd. Mom. [PDK23]
Square Ridge RMT Anisotropic Arbitrary▲ [PD23]
Huber Gaussian Isotropic Linear Deterministic Arbitrary� [BK24]
Logistic Gaussian Isotropic Logistic Deterministic [BK24]
Convex Ridge Gaussian Isotropic GLM Random Gaussian [CVD+24]

Convex• Convex Gaussian Isotropic Linear Random Arbitrary� Arbitrary� Corollary 3

we analyze the squared prediction risk of subagging of regularized M-estimators trained with convex
loss and regularizer.

There is growing interest in understanding the prediction risk asymptotics of ensemble methods,
particularly subagging, across different types of predictors and under various data assumptions.
For example, [LJB20] study subagging in the context of ordinary least squares regression without
any explicit regularization in the underparameterized regime (where the number of subsamples is
higher than the number of features). This is extended to ridge and ridgeless regression by [PDK23]
for both the underparameterized and overparameterized regimes (where the number of subsamples
is lower than the number of features). [PD23] further generalizes these results and identifies explicit
equivalence paths between subsampled estimators and ridge regularized estimators. Beyond linear
and ridge regression, [BK24] examines the behavior of subagging in logistic and Huber regression
models without regularization. In addition to subagging, there has also been considerable work on
feature sketching and other ensemble methods. For instance, [LGR+22] and [PL24] study feature
sketching and ensembling to optimize predictive performance in high-dimensional settings. For other
recent developments in the analysis of ensemble methods and related work details, see Section 1.2.

We generalize these previous works by characterizing the prediction risk of subagging a collection
of M regularized M-estimators and constructing a consistent estimator for this risk. We allow
the collection to be heterogeneous, consisting of estimators trained with convex differentiable loss
function loss with Lipschitz continuous derivative and convex regularization function reg, which
can be non-differentiable and non-strongly convex (that includes ℓ1-regularized Huber regression,
for instance). We operate under the proportional asymptotics regime, where the sample size n,
feature size p, and subsample sizes km for m ∈ [M ] diverge while maintaining fixed limiting ratios
n/p→ δ ∈ (0,∞) and km/n→ cm ∈ (0, 1].1 Our results assume a linear response model y = x⊤�+z
with isotropic Gaussian features x, a random signal � with independent coordinates drawn from
an arbitrary marginal distribution F�, and noise variable z with an arbitrary distribution Fz, both

1Through the paper, we refer to n=p as inverse data aspect ratio and p=n as data aspect ratio of the design
X 2 Rn×p, viewing n as the height and p as the width of the rectangular design matrix X.

2



subject to a mild regularity condition. We summarize our main results below and situate them
within the context of recent related work in Table 1.

1.1 Summary of results and paper outline

A summary of our main results along with an outline for the paper is as follows.2

(a) Risk characterization and estimation. In Section 3, we obtain a precise characterization
of the squared risk of subagging of regularized M-estimators under proportional asymptotics
(Theorem 2 and Corollary 3). The asymptotic risk is governed by two nonlinear systems of
equations (Systems 1a and 1b) that depend on the loss and regularization functions loss, reg,
and the limiting subsample ratios cm form ∈ [M ] for the component estimators and the limiting
inverse data aspect ratio δ. System 1a is a known system that characterizes the asymptotic
risk of regularized M-estimators in non-ensemble settings [TAH18] (see Section 1.2 for more
details), while System 1b is a new contribution of this paper. Each scalar unknown in the
2-dimensional System 1b is shown to be the fixed-point equation of a contraction (Theorem 1-
(2)). This property plays a crucial role in proving the existence and uniqueness of the solution
to System 1b. This contraction property is also crucial in establishing the asymptotic behavior
of the inner products between estimator errors and their residuals for estimators trained on
overlapping subsamples (Theorem 2), leading to the subagged risk asymptotics (Corollary 3).
The contractility, along with a ridge smoothing technique, also allows us to maintain weak
assumptions on the regularizer, specifically allowing it to be non-strongly convex. Moreover,
we also construct a consistent estimator of the ensemble risk (Theorem 4 and Corollary 5),
which can be employed for data-adaptive tuning of hyperparameters such as loss functions,
regularizers, and subsample sizes.

(b) Homogeneous ensembles. In Section 4, we consider homogeneous ensembles (where com-
ponents are trained on the same loss and reg functions and a common subsample size k). In
Section 4.1, we analyze (oracle) optimal ensemble optimal risk with optimal ensemble size M?

and subsample size k?. We first establish the monotonicity of the risk with respect to the ensem-
ble sizeM (Proposition 6), illustrating the benefits of ensembling, which leads toM? = ∞. We
then prove that the risk at the optimal subsample size k∗ decreases as the limiting data aspect
ratio p/n decreases (Proposition 7). In particular, this implies that the optimally subsampled
risk avoids the typical “double (or multiple) descents” observed in regularized M-estimators
without subagging. In Section 4.2, we specialize our main result to convex regularized least
squares (including ℓq-regularized least squares for q ≥ 1, such as ridge and lasso estimators)
and to general M-estimators (including regularized Huber regression). These recover and gen-
eralize various known results in the literature (see Section 4.2 for more details).

(c) Subagging and overparameterization. In Section 5, we investigate subagging of estimators
with vanishing regularization (λ→ 0+) and also contrast with estimators with optimal explicit
regularization (over λ ≥ 0). Our first insight is that when subagging estimators without any
explicit regularization, the optimal subsample size k∗ is in the overparameterized regime, re-
gardless of whether the original data aspect ratio p/n is overparameterized. In other words,
the optimal subsample size k? satisfies k∗ ≤ min{n, p} in such cases. We verify this for the
lassoless (minimum ℓ1-norm interpolator) ensemble (Figure 5). This highlights the advantages
of overparameterization in subagging in that full-ensemble subsampled lassoless can outper-

2The source code for experimental verifications in this paper is available at the repository subagging-asymptotics.
The risk estimator proposed in this paper is also incorporated in the Python library sklearn-ensemble-cv [DP24b].
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form the optimal lasso on the full data (without any subagging). Our second insight is that the
joint optimization of the subsample size and explicit regularization parameter can outperform
optimizing explicit regularization alone on the full data. We verify this property for ensembles
of the lasso, unregularized Huber, and̀ 1-regularizer Huber (see Figure 6, 7 and Appendix D).
This highlights the bene�ts of subagging on top of optimal explicit regularization.

Independent results in the non-ensemble setting. In the process of characterizing the risk of
the subagging ensemble, we also establish the convergence of certain trace functionals (in particular,
see (13) below or the last three rows of Table 2). This implies that the observable adjustments de-
veloped in [Bel22] for inference using a single estimator converge to their deterministic counterparts
de�ned as solutions to the System 1a, unifying the mean-�eld asymptotics featuring System 1a of
[TAH18] and the inference results of [Bel22]. This was known only for the lasso [CMW23, Theo-
rem 8] and unregularized M-estimators [BK24]. These convergence results are new for regularized
estimators (beyond ridge and lasso) and robust loss functions (beyond squared loss) and are of
independent interest even for a single estimator (that is, in the non-ensemble setting withM = 1).

1.2 Other related work

Resampling methods, such as bagging and subsampling, are widely used in statistics and machine
learning. Given their broad applicability, there is a vast literature on these methods. In this section,
we provide an overview of the literature related to the risk analysis of ensemble methods, particularly
in high-dimensional regimes that have received considerable recent interest.

Classical work on bagging and subagging includes the work by [Bre96, Bre01, BY02], among others.
Beyond bagging, analysis of ensemble methods of di�erent predictors includes smooth weak pre-
dictors [BS06, FH07], nonparametric estimators [BY02, LGR+ 22], and classi�ers [HS05, Sam12].
Historically, there are also early works by [SK95, KS97] on risk asymptotics for ridge ensembles
under Gaussian features. We also mention here some other early work on ensembles, including:
[HS90, Per93, SK95, KS97]. For a comprehensive overview of early work on bagging and ensemble
methods in general, we refer readers to [PDK23].

Substantial progress has been made in the last decade in understanding the asymptotic behavior of
regularized M-estimators in high-dimensional settings, particularly under the proportional asymp-
totic regime where the number of features scales with the number of observations. Frameworks of
Approximate Message Passing (AMP) (developed in a series of papers [DMM09, DMM11, BM11a]),
Convex Gaussian Min-Max Theorem (CGMT) (developed in a series of papers [OTH13, OH16,
TOH15, TAH18]), and leave-one-out (LOO) and martingale-based analysis common in random
matrix theory (used in [EK13, Kar18], for example) have been instrumental in deriving the limiting
test risk, often as solutions to (nonlinear) systems of self-consistent equations. More speci�cally,
these include analyses of unregularized estimators [EKBB+ 13, EK13, Kar18, DM16, BBEKY13],
ridge estimator [DW18], lasso [BM11b, MM21], bridge estimators [WMZ18], logistic regression
[SC19, MLC19, SAH19], convex regularized M-estimators [TOH15, TAH18], among others. Re-
cently, triggered by the empirical success of neural networks that interpolate, these risk analyses
have been extended to interpolating estimators with vanishing regularization (in the overparame-
terized regimes that allow for interpolation), such as ridgeless [HMRT22], lassoless [LW21], max-
margin interpolators [MRSY19, DKT22, LS22]; see the survey papers [BMR21, Bel21] for other
related references.

Beyond individual regularized M-estimators, there has now been considerable interest over the last
few years in the analysis of ensembles of estimators in high-dimensional settings, especially in the
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overparameterized regime just mentioned. In particular, [LJB20] consider least squares ensembles
obtained by subsampling such that the �nal subsampled dataset has more observations than the
number of features. The work of [PDK23] provides the characterization of the asymptotic risk of en-
sembles of ridge regression using results from Random Matrix Theory (RMT). Furthermore, recent
extensions by [DPK23, PD23] expand the scope of these results by establishing risk equivalences for
both optimal and suboptimal risks, considering arbitrary feature covariance and signal structures.
Other follow-up works for subagging of ridge and ridgeless regression include [CZYS23, AK23].
This paper develops tools to study ensembles of regularized estimators with general loss and regu-
larizers, beyond ridge regularization. For instance, our theory accommodates̀1-regularized Huber
regression.

Another line of research focuses on ensemble methods involving random features and feature sketch-
ing rather than subsampling. In random features models, the e�ect of ensembling on various compo-
nents of the risk has been studied in [AP20, dRBK20, LGR+ 22]. Recently, [PL24] analyze ensembles
of ridge regression with sketched features with asymptotically free sketching. There are also analy-
ses of alternative resampling and averaging techniques. For example, in the context of distributed
learning, [DS20, DS21, MRRK22] consider the divide-and-conquer approach, or splagging (split
aggregating), and investigate their properties for ridge and ridgeless predictors.

Very recently, [CVD + 24] analyzed the limiting equations of several resampling schemes, including
bootstrap and resampling without replacement, and characterized self-consistent equations for the
limiting bias and variance functionals of estimators obtained by minimization of the negative log-
likelihood plus an additive ridge penalty. This is related to our risk characterization as [CVD+ 24]
also covers sampling without replacement, but our nonlinear systems (Systems 1a and 1b) char-
acterizing the subagging risk do not appear explicitly in their work, which instead focuses on
self-consistent equations for bias and variance functionals of the speci�c resampling scheme. The
results of [CVD+ 24] relies on the general AMP analysis and state evolution laid out in [LGR+ 22,
Lemmas B.3 and B.5], generalizing [BM11b]. This analysis requires the existence of unique solution
to the corresponding limiting system of equations, which is granted under strong convexity (e.g.,
with a ridge penalty), but was not established until the present paper for the case of ensembling of
subsampled regularized estimators.

Finally, complementary to risk characterization, there has also been considerable interest in the
cross-validation and model selection of ensemble methods. In particular, [DPK23] study cross-
validation for bagging of ridge regression. [BDK+ 24] examine the consistency of generalized cross-
validation (GCV) for estimating the prediction risk of arbitrary ensembles of regularized least
squares estimators for strongly convex penalties. They show that GCV is inconsistent for any
�nite ensemble of size greater than one and identify a correction to GCV that is consistent for
any �nite ensemble size, termed corrected GCV (CGCV). In this paper, we generalize one of the
data-dependent estimators proposed in [BDK+ 24] for the general setting of this paper, allowing for
general convex losses and heterogeneous component estimators in the ensemble. While we do not
attempt to interpret the estimator as a corrected GCV for homogeneous ensembles in the general
setting, it may be possible to perform such an analysis further, which we leave for future work.

The proof strategy in this paper extends the approach of [BK24], which studies the bagging of
unregularized M-estimators. While their analysis is based on a relatively simple 1-dimensional
nonlinear system, the new System 1b below is 2-dimensional, introducing additional complexity
to the analysis. The rise in complexity is similar to that from unregularized regression [EK13,
DM16, Kar18] and its 2-dimensional system to the 4-dimensional system of regularized M-estimators
[TAH18] given in System 1a. One challenge arises from the stochastic control of the trace terms
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in (13). In the unregularized case, these trace terms can be approximated by a straightforward
product of the norms of the error vector and residuals (see [BK24, Lemma 5.7]), and the stochastic
behavior of these norms are well-understood in the existing literature (cf. [TAH18, LGC+ 21]).
However, in the regularized case, the trace functional cannot be approximated by such a simple
expression, which prevents the direct application of these existing results based on the CGMT.
We overcome this by showing that, with high probability, the trace term is a stationary point of a
certain (random) strongly convex function. This allows us to control the perturbation of the trace
term through the behavior of the convex function (see Appendix A.4).

1.3 Notation

We denote scalars in the regular lower or upper case (e.g.,a, A), vectors in bold lower case (e.g.,
a), and matrices in bold upper case (e.g.,A ). For a natural number n, the shorthand notation [n]
denotes the setf 1; : : : ; ng. For two real numbers x and y, we usex ^ y to denote minf x; yg. For a
vector a, kakq denotes its`q-norm for q � 1. If no subscript is present for the normkuk of a vector
u , then it is assumed to be the`2 norm of u . For a univariate function f and a vector a 2 Rn , with
a slight overload of notation, we usef (a) 2 Rn to denote the component-wise application off to a.
We use diag[a] to denote the diagonal matrix whose entries are given by the vectora. Throughout,
we use0, 1, and I to respectively denote the all-zero vector, all-one vector, and identity matrix of
varying dimensions, depending on the context.

For any proper, closed, convex functionf : R ! R, the proximal operator and Moreau envelope of
f with a parameter � > 0 at a point x 2 R are, respectively, denoted as:3

proxf (x; � ) := argmin
y2 R

f (y) +
1
2�

(x � y)2 and envf (x; � ) := min
y2 R

f (y) +
1
2�

(x � y)2: (1)

For a proper, closed, convexf , the argmin in (1) exists and is unique, and consequentlyx 7!
proxf (x; � ) is a well-de�ned function. Let @f denote the subdi�erential of f , which is the set of all
subgradients off . We jot down two key relationships between the proximal operator, subdi�erential,
and Moreau envelopes off below for the reader's convenience:

@
@x

envf (x; � ) =
x � proxf (x; � )

�
2 @f(proxf (x; � )) : (2)

For simplicity, we often use env0
f (x; � ) to denote the partial derivative @

@xenvf (x; � ).4

Finally, we use OP and oP to denote probabilistic big-O and little-o notation, respectively, while
the convergences in probability are denoted by

p
�! . Most other notation we use is standard and any

other non-standard notation is de�ned inline. For the reader's convenience, we also give a quick
overview of the speci�c notation used in this paper in Table 4.

2 Setup and assumptions

We consider the standard supervised regression setting, in which we observen data points (x i ; yi )
for i 2 [n]. The feature matrix X 2 Rn� p contains x >

i in its i -th row and the response vector
y 2 Rn contains yi in its i -th entry. We assume the following distribution on the dataset (X ; y ):

3Here R is the extended real line (that does two-point (+ 1 and �1 ) compacti�cation of the real line).
4 In general, for a bivariate function g(�; �), we use the notation g0(�; �) to denote the �rst partial derivative with

respect to the �rst argument.
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Assumption A (Data distribution) . The distribution of ( X , y ) is speci�ed by:

1. The design matrix X 2 Rn� p has i.i.d. entries drawn from N (0; 1=p).

2. The response vectory = X� + z, where � 2 Rp is a random signal vector andz 2 Rn is a
random noise vector, both independent of each other and of the feature matrixX , with:

(a) The signal vector � 2 Rp has i.i.d. entries drawn from distribution F� .

(b) The noise vector z 2 Rn has i.i.d. entries drawn from distribution Fz.

We subsample the dataset (X ; y ) to create M subsampled datasets. Towards that end, de�neM
subsample index subsetsI m � [n] of cardinality km = jI m j for m 2 [M ]. The feature matrix
and response vector associated with the subsampled dataset (x i ; yi ) for i 2 I m are denoted as
(X I m ; y I m ). We assume the following sampling strategy for the subsample index setsf I m gm2 [M ]:

Assumption B (Subsampling strategy). Given deterministic integers f km � 1gm2 [M ], the M
subsample index setsf I m gm2 [M ] are independent of (X ; y ) and are independently sampled from
the uniform distribution over subsets of [n] with cardinality km for each m 2 [M ].

It is worth noting that if I m and I ` (for m 6= `) are any two independent subsample sets of
cardinality km and k` per Assumption B, then the cardinality of intersection jI m \ I ` j follows a
hypergeometric distribution with mean km k`=n. Using the properties of the hypergeometric dis-
tribution, it follows that jI m \ I ` j=n

p
�! cm c` as both n; km ; k` ; ! 1 with the subsample ratios

km =n ! cm and k`=n ! c` for somecm ; c` 2 (0; 1] (this follows from Chebyshev's inequality and
the variance formula of the hypergeometric distribution, see Section S.8.1 of [PDK23] for more
details). Intuitively, each sample lands in a subsampleI m with probability cm (the limiting ratio
jI m j=n) and in the overlap of two subsamples with probability cm c` (the limiting ratio jI m \ I ` j=n),
as the subsamples are drawn independently. The overlap between any two subsample setsI m and
I ` is thus of order n with high probability. The randomness in subsampling in Assumption B is
not important. Our results can accommodate deterministic sampling where the subsample sets
f I m gm2 [M ] are selected deterministically, provided that the ratios jI m j=n, I `=n, and jI m \ I ` j=n
converge to non-zero constants.

For each subsampled dataset (X I m ; y I m ) for m 2 [M ], we de�ne the regularized M-estimator b� m as

b� m (I m ) 2 argmin
b2 Rp

X

i 2 I m

lossm (yi � x >
i b) +

X

j 2 [p]

regm (bj ): (3)

When de�ning (3), we allow the argmin operator to return any one of the minimizers (as emphasized
by the element notation in (3)). Here lossm and regm are the loss and regularization functions that
satisfy the following assumption for all m 2 [M ]:

Assumption C (Loss and regularizer structure). The loss function loss: R ! R is proper, closed,
convex, and di�erentiable with derivative loss0Lipschitz continuous, and minx loss(x) = loss(0). The
regularizer reg: R ! R is proper, closed, convex and minx reg(x) = reg(0).

The �nal ensemble estimator, constructed using the component estimators (3), is de�ned as:

e� M
�
f I m gm2 [M ]

�
:=

1
M

X

m2 [M ]

b� m (I m ): (4)
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For brevity, we omit the dependency of the component and ensemble estimators onI m and f I m gm2 [M ]

and simply write b� m and e� M , respectively, when it is clear from the context. We evaluate the per-
formance of the ensemble estimatore� M with respect to the signal parameter � via:

RM :=
1
p

ke� M � � k2
2:

Note that RM is the (excess) out-of-sample squared error in our setup because of isotropic features:
For an independently sampled test featurex 0 2 Rp with i.i.d. entries drawn from N (0; 1=p), we
have RM = E[(x >

0
e� M � x >

0 � )2 j y ; X ; f I m gm2 [M ]]. We will refer to RM as the risk of the ensemble.
Observe that RM is a scalar random variable that depends on both the dataset (X ; y ) and the
random samplesI m for m 2 [M ]. The goal of the paper is to characterize the asymptotic behavior
of this random variable RM under the proportional asymptotics regime. In this regime, the sample
sizen, feature sizep, and subsample sizekm all diverge while keeping the appropriate ratios �xed:
we will assume the inverse data aspect ration=p ! � 2 (0; 1 ) and for eachm 2 [M ], the subsample
ratio km =n ! cm 2 (0; 1] asn; p; km ! 1 .

3 Risk characterization and estimation

In this section, we will �rst describe a general technical result on the correlations of the error and
residual vectors for regularized M-estimator in Section 3.1. We then state our general result on
the risk characterization of the ensemble estimator in Section 3.3 and construct a consistent risk
estimator for this risk in Section 3.4.

3.1 Asymptotics of correlations of estimator and residual errors

To state the risk characterization of the ensemble estimator, we �rst introduce two important
nonlinear systems of equations: Systems 1a and 1b. Intuitively, these systems correspond to the
corner cases where the ensemble sizeM = 1 and M = 1 , respectively. As we shall see in Section 3.3,
these systems completely determine the risk asymptotics of the ensemble estimator (4).

System 1a (Error norms of individual regularized M-estimator) . Given a triple ( loss; reg; c� )
where c� 2 (0; 1 ) and loss; reg : R ! R are convex functions, de�ne the following 4-scalar
system of equations in variables (�; �; �; � ):

� 2 = E
�� 1

� env0
reg(� + �

� H ; 1
� ) � �

� H
� 2�

(5a)

� 2 = E
�
env0

loss(Z + �G ; � )2�
� c� (5b)

�� = E
�� 1

� env0
reg(� + �

� H ; 1
� ) � �

� H
�

� (� H )
�

(5c)

�� = E
�
env0

loss(Z + �G ; � ) � G
�

� c� (5d)

where H � N (0; 1), G � N (0; 1), � � F� , Z � Fz, all mutually independent.

System 1a can be found in the literature, speci�cally in [TAH18, Equation 15]. To be precise, we
are applying the result of [TAH18] on the subsample estimator (3) usingk = jI m j observations
with k=n ! c, so that the limiting inverse aspect ratio k=p = k=n � n=p ! c� . System 1a is
known to characterize the limit in probability of the risk of (3) when jI m j=p ! c� : if ( �; �; �; � )
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is a solution to System 1a, thenp� 1kb� m � � � k2 p
�! � 2. The existence and uniqueness of the �xed-

point parameters in this system are central to applying results from the Convex Gaussian Min-
Max Theorem (CGMT) to derive precise risk characterization for regularized M-estimator (under
proportional asymptotics). This is guaranteed under conditions where bothlossand regare Lipschitz
and the problem parameters are such that the perfect signal recovery is not possible, leading to
non-zero asymptotic risk. For a detailed discussion on these conditions, see [BK23b]. Next, we
describe our second system for risk characterization of the ensemble estimators.

System 1b (Error correlations of overlapped regularized M-estimator). Given c;ec 2 (0; 1]
and convex pairs of functions (loss; reg), ( gloss; freg), let ( �; �; �; � ) 2 R4

> 0 and (e�; e�; e�; e� ) be
parameters that satisfy System 1a with (loss; reg; c� ) and (gloss; freg; ec� ), respectively. De�ne the
following 2-scalar system of equations in variable (� G ; � H ) 2 [� 1; 1]2:

�
� G

� H

�
=

�
Freg(� H )
Floss(� G )

�
(6)

where Floss; Freg : [� 1; 1] ! R are functions de�ned as:

Floss(� G ) :=
p

cec �
E

�
env0

loss(Z + �G ; � ) � env0
floss

(Z + e� eG; e� )
�

E
�
env0

loss(Z + �G ; � )2
� 1=2

� E
�
env0

floss
(Z + e� eG; e� )2

� 1=2

Freg(� H ) :=
E

��
1
� � env0

reg

�
� + �

� H ; 1
�

�
� �

� H
�

�
�

1
e� � env0

freg

�
� +

e�
e�

eH ; 1
e�

�
�

e�
e�

eH
��

E
��

1
� � env0

reg

�
� + �

� H ; 1
�

�
� �

� H
� 2� 1=2

� E
��

1
e� � env0

freg

�
� +

e�
e�

eH ; 1
e�

�
�

e�
e�

eH
� 2� 1=2

(7a)

(7b)

where
�

G
eG

�
� N (

��
0
0

�
;
�

1 � G

� G 1

��
,

�
H
eH

�
� N (

��
0
0

�
;
�

1 � H

� H 1

��
; � � F� , Z � Fz, all mutually

independent.

System 1b is new and one of the main contributions of this paper. Note that the parameters (� G ; � H )
in the system are correlation parameters (up to scaling factors) of the two random variables visible
inside expectations in (7a) and of the two random variables in (7b), respectively. By the Cauchy{
Schwarz inequality, the function Floss and Freg are uniformly bounded as jFloss(� )j �

p
cec and

jFreg(� )j � 1 so that any solution (� G ; � H ) to the system (6) lies in the set [� 1; 1] � [�
p

cec;
p

cec].
As stated, it is not immediately clear if System 1b admits any solution and whether it is unique.
Our �rst result establishes that this is indeed the case:

Theorem 1 (Existence, uniqueness, and sign pattern of solutions to System 1b). The functions
Floss and Freg de�ned in (7) satisfy the following properties:

1. jFloss(� G )j <
p

cec for all j� G j < 1 and jFreg(� H )j < 1 for all j� H j < 1.

2. Floss and Freg are non-decreasing, di�erentiable, and the compositionsFloss � Freg and
Freg � Floss are minf c;ecg-Lipschitz.

3. If minf c;ecg < 1, then System 1b admits a unique solution (� ?
G

; � ?
H

) 2 (� 1; 1)� (�
p

cec;
p

cec).
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4. The signs of the solution (� ?
G

; � ?
H

) are characterized by the following sign pattern:

sign
� �

� ?
G

� ?
H

� �
= sign

� �
Freg � Floss(0)
Floss � Freg(0)

� �
(8)

where sign(x) := 1f x> 0g � 1f x< 0g applies component-wise.

Some remarks on Theorem 1 are in order. Among the four properties listed in Theorem 1, the most
interesting is the second property: the two maps (Floss � Freg, Freg � Floss) are strict contractions.
Given this property, the third property (the uniqueness and existence of the solution) easily follows
from the Banach �xed-point theorem. We briey explain this next. Indeed, if ( � ?

H
; � ?

G
) is a solution

to System 1b, then � ?
H

automatically satis�es the following 1-dimensional �xed-point equation:

� ?
H

= Floss(� ?
G

) = Floss � Freg(� ?
H

):

The other direction is also true in the following sense: if� ?
H

is a solution to the �xed-point equation
� H = Floss � Freg(� H ), then letting � ?

G
= Freg(� ?

H
), we observe that the pair (� ?

H
; � ?

G
) satis�es

System 1b. SinceFloss� Freg is a contraction mapping, the Banach �xed-point theorem implies that
such � ?

H
uniquely exists. See Appendix A.1 for the full proof details. This contraction property

also certi�es that the �xed-point iteration algorithm � (k+1)
H

= Floss � Freg(� (k)
H

), which we use in
our experiments to solve System 1b, numerically converges to the correct solution� ?

H
exponentially

fast.

SinceFloss and Freg are non-decreasing, combined with the fourth property in Theorem 1, we get a
simple su�cient condition which determines the sign of ( � ?

H
; � ?

G
):

Floss(0) and Freg(0) are non-negative) � ?
H

and � ?
G

are non-negative:

Simplifying the denominators of Freg and Floss by (5a) and (5b), we can write Floss(0) and Freg(0)
as follows:

Floss(0) =
cec�

� e�
� E

h
E

�
env0

loss(Z + �G ; � ) j Z
�

� E
�
env0

gloss
(Z + e�G ; e� ) j Z

� i
;

Freg(0) =
1

� e�� e�
� E

h
E

�
env0

reg

�
� + �

� H ; 1
�

�
j �

�
� E

�
env0

freg

�
� +

e�
e� H ; 1

e�

�
j �

� i
:

In particular, if the same loss and regularizer are used, i.e.,loss = gloss and reg = freg, and the
subsample sizes are the same, i.e.,k = ek, then the solutions satisfying System 1b are same, i.e.,
(�; �; �; � ) = ( e�; e�; e�; e� ), so that it is easy to see from the above formula thatFloss(0) � 0 and
Freg(0) � 0. This means that the solutions (� ?

G
; � ?

H
) are non-negative when the same loss, regularizer,

and subsample size are used.

Another case such that the solutions (� ?
G

; � ?
H

) are positive is whenlossand glossare least squares and
reg and freg are ridge (but possibly di�erent regularization parameters). This is becauseenv0

f ; (x; � )
is linear in x for any squared loss (and regularizer) of the formf (�) = � (�)2 so that Floss(0) =
C1E[Z 2] � 0 and Freg(0) = C2E[� 2] � 0 for some positive constantsC1; C2.

Remark 1 (Negative estimator error correlation). Let us take reg; freg as the indicator functions

reg(x) = � (�1 ;� t ](x) :=

(
+ 1 x > � t

0 x � � t
and freg(x) = � [et;+ 1 ) (x) :=

(
+ 1 x < et

0 x � et
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wheret; et � 0 are non-negative constants. Note that the two sets, (�1 ; � t] and [et; + 1 ), are disjoint.
Noting proxreg(x) = min f x; � tg and proxfreg(x) = max f x; etg, we have

Freg(� H ) =
1

� e�� e�
E

��
min

�
� + �

� H; � t
	

� �
�

�
�

max
�

� +
e�
e�

eH; et
	

� �
��

:

Thus, if � is included in the closed set [ � t; et] with probability 1, then we have Freg(� H ) � 0 for all
� H so that � ?

G
= Freg(� ?

H
) is non-positive. This is intuitive as we will show in Theorem 2 that � G

characterizes the limiting behavior of the correlations between two estimators trained onreg and
freg.

We next show that the correlation parameters (� G ; � H ) from System 1b are the limiting correlations
between the estimator and residual errors of estimators trained on overlapped samples. To do
so, besides Assumptions A{C, we will need mild regularity conditions that the loss and reg in
Assumption C need to satisfy in relation to the distribution F� and Fz of the signal and noise
coordinates in Assumption A.

Assumption D (Regularity conditions) . Let � � F� and Z � Fz be the signal and noise random
variables as in Assumption A, andG � N (0; 1), H � N (0; 1), all mutually independent. In addition
to Assumption C, the functions loss: R ! R and reg : R ! R satisfy the following:

1. For all c 2 R, we have

E[loss0+ (cG + Z )2] < + 1 and E[reg0
+ (cH + �) 2] < + 1

where we de�ne f 0
+ (x) := sup s2 @f(x) jsj for any convex function f .

2. P(� 6= 0) > 0.

3. System 1a admits a unique positive solution (�; �; �; � ) 2 R4
> 0.

4. There exists interval I � R where loss0 is strictly increasing. For eachz 2 R, the measurepZ (z)
of Z is either a Dirac delta function or it is continuous.

The conditions in Assumption D are similar to those assumed in [TAH18] when characterizing the
asymptotics for the non-ensemble case. The main di�erence is that we do not require the second
moment of � to be �nite. These conditions ensure that the individual estimator and residual error
norms converge, i.e.,kb� � � k2

2=p
p
�! � 2 and kloss0(y � X b� )k2

2=p
p
�! � 2 hold, where � and � are

solutions to System 1a. (See Appendices A.5 and A.6 for proofs of convergences of error vector and
loss gradient norm squared under the relaxation of the conditions.)

For the upcoming statement, recall that when used on a vector, theloss and reg functions are
assumed to be operated component-wise. In addition, we denote the feature matrix and response
vector associated with the \overlapped" dataset (x i ; yi ) for i 2 I \ eI using (X I \ eI ; y I \ eI ).

Theorem 2 (Estimator and residual error correlation characterization). Let b� I and b� eI be
component estimators (3) trained on subsamples (X I ; y I ) and (X eI ; y eI ) corresponding to index

setsI and eI with parameters (loss; reg) and (gloss; freg). Under Assumptions A{D, as n; p; k; ek !
1 with n=p ! � 2 (0; 1 ), k=n ! c 2 (0; 1] and ek=n ! ec 2 (0; 1] with min f c;ecg < 1, we have

p� 1( b� I � � )> ( b� eI � � )
p
�! � G � e�

p� 1loss0(y I \ eI � X I \ eI
b� I )> gloss

0
(y I \ eI � X I \ eI

b� eI )
p
�! � H � e�;

(10)
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where (� G ; � H ) is the solution to System 1b. Furthermore, for any i 2 I \ eI and j 2 [p], there
exists a jointly normal ( Gi ; eGi ) with mean 0, variance 1 and correlation� G and (H j ; eH j ) with
mean 0, variance 1 and correlation� H (as in System 1b) such that the residuals and estimators
are jointly approximated as follows:

max
j 2 [p]

E
�
1 ^





 
e>

j
b� I

e>
j

b� eI

!

�

 
proxreg(� j + �

� H j ; 1
� )

proxfreg(� j +
e�
e�

eH j ; 1
e� )

! 



2

2

�
= o(1); (11a)

max
i 2 [n]

E
�
1 i 2 I \ eI ^





 
yi � x >

i
b� I

yi � x >
i

b� eI

!

�
�

proxloss(zi + �G i ; � )
proxgloss(zi + e� eGi ; e� )

� 



2

2

�
= o(1): (11b)

The proof is given in Appendix A.2.4. Put in words, � G and � H from System 1b encode the cosines
of the angles between the estimator errors and loss gradient residual errors of estimatorsb� I and
b� eI respectively. It is worth noting that the proximal representations in (11a) and (11b) allow one
to provide limiting behavior of other functionals of the estimator and residual errors by assuming
further moments on the signal and error distributions F� and Fz; for example, we can characterize
the correlation between the raw residuals (rather than after applying the loss derivative) assuming
�nite second moment of Fz or consider pseudo-Lipschitz functionals other than squared error.

The main di�culty in showing Theorem 2 is the non-trivial dependence between the two estimators
b� I and b� eI as they share the samplesX I \ eI . In the case of squared loss and ridge regularizer, the

estimators b� I and b� eI have closed-form expressions, and prior work in [PDK23] explicitly analyze the
overlapped resolvents by developing conditional calculus of resolvents. However, for general loss and
regularizers, the overlapped terms are more challenging to analyze due to the lack of closed-form
expressions. Our strategy in this paper is to exploit the recently developed technique in [BK24] to
analyze the overlapped terms.

To prove Theorem 2, we show that the left-hand side of (10) concentrate around scalars indepen-
dent of X , and that these two scalars are approximate �xed-point of Floss � Freg and Freg � Floss,
respectively. This strategy of �rst proving the concentration of certain quantities and then obtaining
approximate �xed-point equations is reminiscent of the leave-one-out analysis of [EKBB+ 13, Kar18]
and was previously used in [BK24] to characterize the ensemble risk in unregularized M-estimators
(with no explicit penalty). The setting studied here is signi�cantly more complicated than these
works due to the presence of robust loss functions, penalty functions, and shared samples between
b� I and b� eI .

We believe that once the contractions ofFloss� Freg and Freg� Floss have been found and the existence
and uniqueness of the solution to System 1b has been established, di�erent techniques than those
used here and discussed in the previous paragraph could also be used to derive asymptotic results
similar to Theorem 2. For instance, after existence and uniqueness of the solution to System 1b
is established, there is hope to carry out an AMP analysis for matrix-valued parameters (see for
instance [LGR+ 22, Lemmas B.3 and B.5] or [JM13, GB23]), or by using the conditional CGMT
technique of [CM24, Appendix F]. However, we emphasize that these alternate techniques would also
�rst require to establish the structure of System 1b (as done in Theorem 1) in order to guarantee
the existence and uniqueness of the solution to System 1b, since such existence and uniqueness
result is required for both applying CGMT results and ensuring the convergence of AMP to the
regularized M-estimator.

Even though we assume the existence and uniqueness of the solution to System 1a, such existence
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Figure 1: Illustration of the asymptotics of the estimator and residual error norms and correlations of
overlapped regularized M-estimator.

and uniqueness have been established under slightly stronger assumptions in [BK23b], namely, for
Lipschitz loss and regularizer. We conjecture that the assumptions of Theorem 2 (in particular,
Assumption D) are su�cient for existence and uniqueness of a solution to System 1a without
requiring a Lipschitz condition on the loss and penalty. We believe that extending the analysis
[BK23b] to relax the Lipschitz assumption is a good starting point for this conjecture.

3.2 Interpretation of the parameters in Systems 1a and 1b

As mentioned earlier, the six parameters (�; �; �; � ) and (� G ; � H ) in Systems 1a and 1b essentially
characterize the asymptotic risk of the ensemble estimator. These deterministic parameters are
limits of various stochastic (observable) quantities that we now describe (see also Figure 1 for a
visual illustration).

Here b� I and b� eI are the component estimators (3) trained on subsamples (X I ; y I ) and (X eI ; y eI )

corresponding to index setsI and eI and parameters (loss; reg) and (gloss; freg), respectively. We
further de�ne the scalar dfI and the matrix VI by

dfI := tr[( @=@y I )X I b� I ]; VI := ( @=@y I )loss0(y I � X I b� I ) 2 RjI j�j I j (12)

and similarly for eI . Two scalars of interest, that relates the behavior ofb� I to the scalars (�; � ) in
System 1a, aredfI and tr[VI ].

Assuming squared loss,loss0(y I � X I b� I ) = y I � X I b� I is simply the residual vector, and the matrix
VI simpli�es to VI = I � (@=@y I )X I b� I ; so that tr[ VI ] = n � dfI . That is, for the square loss
case these quantities can all be related to the usual notion of e�ective degrees of freedom [Ste81].
The matrix ( @=@y I )X I b� I is usually referred to as the \hat" or \smoothing" matrix (for linear
smoothers), whose trace is the e�ective degrees of freedom.
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Table 2: Interpretations of various limiting quantities appearing in Systems 1a and 1b. See
Section 3.2 for de�nitions and notations.

Interpretation Stochastic quantity Limit

Error vector norm squared kb� I � � k2
2=p � 2

Loss gradient norm squared kloss0(y I � X I
b� I )k2

2=p � 2

Inner product of error vectors (b� I � � )> ( b� eI � � )=p � G � e�

Inner product of loss gradients loss0(y I \ eI � X I \ eI
b� I )> gloss

0
(y I \ eI � X I \ eI

b� eI )=p � H � e�

Degrees of freedom dfI =p where dfI := tr[( @=@y I )X I
b� I ] ��

Residual degrees of freedom tr[VI ]=p where VI := ( @=@y I )loss0(y I � X I
b� ) �

Generalized resolvent trace tr[(X >
I diag[loss00(y I � X I

b� I )]X I +diag[ reg00( b� I )]) � 1] if reg is
twice di�erentiable and dfI =tr[ VI ] if reg is non-smooth

�

If lossis no the squared loss, butloss0 is 1-Lipschitz (as in the Huber loss or several robust regression
losses), the quantitiesloss0(y I � X I c� I ) is still related to a notion of residual vector, and tr[VI ] is
still related to a notion of degrees of freedom. By [Bel23, Lemma 9.1], the estimatorb� I is the �rst
part of a solution ( b� I ; bu ) to the convex optimization problem

min
b2 Rp ;u 2 Rj I j

ky I � X I b � uk2
2 +

pX

j =1

reg(bj ) +
X

i 2 I

h(ui );

where h : R ! R is a deterministic convex function related to loss. The interpretation of this new
optimization problem is that in the presence of heavy-tailed errors or outliers in some components
of y I , we add additional variables (ui ) i 2 I to �t those outliers. As an example, for the Huber loss,
h(�) is proportional to the absolute value. The solution satis�es loss0(y I � X I c� I ) = y I � X I b� I � bu =
y I � [X j I I ]( b� >

I j bu > )> . That is, loss0(y I � X I c� I ) is the residual vector of the optimization
problem with enlarged design matrix [X I j I I ] 2 RjI j� ( jI j+ p)] . Consequently, tr[VI ] equalsjI j minus
the e�ective degrees-of-freedom of the estimate (b� >

I ; bu > ) �tted using this enlarged design matrix.
With this in mind, we refer in Table 2 to tr[ VI ] as residual degrees of freedom in general, and robust
residual degrees of freedom for the special case of the Huber loss.

Another interpretation of the matrix VI in (12) is the Hessian, with respect toy I , of the objective
value (3) at b� I . More precisely, with

F (y I ) =
X

i 2 I

loss(yi � x >
i

b� I ) +
X

j 2 [p]

reg(( b� I ) j )

being the objective value at the minimizer, the envelope theorem gives (@=@yi )F (y I ) = loss0(yi �
x >

i
b� I ). Di�erentiating once more reveals that VI in (12) is the Hessian ofF (�) at y I and tr[VI ] is

the Laplacian. Since partial minimization preserves convexity and the objective function in (3) is
jointly convex in ( b; y ), the function F (�) is convex. This interpretation explains why VI is a positive
semi-de�nite matrix in cases where closed form expressions forVI are available (see Table 5).

The convergence of the estimator and residual error norms (�rst two rows of Table 2) is proved in
in [TAH18, CMW23, LGC + 21] using the CGMT. Convergence of the corresponding inner products
(third, fourth row of Table 2) is novel and established in Theorem 2. The convergence

tr[ VI ]=p
p
�! �; dfI =p

p
�! ��; dfI =tr[ VI ]

p
�! �; (13)
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was so far only known for the lasso [CMW23, Theorem 8] or the square loss [Bel23, Corollary 3.2].
To our knowledge, the present paper is the �rst to establish the above convergence in probability
for regularized estimators and robust loss functions beyond the square loss. The proof is given in
Appendix A.4.

Assuming twice di�erentiable lossand reg functions, the parameter � is also the limiting trace of a
resolvent-like matrix A I := ( X >

I diag[loss00(y I � X I b� I )]X I + diag[ reg00( b� I )]) � 1, which in the further
special case of square loss and squared regularizer (with regularization level� ) simpli�es to the
standard ridge resolvent: A I = ( X >

I X I + � I ) � 1. We refer to A I as the generalized resolvent for
convenience in Table 2.

3.3 Asymptotics of ensemble risk

Using the parameters in Systems 1a and 1b, we are now ready for our main result on the squared
risk asymptotics of the ensemble estimator. Observe that the squared risk of the ensemble estimator
e� M = 1

M

P
m2 [M ]

b� m can be decomposed into two terms:

1
p


 e� M � �


 2

2 =
1

M 2

X

m2 [M ]

1
p

kb� m � � k2
2 +

1
M 2

X

m;` 2 [M ]
m6= `

1
p

( b� m � � )> ( b� ` � � ):

Noting kb� m � � k2
2=p

p
�! � 2

m and applying Theorem 2 to the cross term (b� m � � )> ( b� ` � � )=p for each
m 6= `, we arrive at the following result:

Corollary 3 (General ensemble risk characterization). Suppose the assumptions of Theorem 2
hold. For m 2 [M ], let � m be the parameter satisfying System 1a. Form; ` 2 [M ], let � G (m; ` )
be the parameter satisfying System 1b. Then, asn; p; k ! 1 with n=p ! � 2 (0; 1 ) and
km =n ! cm 2 (0; 1], we have

1
p


 e� M � �


 2

2
p
�! R M :=

1
M 2

X

m2 [M ]

� 2
m +

1
M 2

X

m;` 2 [M ]
m6= `

� G (m; ` ) � � m � ` : (14)

Since the parameters� m and � G (m; ` ) implicitly depend on � and cm , the asymptotic risk R M

also implicitly depends on these parameters. For brevity, we will simply write R M unless we wish
to explicitly point out this dependence. The factor � G captures the bene�t of ensembling. It is
worth noting that a negative � G (which intuitively corresponds to a component that does better in
a di�erent direction) will improve the ensemble risk if the components themselves also have small
risks. This aligns with the higher level intuition in ensembling that one should ensemble predictors
that each does well, preferably on di�erent parts of the input space.

3.4 Risk estimation

The risk characterization in Corollary 3 depends on the population-level characteristics (such as
the signal and noise distributions F� and Fz) and provides useful theoretical insights into the risk
behavior of the ensemble estimator in terms of these quantities. In practical applications, however,
the statistician needs to estimate the risk accurately to tune ensemble hyperparameters e�ectively
using the observed data (X ; y ). These hyperparameters include the choice of component estimators
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(through lossand reg), their level of regularization (regularization level for reg), the subsample sizes
(k), and the ensemble size (M ). For this purpose, we next construct a data-dependent proxy for
the squared risk, which one can then tune with respect to various hyperparameters.

De�nition 1 (Risk estimator component). Let b� I and b� eI be the component estimators (3) trained
on subsamples (X I ; y I ) and (X eI ; y eI ) corresponding to index setsI and eI with parameters (loss; reg)

and (gloss; freg). Corresponding to estimators b� I and b� eI , de�ne:

1. Degrees of freedom:dfI = tr[( @=@y I )X I b� I ] and df eI = tr[( @=@y eI )X eI
b� eI ].

2. Residual errors:r = y I � X I b� I and er = y eI � X eI
b� eI .

3. Residual degrees of freedom: traces ofVI = ( @=@y I )loss0(y I � X I b� I ) and VeI = ( @=@y eI )gloss
0
(y eI � X eI

b� eI ).

Using these quantities, de�ne an observable quantityESTI; eI as follows:

ESTI; eI :=
1
n

X

i 2 [n]

�
r i + 1f i 2 I g

dfI

tr[ VI ]
loss0(r i )

��
er i + 1f i 2 eI g

df eI

tr[ VeI ]
gloss

0
(er i )

�
(15)

where 1 
 denotes the indicator function associated with event 
.

The quantities tr[ VI ] and dfI have explicit closed-form expressions for special choices oflossand
reg. Some of these are summarized in Table 5. We show next thatESTI; eI approximates well the

component of prediction risk corresponding to the inner product of estimator errors ofb� I and b� eI .
We then naturally construct a risk estimator for the prediction risk of the ensemble estimator.

Theorem 4 (Consistency of risk estimator component). In addition to Assumptions A{D,
assume that reg and freg are strongly convex. Then we have

1
p

( b� I � � )> ( b� eI � � ) +
kzk2

2

n
= ESTI; eI + OP(n� 1=2)

�
1 +

kzk2p
n

�
:

The risk estimator ESTI; eI is a generalization of the criterion originally proposed by [BS22] for non-
ensemble regularized M-estimator. Although in this paper we focus on the isotropic Gaussian design
� = I p, the same argument in the proof of Theorem 4 works in the anisotropic design� 6= I p. As a
result, we can show that theESTI; eI (without any modi�cation) approximates p� 1( b� I � � )> � ( b� eI �
� ) + n� 1kzk2

2 under the event that (tr[ VI ]; tr[ VeI ]) are bounded from below by a positive constant
as in [BS22, Theorem 5.3].

We believe that the strongly convexity assumption onreg in Theorem 4 is an artifact of our proof
(see Figure 2 for an illustration wherereg is not strongly convex). Note that this type of assumption
of strong convexity has already been assumed in [BS22]. This assumption guarantees for free that the
coe�cient df=tr[ V ] does not blow up. However, we emphasize that Theorem 2 and Corollary 3 for
risk characterization do not require the strong convexity assumption. The approximation argument
(see Appendix A.2.1) used to prove Theorem 2 and Corollary 3 in the non-strongly convex case
is again applicable in the context of Theorem 4, although it is not currently su�cient to conclude
a version Theorem 4 for non-strongly convex regularizers due to the di�culty of establishing the
continuity of dfI and tr[VI ] with respect to the perturbation parameter � as � ! 0 in (28).
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Equipped with the component risk estimator (15), we can now construct a consistent risk estimator
for the ensemble estimator (4):

Corollary 5 (General ensemble risk estimation). Fix M � 1 and consider the ensemble esti-
mator e� M = 1

M

P
m2 [M ]

b� m where the component estimator b� m is trained with ( lossm ; regm )
on subsampleI m for m 2 [M ] as in (3). De�ne an estimator EST for the squared prediction
risk:

EST :=
1

M 2

X

m;` 2 [M ]

ESTm;`

whereESTm;` is ESTI; eI as de�ned in (15) with ( loss; reg; I ) = ( lossm ; regm ; I m ) and (gloss; freg; eI ) =
(loss̀; reg̀ ; I ` ). Then we have

1
p


 e� M � �


 2

2 +
kzk2

2

n
= EST+ OP(n� 1=2)

�
1 +

kzk2p
n

�
: (16)

If the noise distribution has enough moments, the guarantee (16) implies thatEST approximates
the (full) prediction risk (that includes the irreducible error) of the ensemble estimator e� M under
Assumption A:

E
��

y0 � x >
0

e� M
� 2 j y ; X ; f I m gm2 [M ]

�
=

1
p

ke� M � � k2
2 + E[Z 2];

where (y0; x 0) 2 R � Rp is an independent test point sampled from the same distribution as
the training data ( y ; X ) . More precisely, if the noise has a �nite second moment, thenEST is
consistent for the prediction risk. Furthermore, if the noise distribution has a �nite fourth moment,
by the central limit theorem (on the terms involving noise averages),EST is

p
n-consistent for the

prediction risk. This rate is not improvable because, for the single ordinary least squares (OLS)
estimator (with loss(x) = x2=2, reg = 0, jI j = j eI j = n) and Fz = N (0; 1), the risk estimator gives

EST = 1
n

ky � X b� ols k2
2

(1� p=n)2
d=

� 2
n � p

n(1� p=n)2 and the standard deviation of the � 2
n� p incurs an unavoidable term

of order n� 1=2.

If the noise distribution Fz does not have a �nite second moment but has a �nite (1+� )-moment for
� 2 [0; 1), then even if the estimator EST may not track the prediction risk (because the prediction
risk does not necessarily converge), minimizingEST is approximately equivalent to minimizing the
excess squared riskp� 1ke� M � � k2

2 (which does converge). This is because the moment assumption
implies

P
i 2 [n] z2

i = oP(n2=(1+ � ) ) (cf. [hp24]) so that (16) yields

1
p

ke� M � � k2
2 = EST�

kzk2
2

n
+ oP(n� �

1+ � );

where the subtraction term kzk2
2

n is independent of hyperparameters (lossm ; regm ; I m )m2 [M ]. We
illustrate this in Figure 2 with noise following Student's t2 distribution (that does not have a �nite
second moment).

4 Homogeneous ensembles

While Corollary 3 applies for a generic heterogeneous ensemble (whereregm ; lossm ; jI m j are allowed
to di�er for distinct m), concrete theoretical insights can be obtained for the homogeneous case

17



Figure 2: Risk of `1-regularized Huber ensemble at di�erent subsample aspect ratiosp=k with `1-
regularization parameter � = 0 :2 and varying ensemble sizeM in the underparameterized regime when
p=n = 0 :1 and n = 5000. The solid lines represent the theoretical risks, the dashed lines represent the em-
pirical risks averaged over 50 simulations, and the shaded regions represent the standard errors. The data
model is given by Appendix D.4.2 where the noise follows Student'st distribution t2. Left : Huber threshold
parameter 1. Right: Huber threshold parameter 5.

(where regm ; lossm ; jI m j are the same for everym). In the general heterogeneous case, the e�ect of
increasing ensemble sizeM is not straightforward, as in general we only have:

min
m2 [M ]

f � 2
m g

?

Q
1

M 2

X

m2 [M ]

� 2
m +

1
M 2

X

m;` 2 [M ]
m6= `

� G (m; ` ) � � m � ` � max
m2 [M ]

f � 2
m g:

In other words, we will do no worse than the worst component but may not do better than the
best component. More ensembles may or may not improve performance depending on the risks of
individual estimators.5 In contrast, for homogeneous ensembles, we show in the next subsection
that increasing ensemble size does indeed help reduce the risk. This uniformity allows for more
concrete analytical results and practical insights.

4.1 Risk properties

For the homogeneous ensemble of component estimators trained with the sameloss, reg, and sub-
sample sizek, as n; p; k ! 1 with n=p ! � 2 (0; 1 ) and k=n ! c 2 (0; 1], the limiting risk (14) is
given by:

R M =
1

M
R 1 +

�
1 �

1
M

�
R 1 where

(
R 1 := � 2 (non-ensemble risk);

R 1 := � G � 2 (full-ensemble risk):
(17)

5Even if a predictor complements other predictors (in the sense that it has small or negative � G with the other
predictors in the ensemble), it is only \bene�cial" for the ensemble if it also has a small risk ( � m ) itself.
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Observe that the limit R M is simply a convex combination of the asymptotic risk of the single
estimator R 1 and of the full-ensemble estimatorR 1 .6 (Note that when M ! 1 , R M does indeed
converge toR 1 , justifying the notation for the limit for the case when m 6= `.) As a sanity check,
note that in the special case whenc = 1, the above setting corresponds to the non-ensemble case
discussed in [TAH18, Section 4].

The following result shows the advantage of ensembling. In the classical bagging and subagging
literature, it is well known that the risk of the ensemble estimator decreases as the ensemble size
increases, due to the reduction in variance that comes with having more predictors in the ensemble.
In the proportional asymptotic regime that we study in this paper, since subagging also introduces
bias, this is not immediate. A general result along these lines that veri�es the monotonicity of the
risk of the ensemble itself (not the asymptotic limit) follows from Proposition 3.1 of [PDK23]; see
Equation (10) of [PDK23]. Below we verify that the asymptotic risk is strictly monotonic in M by
showing that � G < 1 in general. This implies that the asymptotic risk is strictly decreasing in M .

Proposition 6 (Improvement due to ensembling). Fix the subsample ratio c = k=n 2 (0; 1)
and let R M be the limiting risk as de�ned in (17). Then R M is strictly decreasing in the
number of ensemblesM , i.e., R M +1 < R M for all M 2 N.

The proof follows immediately because of the form of the ensemble risk (17) and the fact that
� G < 1 when c < 1, which follows from Theorem 1 with c = ec. This monotonicity in the ensemble
sizeM is illustrated by Figure 2 for the ensemble of`1-regularized Huber regression7.

Because the risk decreases inM , the optimal ensemble size isM = 1 .8 However, it may not be
feasible to use an ensemble size ofM = 1 . In practice, it su�ces to use a large enough M that
gives a suboptimal risk close to the full-ensemble risk. For this purpose, a natural idea is to estimate
the risk of non-ensemble estimatorM = 1 and the full estimator M = 1 , and obtain an estimate
for the risk of M -ensemble using the relationship in (17). This is very similar to the extrapolated
cross-validation estimator (ECV) of [DPRK24] which estimates the risk of M = 1 and M = 2.

We also show that for any ensemble sizeM , when the subsample ratioc is optimized, the resulting
risk decreases in the inverse data aspect ratio� = lim n=p. To prepare for the forthcoming statement,
let us write the limiting risk R M in (17) by R M (�; c ) to make the dependence on the limit� = lim n=p
and subsample ratioc = k=n clear. With this notation, we can say the following about the optimally
subsampled risk.

Proposition 7 (Monotonicity of optimal subsample risk) . The map � 7! inf c2 (0;1] R M (�; c ) is
non-increasing over� 2 (0; 1 ) for all M 2 N.

A consequence of this proposition is that the risk of the optimal ensemble estimator is decreasing in
the sample sizen for a �xed (large enough) feature sizep. Moreover, combined with Proposition 6,

6The reason we call this the \full" ensemble is that the ensemble estimator b� M when M ! 1 is almost surely
equal (coordinate-wise and conditioned on the data) to an ensemble estimator �tted on all possible (and distinct)

� n
k

�

subsamples of sizek; see Lemma A.1 of [DPK23] for a precise statement and proof.
7The Huber loss is de�ned as loss(x) = x 2

2� 1(jxj � � ) + ( jxj � �
2 ) 1(jxj > � ), where � is a positive constant, referred

to as the Huber parameter.
8 In practice, setting M =

� n
k

�
su�ces by only averaging over estimators trained on distinct subsamples (see

Appendix A.1 of [DPK23] for more details), but this still can be quite large.
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Figure 3: Optimal subsample risk of the Huber lasso ensemble is monotonic in the data aspect ra-
tio. Risks of the `1-regularized Huber and optimal `1-regularized Huber ensemble, for �xed`1-regularization
parameter � = 0 :5 and varying Huber parameter � , at di�erent data aspect ratios p=n ranging from 0:1 to
10. The data model is given in Appendix D.4.2.Left : noise follows Student'st distribution t2 and Huber
parameter � = 1. Middle: noise follows Student'st distribution t2 and Huber parameter � = 5. Right: noise
follows Student's t distribution t10 and Huber parameter � = 1.

we also have that this monotonic risk pro�le lies below the function R 1(�; 1), the risk pro�le of the
original predictor trained once on the full dataset (X ; y ) with no ensembling (the risk of which, as
we discussed above, can be non-monotonic). Such monotonicity in the inverse data aspect ratio is
important because it ensures that increasing the amount of data relative to features consistently
improves the estimator's performance. In a sense, a monotonic decrease in risk with the optimal
subsample ratio certi�es that the model e�ectively utilizes all the additional data, leading to better
performance as the data size grows. This result is illustrated in Figure 3 for thè 1-regularized
Huber regression.

4.2 Examples and connections to literature

In this section, we specialize the general risk characterization in Corollary 3 in several examples
of interest. Throughout this section, we will consider ensembles of component predictors trained
on the sameloss, reg (with a tuning parameter � ), and subsample sizek. We begin by considering
convex regularized least squares, with further specialization to bridge, ridge, and lasso. We then
consider general ridge regularized estimators allowing for non-squared loss in Section 4.2.2 with
further specialization to the Huber loss. For the reader's convenience, the proximal operators, their
derivatives, Moreau envelopes, and their derivatives for the ridge and lasso regularization and Huber
loss functions are recalled in Table 6.

4.2.1 Ensembles of regularized least squares

In this section, we consider subagging regularized least squares. Given a common regularizerreg
and a regularization parameter � > 0, the component estimators are given by:

b� m := argmin
b2 Rp

1
2

ky I m � X I m bk2
2 + �

X

j 2 [p]

reg(bj ):

Now Assumption D-(1) translates to having a bounded second moment of the noise distribution
Fz, which we denote by� 2. Using the explicit formula proxloss(x; � ) = x=(1 + � ) for loss(x) = x2=2
and performing some change of variables, the risk convergence in (17) holds with (R 1; R 1 ) given
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by:
R 1 = � 2 � � 2 and R 1 = � 2 � � 2;

where � and � are the solutions to the following systems:

System 2 (Ensembles of regularized least square). Given � 2 (0; 1 ), � 2 (0; 1 ), c 2 (0; 1],
� 2 2 [0; 1 ), de�ne the following 2-scalar system of equations in variables (�; a ):

� 2 = E
��

proxreg
�
� + �p

c�
H ; a�p

c�

�
� �

� 2�
+ � 2;

�p
c�

= a�
�
1 � 1

c� E
�
prox0

reg

�
� + �p

c�
H ; a�p

c�

���
;

(18a)

(18b)

where H � N (0; 1) and � � F� are independent. Given (�; a ) 2 R2
> 0 that satisfy the above

systems, de�ne the following 1-scalar system of equations in variable� :

� 2 = E
��

proxreg

�
� + �p

c�
H ; a�p

c�

�
� �

�
�
�
proxreg

�
� + �p

c�
eH ; a�p

c�

�
� �

��
+ � 2 (19a)

where
�

H
eH

�
� N (

��
0
0

�
;
�

1 � H

� H 1

��
with � H = c

� 2

� 2 , and � � F� independent.

Compared to Systems 1a and 1b, the parameterization in System 2 is slightly di�erent. This is done
to match the result with some of the existing results for regularized least squares (forM = 1). The
invertible transformations are given by: a = �

� , � =
p

c� �
� , and � 2 = � G � 2 + � 2. These parameters

also have interpretations as in Section 3.2, summarized below.

Remark 2 (Interpretation of parameters in System 2). The parameter � 2 is simply the (full)
prediction risk of the non-ensemble estimator in the limit, which is � 2 + � 2. Note that � 2 � � 2

and is sometimes referred to as e�ective \inated" noise variance due to the high dimensionality
[DMM09, BM11b]. Moreover, the fact that � 2 = (c� )� 2

� 2 = � 2=(c� )
� 2=(c� )2 is also at the core of consistency

of generalized cross-validation (discussed in Section 3.4) for the non-ensemble estimator. Here, the
numerator is the asymptotic training error and the denominator is the asymptotic degrees of free-
dom correction.9 The parameter a� is the e�ective threshold parameter at which one applies the
proximal operator to the noise-inated e�ective observation and appears in approximate message
passing (AMP) formulations [DMM09]. The parameter a serves as a proportionality constant be-
tween the e�ective threshold a� and standard deviation � of the inated e�ective noise. Finally,
the parameter � 2, which is the main contribution of this paper, is the full-ensemble predictor risk
(when M ! 1 ), which is also � G � 2 + � 2.

In the following, we isolate some special cases of regularized M-estimators to compare with existing
work.

Remark 3 (Bridge ensembles). Bridge estimators are also known as̀ q-regularized least squares
and are a popular class of regularized M-estimator [FF93, Fu98]. For̀q regularizer regq(x) = jxjq,
the risk of the bridge for M = 1 is derived in [WMZ18, WWM20] for general q 2 [1; 2]. For instance,
we recover [WMZ18, Theorem 2.1] by changing of variables (� 0; � 0) = ( �=

p
c�;

p
c� �) such that

the limiting prediction risks match � 0 = � .10 Equation (19a) generalizes it for anyM � 1. Further

9Observe that the factors of c� arise because both the asymptotic training error � 2 and the asymptotic degrees of
freedom correction � are de�ned with normalization of p in Table 2.

10 The parameter a requires the following change: a0 = ( c�=� 2) (1 � q) =2a in the two systems.
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special boundary cases ofq = 2 (ridge) and q = 1 (lasso) are further isolated in the next two
remarks.

Remark 4 (Ridge ensembles). For ridge regression whenq = 2, System 2 recovers Theorem 4.1 of
[PDK23] under isotropic features, using a slight change of variables (� 0; � 0) = ( �=

p
c�;

p
c� �). The

solution v to the (limiting) Stieltjes transform of the spectrum of the sample gram matrix therein
satis�es that v = ( a� ) � 1. For ridge ensembles, there is a deeper connection betweenR 1 and R 1 . It
turns out that R 1 (�; c ) is exactly equal to R 1(�; 1) for a new level of regularization� = v� 1 � �
that depends onc (and properties of the data distribution). The lower the subsampling proportion
of c, the higher the value of this implicit regularization � . There are entire paths of equivalences in
the (�; c ) plane where not only are the asymptotic squared risks the same, but also the estimators
themselves are equivalent. In a sense, one can think of the combined e�ect of subsampling and
ensembling as an additional (implicit) ridge regularization. The prediction risk equivalences are
�rst proved in [DPK23] and later generalized to other risks and estimator equivalences in [PD23].

Remark 5 (Lasso ensembles). For the lasso predictor whenq = 1, the �rst set of equations (18)
for M = 1 in System 2 recovers [BM11b, Theorem 1.5] with a change of variables� 0 = �=

p
c� and

� 0 =
p

c� �. On the other hand, the second set of equations in System 2 forM = 1 is new to
the literature. We show empirically in the next section that the optimal full-ensemble subsampled
lassoless is not the same as the optimal non-ensemble lasso (on full data). Thus, the subsampling
and ensembling of the lasso are qualitatively di�erent than the subsampling and ensembling of the
ridge regression, as pointed out in Remark 4. In particular, the e�ect of subsampling for lasso is
not merely additional lasso regularization.

4.2.2 Ensembles of general ridge regularized estimators

In this section, we specialize the results of Corollary 3 for ridge regularized ensembles allowing for
general loss functions. Speci�cally, given� > 0, consider component estimators of the form:

b� m (I m ) := argmin
b2 Rp

X

i 2 I m

loss(yi � x >
i b) + � kbk2

2:

Recall that the risk convergence in (17) holds withR 1 = � 2 and R 1 = � G � 2 where � and � G are
solutions to System 1a and System 1b respectively. Here, using the explicit formulaproxreg(x; � ) =
x=(1 + �� ) for reg(x) = � jxj2=2, these systems can be simpli�ed as follows:

System 3 (Nonlinear system for general ridge regularized ensembles). Given � 2 (0; 1 ),
� 2 (0; 1 ), and c 2 (0; 1], de�ne the following 2-scalar system of equations in variables (�; � ):

� 2 = c� �� 2E[env0
loss(Z + �G ; � )2]+ � 2� 2E[� 2] and � = c� � �

1� �� E[env0
loss(Z + �G ; � ) �G]; (20)

where G � N (0; 1), � � F� , Z � Fz, all mutually independent. Let ( �; � ) be parameters
expressed in terms of (�; � ) as:

� 2 = 1
� 2 � 2 � � 2E[� 2] and � = 1

� � �: (21)

Given parameters (�; �; �; � ) that satisfy (20) and (21), de�ne the following 2-scalar system of
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equations in variables (� H ; � G ):

� H = c2 �
� 2 E[env0

loss(Z + �G ; � ) � env0
loss(Z + � eG; � )] and � G =

� H � 2+ � 2E[� 2 ]
� 2+ � 2E[� 2 ] ; (22)

where (G; eG) are jointly normal with E[G eG] = � G .

When M = 1, System 3 recovers [EK13, Theorem 2.1]. Whenc� > 1 (underparameterized regime)
and � =0 (unregularized case), we have� = � � 1, � = � � 1� , � H = � G . Substituting them to (22),
we recover Theorem 2.3 in the recent work of [BK24].

5 Subagging and overparameterization

In Section 4, we discussed subagging of regularized estimators with an explicit regularization level
� > 0. Triggered by the success of overparameterized neural networks that can (nearly) interpolate,
there has been a surge of recent work analyzing the risk behavior of estimators with vanishing reg-
ularization, such as the minimum `2-norm interpolator (ridgeless), minimum `1-norm interpolator
(lassoless), and max-margin interpolators, among others. In this section, we discuss subagging of
minimum `q-norm interpolators for q 2 f 1; 2g. We will demonstrate some interesting risk properties
in Section 5.1, showcase the bene�ts of subagging in overparameterized regimes in Section 5.2, and
contrast with optimal explicit regularization in Section 5.3.

5.1 Subagging of minimum `q-norm interpolators

We will focus in this section on subagging of bridgeless estimators, that is̀q-norm regularized
least squares with reg(b) = kbkq

q. Our main cases of interest are the \ridgeless" and \lassoless"
estimators, which are the special cases whenq = 1 [HMRT22] and q = 2 [LW21], respectively. The
terminology \less" is motivated by the fact that these estimators can be de�ned in a limiting sense
as � ! 0+ for bridge estimators with regularization level � . We consider the ensemble of predictors
( b� m )m2 [M ] of the form:11

b� m := lim
� ! 0+

b� m (� ) where b� m (� ) 2 argmin
b2 Rp

1
2

ky I m � X I m bk2
2 + � kbkq

q:

In the underparameterized regime (p < n ), these are simply the least squares estimators:b� m =
(X >

I m
X I m ) � 1X >

I m
y I m . In the overparameterized regime (p > n ), these correspond to the minimum

`q-norm interpolators: fk b� m kq : y I m = X I m
b� m g, when X I m has independent rows to allow for

interpolation. For q = 2, when reg is the ridge penalty, this also has a closed-form expression given
by: b� m = ( X >

I m
X I m )yX >

I m
y I m , where A y denotes the Moore-Penrose pseudoinverse of a matrixA .

In other cases, we do not have a closed-form expression for the minimum̀q-norm interpolator. The
next system specializes System 2 to convex regularized least squares with vanishing regularization,
by taking the limit as � ! 0+ .

System 4 (Ensembles of minimum `q-norm interpolators) . Given � 2 (0; 1 ), c 2 (0; 1] such
that c� < 1, and � 2 2 [0; 1 ), de�ne the following 2-scalar system of equations in variables

11 We refer readers to [Tib13] for details on how the sequence of estimators is de�ned when the estimators for � > 0
are not unique, as in the case of the lasso.
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(�; a ):

� 2 = E
��

proxreg
�
� + �p

c�
H ; a�p

c�

�
� �

� 2�
+ � 2

0 = 1 � 1
c� E

�
prox0

reg

�
� + �p

c�
H ; a�p

c�

��
(23a)

(23b)

where H � N (0; 1), and � � F� independent. Given (�; a ) that satisfy (23a) and (23b), de�ne
the following 1-scalar system of equations in variable� :

� 2 = E
��

proxreg

�
� + �p

c�
H ; a�p

c�

�
� �

�
�
�
proxreg

�
� + �p

c�
eH ; a�p

c�

�
� �

��
+ � 2 (24a)

where
�

H
eH

�
� N (

��
0
0

�
;
�

1 � H

� H 1

��
with � H = c

� 2

� 2 , and � � F� independent.

To the best of our knowledge, the existence and uniqueness of the solution (�; a ) to (23) are not fully
established in the literature, except for the special cases ofq = 2 (ridgeless) and q = 1 (lassoless).
Assuming this is the case, the existence and uniqueness of the solution� to (24a) follow from
System 1b.

Observe that the equations (23a) and (24a) in System 4 are special cases of (18a) and (19a) in
System 2 for`q penalties. Equation (23b) is the limit of (18b) as � ! 0+ . Indeed, for q 2 f 1; 2g, the
solution to System 2 with � > 0 converges to the solution to System 4 as� ! 0+ (see Appendix C.2
for a proof). This means that

lim
� ! 0+

p-lim
n! + 1





1
M

X

m2 [M ]

b� m (� ) � �




2

2
= R M := M � 1R 1 + (1 � M � 1)R 1

where R 1 = � 2 � � 2 and R 1 = � 2 � � 2, and by the same argument, the limiting risk R M satis�es
Proposition 6 and 7 (see also Figure 9 and 10). However, it is challenging to show the above
display with the order of lim � and p-limn swapped. For the ridgeless estimator (q = 2) and any
M , this is proved in [PDK23] using a uniform convergence argument. For the lassoless estimator
(q = 1 and M = 1), this is done in [LW21] where the authors directly analyze the interpolator
by constructing a suitable AMP algorithm. We conjecture that this is, in general, true at least for
bridgeless estimators for anyq 2 [1; 2] and M . Since this is not the main focus of our paper and is
only intended as an illustrative case, we will not work towards this goal in the current paper. We
will instead investigate properties and consequences of System 4.

Further special cases ofq = 2 (ridgeless) and q = 1 (lassoless) are isolated in the next two remarks.
These will serve as our two main running examples in this section.

Remark 6 (Ridgeless ensembles). For squared loss and ridge regularizer (q = 2), when c� < 1 and
� ! 0+ , we get

R 1(�; c ) + � 2 = E[� 2](1 � c� ) + � 2 1
1 � c�

; R 1 (�; c ) + � 2 = E[� 2]
(1 � c� )2

� (� � (c� )2)
+ � 2 �

� � (c� )2 :

The result above aligns with the risk ensemble of ridgeless estimators presented in Corollary 6.1 of
[PDK23]. This can be seen by substituting� = 1=� and c = �= , or equivalently c� = 1= .

Remark 7 (Lassoless ensembles). For squared loss and lasso regularizer (q = 1), when c� < 1 and
� ! 0+ , the total risk � 2 is the solution to the following equations:

� 2 = � 2 + E
��

soft
� �p

c�
H + �; a�p

c�

�
� �

� 2�
;

1 = 1
c� P

�
j �p

c�
H + � j > a�p

c�

�
;

(25)
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Figure 4: Prediction risks of the full-ensemble lassoless and ridgeless at di�erent subsample aspect ratios
p=k ranging from 0:3 to 10. The data model is given by (50) with signal strength� = 2, noise level � = 1,
data aspect ratio p=n = 0 :3, and feature sizep = 500. The support proportion s varies. Left : dense regime
with s = 0 :9. Right: sparse regime withs = 0 :01. We observe that the full-ensemble risk is continuous at the
interpolation. Also, the full-ensemble risk has a negative derivative to the right of interpolation. This implies
that the optimal subsample size is in the overparameterized regime.

and � 2 is the solution to the following equations:

� 2 = � 2 + E
��

soft
� �p

c�
H + �; a�p

c�

�
� �

�
�
�

soft
� �p

c�
eH + �; a�p

c�

�
� �

��
;

with E[H eH ] = c � 2

� 2 . Note that soft is the soft threshold function de�ned by soft(x; � ) = ( jxj �
� )+ sign(x). In the ensemble setting, the case ofM = 1 corresponds to [LW21, Theorem 2] with a
slight change of variables � 0 =

p
c� �. The full-ensemble case when M = 1 is new.

Remark 8 (Avoiding risk divergence with ensembling). Note that in the underparameterized
regime when c� > 1 is �xed, the estimator of interest is simply the ensemble of least squares.
Thus, a standard Stieltjes transform argument or the explicit formula for the expectation of inverse
Wishart matrices give

R 1(�; c ) + � 2 = � 2 c�
c� � 1

and R 1 (�; c ) + � 2 = � 2 �
� � 1

for all c > � � 1:

It just so happens that for the full-ensemble least squares estimators, only the inverse aspect ratio�
of the original data matters! In particular, as c ! (� � 1)+ , R 1 diverges, while the full-ensemble risk
R 1 is still bounded. Now let us consider the over-parameterized regimec� < 1. By simple algebra,
for any regularizer reg, the solution � to the sub-system (23a)-(23b) in System 4 is uniformly
bounded from below as:

� 2 � (1 � c� ) � 1� 2: (26)

(See Appendix C.1 for the proof.) RecallingR 1 = � 2 � � 2, this means that the risk of the non-
ensemble interpolators blows up asc ! (� � 1) � . For the minimum `2- and `1-norm interpolators, this
is shown in [HMRT22, LW21]. For the full-ensemble cases, we experimentally observe from Figure 4
that the risk R 1 is continuous inc for the full ridgeless and lassoless ensembles. In particular, it does
not blow up around c = � � 1. For ridgeless, this claim is easy to verify (and holds more generally, as
shown in [PDK23]). For lassoless, given the solution (a; � ) to (25), in Appendix C.3, we identify that
the condition lim c! (� � 1 ) � (a� ) = 0 is su�cient to obtain the conclusion lim c! (� � 1 ) � (� 2) = �

� � 1 � 2,
and we observe experimentally thata� ! 0 holds (Figure 8), however we are currently not able to
provably establish that lim c! (� � 1 ) � (a� ) = 0.
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Figure 5: Optimal subsample size for the lassoless ensemble is always in the overparameterized
regime. Optimal subsample aspect ratio p=k that achieves the optimal risk for the lassoless ensemble at
di�erent data aspect ratios p=n ranging from 0:1 to 10. The data model is as in (50) with signal strength
� = 2, noise level � = 1, data aspect ratio p=n = 0 :1, feature sizep = 500, and varying support proportion
s. Left : dense regime withs = 0 :9. Right: sparse regime withs = 0 :01.

5.2 Optimal subsample size

An intriguing observation from Figure 4 concerns the optimal subsample sizek� . When the sample
size n and the number of featuresp are �xed with n > p , the optimal subsample size that mini-
mizes the full risk R 1 falls below p. This suggests that even when the original sample lies in the
underparameterized regime, the optimal subsample size shifts into the overparameterized regime.
This phenomenon is proved for ridgeless ensembles (reg(x) = x2) by [PDK23]. Expanding on this,
and utilizing System 4, we empirically show that this behavior extends beyond ridgeless ensembles
to lassoless ensembles (reg(x) = jxj) as well (see Figure 5).

5.3 Optimal subagging versus optimal (explicit) regularization

There are three parameters one can tune to optimize the asymptotic riskR M (�; c ) of the ensemble
estimator, as in Remarks 4 and 5: the regularization level� , the subsample sizec, and the ensemble
sizeM . This hyperparameter optimization is simpli�ed for ridge regression, as shown in Theorem
2.3 of [DPK23]. Minimization with respect to all three parameters is equal to the minimization over
� when M = 1 and c = 1 (non-ensemble setting), which is the same as minimization overM and c
when � = 0 (ensemble of ridgeless predictors):

min
� 2 [0;1 ];M 2 N;c2 [0;1]

R M (�; c )
| {z }

opt regularization and opt ensemble

= min
� 2 [0;1 ]

R 1(�; 1)
| {z }

opt regularization but no ensemble

= min
c2 [0;1]

R 1 (0; c)
| {z }

opt ensemble but no regularization

:

In some situations, however, the risk minimization over all three parameters can be strictly better:

min
� 2 [0;1 ];M 2 N;c2 [0;1]

R M (�; c )
| {z }

opt regularization and opt ensemble

< min
� 2 [0;1 ]

R 1(�; 1)
| {z }

opt regularization but no ensemble

^ min
c2 [0;1]

R 1 (0; c)
| {z }

opt ensemble but no regularization

:

We illustrate this through a numerical experiment with lasso. We show that the optimal full-
ensemble subsampled lassoless is not the same as the optimal non-ensemble lasso (on full data). In
Figure 6, we contrast the sparse and dense data settings. In each case, we show the full-ensemble
risk heatmap in � and p=k. In the left panel (the sparse setting), we see that the optimal subsample
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