
Revisiting model complexity in the wake of overparameterized learning

1 Motivation and summary of contributions
Modern machine learning involves fitting a large number of parameters relative to the number of observations.
Such overparameterized models are typically trained to (nearly) interpolate noisy in-sample data, and yet
generalize reasonable well on out-of-sample data in many settings [27]. A series of recent work has investigated
this surprising phenomenon for different models, including linear regression [3, 11, 21, 1], random features
regression [19], sparse regression [16], kernel regression [17], linear classification [7, 20], boosting [18], among
several others; see [2, 6] for more examples. An interesting feature of overparameterized models is the so-called
“double descent” (or even “multiple descent”) behavior in the generalization error curve when plotted against
the raw number of model parameters or some analogous notion of model complexity. This leads us to ask the
following motivating questions in this paper: (1) Is there a better and more principled measure of model
complexity in general for overparameterized models? (2) More specifically, how do we compare complexity of
different (near) interpolating models? We address these questions through the lens of degrees of freedom, by
borrowing and extending classical ideas from optimism theory. In particular, we propose two measures of
model complexity, namely emergent and intrinsic random-X degrees of freedom. We show the utility of our
proposed complexity measures through examples of linear smoothers and interpolators, and illustrate how our
proposed measures may help “reconcile” the surprising “multiple descent” generalization behaviors in modern
machine learning with the “single descent” bias-variance tradeoff in classical statistical learning. In what
follows, we fist summarize our proposals in Section 2, and then provide illustrative examples in Section 3.
2 New proposal for random-X degrees of freedom
Consider the standard regression setup with i.i.d. observations (xi, yi) ∈ Rp × R, i = 1, . . . , n, such that
yi = f(xi) + εi, where f : Rp → R is the regression function, and εi has mean 0 and variance σ2. Denote by
X ∈ Rn×p the corresponding feature matrix and by y ∈ Rn the associated response vector. Let A be any
fitting algorithm that maps (X, y) A7→ f̂ , where f̂ : Rp → R is the resulting fitted predictor. Associated with f̂
are three error metrics: (a) the training error, ErrT(f̂) = n−1 ∑n

i=1(yi − f̂(xi))2, (b) the fixed-X prediction
error, ErrF(f̂) = n−1 ∑n

i=1 E[(ỹi − f̂(xi))2|X, y], where ỹ ∈ Rn is an independent copy of y at the training
points X, and (c) the random-X prediction error, ErrR(f̂) = E[(y0 − f̂(x0))2|X, y], where (x0, y0) is a test
observation sampled independently from the same distribution as the training data.

The training error underestimates both the fixed-X and random-X prediction error in general. In
classical statistics, such downward bias is referred to as training optimism [13]. Define the fixed-X optimism,
OptF(f̂) = E[ErrF(f̂) − ErrT(f̂)|X], and the random-X optimism, OptR(f̂) = E[ErrR(f̂) − ErrT(f̂)|X] [22].
The fixed-X optimism has been studied extensively and leads to the definition of fixed-X degrees of freedom
as DofF(f̂) =

∑n
i=1 Cov(yi, f̂(xi)|X) [8, 9, 12, 10], which under certain regularity conditions, is the same as

as DofF(f̂) =
∑n

i=1 E[∂f̂(xi)/∂yi|X] [26, 23]. In some cases, DofF(f̂) can be computed explicitly: e.g., for
linear smoothers f̂(X) = L(X)y, it is given by tr[L(X)] [4, 5]; for lasso, it is given by the expected number
of non-zero coefficients in the fitted estimator [28, 25]; see [15, 14, 24] for various other generalizations. In
classical statistics, DofF is a widely agreed-upon qualitative measure of complexity and is algorithm-specific,
however it is only defined for the fixed-X setup. Despite 50+ years of work on DofF, there is no notion of
random-X degrees of freedom that we know of. The goal of this paper is to propose a definition for random-X
degrees of freedom, denoted by DofR, suitable for the random-X setup underlying most predictive problems.

Towards defining DofR, we first cast the classical definition of the fixed-X degrees of freedom from a
different perspective. For a fitting procedure f̂ = A(X, y), DofF(f̂) can be shown to be equal to the value of
k that satisfy the following relation: OptF(A(X, y)) = OptF(Aref(Un×k, v)), where Aref is the least squares
reference algorithm, and Uk ∈ Rn×k is a certain design matrix consisting n observations and k ≤ n features,
and v ∈ Rn is a noise vector with mean 0n and covariance In (see Theorem 1 for more details). We then extend
the same analogy and use the least squares as the reference algorithm and “match” random-X optimisms.
We thus define the random-X degrees of freedom, DofR(f̂), of any predictor f̂ = A(X, y), as the value of k
(we can show that such k always exists and is unique assuming k ≤ n; see the remarks after Theorem 1) for
which the following relation holds:

OptR(A(X, y)) = OptR(Aref(Uk, v)). (DofR, emergent)
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This measure, DofR(f̂), depends of both the the predictor f̂ and the underlying regression function f . We
call it emergent random-X degrees of freedom. We also define intrinsic random-X degrees of freedom, denoted
by DofRi, as the k (which again exists and is unique assuming k ≤ n) for which the following relation holds:

OptR(A(X, v)) = OptR(Aref(Uk, v)). (DofR, intrinsic)

Apart from analogy with fixed-X degrees of freedom, another reason for choosing the least squares reference
algorithm to match optimisms is the following invariance property of OptR that we can show for least squares:
Theorem 1. Let Uk = ZkΣ1/2

k , where Zk contains i.i.d. entries of mean 0, variance 1, and bounded moment
of order 4 + µ for some µ > 0 and Σk×k is a positive definite matrix whose minimum and maximum
eigenvalues are uniformly bounded away from 0 and ∞. Let v contain i.i.d. entries of mean 0, variance σ2,
and bounded moment of order 4 + ν for some ν > 0. Denote the normalized random-X optimisms of f̂ by
ϕ := OptR(A(X, y))/σ2 and ψ := OptR(A(X, v))/σ2 Then, as n, k → ∞ and k/n → ξ ∈ (0, 1), we have

OptR(Aref(Uk, v))
σ2 → 1 − (1 − ξ)2

1 − ξ
, DofR(f̂) → 1 + ϕ

2 −
√

1 + ϕ2

4 , DofRi(f̂) → 1 + ψ

2 −
√

1 + ψ2

4 .

Remarks: There is remarkable universality in above limits: (1) They do not depend on the exact form of
the distributions of Uk and v. (2) They are also independent of Σk. This further justifies the choice of the
least squares reference algorithm for matching random-X optimisms. We can show an immediate interesting
property of the random-X degrees of freedom: There is a unique number that satisfies the desired relations
between [0, n]. We find this to be a very interpretable range for random-X degrees of freedom. The least
complex predictor has DofR of 0, and the most complex predictor has DofR of n, as if the saturated model.
3 Explicit and numerical illustrative examples
In general, the random-X degrees of freedom depend of the exact form of the algorithm, but as with DofF,
for linear smoothers, DofRi takes a special interpretable form. It also shows how DofRi is related to DofF.
Proposition 2. Suppose f̂ is a linear smoother such that f̂(X) = L(X)y and f̂(x0) = ℓ(x0)⊤y for some
smoothing matrix L ∈ Rn×n and smoothing weight function ℓ : Rp → Rn. Then, we have DofRi(f̂) =
tr[L(X)] + n/2(E[ℓ(x0)⊤ℓ(x0)] − tr[L(X)⊤L(X)]/n) = DofF(f̂) + n/2(E[ℓ(x0)⊤ℓ(x0)] − tr[L(X)⊤L(X)]/n).
Remarks: Some special cases of interest are: (1) Interpolating models for which L(X) = In. In this case,
DofRi simplifies to n/2 + n/2E[ℓ(x0)⊤ℓ(x0)]. Note that this number differs between different interpolating
models as opposed to DofF which is always tr[L(X)] = n for any interpolating model. (2) In the special case of
min ℓ2-norm interpolator, we can prove the following interesting property: in the underparameterized regime
when p ≤ n, we have DofRi/n strictly increasing from [0, 1] as expected, while in the overparameterized
regime when p > n, DofRi/n is strictly decreasing from (1, 0), so DofRi is maximized at p = n. This result
holds for any feature covariance Σ and shows overparameterization indeed reduces the intrinsic complexity.

Beyond linear smoothers, properties of DofR and DofRi depend on the specific fitting procedure. Below
we compare min ℓ2-norm interpolator with min ℓ1-norm interpolator, abbreviated mn2ls and mn1ls, whose
risks are recently shown to exhibit double [11] and multiple descents [16], respectively. Note that latter is a
non-linear procedure. We observe from Figure 1 that our proposed notion of intrinsic degrees-of-freedom
reconciles the “bias-variance” tradeoff and turns modern “double descents” into classical “single descents”.
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Figure 1: We consider a fixed data generating model with n = 200 and response non-linear in p = 200 feature,
and consider training estimators with varying number of features. This model is similar to that used in [3].
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