
Mitigating multiple descents:
Model-agnostic risk monotonization in high-dimensional learning

1 Motivation and summary of contributions

The phenomenon of non-monotonic generalization in the sample size and/or the model complexity is now
widely known as “double/multiple descent” and has been empirically as well as theoretically investigated
in many models, including linear and logistic regression, random features models, kernel regression, linear
classification, decision trees and boosting, among others; see, e.g., [1–9] and the survey papers [10, 11]. In
specific instances, the learning algorithm can be modified to guarantee monotonicity of the out-of-sample
risk behavior in the sample size (e.g., [12]). However, the ubiquity of the double and multiple descent
phenomenon begs the question: can a general approach be devised that will modify any generic prediction
procedure in order to achieve a monotone risk behaviour? Examples of estimators that are known to exhibit
a monotone risk profile are scarce, and the study of their theoretical properties typically requires strong
distributional assumptions (e.g., [12, 13]). In this work, we develop a simple, general-purpose methodology
that takes as input a generic predictor and, under mild conditions, returns a modified procedure whose out-of-
sample risk is asymptotically monotone in the sample size under a proportional asymptotic framework. Our
approach is based on a carefully designed cross-validation procedure, and is applicable to a large class of data
generating distributions and learning algorithms. We first present our main result on general cross-validation
in Section 2, and then present one of its applications for risk monotonization in Section 3.

2 General cross-validation and model selection

We begin by deriving some general, non-asymptotic oracle risk inequalities for cross-validation that hold
under minimal assumptions. While our bounds apply to a wide range of learning problems and may be of
independent interest, they are crucial in demonstrating the risk monotonization properties of the procedure
presented in Section 3. Setting the stage, let Dn “ tpXi, Yiq P Rp ˆ R, 1 ď i ď nu be a dataset containing
i.i.d. observations from a distribution P . For a predictor pf : Rp Ñ R fitted on Dn and a loss function
ℓ : R ˆ R Ñ R`, denote the conditional prediction risk of pf by Rp pfq :“ ErℓpY0, pfpX0qq|Dns where pX0, Y0q is a
test observation sampled from P , independently of Dn. Consider a random split of Dn into train and test sets,
Dtr and Dte, containing ntr and nte observations, respectively. We are interested in selecting the predictor
with smallest out-of-sample risk among a collection of predictors t pfξ : Rp Ñ R, ξ P Ξu indexed by a finite set
Ξ and trained on Dtr. For each ξ P Ξ, estimate Rp pfξq using themedian-of-means estimator (e.g., [14, 15]) that
computes the median of averages of ℓpYj , pfpXjqq, pXj , Yjq P Dte over r8 logp|Ξ|n3qs disjoint batches in Dte.
Denote by pf cv any of the predictors t pfξ, ξ P Ξu with the smallest estimated risk. Below we derive two oracle

risk inequalities on Rp pf cvq, one in an additive form and the other in a multiplicative form. In preparation for
theorem statement to follow, let ∆add

n :“ maxξPΞ |Rp pfξq ´ pRp pfξq|, ∆mul
n :“ maxξPΞ | pRp pfξq{Rp pfξq ´ 1| denote

certain error terms, and pσΞ :“ maxξPΞ Er|ℓpY0, pfξpX0qq|2|Dns1{2, pκΞ :“ maxξPΞ pσξ{Rp pfξq denote conditional
second moment and skewness-like proxies on the loss.

Theorem 1. The conditional prediction risk of pf cv satisfies following deterministic oracle risk inequalities:

Rp pf cvq ď min
ξPΞ

Rp pfξq ` 2∆add
n and Rp pf cvq ď p1 ` ∆mul

n q{p1 ´ ∆mul
n q` ¨ min

ξPΞ
Rp pfξq.

Furthermore, there exist absolute constants cadd ą 0 and cmul ą 0 such that, with probability at least 1´n´3,

∆add
n ď cadd

a

logp|Ξ|nq{nte ¨ pσΞ and ∆mul
n ď cmul

a

logp|Ξ|nq{nte ¨ pκΞ.

Remarks: The above bounds hold for arbitrary, even highly unbalanced, splits of the data into train
and test sets, an essential feature that will be useful for our application to follow. Theorem 1 extends
on existing results on cross-validation and model selection (e.g., [16–18]) in two important ways: (1) We
derive two forms of inequalities: the additive form that proves to be useful when analyzing bounded loss
functions (especially, classification losses); while the multiplicative form is useful for unbounded loss functions
(especially, regression losses). (2) Instead of using sample mean to estimate the prediction risk as it common
in most cross-validation procedures, we employ the median-of-means estimator that proves to be useful when
the number of predictors under comparison grows with the sample size.
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3 Risk monotonization in high dimensions
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Figure 1: Risk monotonization

Theorem 1 allows to monotonize the risk function of an arbitrary procedure.
Let Rp rfp¨;Dnqq be the prediction risk of the generic procedure rf trained on
a dataset Dn with sample size n and feature size p. We will rely on the
proportional asymptotic framework in which n, p Ñ 8 with the aspect ratio
p{n converging to a constant γ P p0,8s. As noted above, in such regime the

asymptotic risk profile of rf has been recently shown to be non-monotonic
for a wide variety of problems and procedures. Leveraging the risk bound
for cross-validation from Theorem 1, it is possible to modify the original
procedure rf and obtain a new procedure rfmon whose asymptotic risk profile
is provably monotonic in γ (or 1{γ; see Figure 11) The basic idea is simple:

through sub-sampling we estimate the value of the asymptotic risk profile of rf over a grid of aspect ratios
larger than p{n, and then identify the aspect ratio for which the estimated prediction risk is the smallest.

This is accomplished by fitting the original procedure rf over sub-samples of varying size, with the size of the
sub-sample treated as a tuning parameter to optimize over. The final procedure rfmon is then obtained though
cross-validation, as described in Section 2. In detail, define the index set Ξ :“ t1, 2, . . . , rntr{tnνu ´ 2su for
some ν P r0, 1q and, for each ξ P Ξ, set pfξp¨q “ rfp¨;Dξ

trq, where Dξ
tr is a random subset of Dtr of size

nξ :“ ntr ´ ξtnνu. Finally, we let rfmonp¨;Dnq “ pf cv. Our main result below shows that the resulting risk

function for rfmonp¨;Dnq is asymptotically non-decreasing in γ, under some mild assumptions on rf and ℓ.

Theorem 2. Suppose there exists a deterministic function Rdetp¨; rfq : p0,8s Ñ r0,8s such that for every

γ P p0,8s, Rp rfp¨;Dnqq
p

ÝÑ Rdetpγ; rfq, whenever n, p Ñ 8 and p{n Ñ γ, and the loss function ℓ is such that

pσΞ “ Opp1q or pκΞ “ Opp1q. Then, |Rp rfmonq ´ minζěγ R
detpζ; rfq|

p
ÝÑ 0 as n, p Ñ 8 and p{n Ñ γ P p0,8q.

Remarks: (1) Since minζěγ R
detpζ; rfq ď Rdetpγ; rfq, the asymptotic risk of rfmon is no worse than that of rf .

(2) The assumptions imposed for Theorem 2 are quite mild and our results are broadly applicable. Indeed, the
risk profile Rdetp¨; f̃q of several estimators have been recently identified under under proportional asymptotics,
[20–24], including the min ℓ2-norm least squares estimator (MNLS) for linear and kernel regression [5, 13,
25, 26], min ℓ1-norm interpolator [8], min ℓ1-norm classifier [7], max-margin linear classifiers [27], among
others. Our results are directly applicable to all these cases with minimal modifications. The requirements
on the loss functions can be verified for common loss functions: e.g., for bounded losses, we can show that
pσΞ “ Opp1q, while for unbounded squared regression loss, assuming L4 ´ L2 equivalence [28–30], we can
show that pκΞ “ Opp1q for linear predictors, even those with diverging risks such as MNLS when n « p.

Figure 2 illustrates our procedure with MNLS [13]. To reduce external randomness in choosing Dξ
tr of size

nξ, we also consider a variant where we set pfξ “
řM

j“1
rfpx;Dξ,j

tr q{M where Dξ,j
tr , 1 ď j ď M are M randomly

drawn sets of size nξ. We do not know the exact risk behavior of the resulting predictor for M ą 1. From
the theory of U -statistics [31], one can show that the risk for M ą 1 is at most the risk for the predictor with
M “ 1. We do observe that the risk for M ą 1 is monotone in the limiting aspect ratio in our experiments.
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Figure 2: Our cross-validated procedure applied to MNLS as the base procedure with varying M , and high,
moderate, and low SNR regimes. Here, n “ 1000, ntr “ 900, nte “ 100, nν “ 50. Note that MNLS has
unbounded risk near γ “ 1, while risk of monotonized MNLS remains bounded for all M ě 1 and all γ ą 0.

1We thank [19] for figure, enabling our simultaneous attempt at illustration and comedic relief in the form of this footnote.
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