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Overview

This work studies low delay error correcting codes for streaming
over packet erasure channels. We investigate a practical streaming
situation with unequal source frame arrival and channel packet
transmission rates that exposes an important design principle for the
construction of delay sensitive streaming codes.

Main contributions:
ICapacity characterization for the case of burst-erasure channels.
ILayered approach for streaming code construction.
IRobust extension for protection against i.i.d. isolated erasures.

Motivation

1. Delay is an important issue
IStrict end-to-end latency requirements for multimedia applications:

interactive audio/video conferencing, IPTV, mobile gaming, cloud
computing.

ISeveral sources of delays: processing delay, queuing delay,
propagation delay, coding delay.

IWe focus on minimizing the coding delay.
2. Why forward error correction (FEC)?
IFeedback not feasible: Multicast streaming scenarios (e.g. digital

video broadcasting, IPTV)
IDelayed feedback (possibly lossy): Large round-trip delay preventing

ARQ strategies
3. Deterministic channel approximation
IShannon capacity only depends on the fraction of erasures but when

delay constraints are imposed, the actual pattern of erasures also
become relevant.

IFinding good codes for such channels is a long standing open
problem. Our approach is to approximate these models in a
deterministic fashion.

I In practice erasures are temporally dependent which is captured by
statistical models such as Gilbert channel model.

4. Unequal source frame arrival and channel transmission rates
ILarge source frames (e.g. video frames - 15 kbytes)
IChannel packet size often limited by the underlying communication

protocol (e.g. MTU for ethernet - 1500 bytes)
IMultiple channel packets transmitted between successive source

frame arrivals
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Problem Setup

IStreaming source: i.i.d. s[i ] ∼ uniform over Fk
q

ICausal encoder: x[i , j ] = fi ,j(s[0],s[1], . . . ,s[i ]) ∈ Fn
q, X[i , :] = [x[i ,1] | . . . | x[i ,M]]

IRate of code: R = k
n×M

IChannel: y[i , j ] = ? for burst of maximum B channel packets, otherwise y[i , j ] = x[i , j ]
IDelay constrained decoder: s[i ] = gi(Y[0, :],Y[1, :], . . . ,Y[i + T , :])

Equal source arrival and channel transmission rates (M = 1)

ITraditional coding approach:
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Strongly-MDS codes: Deterministic
codes with maximum distance
properties

Layered coding approach:

IMain encoding steps:
1. Source splitting into two groups u and v
2. Strongly-MDS code on v (Parity layer 1)
3. Repetition code on u (Parity layer 2)
4. Final parity checks = Parity layer 1 + Parity layer 2

Optimal splitting ratio: u = B, v = T − B results into capacity C = T
T+B

Unequal source arrival and channel tranmission rates (general M)

IStrongly-MDS code: R = 1− B
M(T+1)

IStraightforward adaptation of layered code for M = 1:
First split each source packet into M sub-packets. Then apply layered code for M = 1.
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R = MT
MT+B

Reshaping approach:
IEncoding:

1. Encode entire macro-packet 2. Reshape into M channel packets

}

R = ku+kv
2ku+kv

Overall macro-packet structure:

IDecoding analysis:
For the reshaped code, the worst case burst pattern starts at the beginning of the macro-packet.

Let B = bM + B′. Two cases depending on whether B′ ≶ (1− R)M:
1. Burst only erases symbols from uvec[i + b]
I Recovery of v symbols: (ku + kv)b = kuT
I Optimal spitting ratio: ku = b, kv = T − b
I R = T

T+b

2. Burst erases symbols from vvec[i + b]
I Recovery of v symbols: (ku + kv)b + (B′n − ku) = kuT
I Optimal spitting ratio: ku = B, kv = M(T + b + 1)− 2B
I R = M(T+b+1)−B

M(T+b+1)

Converse

IT > b: Technique of periodic erasure channel

IEnough parities to recover from full burst bM + B′ =⇒ 1− R ≥ bM+B′
M(T+b+1)

IEnough parities to recover from burst length bM =⇒ 1− R ≥ bM
M(T+b)

IT = b: Periodic channel argument not tight, different argument

Main capacity result

Theorem: For the given streaming setup, with any M, T and B, the
streaming capacity C is expressed as follows:

C =


T

T+b, B′ ≤ b
T+bM, T ≥ b,

M(T+b+1)−B
M(T+b+1) , B′ > b

T+bM, T > b,
M−B′

M , B′ > M
2 , T = b,

0, T < b.

Numerical comparision, performance over practical channel
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Interesting capacity behavior: Capacity doesn’t decrease as burst length goes from cM to cM + B′ for c ∈ N

Robust Extension

IExtending the channel model to account for i.i.d. isolated erausres:
Locally constrained erasure patterns - any sliding window W of length M(T + 1) channel
packets has either, (i) a single erasure burst of maximum length B, or (ii) a maximum of N
erasures in arbitrary locations

M = 1
IAppend an additional layer parity checks

containing Strongly-MDS code on u

v
0

v
1

v
2

v
3

v
4

v
5

v
6

v
7

v
8

u
0
u
1
u
2

u
3
u
4
u
5
u
6

u
7
u
8

p
4

+u
-4

p
0

+u
-8

p
1

+u
-7

p
2

+u
-6

p
3

+u
-5

p
5

+u
-3

p
6

+u
-2

p
7

+u
-1

p
8

+u
0

x
i

s
i

u

v

u

z
1

z
2

z
3

z
4

z
5

z
6

z
7

z
8 kz

0

u
0
,u
2

v
0
,v
2

IR = u+v
2u+v+k .

IVery close to being optimal, k = N
T−N+1B

General M (achievable approach I):
IRepetition code replaced by

Strongly-MDS code for u
IRate of the code unchanged.
IN = r is achievable.

}
IMany possibilities for the placement of

Strongly-MDS parities for u!
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