

¹Electrical and Computer Engineering Dept., University of Toronto, ON, Canada ²Mobile and Immersive Experience Lab., Hewlett Packard Laboratories, Palo Alto, California

Delay-Optimal Streaming Codes under Source-Channel Rate Mismatch

Pratik Patil¹, Ahmed Badr¹, Ashish Khisti¹, and Wai-Tian Tan²

Overview

This work studies **low delay error correcting codes for streaming** over packet erasure channels. We investigate a practical streaming situation with unequal source frame arrival and channel packet transmission rates that exposes an important design principle for the construction of delay sensitive streaming codes.

Main contributions:

- **Capacity characterization** for the case of burst-erasure channels.
- **Layered approach** for streaming code construction.
- **Robust extension** for protection against i.i.d. isolated erasures.

- ► Feedback not feasible: Multicast streaming scenarios (e.g. digital video broadcasting, IPTV)
- Delayed feedback (possibly lossy): Large round-trip delay preventing ARQ strategies

Motivation

1. Delay is an important issue

- ▶ Strict end-to-end latency requirements for multimedia applications: interactive audio/video conferencing, IPTV, mobile gaming, cloud computing.
- ▶ Several sources of delays: processing delay, queuing delay, propagation delay, coding delay.
- \triangleright We focus on minimizing the coding delay.

- ► Shannon capacity only depends on the fraction of erasures but when delay constraints are imposed, the actual pattern of erasures also become relevant.
- ► Finding good codes for such channels is a long standing open problem. Our approach is to approximate these models in a deterministic fashion.
- \blacktriangleright In practice erasures are temporally dependent which is captured by statistical models such as Gilbert channel model.

- ► Large source frames (e.g. video frames 15 kbytes)
- \rightarrow Channel packet size often limited by the underlying communication protocol (e.g. MTU for ethernet - 1500 bytes)
- ► Multiple channel packets transmitted between successive source frame arrivals

2. Why forward error correction (FEC)?

3. Deterministic channel approximation

4. Unequal source frame arrival and channel transmission rates

\blacktriangleright Strongly-MDS code: $R = 1 - \frac{B}{M(T)}$ *M*(*T*+1) ► Straightforward adaptation of layered code for $M = 1$: First split each source packet into *M* sub-packets. Then apply layered code for $M = 1$. $s[i+1]$ Source Stream

-
-
-
-

Problem Setup

^I Streaming source: i.i.d. **s**[*i*] ∼ uniform over **F** *k q*

 \bullet Causal encoder: $\mathbf{x}[i, j] = f_{i,j}(\mathbf{s}[0], \mathbf{s}[1], \ldots, \mathbf{s}[i]) \in \mathbf{F}_q^n$ \mathbf{a}_{q}^{n} , $\mathbf{X}[i, :] = [\mathbf{x}[i, 1] | \dots | \mathbf{x}[i, M]]$ Rate of code: $R = \frac{k}{n \times n}$ $n \times M$

 \triangleright Channel: $\mathbf{y}[i,j] = \star$ for burst of maximum *B* channel packets, otherwise $\mathbf{y}[i,j] = \mathbf{x}[i,j]$ \triangleright Delay constrained decoder: $\mathbf{s}[i] = g_i(\mathbf{Y}[0, :], \mathbf{Y}[1, :], \ldots, \mathbf{Y}[i + T, :])$

Questions: $C(M, B, T) = ?$ Optimal encoding $f_{i,j}$ and decoding g_i functions?

Equal source arrival and channel transmission rates (*M* = 1**)**

Finditional coding approach:

Interesting capacity behavior: Capacity doesn't decrease as burst length goes from *cM* to *cM* + *B* 0 for $c \in \mathbb{N}$

► Extending the channel model to account for i.i.d. isolated erausres: Locally constrained erasure patterns - any sliding window *W* of length *M*(*T* + 1) channel packets has either, (i) a single erasure burst of maximum length *B*, or (ii) a maximum of *N* erasures in arbitrary locations

Strongly-MDS codes: Deterministic codes with maximum distance properties

Layered coding approach:

IMain encoding steps: 1. Source splitting into two groups **u** and **v** 2. Strongly-MDS code on **v** (Parity layer 1) 3. Repetition code on **u** (Parity layer 2) 4. Final parity checks = Parity layer $1 +$ Parity layer 2 Optimal splitting ratio: $u = B$, $v = T - B$ results into capacity $C = \frac{T}{T+1}$

T+*B*

Unequal source arrival and channel tranmission rates (general *M***)**

- ► E. Martinian and C. W. Sundberg, "Burst Erasure Correction Codes With Low Decoding Delay," IEEE *Transactions on Information Theory*, October 2004
- ▶ A. Badr, A. Khisti, W. Tan and J. Apostoloupolos, "Robust Streaming Erasure Codes based on Deterministic Channel Approximations," *ISIT*, Istanbul, Turkey, July 2013.
- ▶ A. Badr, P. Patil, A. Khisti, W. Tan and J. Apostolopoulos "Layered Construction for Low-Delay Streaming Codes" Submitted, *IEEE Trans. Inf. Theory*, August 2013
- ► D. Leong and T. Ho, "Erasure coding for real-time streaming," in *ISIT*, 2012.
- ► H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, "Strongly MDS convolutional codes," IEEE *Transactions on Information Theory*, 2006.

- **⊳** Enough parities to recover from burst length *bM* =⇒ 1 *R* ≥ $\frac{bM}{M(T+1)}$ *M*(*T*+*b*)
- $I \cdot T = b$: Periodic channel argument not tight, different argument

Main capacity result

Theorem: For the given streaming setup, with any *M*, *T* and *B*, the *streaming capacity C* is expressed as follows:

$$
C=\begin{cases}\frac{T}{\prod\limits_{M(T+b+1)-B}^{T+ b}}, \ B'\leq \frac{b}{T+b}M, \ T\geq b, \\ \frac{M(T+b+1)}{M}, \quad B'>\frac{b}{T+b}M, \ T>b, \\ 0, \qquad \qquad T< b. \end{cases}
$$

Numerical comparision, performance over practical channel

Robust Extension

