Asymptotics of the Sketched Pseudoinverse
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Abstract

* Problem: Random sketching of regularized linear systems
leads to a different solution than the original system.

« Contribution: We precisely characterize the pseudoinverse
under sketching in the asymptotic regime, obtaining first- and
second-order equivalences in terms of the ridge resolvent.
We provide a conjecture that the same result holds for general
free sketching supported by experiments.

First-order Equivalence

» Sketching yields a first-order equivalence to ridge regular-
ization under inversion.

» Setup:

— A € CP*? s positive semidefinite with uniformly upper bounded

|All,, and lower bounded A, (A).
—,/qS € CP*7is a random matrix consisting of i.i.d. random
variables that have mean 0, variance 1, and finite 8 + § mo-

ment for some 6 > 0.

Second-order Equivalence

» Setup:
—A, S, A wu, ]% as in Theorem 1.

— W € CP*? |s a positive semidefinite matrix independent of S
with uniformly upper bounded || ¥/| .

Theorem 2. As q,p — oo,

S(S"AS + A1) S"WwS(SHAS 4+ A1,) 'S”
~ (A + L) (W 4 p'L) (A + L)

where
%tr {,ug (A + L) W (A + ,qu)_l}

A+ étr {,uQA (A + ,LLIp)_Q}

/

Theorem 1. For any A > limsup A\’ (SHAS), as ¢,p — oo

min

such that 0 < lim inf}% < lim sup% < 00,
H —1lgH —1
S(S AS +)\Iq) S" ~ (A+ul,)
where 11 IS the most positive solution to

A:u( ~ly [A(A—I—/LIP)_l}).

* Inflation ;' depends crucially on choice of W.
* When ¥ € Range(A), no inflation for 4 =0, a > r(A) (rank).
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General Free Sketching
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* That is, for any © with uniformly bounded trace norm,
tr[©(S(SPAS + L) 'S"— (A +uL,) )] 220,

* Implies, e.g., elementwise convergence.

Example: A =diag(0...,1...

2...),q=10.8p], A =1.

Conjecture 3. An analogous result to Theorem 1 holds for a
general class of asymptotically free sketching matrices S:

S(SHAS + AL,) S"~ (A +41,) 7,

and the map A — ~ Is increasing.
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* We provide a detailed characterization of the map from A

and sketch size a = ]% to .
— )\ — [ IS INncreasing,
—For A > 0, a — p is decreasing, and . > A
—Distinct behavior for oo < r(A) and a > r(A) (rank)

 Common sketches used in practice follow this conjecture.
* We obtain the resulting ~ for orthogonal sketching.
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Conclusion

* Interpretation: sketching in linear systems maps regulariza-

—Precise limits of negative regularization A < 0 and p < 0.

*Example: A = ["w 0], r =1,

(X)), Isotropic (3 rank) p(ar), Isotropic (4 rank)
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tion to effective regularization, generally increasing regular-
ization and adding inflation due to randomness.

 Impact: Machine learning problems involving random projec-
tions induce implicit regularization in a precise way deter-
mined by our results.
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