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Abstract
• Problem: Random sketching of regularized linear systems
leads to a different solution than the original system.

• Contribution: We precisely characterize the pseudoinverse
under sketching in the asymptotic regime, obtaining first- and
second-order equivalences in terms of the ridge resolvent.
We provide a conjecture that the same result holds for general
free sketching supported by experiments.

First-order Equivalence
• Sketching yields a first-order equivalence to ridge regular-
ization under inversion.

• Setup:
–A ∈ Cp×p is positive semidefinite with uniformly upper bounded
∥A∥op and lower bounded λ+

min(A).
–√

qS ∈ Cp×q is a random matrix consisting of i.i.d. random
variables that have mean 0, variance 1, and finite 8 + δ mo-
ment for some δ > 0.

Theorem 1. For any λ > lim supλ+
min(S

HAS), as q, p → ∞
such that 0 < lim inf qp ≤ lim sup q

p < ∞,

S
(
SHAS + λIq

)−1
SH ≃ (A + µIp)

−1 ,

where µ is the most positive solution to

λ = µ
(
1− 1

qtr
[
A (A + µIp)

−1
])

.

• That is, for any Θ with uniformly bounded trace norm,

tr
[
Θ
(
S
(
SHAS + λIq

)−1
SH − (A + µIp)

−1 )] a.s.−−→ 0.

• Implies, e.g., elementwise convergence.
• Example: A = diag (0 . . . , 1 . . . , 2 . . .), q = ⌊0.8p⌋, λ = 1.
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• We provide a detailed characterization of the map from λ

and sketch size α = q
p to µ.

–λ 7→ µ is increasing,
– For λ ≥ 0, α 7→ µ is decreasing, and µ ≥ λ

– Distinct behavior for α < r(A) and α > r(A) (rank)
– Precise limits of negative regularization λ < 0 and µ < 0.

• Example: A =
[
I⌊rp⌋ 0
0 0

]
, r = 1

2.
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Second-order Equivalence
• Setup:

–A, S, λ, µ, q
p as in Theorem 1.

–Ψ ∈ Cp×p is a positive semidefinite matrix independent of S
with uniformly upper bounded ∥Ψ∥op.

Theorem 2. As q, p → ∞,

S
(
SHAS + λIq

)−1
SHΨS

(
SHAS + λIq

)−1
SH

≃ (A + µIp)
−1 (Ψ + µ′Ip) (A + µIp)

−1 ,

where

µ′ =

1
qtr

[
µ3 (A + µIp)

−1Ψ (A + µIp)
−1
]

λ + 1
qtr

[
µ2A (A + µIp)

−2
] ≥ 0.

• Inflation µ′ depends crucially on choice of Ψ.
• When Ψ ∈ Range(A), no inflation for µ = 0, α > r(A) (rank).
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General Free Sketching
Conjecture 3. An analogous result to Theorem 1 holds for a
general class of asymptotically free sketching matrices S:

S
(
SHAS + λIq

)−1
SH ≃ (A + γIp)

−1 ,

and the map λ 7→ γ is increasing.

• Common sketches used in practice follow this conjecture.
• We obtain the resulting γ for orthogonal sketching.
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Conclusion
• Interpretation: sketching in linear systems maps regulariza-
tion to effective regularization, generally increasing regular-
ization and adding inflation due to randomness.

• Impact: Machine learning problems involving random projec-
tions induce implicit regularization in a precise way deter-
mined by our results.
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