Asymptotics of the Sketched Pseudoinverse

Daniel LeJeune^{†‡}, Pratik Patil^{†§}, Hamid Javadi[¶], Richard G. Baraniuk[‡], Ryan J. Tibshirani[∥]

[†] Equal contribution

[‡] Department of Electrical and Computer Engineering, Rice University

[§] Department of Statistics, Machine Learning Department, Carnegie Mellon University

¶ Google

Department of Statistics, University of California, Berkeley

Abstract

- Problem: Random sketching of regularized linear systems leads to a **different** solution than the original system.
- Contribution: We precisely characterize the pseudoinverse under sketching in the asymptotic regime, obtaining first- and second-order equivalences in terms of the ridge resolvent. We provide a conjecture that the same result holds for **general**

Second-order Equivalence

• Setup:

- -A, S, λ , μ , $\frac{q}{p}$ as in **Theorem 1**.
- $-\Psi \in \mathbb{C}^{p imes p}$ is a positive semidefinite matrix independent of S with uniformly upper bounded $\|\Psi\|_{op}$.

Theorem 2 As $a \to \infty$

free sketching supported by experiments.

First-order Equivalence

• Sketching yields a first-order equivalence to ridge regularization under inversion.

• Setup:

- $-\mathbf{A} \in \mathbb{C}^{p \times p}$ is positive semidefinite with uniformly upper bounded $\|\mathbf{A}\|_{\text{op}}$ and lower bounded $\lambda_{\min}^+(\mathbf{A})$.
- $-\sqrt{q}\mathbf{S} \in \mathbb{C}^{p \times q}$ is a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite $8 + \delta$ moment for some $\delta > 0$.

Theorem 1. For any
$$\lambda > \limsup \lambda_{\min}^{+}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S})$$
, as $q, p \to \infty$
such that $0 < \liminf \frac{q}{p} \le \limsup \frac{q}{p} < \infty$,
 $\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1}$,

where μ is the most positive solution to

 $\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).$

$$\mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \Psi \mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \\ \simeq \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \left(\Psi + \mu' \mathbf{I}_{p} \right) \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1},$$
where
$$\mu' = \frac{\frac{1}{q} \operatorname{tr} \left[\mu^{3} \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \Psi \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \right]}{2} > 0$$

• Inflation μ' depends crucially on choice of Ψ .

• When $\Psi \in \text{Range}(\mathbf{A})$, no inflation for $\mu = 0, \alpha > r(\mathbf{A})$ (rank).

 $\lambda + \frac{1}{q} \operatorname{tr} \left| \mu^2 \mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-2} \right|$

- That is, for any Θ with uniformly bounded trace norm,
 - $\operatorname{tr}\left[\Theta(\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S}+\lambda\mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{H}}-(\mathbf{A}+\mu\mathbf{I}_{p})^{-1})\right] \xrightarrow{\mathsf{a.s.}} 0.$
- Implies, e.g., elementwise convergence.
- **Example:** $A = diag(0..., 1..., 2...), q = |0.8p|, \lambda = 1.$

- We provide a **detailed characterization** of the map from λ and sketch size $\alpha = \frac{q}{p}$ to μ .
 - $-\lambda \mapsto \mu$ is increasing,
 - -For $\lambda \geq 0, \alpha \mapsto \mu$ is decreasing, and $\mu \geq \lambda$ -Distinct behavior for $\alpha < r(\mathbf{A})$ and $\alpha > r(\mathbf{A})$ (rank)

General Free Sketching

Conjecture 3. An analogous result to **Theorem 1** holds for a general class of asymptotically free sketching matrices S:

 $\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_{p})^{-1},$

and the map $\lambda \mapsto \gamma$ is increasing.

- Common sketches used in practice follow this conjecture.
- We obtain the resulting γ for **orthogonal sketching**.

Conclusion

-Precise limits of negative regularization $\lambda < 0$ and $\mu < 0$. • Example: $\mathbf{A} = \begin{bmatrix} \mathbf{I}_{\lfloor rp \rfloor} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$, $r = \frac{1}{2}$.

- •Interpretation: sketching in linear systems maps regularization to effective regularization, generally increasing regularization and adding inflation due to randomness.
- Impact: Machine learning problems involving random projections induce implicit regularization in a precise way determined by our results.

Acknowledgments

This work was sponsored by Office of Naval Research MURI grant N00014-20-1-2787. DL, HJ, and RGB were also supported by NSF grants CCF-1911094, IIS-1838177, and IIS-1730574; ONR grants N00014-18- 12571 and N00014-20-1-2534; AFOSR grant FA9550-22-1-0060; and a Vannevar Bush Faculty Fellowship, ONR grant N00014-18-1-2047.