

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology

Frequentist UQ for CO2 retrievals P. Patil, M. Kuusela and J. Hobbs

Frequentist coverage (fraction of times uncertainty interval contains true value) for 95% operational intervals (orange) and proposed intervals (blue) for retrieving XCO2

P. Patil, M. Kuusela and J. Hobbs. Objective Frequentist Uncertainty Quantification for Atmospheric CO2 Retrievals. SIAM/ASA Journal on Uncertainty Quantification 10(3):827-859, 2022. <u>https://doi.org/10.1137/20M1356403</u>

This work was supported by JPL subcontract 1629749.

- We investigate frequentist UQ (as opposed to Bayesian UQ) for XCO2 retrievals in OCO-2
- We find that the operational retrieval uncertainty is poorly calibrated and propose a new UQ procedure that achieves nominal coverage at the expense of increased interval length
- The miscalibration of the operational method is due to spatially correlated biases caused by the use of explicit regularization in the inversion
- Our method avoids this by instead implicitly regularizing the problem using physical constraints and the functional of interest (XCO2)
- These results have potential implications for inferring CO2 fluxes and developing future retrieval UQ algorithms