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Abstract
We study sketched ridge regression ensembles built from the
general class of sketches asymptotically free from the data
• We precisely characterize asymptotic risk
• We prove that generalized cross-validation (GCV) provides

consistent risk estimation for feature sketching ensembles
• We show that GCV also provides consistent distribution

estimation enabling prediction intervals
• We employ an ensemble trick for efficiently estimating

unsketched ridge regression risk

Freely sketched ridge ensembles
Given: data (X, y) ∈ Rn×p × R, feature sketches S1, . . . , SK ∈ Rp×q,
and the ensemble predictor at regularization level λ
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where SkS⊤
k is asymptotically free from the data 1

nX⊤X

Two matrices A and B are almost surely asymptotically free if all
mixed alternating products of centered polynomials are also centered:

tr[p1(A)p2(B) . . . pL−1(A)pL(B)] a.s.−→ 0.

Examples of known asymptotically free sketches:

• Independent: [Sk]ij
i.i.d.∼ D, zero mean, bounded moments

• Rotationally invariant: Sk = UkQk with Uk Haar-distributed
• Randomized Fourier transform: Sk = DkΦDFT Ŝk

We provide empirical support for freeness for practical sketches.
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Generalized cross-validation (GCV)
Goal: estimate the joint distribution of true labels and predictions
(y0, x⊤
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λ ) in order to estimate risk T (β̂ens
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]
.

Ensemble predictions are linear smoothers Xβ̂ens
λ = Lens

λ y for
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giving us the GCV-corrected empirical distribution
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We plug in P̂ ens
λ to obtain risk estimators

T̂ (β̂ens
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Sketched ensemble risk
Free sketches satisfy an asymptotic equivalence:

S
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Theoretical results
Theorem 1. For any free sketches Sk,
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where β̂ridge
µ =
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)−11
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Theorem 2. Under random data assumptions on X and y,

µ′ ≃ µ′′, and therefore R̂(β̂ens
λ ) ≃ R(β̂ens

λ ).

Theorem 3. For any t pseudo-Lipshitz of order 2,

T̂ (β̂ens
λ ) ≃ T (β̂ens

λ ), and therefore P̂ ens
λ

2⇒ P ens
λ .

Empirical results
Consistency across sketching families
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Risk estimation for real data
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Fast estimation of unsketched risk using ensemble trick

100 101 102

4.5

5.0

5.5

6.0

6.5

S
q
u

a
re

d
ri

sk

Sketching features (q = 100)

100 101 102

Equivalent regularization µ

Sketching observations (m = 100)

10−1 100 101 102

Tuning sketch size (λ = 0)

GCV (K = 1) GCV (K = 2) GCV (K = 10) Ensemble trick (K = 2) Ridge

Acknowledgements
This collaboration was partially supported by Office of Naval Research MURI grant
N00014-20-1-2787. DL was supported by Army Research Office grant 2003514594.


