Asymptotically free sketched ridge ensembles: Risks, cross-validation, and tuning

Pratik Patil[†] and Daniel LeJeune[§]

†Department of Statistics, University of California, Berkeley §Department of Statistics, Stanford University

Abstract

We study **sketched ridge regression ensembles** built from the general class of sketches **asymptotically free** from the data

Given: data $(\mathbf{X}, \mathbf{y}) \in \mathbb{R}^{n \times p} \times \mathbb{R}$, feature sketches $\mathbf{S}_1, \ldots, \mathbf{S}_K \in \mathbb{R}^{p \times q}$, and the ensemble predictor at regularization level *λ*

- We precisely characterize **asymptotic risk**
- We prove that **generalized cross-validation (GCV)** provides consistent risk estimation for feature sketching ensembles
- We show that GCV also provides consistent **distribution** estimation enabling **prediction intervals**
- We employ an **ensemble trick** for efficiently estimating unsketched ridge regression risk

where $\mathbf{S}_k\mathbf{S}_k^\top$ *k* is **asymptotically free** from the data $\frac{1}{n}$ *n* Two matrices **A** and **B** are almost surely **asymptotically free** if all mixed alternating products of centered polynomials are also centered:

- Independent: [**S***k*]*ij* ⁱ*.*i*.*d*.* ∼ D, zero mean, bounded moments
- Rotationally invariant: $S_k = U_k Q_k$ with U_k Haar-distributed
- \bullet Randomized Fourier transform: $\mathbf{S}_k = \mathbf{D}_k \mathbf{\Phi}_{DFT} \mathbf{\hat{S}}$ \mathcal{S}_k

Freely sketched ridge ensembles

$$
\widehat{\boldsymbol{\beta}}_{{\lambda}}^{\text{ens}} = \frac{1}{{K}} \sum_{k=1}^{K} \tfrac{1}{{n}} \mathbf{S}_k \big(\tfrac{1}{{n}} \mathbf{S}_k^\top \mathbf{X}^\top \mathbf{X} \mathbf{S}_k + \lambda \mathbf{I}_q \big)^{-1} \mathbf{S}_k^\top \mathbf{X}
$$

Goal: estimate the joint distribution of true labels and predictions $(y_0, x_0^\top \boldsymbol{\hat{\beta}})$ ens $\mathcal{P}_\lambda^{\mathrm{ens}}$) in order to estimate risk $T(\boldsymbol{\beta})$ $\mathcal{O}_{\mathcal{E}}$ ens $\binom{\text{ens}}{\lambda} = \mathbb{E}$ h $t(y_0, x_0^\top \boldsymbol{\widehat{\beta}})$ ens *λ*) $\overline{1}$. $\mathcal{O}_{\mathcal{E}}$ $\hat{\lambda}^{\mathrm{ens}} = \mathbf{L}^{\mathrm{ens}}_\lambda \mathbf{y}$ for

X[⊤]**X**

 $\frac{\text{ens}}{\lambda}$ − 1 *n* tr[**L** ens *λ* $\big]y_i$ 1 *n* $tr[L]$ ^{ens} *λ*] \setminus *.*

$$
\overline{\text{tr}}[p_1(\mathbf{A})p_2(\mathbf{B})\dots p_{L-1}(\mathbf{A})p_L(\mathbf{B})] \xrightarrow{\text{a.s.}} 0.
$$

We plug in *P* $\mathcal{L}_{\mathcal{L}}$ ens *λ* to obtain **risk estimators** *T* \int $(\boldsymbol{\beta})$ $\mathcal{I}_{\mathcal{A}}$ ens $\binom{ens}{\lambda}$ = z
Zanada
Zanada $t(y,z)dP$ $\mathcal{P}_{\mathcal{A}}$ ens $\lambda^{\text{ens}}(y, z)$ and R

Examples of known asymptotically free sketches:

Free sketches satisfy an **asymptotic equivalence**: **S** $\overline{(\ }$ $\mathbf{S}^\top \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q \big)^{-1}$ $\mathbf{S}^{\top} \simeq ($ w here $\mu \simeq \lambda \mathscr{S}_{\mathbf{S}\mathbf{S}^{\top}}$ $\overline{(\ }$ $-\frac{1}{n}$ *p* tr $\left[\textbf{S}^\top \textbf{A} \textbf{S} \right]$ $\mathbf{S}^\top \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q$

 $\mathbf{A} + \mu \mathbf{I}_p$ $^{-1}$ $^{-1}$]) .

We provide **empirical support** for freeness for practical sketches.

 \mathbf{F} and \mathbf{y} and \mathbf{y} $(\boldsymbol{\beta})$ $\mathcal{O}_{\mathcal{E}}$ ens $\binom{ens}{\lambda} \simeq R(\boldsymbol{\beta})$ $\mathcal{I}_{\mathcal{A}}$ ens *λ*)*.*

z of order 2,

T \int

 $(\boldsymbol{\beta})$ $\mathcal{I}_{\mathcal{A}}$

 $\mathbf{X}^\top \mathbf{y}$

Generalized cross-validation (GCV)

Ensemble predictions are **linear smoothers X**β

$$
\mathbf{L}_{\lambda}^{\text{ens}} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{L}_{\lambda}^{k} = \frac{1}{n} \mathbf{X} \mathbf{S}_{k} (\frac{1}{n} \mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} + \lambda \mathbf{I}_{q})^{-1} \mathbf{S}_{k}^{\top} \mathbf{X}^{\top},
$$

giving us the **GCV-corrected empirical distribution**

$$
\widehat{P}_{\lambda}^{\text{ens}} = \frac{1}{n} \sum_{i=1}^{n} \delta \left\{ \left(y_i, \frac{x_i^{\top} \widehat{\boldsymbol{\beta}}_{\lambda}^{\text{ens}}}{1 - \sigma_i^2} \right) \right\}
$$

$$
\widehat{R}(\widehat{\boldsymbol{\beta}}_{{\lambda}}^{\mathrm{ens}})=\int (y\!-\!z)^2d\widehat{P}_{{\lambda}}^{\mathrm{ens}}(y,z).
$$

Sketched ensemble risk

Theoretical results

$$
\widehat{R}(\widehat{\boldsymbol{\beta}}_{{\lambda}}^{\mathrm{ens}}) \simeq \widehat{R}(\widehat{\boldsymbol{\beta}}_{\mu}^{\mathrm{ridge}}) + \frac{\mu'' \Delta}{K},
$$

 $\mathcal{L}^{\text{ens}}_{\lambda}$) $\simeq T(\boldsymbol{\beta})$

 $\mathcal{O}_{\mathcal{E}}$

λ

and therefore
$$
\widehat{P}_{\lambda}^{\text{ens}} \stackrel{2}{\Rightarrow} P_{\lambda}^{\text{ens}}
$$
.

Empirical results

Acknowledgements

This collaboration was partially supported by Office of Naval Research MURI grant N00014-20-1-2787. DL was supported by Army Research Office grant 2003514594.

Stanford University