Estimating functionals of the out-of-sample error distribution in high-dimensional ridge regression

Motivation and punchline of the paper

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \leq i \leq n\}$, let $\widehat{\beta}_{\lambda}$ denote the ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda \|\beta\|_2^2$$

- The out-of-sample error of $\hat{\beta}_{\lambda}$ is $y_0 x_0^{\top} \hat{\beta}_{\lambda}$ for an independent test point (x_0, y_0)
- Estimating the out-of-sample error well is crucial for model assessment and selection
- Prior work shows that the leave-out-out and generalized cross-validation procedures consistently estimate the expected squared error $\mathbb{E}[(y_0 - x_0^\top \widehat{\beta}_{\lambda})^2 \mid \mathcal{D}]$

The key question that we ask in this paper is: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

We show, that under proportional asymptotics, almost surely:

- . the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the plug-in estimators of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

Out-of-sample error distribution and its functionals

- Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$, i.e., $P_{\lambda} = \mathcal{L}(y_0 x_0^{\top} \widehat{\beta}_{\lambda} \mid X, y)$, where (x_0, y_0) is sampled indep from the same training distribution
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
- Linear functional:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E} \big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y \big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error)

Nonlinear functional:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\}$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Standard leave-one-out and generalized cross validation

- Leave-one-out cross-validation (LOOCV):
- for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
- compute test error on the i^{th} data point and take average

$$\begin{aligned} \operatorname{po}(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ \stackrel{(\text{shortcut})}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right) \end{aligned}$$

where $L_{\lambda} = X(X^T X/n + \lambda I_p)^+ X^T/n$ is the ridge smoothing matrix

- Generalized cross-validation (GCV):
- same as leave-one-out shortcut but a single re-weighting

$$gcv(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - tr[L_{\lambda}]/n} \right)^2$$

• Standard LOOCV and GCV are consistent for the expected squared out-of-sample prediction error

Carnegie Mellon University

Proposed estimators

We analyze natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

interpolator, i.e. $L_{\lambda} = I_n$, both estimates are ``0/0'';
the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{P}_{0}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_i}{\text{tr}[(XX^{\top})^{\dagger}]/n}\right) \quad \text{and} \quad \widehat{P}_{0}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_i}{[(XX^{\top})^{\dagger}]_{ii}}\right)$$

$$d \downarrow OO \text{ estimators:}$$

• When $\widehat{\beta}_{\lambda}$ is ar we then defi

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

on interpolator, i.e. $L_{\lambda} = I_n$, both estimates are ``0/0'';
ne the estimates as their respective limits as $\lambda \to 0$:
$$\widehat{P}_{0}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_i}{\text{tr}[(XX^{\top})^{\dagger}]/n}\right) \quad \text{and} \quad \widehat{P}_{0}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_i}{[(XX^{\top})^{\dagger}]_{ii}}\right)$$

and $|OO|$ estimators:

Plug-in GCV and LOO estimators:

$$\widehat{\psi}_{\lambda}^{
m gev} = \psi(\widehat{P}_{\lambda}^{
m gev})$$
 and $\widehat{\psi}_{\lambda}^{
m loo} = \psi(\widehat{P}_{\lambda}^{
m gev})$

Distribution estimation

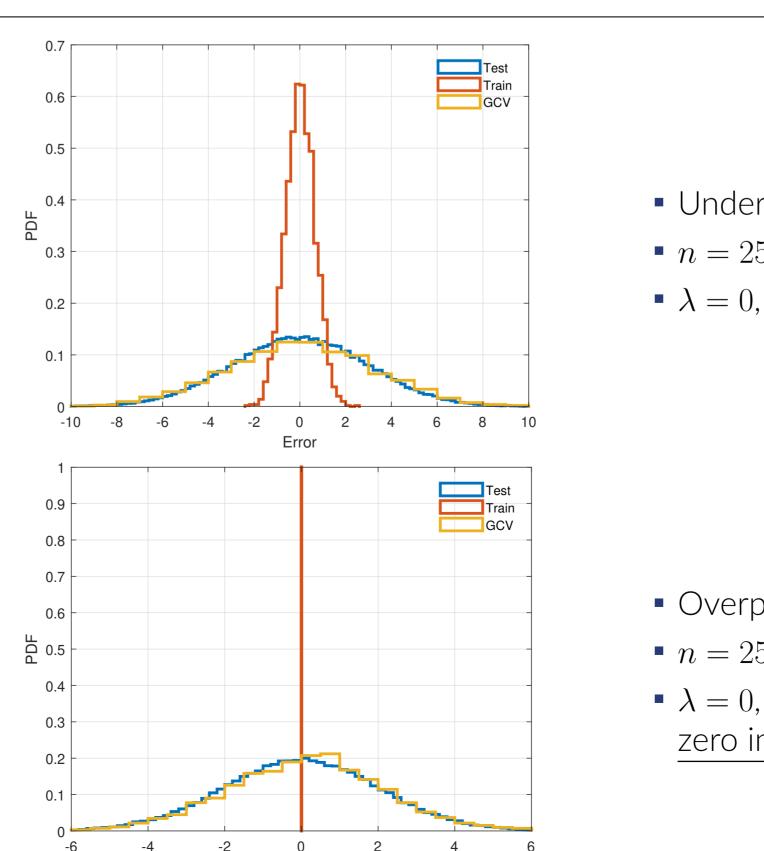
Under i.i.d. sampling of (x_i, y_i) , $i = 1, \ldots, n$ with

<u>feature</u> x_i decomposable into $x_i = \sum^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1 and finite 4+ moment.

and max and min eigenvalues of Σ uniformly away from 0 and ∞ , response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely $\widehat{P}_{\lambda}^{\text{gev}} \xrightarrow{\mathrm{d}} P_{\lambda}$ and $\widehat{P}_{\lambda}^{\text{loo}}$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)



Pratik Patil Alessandro Rinaldo Ryan J. Tibshirani

$$\xrightarrow{\mathrm{d}} P_{\lambda}.$$

Distribution estimation: numerical illustration

 Underparameterized regime • n = 2500, p = 2000, p/n = 0.8• $\lambda = 0$, i.e., least squares

 Overparametrized regime • n = 2500, p = 5000, p/n = 2• $\lambda = 0$, i.e., the min-norm estimator, zero in-sample errors

Linear functional estimation (pointwise)

- Let T_{λ} be a linear functional of the out-of-sample error distribution:
- Let $\widehat{T}_{\lambda}^{\text{gev}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV:

$$\widehat{T}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \quad \text{and} \quad \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$$

For error functions $t : \mathbb{R} \to \mathbb{R}$

- . that are continuous,

2. have quadratic growth, i.e., there exist constats
$$a, b, c > 0$$

such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,
as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$, almost surely
 $\widehat{T}_{\lambda}^{\text{gev}} \to T_{\lambda}$ and $\widehat{T}_{\lambda}^{\text{loo}} \to T_{\lambda}^{\text{gev}}$

Linear functional estimation (uniform)

For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable,
- $|t'(z)| \leq g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set Λ , $\sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{\text{gev}} - T_{\lambda}| \to 0 \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{\text{loo}} - T_{\lambda}| \to 0.$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- proof technique via leave-one-out arguments
- (see paper for more details)

Discussion and future work

The main take-away from this work is: empirical distributions of GCV and LOOCV track out-ofsample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit:

$$y_i - x_i^{\top} \widehat{\beta}_i$$

 $y_i - x_i^{\dagger} \widehat{\beta}_{-i}$

Going beyond ...

- Equivalences for ridge variants and other smoothers
- Finite sample analysis and rates of convergence

 $T_{\lambda} = \mathbb{E}\left[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y\right]$

2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that

• No bias-variance decomposition for general error functions and result requires a different

• Using uniformity arguments, the result can be extended for non-linear variational functionals

$$\sum_{i,\lambda} = \frac{y_i - x_i^\top \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_i - x_i^\top \widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n}$$
$$= \frac{[(XX^\top)^\dagger y]_i}{[(XX^\top)^\dagger]_{ii}} \approx \frac{[(XX^\top)^\dagger y]_i}{\operatorname{tr}[(XX^\top)^\dagger]/n}$$