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Motivation and punchline of the paper

Given D = {(xi, yi) ∈ Rp × R, 1 ≤ i ≤ n}, let β̂λ denote the ridge estimator:

minimize
β∈Rp

n∑
i=1

(yi − xTi β)2/n + λ‖β‖2
2

The out-of-sample error of β̂λ is y0 − x>
0 β̂λ for an independent test point (x0, y0)

Estimating the out-of-sample error well is crucial for model assessment and selection

Prior work shows that the leave-out-out and generalized cross-validation procedures

consistently estimate the expected squared error E[(y0 − x>
0 β̂λ)2 | D]

The key question that we ask in this paper is: can we reliably estimate the entire out-of-sample

error distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

1. the empirical distributions of re-weighted in-sample errors from leave-one-out and

generalized cross-validation converge weakly to the out-of-sample error distribution,

even when λ = 0
2. the plug-in estimators of these empirical distributions consistent for a broad class of linear

and non-linear functionals of error distribution

Out-of-sample error distribution and its functionals

Let Pλ denote distribution of out-of-sample error of β̂λ, i.e., Pλ = L
(
y0 − x>

0 β̂λ | X, y
)
, where

(x0, y0) is sampled indep from the same training distribution

Let ψ denote a functional such that P 7→ ψ(P ) ∈ R:
Linear functional:

ψ(Pλ) =
∫
t(z) dPλ(z) = E

[
t(y0 − x>

0 β̂λ) | X, y
]
,

where t : R → R is an error function (e.g., squared or absolute error)

Nonlinear functional:

ψ(Pλ) = Quantile(Pλ; τ ) = inf{z : Fλ(z) ≥ τ},

where Fλ denotes the cumulative distribution function of Pλ

We construct estimators of Pλ and ψ(Pλ) by suitably extending leave-one-out cross-validation

and generalized cross-validation procedures.

Standard leave-one-out and generalized cross validation

Leave-one-out cross-validation (LOOCV):
for every i, train on all data except (xi, yi), call the estimate β̂−i

λ

compute test error on the ith data point and take average

loo(λ) = 1
n

n∑
i=1

(
yi − xTi β̂

−i
λ

)2

(shortcut)= 1
n

n∑
i=1

(
yi − xTi β̂λ
1 − [Lλ]ii

)2

where Lλ = X(XTX/n + λIp)+XT/n is the ridge smoothing matrix

Generalized cross-validation (GCV):
same as leave-one-out shortcut but a single re-weighting

gcv(λ) = 1
n

n∑
i=1

(
yi − xTi β̂λ

1 − tr[Lλ]/n

)2

Standard LOOCV and GCV are consistent for the expected squared out-of-sample prediction

error

Proposed estimators

We analyze natural estimators for Pλ and ψ(Pλ) building off from GCV and LOOCV.

Empirical distributions of the GCV, LOO re-weighted errors:

P̂
gcv
λ = 1

n

n∑
i=1

δ

(
yi − x>

i β̂λ
1 − tr[Lλ]/n

)
and P̂ loo

λ = 1
n

n∑
i=1

δ

(
yi − x>

i β̂λ
1 − [Lλ]ii

)
When β̂λ is an interpolator, i.e. Lλ = In, both estimates are ``0/0'';
we then define the estimates as their respective limits as λ → 0:

P̂
gcv
0 = 1

n

n∑
i=1

δ

(
[(XX>)†y]i

tr[(XX>)†]/n

)
and P̂ loo

0 = 1
n

n∑
i=1

δ

(
[(XX>)†y]i
[(XX>)†]ii

)
Plug-in GCV and LOO estimators:

ψ̂
gcv
λ = ψ(P̂ gcv

λ ) and ψ̂loo
λ = ψ(P̂ gcv

λ )

Distribution estimation

Under i.i.d. sampling of (xi, yi), i = 1, . . . , n with

1. feature xi decomposable into xi = Σ1/2zi where zi contains i.i.d. entries with mean 0, variance
1 and finite 4+ moment,

and max and min eigenvalues of Σ uniformly away from 0 and ∞,

2. response yi with bounded 4+ moment,

as n, p → ∞ such that p/n → γ ∈ (0,∞), almost surely

P̂
gcv
λ

d−→ Pλ and P̂ loo
λ

d−→ Pλ.

Almost sure convergence with respect to the training data

The regression function does not need to be linear in x

Amazingly, this results also holds when λ = 0 (min-norm estimator)

Distribution estimation: numerical illustration
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Linear functional estimation (pointwise)

Let Tλ be a linear functional of the out-of-sample error distribution:

Tλ = E
[
t(y0 − xT0 β̂λ) | X, y

]
Let T̂

gcv
λ and T̂ loo

λ be plug-in estimators from GCV and LOOCV:

T̂
gcv
λ = 1

n

n∑
i=1

t

(
yi − xTi β̂λ

1 − tr[Lλ]/n

)
and T̂ loo

λ = 1
n

n∑
i=1

t

(
yi − xTi β̂λ
1 − [Lλ]ii

)

For error functions t : R → R

1. that are continuous,

2. have quadratic growth, i.e., there exist constats a, b, c > 0
such that |t(z)| ≤ az2 + b|z| + c for any z ∈ R,

as n, p → ∞ with p/n → γ ∈ (0,∞), almost surely

T̂
gcv
λ → Tλ and T̂ loo

λ → Tλ.

Linear functional estimation (uniform)

For error functions t : R → R

1. that are differentiable,

2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that

|t′(z)| ≤ g|z| + h for any z ∈ R

as n, p → ∞ with p/n → γ ∈ (0,∞) for any compact set Λ,

sup
λ∈Λ

|T̂ gcv
λ − Tλ| → 0 and sup

λ∈Λ
|T̂ loo
λ − Tλ| → 0.

Special case of t(r) = r2 exploits bias-variance decomposition

No bias-variance decomposition for general error functions and result requires a different

proof technique via leave-one-out arguments

Using uniformity arguments, the result can be extended for non-linear variational functionals

(see paper for more details)

Discussion and future work

The main take-away from this work is: empirical distributions of GCV and LOOCV track out-of-

sample error distribution and awide class of its functionals for ridge regression under proportional

asymptotics framework

Key relation that we exploit:

yi − x>
i β̂−i,λ =

yi − x>
i β̂λ

1 − [Lλ]ii
≈

yi − x>
i β̂λ

1 − tr[Lλ]/n

yi − x>
i β̂−i,0 = [(XX>)†y]i

[(XX>)†]ii
≈ [(XX>)†y]i

tr[(XX>)†]/n

Going beyond …

Equivalences for ridge variants and other smoothers

Finite sample analysis and rates of convergence
...


