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Motivation and punchline of the paper

« Given D = {(z;,y;) € RP x R, 1 < i < n}, let 3, denote the ridge estimator:
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* The out-of-sample error of E)\ IS Yo — CUOTB)\ for an independent test point (xq, yo)
= Estimating the out-of-sample error well is crucial for model assessment and selection

= Prior work shows that the leave-out-out and generalized cross-validation procedures
consistently estimate the expected squared error E[(yg — 132 | D]

Proposed estimators

The key question that we ask in this paper is: can we reliably estimate the entire out-of-sample
error distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

1. the empirical distributions of re-weighted in-sample errors from leave-one-out and
generalized cross-validation converge weakly to the out-of-sample error distribution,
even when A =0

2. the plug-in estimators of these empirical distributions consistent for a broad class of linear
and non-linear functionals of error distribution

Out-of-sample error distribution and its functionals

= Let P, denote distribution of out-of-sample error of @, .e., Py = L(yo — BA | X, y), where
(x0, y0) Is sampled indep from the same training distribution

= Let ¢b denote a functional such that P — ¢(P) € R:

= | inear functional:

H(Py) = / () dP\(2) = Et(yo — 2 Br) | X, 9],

where t : R — R is an error function (e.g., squared or absolute error)
= Nonlinear functional:

Y(Py) = Quantile(Py; 7) = inf{z : F\(2) > 7},

where F\ denotes the cumulative distribution function of P,

We construct estimators of Py and (Py) by suitably extending leave-one-out cross-validation
and generalized cross-validation procedures.

Standard leave-one-out and generalized cross validation

= | eqve-one-out cross-validation (LOOCV):

= for every i, train on all data except (z;, y;), call the estimate E;i
= compute test error on the i data point and take average

000 = 3 (3 = a5’

1=1

n TR 2
(shor:tcut) l Z Yi — I B)\
n 1 — L))

1=1

where Ly = X (X' X/n + A\I,)* X! /n is the ridge smoothing matrix
= Generalized cross-validation (GCV):
= same as leave-one-out shortcut but a single re-weighting
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= Standard LOOCV and GCV are consistent for the expected squared out-of-sample prediction
error

We analyze natural estimators for Py and (P ) building off from GCV and LOOCV.

= Empirical distributions of the GCV, LOO re-weighted errors:
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= When E)\ is an interpolator, i.e. Ly = I,, both estimates are ~"0/0";
we then define the estimates as their respective limits as A — 0:
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= Plug-in GCV and LOO estimators:

wgcv_w(ﬁ;g\;cv) and wloo ¢(ﬁ§CV>

Distribution estimation

Linear functional estimation (pointwise)

= Let T be a linear functional of the out-of-sample error distribution:
T\ =E[t(yo — x5 8y) | X, y]
= Let ngCV and ﬂoo be plug-in estimators from GCV and LOOCV:
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For error functions¢t: R —- R

1. that are continuous,

2. have quadratic growth, i.e., there exist constats a, b, ¢ > 0
such that |t(z)| < az® + b|z| + c forany z € R,

as n,p — oo with p/n — v € (0, 00), almost surely
IV > Ty and T\ —T).

Under i.i.d. sampling of (z;,y;),t=1,...,n with

1. feature x; decomposable into z; = 21/2% where z; contains i.i.d. entries with mean 0, variance
1 and finite 4+ moment,
and max and min eigenvalues of X uniformly away from 0 and oo,

2. response y; with bounded 4+ moment,

as n,p — oo such that p/n — v € (0, 00), almost surely

PEY 4 Py and P04 Py

Linear functional estimation (uniform)

= Almost sure convergence with respect to the training data
= The regression function does not need to be linear in z
= Amazingly, this results also holds when A = 0 (min-norm estimator)

Distribution estimation: numerical illustration
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For error functionst: R - R

1. that are differentiable,

2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that
t'(2)] < g|z| + hforany z € R

asn,p — oo with p/n — v € (0, 00) for any compact set A,
sup ]Tg — T\ =0 and sup|T) T — T\ = 0.
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= Special case of t(r) = r* exploits bias-variance decomposition

= No bias-variance decomposition for general error functions and result requires a different
proof technique via leave-one-out arguments

= Using uniformity arguments, the result can be extended for non-linear variational functionals
(see paper for more details)

Discussion and future work

The main take-away from this work is: empirical distributions of GCV and LOOCYV track out-of-
sample error distribution and a wide class of its functionals for ridge regression under proportional
asymptotics framework

Key relation that we exploit:
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Going beyond ...

= Equivalences for ridge variants and other smoothers
= Finite sample analysis and rates of convergence



