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Ensemble predictors and generalized risks
Ridge estimator. Consider a dataset Dn = {(xj, yj) : j ∈ [n]} containing i.i.d.
vectors in Rp × R. The ridge estimator fitted on a subsampled dataset DI is:

β̂λ
k(DI) = argmin

β∈Rp

∑
j∈I

(yj − x⊤
j β)2/k + λ∥β∥2

2, I ⊆ [n], |I| = k (1)

Ensemble ridge estimator. For λ ≥ 0, the ensemble estimator is then defined as:

β̃λ
k,M(Dn; {Iℓ}Mℓ=1) := 1

M

∑
ℓ∈[M ]

β̂λ
k(DIℓ), (2)

where I1, . . . , IM are samples from Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . <
ik ≤ n}. The full-ensemble ridge estimator β̃λ

k,∞(Dn) is obtained with M → ∞.
Generalized risk. For a linear functional LA,b(β) = Aβ + b, we study

R(β̂; A, b,β0) = 1
nrow(A)

∥LA,b(β̂ − β0)∥2
2, (3)

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and p/k → ψ. Here,
ϕ and ψ are the data and subsample aspect ratios, respectively.
Data assumptions. Each feature vector xi for i ∈ [n] can be decomposed as
xi = Σ1/2zi, where zi ∈ Rp contains i.i.d. entries zij for j ∈ [p] with mean 0,
variance 1, and bounded 4 + µ moments for some µ > 0. Response distribution:
Each response variable yi for i ∈ [n] has mean 0, and bounded 4 + µ moments.

Summary of results
Table 1: Comparison with related work. “✓◦” indicates a partial equivalence result connect-
ing the optimal prediction risk of the ridge predictor and the full ridgeless ensemble.

Type of equivalence results Type of data assumptions
pred. risk gen. risk estimator response feature lim. spectrum

Lejeune 2020 ✓◦ linear isotropic Gaussian exists
Patil 2022 ✓◦ linear isotropic RMT exists
Du 2023 ✓ linear anisotropic RMT exists

This work ✓ ✓ ✓ arbitrary anisotropic RMT need not exist

•Risk equivalences. We establish asymptotic equivalences of the full-ensemble
ridge estimators at different ridge penalties λ and subsample ratios ψ along
specific paths in the (λ, ψ)-plane for a variety of generalized risk functionals.

•Structural equivalences. We establish structural equivalences for linear
functionals of the ensemble ridge estimators that hold for all ensemble sizes.

•Equivalence implications. The prediction risk of an optimally tuned ridge
estimator is monotonically increasing in p/n under mild regularity conditions.

•Generality of equivalences. The results apply to arbitrary responses with
bounded 4 + µ moments, as well as features with general covariance structures.

Generalized risk equivalences
Equivalence paths. Given ϕ ∈ (0,∞) and ψ̄ ∈ [ϕ,∞], our statement of equiva-
lences between different ensemble estimators is defined through certain paths char-
acterized by two endpoints (0, ψ̄) and (λ̄, ϕ). Let Hp be the empirical spectral dis-
tribution of Σ: Hp(r) = p−1 ∑p

i=11{ri≤r}, where ri’s are the eigenvalues of Σ. Con-
sider the following system of equations in λ̄ and v:

1
v

= λ̄ + ϕ

∫
r

1 + vr
dHp(r), and

1
v

= ψ̄

∫
r

1 + vr
dHp(r). (4)

Now, define a path P(λ̄;ϕ, ψ̄) that passes through the endpoints (0, ψ̄) and (λ̄, ϕ):
P(λ̄;ϕ, ψ̄) =

{
(1 − θ) · (λ̄, ϕ) + θ · (0, ψ̄) | θ ∈ [0, 1]

}
. (5)

Theorem 1. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as defined in (4). Then, for any pair
of (λ1, ψ1) and (λ2, ψ2) on the path P(λ̄;ϕ, ψ̄) as defined in (5), the generalized risk
functionals (3) of the full-ensemble estimator are asymptotically equivalent:

R
(
β̂λ1

⌊p/ψ1⌋,∞; A, b,β0
)

≃ R
(
β̂λ2

⌊p/ψ2⌋,∞; A, b,β0
)
. (6)

Table 2: Summary of asymp-
totic equivalences between
subsampling and ridge regular-
ization for generalized risks and
their corresponding statistical
learning problems.

Statistical learning problem LA,b(β̂ − β0) A b nrow(A)
vector coefficient estimation β̂ − β0 Ip 0 p

projected coefficient estimation a⊤(β̂ − β0) a⊤ 0 1
training error estimation Xβ̂ − y X −fNL n

in-sample prediction X(β̂ − β0) X 0 n

out-of-sample prediction x⊤
0 β̂ − y0 x⊤
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Structural equivalences
Theorem 3. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as in (4). Then, for any M ∈ N ∪ {∞}
and any pair of (λ1, ψ1) and (λ2, ψ2) on the path (5), the M -ensemble estimators are
asymptotically equivalent:

β̂λ1
⌊p/ψ1⌋,M ≃ β̂λ2

⌊p/ψ2⌋,M , ∀(λ1, ψ1), (λ2, ψ2) ∈ P(λ̄;ϕ, ψ̄). (7)

Data-dependent paths. For any M ∈ N ∪ {∞}, let λ̄n be the value that satisfies
the following equation in ensemble ridgeless and ridge gram matrices:

1
M

M∑
ℓ=1

1
k

tr

[(
1
k

LIℓXX⊤LIℓ

)+
]

= 1
n

tr

[(
1
n

XX⊤ + λ̄nIn

)−1
]
. (8)

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Theorems 1 & 3 hold with Pn.

Implications: Monotonicity of optimal ridge
Risk monotonicity. Many common methods, such as ridgeless or lassoless predic-
tors, exhibit non-monotonic behavior in the sample size or the limiting aspect ratio.
An open problem raised by Nakkiran et al. (2021) asks whether the prediction risk
of ridge regression with optimal ridge penalty λ∗ is monotonically increasing in the
data aspect ratio ϕ = p/n. Our equivalences imply that the prediction risk of an
optimally-tuned ridge estimator is monotonically increasing in the data aspect ratio
under mild regularity conditions. Under proportional asymptotics, our result settles
a recent open question raised by Conjecture 1 of Nakkiran et al. (2021) concerning
the monotonicity of optimal ridge regression under anisotropic features and general
data models while maintaining a regularity condition that preserves the linearized
signal-to-noise ratios across regression problems.
Theorem 6. Let k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k → ψ ∈
[ϕ,∞]. Then, for A = Σ1/2 and b = 0, the optimal risk of the ridgeless ensemble,
minψ≥ϕ R(0;ϕ, ψ), is monotonically increasing in ϕ. Consequently, the optimal risk
of the ridge predictor, min≥0 R(;ϕ, ϕ), is also monotonically increasing in ϕ.
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Equivalences for random and kernel features

•Equivalences for
random features
(Conjecture 7)

•Equivalences for
kernel features
(Conjecture 8)
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