

Future Cellular Wireless: Dense, Massive, and Cooperative

- Bottlenecks for cellular networks: Path-loss, fading, **interference**.
- Emerging ideas:
- Dense: Heterogeneous network.
- Massive: Large scale MIMO in each base-station (BS).
- Cooperative: Signal processing for interference cancellation.

The poster is about **cooperative communications**.

Cloud Radio Access Network (CRAN) Architecture

- BSs connected to a centralized cloud-processing based processor.
- Backhaul links have high but not infinite capacity.

- Motivation:
- ► To enable joint multi-cell processing for interference cancellation.
- Centralized service provisioning; easy BS upgrade, etc.
- Uplink (from mobile users):
- Joint decoding at the cloud possible.
- Overall virtual multiple access channel with BSs as relays.
- Downlink (to mobile users):
- Joint encoding at the cloud possible.
- Overall virtual broadcast channel with BSs as relays.

This poster looks at **downlink transmission strategies for CRAN** with finite backhaul capacity.

Hybrid Compression and Message Sharing Strategy for the Downlink Cloud Radio Access Network Pratik Patil, Wei Yu

Department of Electrical and Computer Engineering, University of Toronto

Downlink CRAN as a Broadcast-Relay Channel

Data originate from the cloud and is destined for end mobile users.

- Infinite backhaul: Downlink CRAN is just a broadcast channel.
- Finite backhaul (practical): Challenging, even in approximate sense!

Existing Tranmission Strategies for Downlink CRAN

BSs need to broadcast: Beamforming + dirty paper coding BSs also act as relays:

- Decode-and-forward relaying strategy:
- User messages are shared with BSs for joint beamforming, e.g., [Marsch and Fettweis, 2009].
- ► To limit backhaul, we need to form clusters. [Ng et al., 2008], [Zakhour and Gesbert, 2011], [Zhao et al., 2013].
- Compression-and-forward relaying strategy:
- Precode at the cloud, compress the signals and send compressed versions to BSs. [Simeone et al., 2009], [Marsch and Fettweis, 2008].
- Compute-and-forward relaying strategy [Nazer et al., 2009]:
- Reverse-compute-and-forward and integer-forcing ideas studied in [Hong and Caire, 2013].

Contribution

- We propose a hybrid scheme where messages of strong users are shared directly and signals from weak users are compressed.
- Optimization technique for such scheme is provided and system level performance benefit is quantified.

Message Sharing

Directly share user messages to BSs through backhaul links. BSs then encode the messages to form the signals to be transmitted.

- Advantage: BSs receive clean copies of user messages.
- Limitation: Due to limited backhaul available, each BS gets messages for only a subset of users, resulting in partial cooperation.

Pure compression

Cloud performs joint precoding of user messages. Resulting analog signals are compressed and forwarded to corresponding BSs.

Advantage: Full cooperation possible at cloud. Oblivious BSs. Limitation: Compression introduces quantization noises.

Proposed Hybrid Compression and Message Sharing Strategy

- Part of backhaul used to send direct messages for some users and remaining part to carry compressed signals of rest of the users.
- Direct messages for the strong users and compression for the rest.

Design methodology:

1. Design fixed network-wide beamformers using, for example, the regularized zero-forcing approach or the weighted MMSE approach; 2. Assuming pure compression, optimize the quantization noise level in each backhaul link, obtain the user rates;

3. Appropriately select users for message sharing.

Simulation Results

Sum-power, Sum-backhaul constraint.

Figure : 7-cell network with B2B dist. 800m. Figure : 19-cell sectorized. Per-BS power constraint. Center 7 cells form a cluster.

Details at Pratik Patil and Wei Yu, "Hybrid Compression and Message-Sharing Strategy for the Downlink Cloud Radio-Access Network", Information Theory and Application (ITA) Workshop, Feb 2014