Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent

Summary

- We study **LOOCV** and **GCV** for iterative algorithms in linear models.
- GCV is generically **inconsistent** for the prediction risk
- LOOCV is **uniformly consistent** along the algorithm trajectory
- As application, we construct **pathwise prediction** intervals that have asymptotically correct coverage conditional on the training data

Regularization techniques

Explicit regularization

• L_2 Regularization (Ridge) $\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \|y - X\beta\|_2^2 + \lambda \|\beta\|_2^2$ • L_1 Regularization (Lasso) $\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \|y - X\beta\|_2^2 + \lambda \|\beta\|_1$ • Elastic Net Regularization $\min_{\beta \in \mathbb{R}^d} \frac{1}{n} \|y - X\beta\|_2^2 + \lambda_1 \|\beta\|_1 + \lambda_2 \|\beta\|_2^2$

Implicit regularization

- Early stopping
- Gradient descent & stochastic gradient descent

Bias-variance tradeoff

How to Question: the optimal select amount of regularization?

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the process
- Close connection between ℓ^2 regularization and gradient descent

Pratik Patil¹ Yuchen Wu² Ryan J. Tibshirani¹

¹Department of Statistics, University of California, Berkeley ²Department of Statistics and Data Science, Wharton School, University of Pennsylvania

Cross validation (CV)

 Split-sample CV, K-fold CV with a small K (such as 5 or 10) Might suffer from significant bias Leave-one-out CV (LOOCV) 	 β̂_{k,i}: GD with k iterations trained on (X_{-i}, y_{-i}) R̂^{loo}(β̂_k) = n⁻¹Σⁿ_{i=1}(y_i - x^T_iβ̂_{k,-i})² (Main theorem) Under our assumptions, LOOCV is uniformly consistent:
 Mitigates bias issues, computationally expensive Generalized CV (GCV) Approximation to LOOCV for estimators that are linear smoothers LOOCV and GCV are consistent for the 	$\max_{k \in [K]} \hat{R}^{\text{loo}}(\beta_k) - R(\beta_k) \stackrel{\text{a.s.}}{\to} 0$ • Application: use LOOCV to tune early stopping $k_* = \arg\min_{k \in [K]} \hat{R}^{\text{loo}}(\hat{\beta}_k),$
high-dimensional ridge regression $(p \asymp n)$ • Are LOOCV and GCV consistent for GD?	$ R(\hat{\beta}_{k_*}) - \min_{k \in [K]} R(\hat{\beta}_k) \stackrel{\text{a.s.}}{\to} 0$

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \ge 0$, such that for every distribution ν ,

 $W_2(\mu, \nu) \leq \sqrt{2\sigma^2(\mu)D_{\mathrm{KL}}(\nu \parallel \mu)}$

High-dim least squares regression

- Data $\{(x_i, y_i)\}_{i \le n} \subseteq \mathbb{R}^p \times \mathbb{R}, \mathbf{p} \asymp \mathbf{n}$ • OLS problem: minimize $_{\beta \in \mathbb{R}^p} \frac{1}{2n} \|y - X\beta\|_2^2$
- Solve with GD: $\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}}(y X\hat{\beta}_{k-1})$
- Out-of-sample prediction risk:
 - $R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0}[(y_0 x_0^\mathsf{T}\hat{\beta}_k)^2 \mid X, y]$
- How well do LOOCV and GCV estimate $R(\hat{\beta}_k)$?

Assumptions

- $x_i = \Sigma^{1/2} z_i, z_{ij} \sim_{i.i.d.} \mu_z, \mu_z$ has mean 0, variance 1, and satisfies the T_2 -inequality • $0 < \zeta_L \leq p/n \leq \zeta_U < \infty, \|\Sigma\|_{op} \leq \sigma_{\Sigma}$ • $y_i = f(x_i, \varepsilon_i), f \text{ is } L_f\text{-Lipschitz}, \mathbb{E}[y_1^8] \leq m_8$ • $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$, μ_{ε} has mean zero and satisfies the T_2 -inequality • $\sum_{k=1}^{K} \delta_{k-1} \leq \Delta, \ K = o(n(\log n)^{-3/2})$
- $\bullet \|\hat{\beta}_0\|_2 \le B_0$

LOOCV consistency

$$k_* = \arg\min_{k\in[K]} \hat{R}^{\text{loo}}(\hat{\beta}_k),$$
$$|R(\hat{\beta}_{k_*}) - \min_{k\in[K]} R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0$$

GCV inconsistency

• LOOCV is consistent, while in most cases computationally expensive

• For predictors that are linear smoothers, can use GCV to approximate LOOCV [Golub et al., 1979] • GCV is consistent for high-dim ridge regression with mild data assumptions [Patil et al., 2021, 2022]

• Question: Is GCV also consistent for gradient descent?

• GCV is in general inconsistent

- $p \asymp n$)

Discussion and future directions

Summary

Future directions

LOOCV shortcut

• Computation is an issue for LOOCV

• We propose a shortcut implementation of

LOOCV that has complexity $O(n^3 + nK^2)$ (recall

• When $K \leq n$, complexity of the shortcut implementation is at most the same as that for $\operatorname{GCV}(O(n^3))$

• LOOCV is uniformly consistent along the GD path under mild assumptions

• GCV is inconsistent in even standard examples • Propose shortcut formula to reduce computational cost

• Extension to general iterative algorithms • Universality result without the T_2 assumption? • Develop approximate LOOCV approach

References

[1] Gene H Golub, Michael Heath, and Grace Wahba. Generalized cross-validation as a method for choosing a good ridge parameter.

Technometrics, 21(2):215–223, 1979.

[2] Pratik Patil, Yuting Wei, Alessandro Rinaldo, and Ryan Tibshirani.

Uniform consistency of cross-validation estimators for high-dimensional ridge regression.

In International Conference on Artificial Intelligence and Statistics, pages 3178–3186. PMLR, 2021.

[3] Pratik Patil, Alessandro Rinaldo, and Ryan J. Tibshirani. Estimating functionals of the out-of-sample error

distribution in high-dimensional ridge regression.

In International Conference on Artificial Intelligence and Statistics, 2022.