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Summary

• We study LOOCV and GCV for iterative
algorithms in linear models.

• GCV is generically inconsistent for the
prediction risk

• LOOCV is uniformly consistent along the
algorithm trajectory

• As application, we construct pathwise
prediction intervals that have asymptotically
correct coverage conditional on the training
data

Regularization techniques

Explicit regularization
• L2 Regularization (Ridge)
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• L1 Regularization (Lasso)
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• Elastic Net Regularization
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Implicit regularization
• Early stopping
• Gradient descent & stochastic gradient descent
Bias-variance tradeoff
v

Question: How to
select the optimal
amount of regulariza-
tion?

• Ridge regularization: selecting the regularization
parameter λ

• Gradient descent: determining whether and when
to early stop the process

• Close connection between ℓ2 regularization and
gradient descent

Cross validation (CV)

• Split-sample CV, K-fold CV with a small K
(such as 5 or 10)
Might suffer from significant bias

• Leave-one-out CV (LOOCV)
Mitigates bias issues, computationally expensive

• Generalized CV (GCV)
Approximation to LOOCV for estimators that
are linear smoothers

• LOOCV and GCV are consistent for the
high-dimensional ridge regression (p ≍ n)

• Are LOOCV and GCV consistent for GD?

LOOCV consistency

• β̂k,i: GD with k iterations trained on (X−i, y−i)
R̂loo(β̂k) = n−1Σn

i=1(yi − x⊺
i β̂k,−i)2

• (Main theorem) Under our assumptions,
LOOCV is uniformly consistent:

max
k∈[K]

∣∣∣∣∣∣∣R̂
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∣∣∣∣∣∣∣
a.s.→ 0

• Application: use LOOCV to tune early stopping:
k∗ = arg min

k∈[K]
R̂loo(β̂k),

|R(β̂k∗) − min
k∈[K]

R(β̂k)| a.s.→ 0

Definition (T2-inequality)

We say a distribution µ satisfies the T2-inequality if there exists a constant σ(µ) ≥ 0, such that for every
distribution ν,

W2(µ, ν) ≤
√√√√√2σ2(µ)DKL(ν ∥ µ)

High-dim least squares regression

• Data {(xi, yi)}i≤n ⊆ Rp × R, p ≍ n
• OLS problem: minimizeβ∈Rp

1
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• Solve with GD: β̂k = β̂k−1 + δk−1
n X⊺(y − Xβ̂k−1)

• Out-of-sample prediction risk:
R(β̂k) = Ex0,y0[(y0 − x⊺

0β̂k)2 | X, y]
• How well do LOOCV and GCV estimate R(β̂k)?

Assumptions

• xi = Σ1/2zi, zij ∼i.i.d. µz, µz has mean 0,
variance 1, and satisfies the T2-inequality

• 0 < ζL ≤ p/n ≤ ζU < ∞, ∥Σ∥op ≤ σΣ

• yi = f (xi, εi), f is Lf-Lipschitz, E[y8
1] ≤ m8

• εi ∼i.i.d. µε, µε has mean zero and satisfies the
T2-inequality

• ΣK
k=1δk−1 ≤ ∆, K = o(n(log n)−3/2)

• ∥β̂0∥2 ≤ B0

GCV inconsistency

• LOOCV is consistent, while in most cases
computationally expensive

• For predictors that are linear smoothers, can use
GCV to approximate LOOCV [Golub et al., 1979]

• GCV is consistent for high-dim ridge regression
with mild data assumptions [Patil et al., 2021,
2022]

• Question: Is GCV also consistent for gradient
descent?

• GCV is in general inconsistent
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LOOCV shortcut

• Computation is an issue for LOOCV
• We propose a shortcut implementation of

LOOCV that has complexity O(n3 + nK2) (recall
p ≍ n)

• When K ≲ n, complexity of the shortcut
implementation is at most the same as that for
GCV (O(n3))

Discussion and future directions

Summary
• LOOCV is uniformly consistent along the GD

path under mild assumptions
• GCV is inconsistent in even standard examples
• Propose shortcut formula to reduce

computational cost
Future directions
• Extension to general iterative algorithms
• Universality result without the T2 assumption?
• Develop approximate LOOCV approach
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