Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation

Jin-Hong Du^{1*} Pratik Patil^{2*} Arun Kumar Kuchibhotla¹ ¹Department of Statistics and Data Science, Carnegie Mellon University ²Department of Statistics, University of California, Berkeley *equal contribution

Background

Ridge estimator: Let $\mathcal{D}_n = \{(\boldsymbol{x}_j, y_j) : j \in [n]\}$ denote a dataset containing i.i.d. random vectors in $\mathbb{R}^p \times \mathbb{R}$. The ridge estimator fitted on subsampled dataset \mathcal{D}_I is defined as:

where $I_1, ..., I_M$ are samples from $\mathcal{I}_k := \{ \{i_1, i_2, ..., i_k\} : 1 \le i_1 < i_2 < ... < i_m \}$ *i^k ≤ n}*. The *full-ensemble* ridge estimator *β* σ $\lambda_{k,\infty}(\mathcal{D}_n)$ is obtained with $M \to \infty$. Conditional prediction risk: The goal is to study the prediction risk: $R^{\boldsymbol{\lambda}}_{k,M} := \mathbb{E}_{(\boldsymbol{x},y)}[(y-\boldsymbol{x}^\top\widetilde{\boldsymbol{\beta}}^{\boldsymbol{\lambda}}_{k,M})^2 \mid \mathcal{D}_n, \{I_\ell\}^M_{\ell=1}$ *ℓ*=1]*,* (3)

under proportional asymptotics where $n, p, k \to \infty$, $p/n \to \phi$ and $p/k \to \phi_s$. Here, *ϕ* and *ϕ^s* are the *data and subsample aspect ratios*, respectively.

$$
\widehat{\boldsymbol{\beta}}_k^{\lambda}(\mathcal{D}_I) = \underset{\boldsymbol{\beta} \in \mathbb{R}^p}{\operatorname{argmin}} \sum_{j \in I} (y_j - \boldsymbol{x}_j^{\top} \boldsymbol{\beta})^2 / k + \lambda ||\boldsymbol{\beta}||_2^2, \qquad I \subseteq [n], |I| = k \qquad (1)
$$

Ensemble ridge estimator: For $\lambda \geq 0$, the ensemble estimator is then defined as:

$$
\widetilde{\bm{\beta}}_{k,M}^{\lambda}(\mathcal{D}_n;\{I_{\ell}\}_{\ell=1}^M):=\frac{1}{M}\sum_{\ell\in[M]}\widehat{\bm{\beta}}_{k}^{\lambda}(\mathcal{D}_{I_{\ell}}),
$$

$$
),\t\t(2)
$$

2 a.s. $\xrightarrow{a.s.} \rho^2$, and ϵ contains i.i.d. entries with variance σ^2 and bounded $4 + \delta$ moments. The limiting

larger ϕ_s , or a smaller *k*) amounts to adding more explicit ridge regularization (a

Summary

• General risk equivalences. We establish prediction risk equivalences between *implicit* regularization of subsampling and *explicit* ridge regularization for the subsample ridge ensemble. For any $\tau \geq 0$, we provide the set \mathcal{C}_{τ} of pairs (λ, ϕ_s) such that the risk of the full ridge ensemble with ridge penalty λ and subsample aspect ratio ϕ_s is equal to the risk of the ridge predictor with ridge penalty τ .

where $S^{\lambda}_{k,M} = \frac{1}{M}$ *M*

Corollary 3.2

- *•***Uniform consistency of GCV.** For full ridge ensembles, we establish the uniform consistency of GCV across all possible subsample sizes *k*. Notably, this result is also applicable to the ridgeless regression $(\lambda = 0)$. This enables tuning the subsample size in a data-dependent manner.
- *•***Finite-ensemble surprises.** Even though GCV is consistent for *M* = 1 and $M = \infty$, interestingly, this is the first paper that proves GCV *can* be inconsistent even for ridge ensembles when the ensemble size $M = 2$. Nevertheless, GCV is applicable for tuning subsample sizes, even with moderate ensemble sizes in practice.

penalty $\lambda = 0$, and any $\phi \in (0, \infty)$, *|*gcv

Assumptions

- Feature model: $X = Z\Sigma^{1/2}$, where $Z \in \mathbb{R}^{n \times p}$ contains i.i.d. entries with bounded $4 + \delta$ moments, and $\Sigma \in \mathbb{R}^{p \times p}$ has bounded eigenvalues and limiting spectral distribution.
- **Response model:** $y = X\beta_0 + \epsilon$, where $\beta_0 \in \mathbb{R}^p$ satisfies $\|\beta_0\|_2^2$ spectral distribution of β_0 's (squared) projection onto Σ exists.

- *•*Bias correction of GCV for finite *M*;
- •Extension to other metrics [2];
-

- Implication: the implicit regularization provided by the subsample ensemble (a larger *λ*).
- Usage: tuning ridge penalty λ for optimal ridge predictors ($\phi_s = \phi$) by tuning subsample aspect ratio ϕ_s for ridgeless ensembles ($\lambda = 0$).

Generalized Cross-Validation (GCV)

$$
\operatorname{gcv}^{\lambda}_{k,M} = \frac{T^{\lambda}_{k,M}}{D^{\lambda}_{k,M}} =
$$

Inconsistency

Proposition 3.3 For ensemble size *M* = 2, ridge $\frac{0}{k,2}-R_k^0$ $\binom{0}{k,2}$ $\frac{1}{k}$ \overline{p} *−→* 0*.* The bias scales as 1*/M* and is negligible for large *M*.

Future directions

•Extension to other base predictors.

[1] Jin-Hong Du, Pratik Patil, and Arun Kumar Kuchibhotla. "Subsample Ridge Ensembles: Equivalences and Generalized Cross-Validation". In: *International Conference on Machine Learning* (2023) [2] Pratik Patil and Jin-Hong Du. "Generalized equivalences between subsampling and ridge regularization". In: *arXiv preprint arXiv:2305.18496* (2023)