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Ridge estimator: Let Dn = {(xj, yj) : j ∈ [n]} denote a dataset containing i.i.d.
random vectors in Rp × R. The ridge estimator fitted on subsampled dataset DI is
defined as:

β̂λ
k(DI) = argmin

β∈Rp

∑
j∈I

(yj − x⊤
j β)2/k + λ∥β∥2

2, I ⊆ [n], |I| = k (1)

Ensemble ridge estimator: For λ ≥ 0, the ensemble estimator is then defined as:

β̃λ
k,M(Dn; {Iℓ}M

ℓ=1) := 1
M

∑
ℓ∈[M ]

β̂λ
k(DIℓ

), (2)

where I1, . . . , IM are samples from Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . <
ik ≤ n}. The full-ensemble ridge estimator β̃λ

k,∞(Dn) is obtained with M → ∞.
Conditional prediction risk: The goal is to study the prediction risk:

Rλ
k,M := E(x,y)[(y − x⊤β̃λ

k,M)2 | Dn, {Iℓ}M
ℓ=1], (3)

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and p/k → ϕs. Here,
ϕ and ϕs are the data and subsample aspect ratios, respectively.

Summary
•General risk equivalences. We establish prediction risk equivalences between

implicit regularization of subsampling and explicit ridge regularization for the
subsample ridge ensemble. For any τ ≥ 0, we provide the set Cτ of pairs (λ, ϕs)
such that the risk of the full ridge ensemble with ridge penalty λ and subsample
aspect ratio ϕs is equal to the risk of the ridge predictor with ridge penalty τ .

•Uniform consistency of GCV. For full ridge ensembles, we establish the
uniform consistency of GCV across all possible subsample sizes k.
Notably, this result is also applicable to the ridgeless regression (λ = 0).
This enables tuning the subsample size in a data-dependent manner.

•Finite-ensemble surprises. Even though GCV is consistent for M = 1
and M = ∞, interestingly, this is the first paper that proves GCV can be
inconsistent even for ridge ensembles when the ensemble size M = 2.
Nevertheless, GCV is applicable for tuning subsample sizes, even with
moderate ensemble sizes in practice.

Assumptions

•Feature model: X = ZΣ1/2, where Z ∈ Rn×p contains i.i.d. entries with
bounded 4 + δ moments, and Σ ∈ Rp×p has bounded eigenvalues and limiting
spectral distribution.

•Response model: y = Xβ0 + ϵ, where β0 ∈ Rp satisfies ∥β0∥2
2

a.s.−→ ρ2, and ϵ
contains i.i.d. entries with variance σ2 and bounded 4 + δ moments. The limiting
spectral distribution of β0’s (squared) projection onto Σ exists.

Risk equivalence in the full ensemble
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Previous work has shown that the limiting risk
exists: Rλ

k,∞
a.s.−→ Rλ

∞(ϕ, ϕs). When ϕ = 0.1, the
risk profile as a function of (λ, ϕs) is shown in the
figure.
Theorem 2.3
min
ϕs≥ϕ

R0
∞(ϕ, ϕs)︸ ︷︷ ︸

opt. ridgeless
ensemble

= min
λ≥0

Rλ
∞(ϕ, ϕ)

︸ ︷︷ ︸
opt. ridge
predictor

= min
ϕs≥ϕ,
λ≥0

Rλ
∞(ϕ, ϕs)︸ ︷︷ ︸

opt. ridge
ensemble

.

• Implication: the implicit regularization provided by the subsample ensemble (a
larger ϕs, or a smaller k) amounts to adding more explicit ridge regularization (a
larger λ).

•Usage: tuning ridge penalty λ for optimal ridge predictors (ϕs = ϕ) by tuning
subsample aspect ratio ϕs for ridgeless ensembles (λ = 0).

Generalized Cross-Validation (GCV)
For general M , the GCV estimator is defined as

gcvλ
k,M =

T λ
k,M

Dλ
k,M

=
1

|I1:M |
∑

i∈I1:M
(yi − x⊤

i β̃λ
k,M)2

(1 − |I1:M |−1 tr(Sλ
k,M))2

training error
degrees-of-freedom correction

where Sλ
k,M = 1

M

∑M
ℓ=1 XIℓ

(X⊤
Iℓ

XIℓ
/k + λIp)+X⊤

Iℓ
/k is the smoothing matrix that

represents the degrees-of-freedom.
Theorem 3.1 For all λ ≥ 0, we have

max
k∈Kn

|gcvλ
k,∞ − Rλ

k,∞| a.s.−→ 0. (4)

Coupled with the risk equivalence, we further have data-dependent tuning:
Corollary 3.2 gcv0

k̂0,∞
a.s.−→ minϕs≥ϕ,λ≥0 Rλ

∞(ϕ, ϕs).

0.1 0.2 0.5 1.0 2.0 5.0 10.0
Subsample aspect ratio s

1.1

1.2

1.3

Va
lu

e

Data aspect ratio = 0.1
Underparameterized regime (p < n)

1.0 2.0 5.0 10.0
Subsample aspect ratio s

1

2

3

4

5 Data aspect ratio = 1.1
Overparameterized regime (p > n)

0.0 0.1 1.0 Empirical gcvk, M Rk, M Asymptotic

Inconsistency

Proposition 3.3 For ensemble size M = 2, ridge
penalty λ = 0, and any ϕ ∈ (0, ∞),

|gcv0
k,2 − R0

k,2| ̸ p−→ 0.

The bias scales as 1/M and is negligible for large M .
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Future directions
•Bias correction of GCV for finite M ;
•Extension to other metrics [2];
•Extension to other base predictors.
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