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Ridge regression in high dimensions
Ridge estimator. Recent interests in high-dimensional ridge regression concern the
ridge estimator:

β̂λ = (X⊤X/n + λIp)†X⊤y/n,

and its prediction risk:
R(β̂λ) = Ex0,y0[(y0 − x⊤

0 β̂λ)2 | X, y].
The goal is to study the behavior of its asymptotic prediction risk:

R(β̂λ) → R(λ, ϕ), p/n → ϕ ∈ (0, ∞)
where p is feature size, n is sample size, and ϕ is the aspect ratio.
Distribution shifts. We consider two types of distribution shifts:
(1) Covariate shift: where Px0 ̸= Px but Py0|x0 = Py|x.
(2) Regression shift: where Py0|x0 ̸= Py|x but Px0 = Px.
Questions of interest. We answer two out-of-distribution problems:
(1) How does distribution shift alter optimal regularization λ∗?
(2) How does distribution shift alter optimal risk behavior R(λ∗, ϕ)?
Data assumptions. Feature distribution: Each feature vector xi for i ∈ [n] can be
decomposed as xi = Σ1/2zi, where zi ∈ Rp contains i.i.d. entries zij for j ∈ [p] with
mean 0, variance 1, and bounded 4+ moments for some µ > 0. Response distribution:
Each response variable yi for i ∈ [n] has mean 0, and bounded 4+ moments.

Lower bound on ridge regularization. Let µmin ∈ R be the unique solution,
satisfying µmin > −rmin, to the equation: 1 = ϕ t̄r[Σ2(Σ + µminI)−2], and let
λmin(ϕ) be given by: λmin(ϕ) = µmin − ϕ t̄r[Σ(Σ + µminI)−1].

Summary of results

Out-of-distribution risk characterization
Proposition 1 (Deterministic equivalents for OOD risk). The asymptotic OOD risk
decomposes into:

R(λ, ϕ) := B(λ, ϕ)︸ ︷︷ ︸
bias

+ V(λ, ϕ)︸ ︷︷ ︸
variance

+ E(λ, ϕ)︸ ︷︷ ︸
extra bias

+ κ2︸︷︷︸
irreducible error

, (1)

where
B = µ2 · β⊤(Σ + µI)−1(ṽΣ + Σ0)(Σ + µI)−1β,

V = σ2ṽ,

E = 2µ · β⊤(Σ + µI)−1Σ0(β0 − β),
κ2 = (β0 − β)⊤Σ0(β0 − β) + σ2

0.

The optimal regularization is defined as λ∗ ∈ argminλ≥λmin(ϕ) R(λ, ϕ).

Optimal regularization sign characterization (IND)
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Illustration of negative or positive optimal regularization under general alignment.

Theorem 2 (Optimal regularization sign, no shift) Assume Σ0 = Σ and β0 = β.
1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if for all v < 1/µ(0, ϕ), the following general
alignment holds:

t̄r[BΣ(vΣ + I)−2] + σ2

t̄r[BΣ(vΣ + I)−3] + σ2 >
t̄r[Σ(vΣ + I)−2]
t̄r[Σ(vΣ + I)−3]

, (2)

where B = ββ⊤, we have λ∗ < 0.
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Optimal regularization sign characterization (OOD)
Theorem 4 (Optimal regularization, covariate shift). Assume Σ0 ̸= Σ and β0 = β.
1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.
2. (Overparameterized) When ϕ > 1, if Σ0 = I (estimation risk), we have λ∗ ≥ 0.
3. (Overparameterized) When ϕ > 1, if Σ = I and

t̄r[Σ0B] > t̄r[Σ0]
(

t̄r[B] + (1 + µ(0, ϕ))3

µ(0, ϕ)3 σ2
)

, (3)

where B = ββ⊤, we have λ∗ < 0.
Theorem 5 (Optimal regularization, regression shift). Assume Σ0 = Σ and β0 ̸= β.
1. (Underparameterized) When ϕ < 1, if σ2 = o(1) and for all µ ≥ 0, the following
general alignment holds:

t̄r[B0Σ2(Σ + µI)−2] > t̄r[BΣ2(Σ + µI)−2], (4)
where B = ββ⊤ and B0 = β0β

⊤, we have λ∗ < 0.
2. (Overparameterized) When ϕ > 1, if conditions (2) and (4) hold, we have λ∗ < 0.
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Covariate and regression shift can
lead to negative optimal
regularization in both
overparameterized and
underparameterized regimes.

Optimal risk monotonicity (both IND and OOD)
Theorem 7 (Optimal regularization, regression shift). For λ ≥ λmin(ϕ), for all ε > 0
small enough, the risk of optimal ridge predictor satisfies:

min
λ≥λmin(ϕ)+ε

R(β̂λ) ≃ min
λ≥λmin(ϕ)

R(λ, ϕ), (5)

and right side of (5) is monotonically increasing in ϕ if SNR and σ2
0 are fixed. In

addition, when β = β0 it is monotonically increasing in SNR if ϕ, σ2, and σ2
0 are fixed.
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Ridge regression optimized over λ ≥ ν for different thresholds ν has monotonic risk.
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