Optimal Ridge Regularization for Out-of-Distribution Prediction

Ridge regression in high dimensions

Ridge estimator. Recent interests in high-dimensional ridge regression concern the
ridge estimator:

AN

B =(X'X/n+ )X "y/n,

and 1its prediction risk:

R(,@)\) — 432130,%[(?/0 — m()Tﬁ)\)2 ‘ X, y]
The goal 1s to study the behavior of its asymptotic prediction risk:

R(BY) = &\, ¢),  p/n— ¢ € (0,00)

where p 1s feature size, n 1s sample size, and ¢ 1s the aspect ratio.

Distribution shifts. We consider two types of distribution shifts:

(1) Covariate shift. where P, # P, but P, = P,

(2) Regression shift. where P, # P, but P, = P,.

Questions of interest. We answer two out-of-distribution problems:

(1) How does distribution shift alter optimal regularization \*?

(2) How does distribution shift alter optimal risk behavior % (\*, ¢)?

Data assumptions. Feature distribution: Each feature vector x; for i € |n| can be
decomposed as x; = X/?z;, where z; € R” contains i.i.d. entries z;; for j € [p] with
mean 0, variance 1, and bounded 4™ moments for some ;1 > 0. Response distribution:
Each response variable y; for ¢ € |n| has mean 0, and bounded 4™ moments.

Lower bound on ridge regularization. Let 1, € R be the unique solution,
satisfying fimin > —7uin, t0 the equation: 1 = ¢ tr[3*(X + py;, 1) 77, and let
Anin(@) be given by: \uin(@) = fimin — @ tr[2(2 + promind) 1.

Summary of results

Arb. Arb. Arb. Additional Specific Data
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% B 2o Po ¢s1  Amin Mod. SNR Spec. Geometry Conditions A Reference
In-distribution

XK O X B all ZEero X v X + [IDW, Thm. 2.1]

O ® X B all Zero X v X + [HMRT, Cor. 5]
under  neg X v X + (WX, Prop. 6]
over  neg X X X Strict misalignment of (X, 3) + (WX, Thm. 4]
over  neg X X X Strict alignment of (X, 5) — [WX, Thm. 4, Prop. 7]

® ® X B over zero X X X and /or special feature model 0 [RMR, Cor. 2]
under neg* V v v -+ Theorem 2 (1)
over neg* V/ v v General alignment of (%, 3, 02) — Theorem 2 (2)

Out-of-distribution

® O 2o P all neg* v v + Proposition 3

® &® X B under neg* V/ v v + Theorem 4 (1)

R & I I5; over neg* v v + Theorem 4 (2)

O ® X P over neg* Vv v v General alignment of (2o, 3, 02) — Theorem 4 (3)
under neg* V v v General alignment of (%, 3, 5o) —  Theorem 5 (1), (39)

® & X fBo under neg* V v v General misalignment of (3,8,80) + Theorem 5 (1), (39)
over neg* Vv v v General alignment of (X, 3, Bo,02%) — Theorem 5 (2)
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Out-of-distribution risk characterization

Proposition 1 (Deterministic equivalents for OOD risk). The asymptotic OOD risk
decomposes 1nto:

RN 0) =BG TV ) HEN G+ K. .
T H’_/ Ht’b_/ irreducible error

where
B =p B (X4 pd) (08 + ) (B +pul) B,
Y =00,
E&=2u-BT(S+pl) ' 2y(By— B),
k* = (Bo— B) (8o — B) + 0p.

The optimal regularization is defined as \* € argminy~, 5 % (A, @).

Optimal regularization sign characterization (IND)
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Illustration of negative or positive optimal regularization under general alignment.

Theorem 2 (Optimal regularization sign, no shift) Assume > = > and By = 8.

1. (Underparameterized) When ¢ < 1, we have \* > 0.
2. (Overparameterized) When ¢ > 1, if for all v < 1/u(0, ¢), the following general
alignment holds:

tr[BX (v + I)"%] + o7 - tr[ (X + I)? )
tr[BX(vX + 1)+ 02 tr[B(wX + 1)

where B = 33", we have \* < 0.
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Optimal regularization sign characterization (OOD)

Theorem 4 (Optimal regularization, covariate shift). Assume 3y # X and 8y = 3.
1. (Underparameterized) When ¢ < 1, we have \* > 0.

2. (Overparameterized) When ¢ > 1, if 3Jy = I (estimation risk), we have A* > 0.
3. (Overparameterized) When ¢ > 1,1f 22 = I and

tr[XB]| > tr[3) (tr[B] | g ;('lé(z;?) 02) , (3)

where B = B3, we have \* < 0.

Theorem 5 (Optimal regularization, regression shift). Assume Xy = X2 and 3, # 3.
1. (Underparameterized) When ¢ < 1, if 0° = o(1) and for all ;. > 0, the following
general alignment holds:

tr[ByX* (2 + pd) %] > tr[BYA(Z + pl) ™7, (4)
where B = 83" and B, = 8,3 "', we have \* < 0.
2. (Overparameterized) When ¢ > 1, if conditions (2) and (4) hold, we have A\* < 0.
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Covariate shift

: . Covariate and regression shift can
0z \ j: lead to negative optimal
’ ' regularization in both
N § 0.5 overparameterized and

02 T===a o 00 Tm=———o N underparameterized regimes.
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Optimal risk monotonicity (both IND and OOD)

Theorem 7 (Optimal regularization, regression shift). For A > A.,i.(¢), for all € > 0
small enough, the risk of optimal ridge predictor satisfies:

n  R(BY) ~ min Z()\ 5
o RET) = i R 9), G)

and right side of (5) is monotonically increasing in ¢ if SNR and o7 are fixed. In
addition, when 8 = (3 it is monotonically increasing in SNR if ¢, 0°, and o7 are fixed.
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Ridge regression optimized over A > v for different thresholds v has monotonic risk.
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