Ridge regression in high dimensions

Ridge estimator. Recent interests in high-dimensional ridge regression concern the ridge estimator:

 $\widehat{\boldsymbol{\beta}}^{\lambda} = (\boldsymbol{X}^{\top}\boldsymbol{X}/n + \lambda \boldsymbol{I}_{p})^{\dagger}\boldsymbol{X}^{\top}\boldsymbol{y}/n,$

and its prediction risk:

 $R(\widehat{\boldsymbol{\beta}}^{\lambda}) = \mathbb{E}_{\boldsymbol{x}_0, y_0}[(y_0 - \boldsymbol{x}_0^{\top} \widehat{\boldsymbol{\beta}}^{\lambda})^2 \mid \boldsymbol{X}, \boldsymbol{y}].$

The goal is to study the behavior of its asymptotic prediction risk: $R(\widehat{\boldsymbol{\beta}}^{\lambda}) \to \mathscr{R}(\lambda, \phi), \qquad p/n \to \phi \in (0, \infty)$

where p is feature size, n is sample size, and ϕ is the *aspect ratio*. **Distribution shifts.** We consider two types of distribution shifts: (1) Covariate shift: where $P_{\boldsymbol{x}_0} \neq P_{\boldsymbol{x}}$ but $P_{y_0|\boldsymbol{x}_0} = P_{y|\boldsymbol{x}}$.

(2) Regression shift: where $P_{u_0|x_0} \neq P_{u|x}$ but $P_{x_0} = P_x$.

Questions of interest. We answer two out-of-distribution problems: (1) How does distribution shift alter optimal regularization λ^* ? (2) How does distribution shift alter optimal risk behavior $\Re(\lambda^*, \phi)$? **Data assumptions.** Feature distribution: Each feature vector x_i for $i \in [n]$ can be decomposed as $x_i = \Sigma^{1/2} z_i$, where $z_i \in \mathbb{R}^p$ contains i.i.d. entries z_{ij} for $j \in [p]$ with mean 0, variance 1, and bounded 4^+ moments for some $\mu > 0$. Response distribution: Each response variable y_i for $i \in [n]$ has mean 0, and bounded 4^+ moments.

Lower bound on ridge regularization. Let $\mu_{\min} \in \mathbb{R}$ be the unique solution, satisfying $\mu_{\min} > -r_{\min}$, to the equation: $1 = \phi \operatorname{tr}[\Sigma^2 (\Sigma + \mu_{\min} I)^{-2}]$, and let $\lambda_{\min}(\phi)$ be given by: $\lambda_{\min}(\phi) = \mu_{\min} - \phi \operatorname{tr}[\boldsymbol{\Sigma}(\boldsymbol{\Sigma} + \mu_{\min} \boldsymbol{I})^{-1}].$

Summary of results

Σ	eta	Σ_0	eta_0	$\phi \lessgtr 1$	λ_{\min}	Arb. Mod	Arb. . SNR	Arb. Spec	Additional Specific Data . Geometry Conditions	λ^*	Reference
I	n-dist	ributi	ion								
\otimes	\bigcirc	Σ	eta	\mathbf{all}	zero	×	1	X		+	$[\mathbf{DW}, \text{ Thm. } 2.1]$
\bigcirc	\otimes	Σ	eta	all	zero	×	1	X		+	[HMRT $, Cor. 5]$
				under	neg	X	1	X		+	[WX, Prop. 6]
				over	neg	×	X	×	Strict misalignment of (Σ, β)	+	$\begin{bmatrix} WX, Thm. 4 \end{bmatrix}$
				over	neg	×	×	×	Strict alignment of (Σ, β)	-	[WX, Thm. 4, Prop. 7]
\otimes	\otimes	Σ	eta	over	zero	×	×	X	and/or special feature model	0	[RMR, Cor. 2 $]$
				under	neg^{\star}	1	1	1		+	Theorem 2 (1)
				over	$\operatorname{neg}^{\star}$	\checkmark	✓	\checkmark	General alignment of $(\Sigma, \beta, \sigma^2)$	_	Theorem 2 (2)
Out-of-distribution											
\otimes	\bigcirc	Σ_0	eta	\mathbf{all}	neg^{\star}	✓	✓	1		+	Proposition 3
\otimes	\otimes	Σ_0	eta	under	neg^{\star}	1	1	1		+	Theorem 4 (1)
\otimes	\otimes	I	β	over	neg^{\star}	1	1	1		+	Theorem 4 (2)
\bigcirc	\otimes	Σ_0	β	over	neg^{\star}	1	1	\checkmark	General alignment of $(\Sigma_0, \beta, \sigma^2)$	—	Theorem 4 (3)
				under	neg^{\star}	1	1	1	General alignment of (Σ, β, β_0)	_	Theorem 5 $(1), (39)$
\otimes	\otimes	Σ	eta_0	under	neg^{\star}	1	1	1	General misalignment of (Σ, β, β_0)	+	Theorem 5 $(1), (39)$
			-	over	neg^{\star}	✓	✓	✓	General alignment of $(\Sigma, \beta, \beta_0, \sigma^2)$	-	Theorem $5(2)$

Optimal Ridge Regularization for Out-of-Distribution Prediction

Jin-Hong Du² Pratik Patil¹

¹Department of Statistics, UCB

Out-of-distribution risk characterization

Proposition 1 (Deterministic equivalents for OOD risk). The asymptotic OOD risk decomposes into:

 $\mathscr{R}(\lambda,\phi) := \mathscr{B}(\lambda,\phi) + \mathscr{V}(\lambda,\phi) + \mathscr{E}(\lambda,\phi) + \mathscr{K}^{2}(\lambda,\phi) + \mathscr{K}^{2}(\lambda,$

where

$$egin{aligned} & \mathscr{B} = \mu^2 \cdot oldsymbol{eta}^ op (\mathbf{\Sigma} + \mu oldsymbol{I})^{-1} (\widetilde{v} \mathbf{\Sigma} + \mathbf{\Sigma}_0) (\mathbf{\Sigma} + \mu oldsymbol{I})^{-1} oldsymbol{eta} \ & \mathscr{V} = \sigma^2 \widetilde{v}, \ & \mathscr{E} = 2 \mu \cdot oldsymbol{eta}^ op (\mathbf{\Sigma} + \mu oldsymbol{I})^{-1} \mathbf{\Sigma}_0 (oldsymbol{eta}_0 - oldsymbol{eta}), \ & \kappa^2 = (oldsymbol{eta}_0 - oldsymbol{eta})^ op \mathbf{\Sigma}_0 (oldsymbol{eta}_0 - oldsymbol{eta}) + \sigma_0^2. \end{aligned}$$

The optimal regularization is defined as $\lambda^* \in \operatorname{argmin}_{\lambda > \lambda_{\min}(\phi)} \mathscr{R}(\lambda, \phi)$.

Optimal regularization sign characterization (IND)

Illustration of negative or positive optimal regularization under general alignment.

Theorem 2 (Optimal regularization sign, no shift) Assume $\Sigma_0 = \Sigma$ and $\beta_0 = \beta$. 1. (Underparameterized) When $\phi < 1$, we have $\lambda^* \ge 0$. 2. (Overparameterized) When $\phi > 1$, if for all $v < 1/\mu(0, \phi)$, the following general alignment holds:

$$\frac{\bar{\mathrm{tr}}[\boldsymbol{B}\boldsymbol{\Sigma}(v\boldsymbol{\Sigma}+\boldsymbol{I})^{-2}]+\sigma^2}{\bar{\mathrm{tr}}[\boldsymbol{B}\boldsymbol{\Sigma}(v\boldsymbol{\Sigma}+\boldsymbol{I})^{-3}]+\sigma^2} > \frac{\bar{\mathrm{tr}}[\boldsymbol{\Sigma}(v\boldsymbol{\Sigma}+\boldsymbol{I})^{-2}]}{\bar{\mathrm{tr}}[\boldsymbol{\Sigma}(v\boldsymbol{\Sigma}+\boldsymbol{I})^{-3}]},$$
(2) where $\boldsymbol{B} = \boldsymbol{\beta}\boldsymbol{\beta}^{\top}$, we have $\lambda^* < 0$.

References:

[HMRT] Trevor Hastie et al. "Surprises in high-dimensional ridgeless least squares interpolation". In: *The Annals of Statistics* 50.2 (2022), pp. 949– 986 [DW] Edgar Dobriban and Stefan Wager. "High-dimensional asymptotics of prediction: Ridge regression and classification". In: The Annals of Statistics 46.1 (2018), pp. 247–279 [RMR] Dominic Richards, Jaouad Mourtada, and Lorenzo Rosasco. "Asymptotics of ridge (less) regression under general source condition". In: International Conference on Artificial Intelligence and Statistics. 2021 [WX] Denny Wu and Ji Xu. "On the Optimal Weighted ℓ_2 Regularization in Overparameterized Linear Regression". In: Advances in Neural

Information Processing Systems 33 (2020), pp. 10112–10123

Ryan J. Tibshirani¹

²Department of Statistics, CMU

Optimal regularization sign characterization (OOD)

where $\boldsymbol{B} = \boldsymbol{\beta} \boldsymbol{\beta}^{\top}$, we have $\lambda^* < 0$. **Theorem 5** (Optimal regularization, regression shift). Assume $\Sigma_0 = \Sigma$ and $\beta_0 \neq \beta$. 1. (Underparameterized) When $\phi < 1$, if $\sigma^2 = o(1)$ and for all $\mu \ge 0$, the following general alignment holds:

Ridge regression optimized over $\lambda \geq \nu$ for different thresholds ν has monotonic risk.

Theorem 4 (Optimal regularization, covariate shift). Assume $\Sigma_0 \neq \Sigma$ and $\beta_0 = \beta$. 1. (Underparameterized) When $\phi < 1$, we have $\lambda^* \ge 0$.

2. (Overparameterized) When $\phi > 1$, if $\Sigma_0 = I$ (estimation risk), we have $\lambda^* \ge 0$. 3. (Overparameterized) When $\phi > 1$, if $\Sigma = I$ and

$$\bar{\mathrm{tr}}[\boldsymbol{\Sigma}_{0}\boldsymbol{B}] > \bar{\mathrm{tr}}[\boldsymbol{\Sigma}_{0}] \left(\bar{\mathrm{tr}}[\boldsymbol{B}] + \frac{(1+\mu(0,\phi))^{3}}{\mu(0,\phi)^{3}} \sigma^{2} \right),$$
(3)

$$\bar{\mathrm{tr}}[\boldsymbol{B}_0\boldsymbol{\Sigma}^2(\boldsymbol{\Sigma}+\boldsymbol{\mu}\boldsymbol{I})^{-2}] > \bar{\mathrm{tr}}[\boldsymbol{B}\boldsymbol{\Sigma}^2(\boldsymbol{\Sigma}+\boldsymbol{\mu}\boldsymbol{I})^{-2}], \tag{4}$$

2. (Overparameterized) When $\phi > 1$, if conditions (2) and (4) hold, we have $\lambda^* < 0$.

Covariate and regression shift can lead to negative optimal regularization in both overparameterized and underparameterized regimes.

Optimal risk monotonicity (both IND and OOD)

Theorem 7 (Optimal regularization, regression shift). For $\lambda \ge \lambda_{\min}(\phi)$, for all $\varepsilon > 0$ small enough, the risk of optimal ridge predictor satisfies:

$$\min_{\lambda \ge \lambda_{\min}(\phi) + \varepsilon} R(\widehat{\beta}^{\lambda}) \simeq \min_{\lambda \ge \lambda_{\min}(\phi)} \Re(\lambda, \phi),$$
(5)

and right side of (5) is monotonically increasing in ϕ if SNR and σ_0^2 are fixed. In addition, when $\beta = \beta_0$ it is monotonically increasing in SNR if ϕ , σ^2 , and σ_0^2 are fixed.