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High-dimensional ridge regression

Consider standard regression with feature matrix X ∈ Rn×p and response vector y ∈ Rn

Given a tuning parameter λ, recall that ridge estimator β̂λ solves the optimization problem

minimize
β∈Rp

‖y − Xβ‖2
2/n + λ‖β‖2

2

for any λ > 0, the problem is convex in β and has an explicit closed-form solution given by

β̂λ = (XTX/n + λIp)−1XTy/n

for any λ ∈ R, we can extend the solution using the Moore-Penrose inverse as

β̂λ = (XTX/n + λIp)+XTy/n

when λ = 0, this reduces to least squares solution with minimum `2 norm; in particular, when rank(X) = n ≤ p,

the solution also interpolates data, i.e. Xβ̂ = y, and has minimum `2 norm among all interpolators

In general, the choice of λ crucially affects the performance of the fitted model

Key question: how to select λ based on observed data in high dimensions (p much larger than n)

Prediction error and cross validation

We measure the performance of fitted models β̂λ by their expected squared out-of-sample

prediction error defined as

err(λ) := Ex0,y0
[
(y0 − xT

0 β̂λ)2 | X, y
]
,

where (x0, y0) is a test pair sampled independently from the same training distribution
it is a random quantity (conditional on the observed data X and y)
it is an unknown quantity (depends on unknown characteristics of the data generating distribution)

Several estimators of the prediction error available in the literature:
k-fold cross validation (large bias when k = 5 or even when k = 10)
Generalized cross validation

Stein unbiased error estimate (for in-sample prediction error)

We study the case when k = n also called leave-one-out cross-validation and its approximation

generalized cross-validation and provide theoretical guarantees for tuning λ

Leave-one-out and generalized cross validation

Leave-one-out cross-validation (LOOCV):
for every i, train on all data except (xi, yi), call the estimate β̂−i

λ

compute test error on the ith data point and take average

loo(λ) = 1
n

n∑
i=1

(
yi − xT

i β̂−i
λ

)2

(shortcut)= 1
n

n∑
i=1

(
yi − xT

i β̂λ

1 − [Lλ]ii

)2

where Lλ = X(XTX/n + λIp)+XT/n is the ridge smoothing matrix

Generalized cross-validation (GCV):
same as leave-one-out shortcut but a single re-weighting

gcv(λ) = 1
n

n∑
i=1

(
yi − xT

i β̂λ

1 − tr[Lλ]/n

)2

When β̂λ is an interpolator, i.e. Lλ = In, both estimates are in 0/0 form; in this case, we define

the estimates as their respective limits as λ → 0

Goals of the paper

There are two main questions that we answer in this paper:

1. How do gcv(λ) and loo(λ) compare to err(λ) as functions of λ?

2. How do err(λ̂gcv
I ) and err(λ̂loo

I ) compare to err(λ?
I)

where λ?
I denotes the optimal oracle ride tuning parameter

λ?
I = arg min

λ∈I⊆R
err(λ),

and λ̂
gcv
I and λ̂loo

I denote the corresponding tuning parameters that minimize GCV and

LOOCV over an interval I?

Summary of contributions

Under i.i.d. sampling with

a well-specified model y = xT β0 + ε where ε is independent of x;
decomposable features x = Σ1/2z where z contains i.i.d. entries;

bounded moments of order (4 + η) of ε and z for some η > 0;
bounded norm and eigenvalue conditions on β0 and Σ, respectively

as n → ∞ and p/n → γ ∈ (0, ∞), we show the following:

1. GCV pointwise convergence
gcv(λ) almost surely converges to err(λ) pointwise in λ

2. GCV uniform convergences
convergence holds uniformly over compact intervals of λ (including zero and negative values)

3. LOOCV convergences
the analogous results hold for loo(λ) by relating it to gcv(λ)

4. Optimal tuned prediction errors
both err(λ̂gcv

I ) and err(λ̂loo
I ) almost surely converge to err(λ?

I)

Numerical illustration
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GCVversus prediction error: two key proof steps

Step 1: bias and variance decompositions of prediction error and GCV

Let Σ̂ := XT X/n denote the sample covariance matrix.

limiting bias-like components:
prediction error

errb(λ) := λ2βT
0 (Σ̂ + λI)+Σ(Σ̂ + λI)+β0

GCV

gcvb(λ) := λ2βT
0 (Σ̂ + λI)+Σ̂(Σ̂ + λI)+β0(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

limiting variance-like components:
prediction error

errv(λ) := σ2

[
1 + tr

[
(Σ̂ + λIp)+Σ

]
/n

]
− σ2 tr

[
(Σ̂ + λIp)+Σ(Σ̂ + λIp)+]/n

GCV

gcvv(λ) := σ2

[
1

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

]
−

σ2 tr
[
(Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+]/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2

GCVversus prediction error: two key proof steps

Step 2: bias and variance equivalences for prediction error and GCV

bias components equivalence:

λ2βT
0 (Σ̂ + λI)+Σ(Σ̂ + λI)+β0 −

λ2βT
0 (Σ̂ + λI)+Σ̂(Σ̂ + λI)+β0(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 a.s.−−→ 0

variance components equivalences:

σ2 tr
[
(Σ̂ + λIp)+Σ(Σ̂ + λIp)+

]
/n −

σ2 tr
[
(Σ̂ + λIp)+Σ̂(Σ̂ + λIp)+

]
/n(

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2 a.s.−−→ 0

σ2 tr
[
(Σ̂ + λIp)+Σ

]
/n −

σ2 tr
[
(Σ̂ + λIp)+Σ̂

]
/n

1 − tr
[
(Σ̂ + λIp)+Σ̂

]
/n

a.s.−−→ 0

Main message: the GCV denominator proves to be the right correction for the excess optimism

in the biased GCV numerator of training error

Discussion and future work

This work shows that both GCV and LOOCV uniformly track squared out-of-sample prediction

error for ridge regression under proportional asymptotics.

Main tool:

(Σ̂ + λIp)+Σ �
(Σ̂ + λIp)+Σ̂

1 − tr[(Σ̂ + λIp)+Σ̂]/n

where for any two sequences of matrices Ap and Bp, Ap � Bp is used to mean tr[Cp(Ap − Bp)]
a.s.−→ 0 for any

deterministic sequence of matrices Cp of bounded trace norm

Going beyond …

Equivalences for general functionals of out-of-sample distributions

Equivalences for general estimators

Finite sample analysis and rates of convergence
...


