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High-dimensional ridge regression Goals of the paper GCV versus prediction error: two key proof steps

. Consider standard regression with feature matrix X € R™¥® and response vector y € R” There are two main questions that we answer in this paper: Step 1: bias and variance decompositions of prediction error and GCV

= Given a tuning parameter A, recall that ridge eshme;tor By soIVQes the optimization problem 1. How do scv(\) and loo()\) compare to err()\) as functions of A?
minimize ||y — XB|5/n + Al|B]]3

e 2. How do err(X3™") and err(\°) compare to err(\5) = limiting bias-like components:
where A7 denotes the optimal oracle ride tuning parameter = prediction error

Let & = X1 X /n denote the sample covariance matrix.
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forany A > 0, the problem is convex in # and has an explicit closed-form solution given by 7; — arg min err()\), (A) o ( )3 )" Bo

B\A = (X'X/n+ ML) 'X"y/n AeICR s GCV R -
N N : : R 22T + +
= for any A € R, we can extend the solution using the Moore-Penrose inverse as and )\%CV and )\IIOO denote the COl’reSpOﬂdlng tUﬂlng parameters that minimize GCV and gevy(A) = A5 (2 + )/‘\[> N t)‘[) 250
~ ' ? I —tr (X4 Al,)TX
By = (XTX/n+ ALY X y/n LOOCV over an interval I (1 —tr [+ AL)"E]/n)

= when A = 0, this reduces to least squares solution with minimum £, norm; in particular, when rank(X) =n < p, * limiting variance-like components:

the solution also interpolates data, I.e. XE =y, and has minimum ¢, norm among all interpolators Summary of contributions = prediction error
" |n general, the choice of \ crucially affects the performance of the fitted model = = =
5 Y 2 Under 1i.d. sampling with erry(A) = 0% |1+ tr [(£ 4+ AL) 'Y /n] — o tr (84 AL)TS(E + ALY /n
Key question: how to select A based on observed data in high dimensions (p much larger than . . '
4 = P 5 L = a well-specified model y = 2! By + £ where ¢ is independent of z; " GLV i . 20 [(S 4+ ML) TS(E + AL/
o _ _ » decomposable features z = ©:1/22 where z contains i.i.d. entries: gev, () = o — — ] _ = T &
Prediction error and cross validation + bounded moments of order (4 + 1) of ¢ and = for some 5 > 0; L=t [(B+ M) /n (1=t [(E+ALp) 5] /n)

= bounded norm and eigenvalue conditions on £y and 3, respectively
= \We measure the performance of fitted models EA by their expected squared out-of-sample

ne, as n — oo and p/n — v € (0, 00), we show the following: GCV versus prediction error: two key proof steps

prediction error defined as 1. GCV pointwise convergence

err(\) 1= Egy 4 [<y0 B :IJOTﬁ)\)Z X, y], - gov(A) almost surely converges to err() pointwise in A Step 2: bias and variance equivalences for prediction error and GCV
where (xg, yo) is a test pair sampled independently from the same training distribution 2. GCV uniform convergences * bias components equivalence:
= it is a random quantity (conditional on the observed data X and v) = convergence holds uniformly over compact intervals of A (including zero and negative values) - PN
L . - : L . . )\QﬁT(Z 4 )\[)+Z(Z 4+ )\[)—l—ﬁ

= it is an unknown quantity (depends on unknown characteristics of the data generating distribution) 3. LOOCV convergences )\QBOT@ n )\])+Z(Z n )\I)+5o B 0 0 as., 0

= Several estimators of the prediction error available in the literature: = the analogous results hold for loo(\) by relating it to gev(\)

(1—tr [(E+ ALp)*S] /n)

= k-fold cross validation (large bias when k& = 5 or even when k = 10)
= Generalized cross validation

= Stein unbiased error estimate (for in-sample prediction error)

4. Optimal tuned prediction errors

S < = variance components equivalences:
= both err(A7™) and err(A\°) almost surely converge to err(\})

o tr [(E + ML) ™22 + AL,) T /n TS TFRVATES p > )
— Ur ) n

We study the case when k = n also called leave-one-out cross-validation and its approximation

generalized cross-validation and provide theoretical guarantees for tuning A Numerical illustration ) ~ N o2 tr [(i + A]p)+§] /n s
o° tr [(Z + Alp) Z} /n — : [@ N )+i}/ > ()
. . . og — tr -+ n
Leave-one-out and generalized cross validation 8 Error ’
b || ° g"g‘VE”Of Main message: the GCV denominator proves to be the right correction for the excess optimism

= | eqve-one-out cross-validation (LOOCV):

= for every i, train on all data except (z;, y;), call the estimate EA"'
= compute test error on the i data point and take average

o Min GCV in the biased GCV numerator of training error
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= Overparametrized regime

= Autoregressive ¥ Discussion and future work

Min LOOCV
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1 ~ A2 : : . . :
loo(\) = —Z <yz — :cZﬁ;Z) 20 = 5y aligned with top eigendirection of X , , o
nig This work shows that both GCV and LOOCV uniformly track squared out-of-sample prediction
(shortent) lzn: yi — 7By ’ 18 error for ridge regression under proportional asymptotics.
N L — [Lnii 16 ' | | | | ' Main tool:
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where Ly = X (X' X/n + \I,)* X! /n is the ridge smoothing matrix A S AL
= Generalized cross-validation (GCV): . (S + M)t = ( j p) _
= same as leave-one-out shortcut but a single re-weighting ol ] Error 1 —tr[(X 4+ Ap) "] /n
, s 2 o g/ll(?VError
gev(A) = %Z (1‘%;{%5%) j: il o MinGCV where fo.r e.any two Sequences'of matrices A, and B,, A, < B, is used to mean tr|C,(4, — B,)] 225 0 for any
o | | i=1 | | | | 1 R (s k/lci)nOI_CC;/OCV = Overparametrized regime deterministic sequence of matrices C,, of bounded trace norm

= When g, is an interpolator, i.e. Ly = I, both estimates are in 0/0 form; in this case, we define

= Autoregressive ¥ Going beyond ...

= By aligned with bottom eigendirection of X

the estimates as their respective limits as A — 0

= Equivalences for general functionals of out-of-sample distributions
= Equivalences for general estimators
= Finite sample analysis and rates of convergence
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