Optimization-based frequentist confidence intervals for functionals in constrained inverse problems: Resolving the Burrus conjecture

Motivation

In safety-based applications, we need Uncertainty Quantification (UQ) that is:

- Certifiable: With a clear and transparent set of assumptions and outputs
- Well-calibrated: Precisely adjustable to the desired level of coverage

If it **undercovers**, we incur **unnecessary risk**, if it overcovers, we incur economic cost



Goal

Find an interval as small as possible with finite sample guarantees that contains $\varphi(x^*)$ with probability $1 - \alpha$:

 $\inf_{x \in \mathcal{X}} \mathbb{P}_{y \sim P_x} \left(\varphi(x) \in [I^-(y), I^+(y)] \right) \ge 1 - \alpha$

Stronger notion of intervals than Bayesian credible intervals and only assumes likelihood and constraints

Pau Batlle¹ Pratik Patil² Mike Stanley³ Houman Owhadi¹ Mikael Kuusala³ ¹California Institute of Technology ²University of California, Berkeley ³Carnegie Mellon University

Previous approach

A general method to build intervals with correct coverage is the **simultaneous approach** [Stark '92, '94]:

- (1) Find a 1α confidence set $\mathcal{C}(y)$ for x^*
- (2) Intersect it with the constraint set \mathcal{X}
- (3) Map through $\varphi(x)$

It overcovers, since C(y) does not need to be $1 - \alpha$ for the interval to be $1 - \alpha$

Linear Gaussian model with linear constraints

 $y = Kx^* + \varepsilon, \quad \mathcal{X} = \{x : Ax \le b\}$

with $y \in \mathbb{R}^m$, $x^* \in \mathbb{R}^p$, $\varepsilon \sim \mathcal{N}(0, I_m)$, and $\varphi(x) = h^T x$

- Generally ill-posed, the constraint allows finite-length intervals
- Studied in unfolding gamma-ray and neutron spectra applications
- Most studied constrained inference problem

Burrus conjecture (1965)

Consider the model $y = Kx^* + \varepsilon, \varphi(x) = h^T x$, $\mathbf{A}\mathbf{x}^* \leq b, \varepsilon \sim \mathcal{N}(0, I_m)$ A valid $1 - \alpha$ interval for $\varphi(x^*)$ has extremes given by: $\min_{x} / \max_{x} h^{T}x$ s.t. $\|y - Kx\|_2^2 \le \psi_{\alpha}^2$ $Ax \leq b$

With ψ_{α}^2 much smaller than the simultaneous approach

Contributions

- New optimization-based approach to obtain 1α confidence intervals with frequentist guarantees
- Comes with an algorithm that beats previous approaches in toy and real problems
- Theorem: The Burrus conjecture is false

Numerical example

Our method fixes the Burrus conjecture intervals when they undercover

 $x, y \in \mathbb{R}^3, y = x + \varepsilon, x^* \ge 0, \varphi(x) = x_1 + x_2 - x_3, \varepsilon \sim \mathcal{N}(0, I)$



