Adaptively Calibrated Optimization-Based Confidence Intervals for Inverse Problem Uncertainty Quantification

Mike Stanley (CMU) | February 28, 2024 | SIAM UQ 2024 | Trieste, Italy

Carnegie Mellon University Statistics & Data Science

Collaborators

Pau Batlle (Caltech) Pratik Patil (UC Berkeley)

Mikael Kuusela (CMU) Houman Owhadi (Caltech)

Carnegie Mellon University Statistics & Data Science

Caltech Berkeley UNIVERSITY OF CALIFORNIA

-
- Forward model parameter constraints: $Ax \leq b$ (e.g., $x \geq 0$)
- Additive noise: $y = f(x) + \varepsilon$, $\varepsilon \sim N(0, \Sigma)$, (more generally, $y \sim P_x$)
- Inferential object(s): parameter functionals, $\varphi(\pmb{x}) \in \mathbb{R}$ (e.g., $\varphi(\pmb{x}) = \pmb{h}^T \pmb{x}$)
- [Han et al., 2023].

\n- Deterministic forward model:
$$
f: \mathbb{R}^p \to \mathbb{R}^n
$$
, $x \mapsto f(x)$, (e.g., $f(x) = Kx$, $K \in \mathbb{R}^{n \times p}$)
\n- Forward model parameter constraints: $Ax \leq b$ (e.g., $x \geq 0$)
\n

• Applications where this setting arises: carbon flux inversion [Stanley et al., 2024b], remote sensing (XCO2) [Patil et al., 2022], and particle unfolding [Kuusela, 2016], [Stanley et al., 2022],

UQ in this setting and some challenges

Inverse Problem Uncertainty Quantification

=

Reporting statistically guaranteed uncertainty quantification of the inferred functional value following from the noisy observation and the forward model

Statistically guaranteed: a confidence interval, $I(y)$, with a **coverage** guarantee, i.e., $\forall x^* \in \mathscr{X}, \ \ \mathbb{P}\left(\varphi(x^*) \in I(y)\right) \geq 1-\alpha$ for a chosen level $\alpha \in [0,1].$

-
- Making $I(y)$ constraint-aware (e.g., $x \ge 0$) while retaining the desired coverage guarantee is highly non-trivial.

• III-posed problems make $f^{-1}(\mathcal{E}(y))$ difficult to work with (e.g., null $(K) \neq \{0\}$),

Optimization-based confidence intervals provide a start to a solution

$$
I(\psi_\alpha^2, \mathbf{y}) := [\varphi^l(\mathbf{y}), \varphi^u(\mathbf{y})] =
$$

$$
(\mathbf{y})\big] = \left[\min_{\mathbf{x} \in D(\psi_\alpha^2, \mathbf{y})} \varphi(\mathbf{x}), \max_{\mathbf{x} \in D(\psi_\alpha^2, \mathbf{y})} \varphi(\mathbf{x})\right]
$$

$$
\forall x^* \in \mathcal{X}, \ \mathbb{P}\left(\varphi(x^*) \in I\left(\psi_\alpha^2, y\right)\right) \ge 1 - \alpha
$$

$$
D(\psi_\alpha^2, y) := \left\{ x : ||y - Kx||_2^2 \leq \psi_\alpha^2 \text{ and } Ax \leq b \right\}.
$$

Related references: [Rust/Burrus, 1972], [Stark, 1992], [O'Leary/Rust, 1994], [Tenorio et al., 2007], [Patil et al., 2022], [Stanley et al., 2022], [Batlle et al., 2023]

A key challenge: setting ψ_{α}^2 to obtain this coverage guarantee ψ_{α}^2 *α*

There is a way to frame the interval computation as two endpoint optimizations

such that

where

Optimization-based confidence intervals provide a start to a solution (cont.)

- They provide a start to a solution because they,
	- reframe inference as optimization (good for computation),
	- elegantly handle the parameter constraints in the endpoint optimizations.
- However, setting ψ_{α}^2 to provide the coverage guarantee turns out to be non-trivial.
	- For **simultaneous (SSB) coverage** : $\psi_{\alpha}^{2} := \chi_{n,\alpha}^{2}$ [Stark, 1992]
	- For **one-at-a-time (OSB) coverage** : $\psi^2_{\alpha} := \chi^2_{1,\alpha} + s^2$, where [Patil et al., 2022], [Rust and O'Leary, 1994], [Stanley et al., 2022] $\psi_{\alpha}^2 := \chi_{1,\alpha}^2 + s^2$, where $s^2 = \min_{\mathbf{x} \in \mathcal{A}} \mathbf{x}$ *x*: *Ax*≤*b* $||y - Kx||_2^2$ 2
- However, the OSB setting does not hold in general Tenorio et al. 2007, Batlle et al. 2023]

An **outline** of this talk and some main **take-aways**

- - calibrate these optimization-based intervals.
	- **•** We call it **adaOSB** for "adaptive OSB"
- - covers $(p = 80)$.

• Take-away: our method is the first computationally feasible approach to properly

• **Take-away**: our method provides coverage in low dimensional $(p = 3)$ example where OSB does not, and improves interval length in a scenario where OSB empirically over-

1. Building on the work of [Batlle et al. 2023], we present a method to set ψ_α^2 in a datadependent way to achieve interval coverage and improve interval length relative to OSB. *α*

2. We explore three numerical studies to demonstrate the method and its advantages.

The optimized interval can be seen an inverted hypothesis test

• **Theorem 2.4** [Batlle et al. 2023]: the critical value controlling type-1 error of the $\frac{2}{\alpha}$, $\mathbf{y})$

• There is a particular hypothesis test and log-likelihood ratio test statistic recovering the interval

$$
I(\psi_{\alpha}^2, y) = \begin{cases} \mu \in \mathbb{R} : \lambda(\mu, \mu) \end{cases}
$$

 $\lambda(\mu, y)$ is an LLR test statistic and q_α is a critical value ensuring P (type-1 error) $\leq \alpha$ for all $x^* \in$

test can also be used to calibrate $I(\psi_{\alpha}^2)$

$I\left(\psi_{\alpha}^{2},y\right)=\left\{ \mu\in\mathbb{R}:\lambda(\mu,y)\leq q_{\alpha}\right\}$ where $\psi_{\alpha}^{2}:=q_{\alpha}+s^{2}$ esis test

The previously mentioned q_{α} is both difficult to obtain and statistically conservative *qα*

optimization which is known to be strong NP-hard and non-convex [Batlle et

 $x^*\in\mathscr{X}$, we are protecting against all potential true parameter states and

- Difficult to obtain: finding q_α involves solving a chance constrained al. 2023].
- Statistically conservative: In order for q_α to control type-1 error for all therefore might be overly conservative.

We will demonstrate a method that avoids solving the complicated optimizations and provides length benefits in some cases

The hypothesis test connection can calibrate these optimization-based intervals

- First, let $Q_x : [0,1] \to \mathbb{R}$ be the quantile function of $\lambda(\mu, y)$ at x , i.e. $\mathbb{P}\left(\lambda(\mu, y) \leq Q_x(1-\alpha)\right) = 1-\alpha.$
- $x^* \in \mathscr{X}$ denote the true but unknown parameter. Clearly, if we knew x^*
- Core of the idea: we can always obtain a 1η confidence set for x^* by $q_{\gamma} := \max_{\alpha \in \mathcal{C}^{-1}(\Gamma)} Q_{x}(1-\gamma)$, such that $(1-\eta)(1-\gamma) = 1-\alpha$. $x \in f^{-1}(\Gamma_{\eta}(y))$
- set.

• Let $x^* \in \mathcal{X}$ denote the true but unknown parameter. Clearly, if we knew x^* , we could compute $Q_{r*}(1-\alpha)$ and calibrate our interval using $\psi_\alpha^2:=Q_{r*}(1-\alpha)+s^2.$ But we don't! $Q_{x^*}(1 - \alpha)$ and calibrate our interval using $\psi_{\alpha}^2 := Q_{x^*}(1 - \alpha) + s^2$

 $f^{-1}(\Gamma_\eta(\mathbf{y})) := \left\{ \bm{x} \in \mathscr{X} : \|\bm{y} - \bm{K}\bm{x}\|_2^2 \leq \chi^2_{n,\eta} \right\}.$ We can then calibrate the interval by using $Q_x(1-\gamma)$, Such that $(1-\eta)(1-\gamma)=1-\alpha$. Uncertainty budget, trading off between γ confidence set (*η*) and quantile level (*γ*)

• This idea is similar to [Berger and Boos, 1994] and [Masserano et al., 2024], where tests involving nuisance parameters are controlled maximizing a p-value over a data-informed

• Similar to the ideas present in [Dalmasso et al., 2020] [Dalmasso et al., 2022],

We estimate q_{γ} using sampling and quantile regression

[Masserano et al., 2023], Masserano et al., 2024]

x∈*f* [−]¹ (Γ*η*(*y*))∩ $\hat{q}(x)$

5. Compute
$$
I(q_\gamma + s^2, y)
$$
 with the guarantee that $\forall x^* \in \mathcal{X}$, $\mathbb{P}_{y \sim P_{x^*}}(\varphi(x^*) \in I(q_\gamma + s^2, y)) \ge 1 - \alpha$.

adaOSB Algorithm

1. Let $\alpha, \gamma, \eta \in (0,1)$ such that $\gamma(1-\eta)+\eta=\alpha$, and $\Gamma_{\eta}(y)$ be a $1-\eta$ confidence set containing $f(x^*)$. Then $f^{-1}\left(\Gamma_{\eta}(\mathbf{y})\right)$ is a $1-\eta$ confidence set for $\mathbf{x}^{*}.$

2. Generate samples $\tilde{x}_1, \tilde{x}_2, ..., \tilde{x}_M \sim \mathcal{U}\left(f^{-1}\left(\Gamma_{\eta}(\mathbf{y})\right)\right).$

3. Sample LLRs $\lambda_i \thicksim F_{\tilde{\bm{x}}_i}$

4. Use generated data $\{(\tilde{x}_i, \lambda_i)\}_{i=1}^M$ to fit a quantile regressor, $\hat{q}(\pmb{x})$, and estimate $q_\gamma:=\max_{\pmb{x}\in\mathbb{R}^d\setminus\Gamma(\pmb{x})}$

Task 2

The pros and cons of this approach

• By finding $q_{\gamma} := \max_{\mathbf{x} \in f^{-1}(\Gamma(\mathbf{v}))} Q_{\mathbf{x}}(1 - \gamma)$, we avoid both $x \in f^{-1}(\Gamma_{\eta}(y))$ $Q_{\mathbf{x}}(1-\gamma)$

1. Optimizing over a potentially unbounded space (e.g., $\mathscr{X} = \mathbb{R}^p_+$)

- 2. Controlling for all $x \in \mathcal{X}$ since we simply focus on the parameter values in $f^{-1}(\Gamma_{\eta}(\mathbf{y}))$ and adequately adjust the quantile we use. (Γ*η*(*y*))
- We shift the complexity to estimating q_{γ} :
	- Sample generation is non-trivial we develop two approaches for this.
	- 2. Estimating the max quantile via quantile regression
-
- +

• Accept/Reject sampling uniformly from the pre-image ellipsoid is possible via [Voelker et al., 2017] but as p gets large, and therefore becomes practically infeasible in higher dimensions

• We find a bounding polytope of $f^{-1}(\Gamma_\eta(\bm{y}))$ with hyperplanes defined by both the principal axes of the pre-image ellipsoid, the non-negativity constraints, and H additional randomly chosen

Implementation practicalities Sampling $f^{-1}(\Gamma_{\eta}(y))$

- we want to sample the intersection of the ellipsoid $\mathscr{E}(\bm{y}) := \{\bm{x} : ||\bm{y} \bm{K}\bm{x}||_2^2 \leq \chi^2_{n,\eta}\}$ and the nonnegative orthant.
- **• Two strategies**
	- (e.g., $p \geq 10$) $\mathbb{P}(x_i \in \mathbb{R}_+^p) \to 0$ as p
	- **•** MCMC: Convex body [Smith, 1984] or polytope samplers [Chen et al., 2018]
		- hyperplanes.

• For our examples, we focus on the scenario when $\mathscr{X}=\R^p_+$, $f(x)=\bm{K} x$, and $\varepsilon\sim N(\bm{0},\Sigma)$, implying that f^p_{+} , $f(\pmb{x}) = \pmb{K} \pmb{x}$, and $\varepsilon \sim N(\pmb{0}, \Sigma)$

Implementation practicalities Quantile Regression

- Once we sample $\{(\tilde{x}_i, \lambda_i)\}_{i=1}^M$, we perform quantile regression to learn $\hat{q}(\pmb{x})$
- In principle, this regression can be done with any supervised learning algorithm using the pin-ball loss (e.g., [Meinshausen, 2006], [Takeuchi et al., 2006], [Dalmasso et al., 2020], [Dalmasso et al., 2021], [Masserano et al., 2023])
	- we use gradient-boosted regression since it has a clean implementation in sklearn.
- Estimation of q_γ : we sample in independent MCMC chain, $\{\bar{x_i}\}_{i=1}^M$, and use the maximum out-of-sample predicted *γ*-quantile: $\hat{q}_{\gamma} := \max_{i \in M}$ *i*=1 ̂ *i*∈[*M*] $\hat{q}(\bar{\bm{x}}_i)$
	- Lemma 3.3 [Stanley et al., 2024]: \hat{q}_{γ} is a consistent estimator of q_{γ} . ̂
	- **• Theorem 1** [Dalmasso et al., 2021]: Quantile regression provides a consistent estimator of the quantile function.

Numerical Examples

Examples we consider

1. **Exposition** of method in simple 2d example [Tenorio et al., 2007] [Batlle et al.

- 2023]
- $y = x + \varepsilon$, $\varepsilon \sim N(0, I)$, $\varphi(x) =$
- 2. **Valid Coverage** in a 3d scenario when OSB fails [Batlle et al. 2023]
- $y = x + \varepsilon$, $\varepsilon \sim N(0, I)$, $\varphi(x) = x_1$
	- empirically valid [Stanley et al. 2022] [Stanley et al. 2024a]

We use $N = 1000$ samples to estimate <u>interval coverage</u> and <u>length</u> of OSB and adaOSB

$$
x_1 - x_2
$$
, $\mathscr{X} = \mathbb{R}_+^2$, $x^* = (0.5 \ 0.5)^T$

$$
{1} + x{2} - x_{3}, \quad \mathcal{X} = \mathbb{R}^{3}_{+}, \quad x^{*} = (0 \quad 0 \quad 1)
$$

3. Length Improvement in a high dimensional $(p = 80)$ scenario when OSB is

 $y = \bm{K} x + \bm{\varepsilon}, \quad \bm{\varepsilon} \sim N(\bm{0},\bm{\Sigma}), \quad \varphi(x) = \bm{h}^T x, \quad \mathscr{X} = \mathbb{R}^{80}_+, \quad x^*$ defined mean bin counts $\begin{matrix} 80 \\ +3 \end{matrix}$ $\begin{matrix} x^* \end{matrix}$

Example 1: Exposition 2d

- $y = x + \varepsilon$, $\varepsilon \sim N(0, I)$, $\varphi(x) =$
- *q ^γ* := max ̂ *i*∈[*M*] $Q_{\tilde{x}}(1-\gamma)$
- that $\gamma = 0.3131$.
- Since $p = 2$, our accept/reject ellipsoid sampler is effective for sampling *x* ˜ $\chi_i \sim \mathcal{U}(f^{-1}(\Gamma_{\eta}(y))))$

• Since for any x, we can efficiently estimate $Q_x(1 - \gamma)$ in this example using Monte Carlo simulation, we do not use quantile regression, but rather use

• We look to optimize a 68% interval ($\alpha = 0.32$). With $\eta := 0.01$, this implies

$$
x_1 - x_2
$$
, $\mathscr{X} = \mathbb{R}_+^2$, $x^* = (0.5 \ 0.5)^T$

Example 1: Exposition 2d - We can see all the moving parts $y = x + \varepsilon$, $\varepsilon \sim N(0, I)$, $\varphi(x) = x_1 - x_2$,

 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 **OSB** adaOSB Oracle

Estimated Interval Coverages

Example 2: Valid Coverage 3d - adaOSB adequately upper bounds true quantile and thus fixes coverage $y = x + \varepsilon$, $\varepsilon \sim N(0, I)$, $\varphi(x) = x_1 + x_2 - x_3$, $= \mathbb{R}^{3}_{+}$ $^3_+, x^* = (0 \ 0 \ 1)$

Example 3: Length Improvement

High dimension - Particle unfolding simulation where adaOSB shows a dramatic length improvement

 $y = \bm{K} x + \bm{\varepsilon}, \quad \bm{\varepsilon} \sim N(\bm{0},\bm{\Sigma}), \quad \varphi(x) = \bm{h}^T x, \quad \mathscr{X} = \mathbb{R}^{80}_+, \quad x^*$ defined mean bin counts $\begin{matrix} 80 \\ +3 \end{matrix}$ $\begin{matrix} x^* \\ x^* \end{matrix}$

• High dimensions necessitate MCMC polytope sampler and quantile regression

Recap and conclusions

- 1. Building on the work of [Batlle et al. 2023], we presented a method to set ψ_α^2 in a datadependent way to achieve interval coverage and improve interval length relative to OSB. *α*
	- **• Take-away**: our method is the first computationally feasible approach to properly calibrate these optimization-based intervals.
	- **• Key Steps:** using an uncertainty budget to bound the set of feasible parameter values, sampling the pre-image confidence set, estimating the max quantile.
- 2. We explored three numerical studies to demonstrate the method and its advantages.
	- **Take-away**: our method provides coverage in low dimensional $(p = 3)$ example where OSB does not, and improves interval length in a scenario where OSB empirically overcovers $(p = 80)$.

Thank You!

Please let me know if you have any follow up questions: **mcstanle@andrew.cmu.edu**

References

(1) Batlle, P., Stanley, M., Patil, P., Kuusela, M., Owhadi, H. (2023). Confidence intervals for functionals in constrained inverse problems: An optimization-centric perspective with frequentist guarantees.

(5) Dalmasso, N., Masserano, L., Zhao, D., Izbiki, R., Lee, A. (2021). Likelihood-Free Frequentist Inference: Bridging Classical Statistics and Machine Learning For Reliable Simulator-Based Inference.

(8) Masserano, L., Dorigo, T., Izbiki, R., Kuusela, M., Lee, A. (2023). Simulator-based Inference with WALDO: Confidence Regions by Leveraging Prediction Algorithms and Posterior Estimators for

- *Arxiv*.
- (2) Roger L. Berger and Dennis D. Boos. (1994). *P* Values Maximized Over a Confidence Set for the Nuisance Parameter. *Journal of the American Statistical Association.*
- (3) Chen, Y., Dwivedi, R., Wainwright, M., Yu, B. (2018). Fast MCMC Sampling Algorithms on Polytopes. *Journal of Machine Learning Research*.
- (4) Dalmasso, N., Izbiki, R., Lee, A. (2020) Confidence and Hypothesis Testing in a Likeilhood-Free Inference Setting. *International Conference on Machine Learning.*
- *Arxiv*.
- (6) Han, T., Low, M., Wu, T. A. (2023). Quantum Entanglement and Bell Inequality Violation in Semi-Leptonic Top Decays. *Arxiv*.
- (7) Kuusela, M. (2016). Uncertainty quantification in unfolding elementary particle spectra at the Large Hadron Collider. *PhD Thesis.*
- Inverse Problems. *International Conference on Artificial Intelligence and Statistics.*
- (9) Masserano, L., Shen, A., Doro, M., Dorigo, T., Izbiki, T., Lee, A. (2024). Classification Under Nuisance Parameters and Generalized Label Shift in Likelihood-Free Inference. *Arxiv*.
- (10)Meinshausen, N. (2006). Quantile Regression Forests. *Journal of Machine Learning Research*.
- (11)Patil, P., Kuusela, M., Hobbs, J. (2022). Objective frequentist uncertainty quantification for atmospheric CO2 retrievals. *SIAM / ASA Journal on Uncertainty Quantification*.
- (12)B. W. Rust and W. R. Burrus (1972). Mathematical programming and the numerical solution of linear equations. *American Elsevier Publishing Company*.
- (13)B. W. Rust and D. P. O'Leary (1994). Confidence intervals for discrete approximations to ill-posed problems. *Journal of Computational and Graphical Statistics. 3*.
- (14)Smith, R.L. (1984). Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed Over Bounded Regions. *Operations Research*.
-

(15)Stanley, M., Patil, P., Kuusela, M. (2022). Uncertainty quantification for wide-bin unfolding: one-at-a-time strict bounds and prior-optimized confidence intervals. *Journal of Instrumentation*.

(16)Stanley, M., Batlle, P., Kuusela, M., Owhadi, H. (2024a). AdaOSB: adaptive one-at-a-time strict bounds for functionals in constrained inverse problems. *In progress***.**

- (17)Stanley, M., Kuusela, M., Byrne, B., Liu, J. (2024b). Optimization-based confidence intervals for regional carbon flux inversion uncertainty quantification. *In progress*.
- (18)Stark, P. (1992). Inference in Infinite-Dimensional Inverse Problems: Discretization and Duality. *Journal of Geophysical Research.*
- (19)Takeuchi, I., Q. V., Sears, T. D., and Smola, A. J. (2006). Nonparametric quantile estimation. *Journal of Machine Learning*, 7:1231-1264.

Appendix

Developing the test inversion formalism in this setting provides a new perspective

Test Statistic (LLR)
$$
\lambda(\mu, y) := -2 \log \Lambda(\mu, y) = -2 \left(\sup_{x \in \Phi_{\mu} \cap \mathcal{X}} \ell_{x}(y) - \sup_{x \in \mathcal{X}} \ell_{x}(y) \right)
$$

$$
= \inf_{x \in \Phi_{\mu} \cap \mathcal{X}} -2\ell_{x}(y) - \inf_{x \in \mathcal{X}} -2\ell_{x}(y)
$$
Sup $\mathbb{P}_{\lambda \sim F_{x}} (\lambda > q_{\alpha}) \le \alpha$ Test T_{μ} is a level- α test

$$
\sup_{\text{Level } \alpha \text{ test}} \mathbb{P}_{\lambda \sim F_x} (\lambda > q_\alpha) :
$$

Let $Q_x : [0,1] \to \mathbb{R}$ be the quantile
 $Q_x (1 - \alpha)$ produces a level- α test.

$$
\div \varphi(\mathbf{x}) = \mu \Big\} \subset \mathbb{R}^p
$$

 $\text{versus} \quad H_1 : x^* \in \mathcal{X} \backslash \Phi_\mu$

Let $\mathcal{Q}_x : [0,1] \to \mathbb{R}$ be the quantile function of $\lambda(\mu, y)$ at x . Using

Ellipsoid Sampler Uniform sampling in *p*-ball + Accept/reject

- [Voelker et al., 2017] presented and proved an interesting and efficient algorithm to sample uniformly at random from the p -ball. First, sample uniformly from the $(p+1)$ -sphere (possible with Gaussian RNG) followed by dropping any two coordinates.
	- We refer to a sample drawn from the p-ball via "Voelker-Gosmann-Stewart" (VGS) by $\bm{x} \thicksim VGS(p)$
- Consider an ellipsoid defined by $\mathscr{E}(r) := \{x : x^TAx \leq r\}$ and let $P\Omega^2 P^T$ be the eigendecomposition of $PSD A$.
- If $\bm{x}\thicksim VGS(p)$, then $\bm{y}:=\sqrt{\chi_{n,\eta}^2}\bm{P}\bm{\Omega}\bm{x}$ is sampled uniformly at random from $x \sim VGS(p)$, then $y := \sqrt{\chi^2_{n,\eta}P\Omega x}$ is sampled uniformly at random from $\mathscr{E}(\chi^2_{n,\eta})$
- To incorporate constraints, simple reject y if y ∉
- NOTE: this approach works well in low dimensions and when $f(x) = Kx$, where K is full column rank.

$$
\notin \mathscr{X}
$$

MCMC Polytope Sampler Implementation details and considerations

• Since this sampling is an MCMC algorithm, we consider a few different convergence plots to

- additional randomly chosen hyperplanes.
- the defined polytope is the Markov chain's stationary distribution
- assess sufficient mixing:
	- Trace plots of individual parameters
	- - **• Fixed** allows for us to get a sense of the Markov chain convergence
		- **• Cumulative** allows us to assess the stability the max predicted quantile

• We construct a bounding polytope for $f^{-1}(\Gamma_\eta(\bm{y}))$ using the principal axes of the confidence set ellipsoid (2 p), the hyper-rectangle defined by the non-negativity constraints (2 p) and 200

• We use the Vaidya sampler detailed in [Chen et al., 2018], where the uniform distribution over

• Ensembles of max predicted quantiles for both **fixed data set** size and **cumulative**

MCMC Polytope Sampler (con't) Parameter Trace Plots

Four arbitrarily chosen parameter trace plots show nice mixing

MCMC Polytope Sampler (con't) **Fixed** Max-q trace plots

Ensemble width stabilizes after ~15k iterations

MCMC Polytope Sampler (con't) **Cumulative** Max-q trace plots

Ensemble mean stabilizes after ~10k iterations

2d Exposition example Additional figures and details

Realization 0 with pax estimated quantile Monte Carlo Sampling to estimate $Q_x(1 - \gamma)$

- 1. Generate an ensemble of samples, $y_i = x + \varepsilon_i$ and therefore LLR samples, $\lambda(h^T x, y_i)$. *λ*(*h^T x*, *yⁱ*)
- 2. From our generated ensemble, we can simply use the $(1 - \gamma)$ percentile estimator.

More on particle unfolding

The data generating process for our histogram is

-
- *y* ∼ Poisson(*Kλ*),

$\mathbf{y} \sim N(K\lambda, \Sigma), \quad \Sigma_{ii} = (K\lambda)_i, \forall i.$

which we approximate by

For more information, see [Kuusela, 2016] and [Stanley et al., 2022]