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Setting of interest
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x

f −1(y) = {x : f(x) ∈ ℰ(y)}

f

f(x)

y

ℰ(y)

• Deterministic forward model: , , (e.g., )


• Forward model parameter constraints:  (e.g., )


• Additive noise: , (more generally, )


• Inferential object(s): parameter functionals,  (e.g., )


• Applications where this setting arises: carbon flux inversion [Stanley et al., 2024b], remote 
sensing (XCO2) [Patil et al., 2022], and particle unfolding [Kuusela, 2016], [Stanley et al., 2022], 
[Han et al., 2023].

f : ℝp → ℝn x ↦ f(x) f(x) = Kx, K ∈ ℝn×p

Ax ≤ b x ≥ 0
y = f(x) + ε, ε ∼ N(0, Σ) y ∼ Px

φ(x) ∈ ℝ φ(x) = hT x

Parameter Space: 𝒳 ⊂ ℝp Observation Space: ℝn



UQ in this setting and some challenges

4

Inverse Problem Uncertainty Quantification

=


Reporting statistically guaranteed uncertainty quantification of the inferred functional 
value following from the noisy observation and the forward model

Statistically guaranteed: a confidence interval, , with a coverage guarantee, i.e., 

 for a chosen level .

I(y)
∀x* ∈ 𝒳, ℙ (φ(x*) ∈ I(y)) ≥ 1 − α α ∈ [0,1]

• Ill-posed problems make  difficult to work with (e.g., ),


• Making  constraint-aware (e.g., ) while retaining the desired 
coverage guarantee is highly non-trivial.

f −1(ℰ(y)) null(K) ≠ {0}

I(y) x ≥ 0



Optimization-based confidence intervals 
provide a start to a solution
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I (ψ2
α, y) := [φl(y), φu(y)] = [ min

x∈D(ψ2
α, y)

φ(x), max
x∈D(ψ2

α, y)
φ(x)]

∀x* ∈ 𝒳, ℙ (φ(x*) ∈ I (ψ2
α, y)) ≥ 1 − α

.D(ψ2
α, y) := {x : ∥y − Kx∥2

2 ≤ ψ2
α and Ax ≤ b}

A key challenge: 
setting  to obtain 
this coverage 
guarantee

ψ2
α

There is a way to frame the interval computation as two endpoint optimizations

such that

where

Related references: [Rust/Burrus, 1972], [Stark, 1992], [O’Leary/Rust, 1994], [Tenorio et al., 2007], [Patil et al., 2022], [Stanley et al., 2022], [Batlle et al., 2023]



• They provide a start to a solution because they,


• reframe inference as optimization (good for computation),


• elegantly handle the parameter constraints in the endpoint optimizations.


• However, setting  to provide the coverage guarantee turns out to be non-trivial.


• For simultaneous (SSB) coverage :  [Stark, 1992]


• For one-at-a-time (OSB) coverage : , where  
[Patil et al., 2022], [Rust and O’Leary, 1994], [Stanley et al., 2022] 


• However, the OSB setting does not hold in general [Tenorio et al. 2007, Batlle et al. 2023]

ψ2
α

ψ2
α := χ2

n,α

ψ2
α := χ2

1,α + s2 s2 = min
x: Ax≤b

∥y − Kx∥2
2
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Optimization-based confidence intervals 
provide a start to a solution (cont.)



An outline of this talk and some main take-aways

1. Building on the work of [Batlle et al. 2023], we present a method to set  in a data-
dependent way to achieve interval coverage and improve interval length relative to OSB.


• Take-away: our method is the first computationally feasible approach to properly 
calibrate these optimization-based intervals.


• We call it adaOSB for “adaptive OSB” 

2. We explore three numerical studies to demonstrate the method and its advantages.


• Take-away: our method provides coverage in low dimensional ( ) example where 
OSB does not, and improves interval length in a scenario where OSB empirically over-
covers ( ).

ψ2
α

p = 3

p = 80

7



The optimized interval can be seen an inverted 
hypothesis test
• There is a particular hypothesis test and log-likelihood ratio test statistic 

recovering the interval


• Theorem 2.4 [Batlle et al. 2023]: the critical value controlling type-1 error of the 
test can also be used to calibrate I(ψ2

α, y)
8

 where I (ψ2
α, y) = {μ ∈ ℝ : λ(μ, y) ≤ qα} ψ2

α := qα + s2
Inverted hypothesis test

 is an LLR test statistic and  is a critical value ensuring 
 for all 

λ(μ, y) qα
ℙ(type-1 error) ≤ α x* ∈ 𝒳

OSB interval



The previously mentioned  is both difficult to 
obtain and statistically conservative

qα

• Difficult to obtain: finding  involves solving a chance constrained 
optimization which is known to be strong NP-hard and non-convex [Batlle et 
al. 2023].


• Statistically conservative: In order for  to control type-1 error for all 
, we are protecting against all potential true parameter states and 

therefore might be overly conservative.

qα

qα
x* ∈ 𝒳
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We will demonstrate a method that avoids solving the complicated 
optimizations and provides length benefits in some cases



The hypothesis test connection can calibrate 
these optimization-based intervals
• First, let  be the quantile function of  at , i.e. 

.


• Let  denote the true but unknown parameter. Clearly, if we knew , we could 
compute  and calibrate our interval using . But we don’t! 


• Core of the idea: we can always obtain a  confidence set for  by 
. We can then calibrate the interval by using 

, such that .


• This idea is similar to [Berger and Boos, 1994] and [Masserano et al., 2024], where tests 
involving nuisance parameters are controlled maximizing a p-value over a data-informed 
set.

Qx : [0,1] → ℝ λ(μ, y) x
ℙ (λ(μ, y) ≤ Qx(1 − α)) = 1 − α

x* ∈ 𝒳 x*
Qx*(1 − α) ψ2

α := Qx*(1 − α) + s2

1 − η x*
f −1(Γη(y)) := {x ∈ 𝒳 : ∥y − Kx∥2

2 ≤ χ2
n,η}

qγ := max
x∈f −1(Γη(y))

Qx(1 − γ) (1 − η)(1 − γ) = 1 − α
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Uncertainty budget, trading off between 
confidence set ( ) and quantile level ( )η γ



We estimate  using sampling and quantile regressionqγ

• Similar to the ideas present in [Dalmasso et al., 2020] [Dalmasso et al., 2022], 
[Masserano et al., 2023], Masserano et al., 2024]
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1. Let  such that , and  be a  confidence set containing . Then 

 is a  confidence set for .


2. Generate samples .


3. Sample LLRs 


4. Use generated data  to fit a quantile regressor, , and estimate 


5. Compute  with the guarantee that .

α, γ, η ∈ (0,1) γ(1 − η) + η = α Γη(y) 1 − η f(x*)
f −1 (Γη(y)) 1 − η x*

x̃1, x̃2, …, x̃M ∼ 𝒰 (f −1 (Γη(y)))
λi ∼ Fx̃i

{(x̃i, λi)}M
i=1 ̂q(x) qγ := max

x∈f −1(Γη(y))∩𝒳
̂q(x)

I (qγ + s2, y) ∀x* ∈ 𝒳, ℙy∼Px* (φ(x*) ∈ I (qγ + s2, y)) ≥ 1 − α

adaOSB Algorithm

Task 2

Task 1



The pros and cons of this approach

• By finding , we avoid both


1. Optimizing over a potentially unbounded space (e.g., )


2. Controlling for all  since we simply focus on the parameter values in 
 and adequately adjust the quantile we use.


• We shift the complexity to estimating :


1. Sample generation is non-trivial - we develop two approaches for this.


2. Estimating the max quantile via quantile regression 

qγ := max
x∈f −1(Γη(y))

Qx(1 − γ)

𝒳 = ℝp
+

x ∈ 𝒳
f −1(Γη(y))

qγ
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Implementation practicalities
Sampling f −1(Γη(y))

• For our examples, we focus on the scenario when , , and , implying that 
we want to sample the intersection of the ellipsoid  and the non-
negative orthant.


• Two strategies


• Accept/Reject sampling uniformly from the pre-image ellipsoid is possible via [Voelker et al., 2017] but 
 as  gets large, and therefore becomes practically infeasible in higher dimensions 

(e.g., )


• MCMC: Convex body [Smith, 1984] or polytope samplers [Chen et al., 2018]


• We find a bounding polytope of  with hyperplanes defined by both the principal axes of 
the pre-image ellipsoid, the non-negativity constraints, and  additional randomly chosen 
hyperplanes. 

𝒳 = ℝp
+ f(x) = Kx ε ∼ N(0, Σ)

ℰ(y) := {x : ∥y − Kx∥2
2 ≤ χ2

n,η}

ℙ(xi ∈ ℝp
+) → 0 p

p ≥ 10

f −1(Γη(y))
H
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Implementation practicalities
Quantile Regression

• Once we sample , we perform quantile regression to learn 


• In principle, this regression can be done with any supervised learning algorithm using the pin-ball loss 
(e.g., [Meinshausen, 2006], [Takeuchi et al., 2006], [Dalmasso et al., 2020], [Dalmasso et al., 2021], 
[Masserano et al., 2023])


• we use gradient-boosted regression since it has a clean implementation in sklearn.


• Estimation of : we sample in independent MCMC chain, , and use the maximum out-of-sample 
predicted -quantile: 


• Lemma 3.3 [Stanley et al., 2024]:  is a consistent estimator of .


• Theorem 1 [Dalmasso et al., 2021]: Quantile regression provides a consistent estimator of the 
quantile function.

{(x̃i, λi)}M
i=1 ̂q(x)

qγ {x̄i}M
i=1

γ ̂qγ := max
i∈[M]

̂q(x̄i)

̂qγ qγ
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Numerical Examples
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Examples we consider
1. Exposition of method in simple 2d example [Tenorio et al., 2007] [Batlle et al. 

2023]


2. Valid Coverage in a 3d scenario when OSB fails [Batlle et al. 2023]


3. Length Improvement in a high dimensional ( ) scenario when OSB is 
empirically valid [Stanley et al. 2022] [Stanley et al. 2024a]

p = 80
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y = x + ε, ε ∼ N(0, I), φ(x) = x1 − x2, 𝒳 = ℝ2
+, x* = (0.5 0.5)T

y = x + ε, ε ∼ N(0, I), φ(x) = x1 + x2 − x3, 𝒳 = ℝ3
+, x* = (0 0 1)T

 defined mean bin countsy = Kx + ε, ε ∼ N(0, Σ), φ(x) = hT x, 𝒳 = ℝ80
+ , x*

We use  samples to estimate interval coverage and length of 
OSB and adaOSB

N = 1000



Example 1: Exposition
2d

• Since for any , we can efficiently estimate  in this example using 
Monte Carlo simulation, we do not use quantile regression, but rather use 




• We look to optimize a 68% interval ( ). With , this implies 
that .


• Since , our accept/reject ellipsoid sampler is effective for sampling 

x Qx(1 − γ)

̂qγ := max
i∈[M]

Qx̃(1 − γ)

α = 0.32 η := 0.01
γ = 0.3131

p = 2
x̃i ∼ 𝒰( f −1(Γη(y)))
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y = x + ε, ε ∼ N(0, I), φ(x) = x1 − x2, 𝒳 = ℝ2
+, x* = (0.5 0.5)T



Example 1: Exposition
2d - We can see all the moving parts
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Estimated Interval CoveragesSampling f −1(Γη(y))

Observed distribution of ̂qγ

y = x + ε, ε ∼ N(0, I), φ(x) = x1 − x2, 𝒳 = ℝ2
+, x* = (0.5 0.5)T



Example 2: Valid Coverage
3d - adaOSB adequately upper bounds true quantile and thus fixes coverage
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y = x + ε, ε ∼ N(0, I), φ(x) = x1 + x2 − x3, 𝒳 = ℝ3
+, x* = (0 0 1)T

Sampling mostly upperbounds the true quantile, which we expect
Coverage is repaired where OSB fails



Example 3: Length Improvement
High dimension - Particle unfolding simulation where adaOSB shows a dramatic length improvement

• High dimensions necessitate MCMC polytope sampler and quantile regression

20

Distributions of MCMC/QR derived ̂qγ adaOSB has a coverage advantage adaOSB has a clear length advantage

 defined mean bin countsy = Kx + ε, ε ∼ N(0, Σ), φ(x) = hT x, 𝒳 = ℝ80
+ , x*



Recap and conclusions
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1. Building on the work of [Batlle et al. 2023], we presented a method to set  in a data-
dependent way to achieve interval coverage and improve interval length relative to OSB.


• Take-away: our method is the first computationally feasible approach to properly 
calibrate these optimization-based intervals.


• Key Steps: using an uncertainty budget to bound the set of feasible parameter values, 
sampling the pre-image confidence set, estimating the max quantile. 

2. We explored three numerical studies to demonstrate the method and its advantages.


• Take-away: our method provides coverage in low dimensional ( ) example where 
OSB does not, and improves interval length in a scenario where OSB empirically over-
covers ( ).

ψ2
α

p = 3

p = 80



Thank You!
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Please let me know if you have any follow up questions: 
mcstanle@andrew.cmu.edu
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Developing the test inversion formalism in this 
setting provides a new perspective
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H0 : x* ∈ Φμ ∩ 𝒳 versus H1 : x* ∈ 𝒳∖Φμ

Φμ := {x : φ(x) = μ} ⊂ ℝp𝒳 ⊂ ℝpKey set definitions

Fundamental HT

λ(μ, y) := − 2 log Λ(μ, y) = − 2 ( sup
x∈Φμ∩𝒳

ℓx(y) − sup
x∈𝒳

ℓx(y))
= inf

x∈Φμ∩𝒳
− 2ℓx(y) − inf

x∈𝒳
− 2ℓx(y)

Test Statistic (LLR)

sup
x∈Φμ∩𝒳

ℙλ∼Fx (λ > qα) ≤ α
Level  testα Test  is a level-  testTμ α

Let  be the quantile function of  at . Using 
 produces a level-  test.

Qx : [0,1] → ℝ λ(μ, y) x
Qx(1 − α) α



Ellipsoid Sampler
Uniform sampling in -ball + Accept/rejectp

• [Voelker et al., 2017] presented and proved an interesting and efficient algorithm to sample uniformly 
at random from the -ball. First, sample uniformly from the -sphere (possible with Gaussian 
RNG) followed by dropping any two coordinates.


• We refer to a sample drawn from the -ball via “Voelker-Gosmann-Stewart” (VGS) by 


• Consider an ellipsoid defined by  and let  be the eigendecomposition 
of PSD .


• If , then  is sampled uniformly at random from 


• To incorporate constraints, simple reject  if 


• NOTE: this approach works well in low dimensions and when , where  is full column rank.

p (p + 1)

p x ∼ VGS(p)

ℰ(r) := {x : xT Ax ≤ r} PΩ2PT

A

x ∼ VGS(p) y := χ2
n,ηPΩx ℰ(χ2

n,η)

y y ∉ 𝒳

f(x) = Kx K
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MCMC Polytope Sampler
Implementation details and considerations
• We construct a bounding polytope for  using the principal axes of the confidence 

set ellipsoid ( ), the hyper-rectangle defined by the non-negativity constraints ( ) and  
additional randomly chosen hyperplanes.


• We use the Vaidya sampler detailed in [Chen et al., 2018], where the uniform distribution over 
the defined polytope is the Markov chain’s stationary distribution


• Since this sampling is an MCMC algorithm, we consider a few different convergence plots to 
assess sufficient mixing:


• Trace plots of individual parameters


• Ensembles of max predicted quantiles for both fixed data set size and cumulative


• Fixed allows for us to get a sense of the Markov chain convergence


• Cumulative allows us to assess the stability the max predicted quantile 

f −1(Γη(y))
2p 2p 200
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MCMC Polytope Sampler (con’t)
Parameter Trace Plots
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Four arbitrarily chosen parameter 
trace plots show nice mixing



MCMC Polytope Sampler (con’t)
Fixed Max-q trace plots
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The ensemble of Max predicted quantiles with dataset size fixed at 2k

Ensemble mean stabilizes after ~15k iterations

Ensemble width stabilizes after ~15k iterations



MCMC Polytope Sampler (con’t)
Cumulative Max-q trace plots

30

The ensemble of Max predicted quantiles with dataset size fixed at 2k

Ensemble mean stabilizes after ~10k iterations

Ensemble width decreases



2d Exposition example
Additional figures and details
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Realization 0 with pax estimated quantile Monte Carlo Sampling to estimate Qx(1 − γ)
1. Generate an ensemble of samples,  

and therefore LLR samples, .


2. From our generated ensemble, we can simply 
use the  percentile estimator.

yi = x + εi
λ(hT x, yi)

(1 − γ)



More on particle unfolding
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The data generating process for our histogram is

,y ∼ Poisson(Kλ)

which we approximate by

.y ∼ N(Kλ, Σ), Σii = (Kλ)i, ∀i

For more information, see [Kuusela, 2016] and [Stanley et al., 2022]


