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Existing Practice 
•Random forests [1]

• Ensemble of decision trees
• Trained on bootstrap samples
• Branch on random feature subsets

21

x
0

 > 0.7

x
3

 < 0.1 x
2

 > -0.2

cat dog dog cat

x
3

 < 1.2

x
1

 < -0.3 x
3

 > -0.5

dog cat dog cat

x
5

 < 0.2

x
0

 > 1.4 x
2

 > -0.8

dog cat cat dog

[1] L Breiman. “Random forests.” Machine Learning 45, 2001.



Existing Practice 
•Random forests [1]

• Ensemble of decision trees
• Trained on bootstrap samples
• Branch on random feature subsets

•Random projection ensembles [2]
• Ensemble of sketched regressors

• Randomly project observations
• Randomly project features

22

[1] L Breiman. “Random forests.” Machine Learning 45, 2001.
[2] GA Thanei, C Heinze, N Meinshausen. “Random projections for large-scale regression.” Big and Complex Data Analysis, 2017.



Existing Practice 
•Random forests [1]

• Ensemble of decision trees
• Trained on bootstrap samples
• Branch on random feature subsets

•Random projection ensembles [2]
• Ensemble of sketched regressors

• Randomly project observations
• Randomly project features

23

[1] L Breiman. “Random forests.” Machine Learning 45, 2001.
[2] GA Thanei, C Heinze, N Meinshausen. “Random projections for large-scale regression.” Big and Complex Data Analysis, 2017.

Neural networks?
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•Prior work: What performance do ensembles provably achieve?
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But what is this predictor?

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge



Notation 
•Ground truth function

•Ensemble of estimators

•Squared error
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Early Work: Linear Regression Setting 
•Training data:
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Conditional expectationWishart matrix

Theorems



Error under Proportional Asymptotics 
•Exact error expression for finite ensembles
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Error under Proportional Asymptotics 
•Exact error expression for finite ensembles

• Infinite ensemble error depends only on feature subsampling
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Optimality Theorem 
•Ridge regression:

•Tuning feature subsampling is optimal

•However, proof sheds little insight
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Concurrent Observations 
• Infinite ensemble with only feature subsampling:
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• Infinite ensemble with only feature subsampling:

•Determinantal Point Process pseudoinverse [7]:

Concurrent Observations 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Asymptotic Equivalences 
•Asymptotic equivalences [6]:
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•Asymptotic equivalences [6]:

•Admits a calculus:
• Addition
• Multiplication
• Elements 
• Differentiation [7]

Asymptotic Equivalences 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[6] E Dobriban, Y Sheng. “Distributed linear regression by averaging.” Annals of Statistics, 2021.
[7] E Dobriban, Y Sheng. “WONDER: Weighted one-shot distributed ridge regression in high dimensions.” JMLR, 2020.
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What about real arguments?
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Analytic continuation
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Limits of negative regularization
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Reparameterization
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Explicit form of implicit value
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Uniform convergence



First-order Sketching Equivalence 

67



First-order Sketching Equivalence 

68

•That is, sketching + ridge = another ridge without sketching.



First-order Sketching Equivalence 

69

•That is, sketching + ridge = another ridge without sketching.

   Same as DPP when   



First-order Sketching Equivalence 

70

•That is, sketching + ridge = another ridge without sketching.
Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge



Element-wise Convergence 

71



Element-wise Convergence 

72



A Blurring Analogy 

73

256x256

Original Image



A Blurring Analogy 

74

64x64

32x32

16x16

Downsample

256x256

Original Image



A Blurring Analogy 

75

64x64

32x32

16x16

Downsample Blur (1.6%)

256x256

Original Image



A Blurring Analogy 

76

64x64

32x32

16x16

Downsample Blur (1.6%) Upsample

256x256

Original Image



A Blurring Analogy 

77

64x64

32x32

16x16

Downsample Blur (1.6%) Upsample

Blur (1.6%)

Blur (3.1%)

Original Image

256x256

Original Image



Implicit Regularization Behavior 
•Example: isotropic spectrum with 

78



Implicit Regularization Behavior 
•Example: isotropic spectrum with 

•                  is increasing and concave

•                  is decreasing unless                         and

79



Implicit Regularization Behavior 
•Example: isotropic spectrum with 

•                  is increasing and concave

•                  is decreasing unless                         and

•                  unless                         and

•                                           

80



Implicit Regularization Behavior 
•Example: isotropic spectrum with 

•                  is increasing and concave

•                  is decreasing unless                         and

•                  unless                         and

•                                           

•                                                      if

•else

81



Implicit Regularization Behavior 
•Example: isotropic spectrum with 

•                  is increasing and concave

•                  is decreasing unless                         and

•                  unless                         and

•                                           

•                                                      if

•else

82



First-Order is Not Enough 
•First-order equivalence is similar to expectation equivalence

83



First-Order is Not Enough 
•First-order equivalence is similar to expectation equivalence

•                                     does not imply that

•Similarly, products of equivalences do not compose if not independent

84



First-Order is Not Enough 
•First-order equivalence is similar to expectation equivalence

•                                     does not imply that

•Similarly, products of equivalences do not compose if not independent

•Solution: derivative rule of asymptotic equivalence
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One Incredible Regime 
•Example: isotropic spectrum with 

• If                                      ,                         , and                             , there is no inflation
• Agrees with classical sketching results: sketch larger than rank
• Sketching is ideal for benign overfitting 

90



Application: Ridge Regression 

91

How about a machine 
learning problem?



Sketched Ridge Regression 
•Primal (observations) and dual (features) sketching:
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Preparing for Equivalences 
•Express in terms of the sketched pseudoinverse:
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First-order Data Pseudoinverse Equivalence 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ridge on any single test point

100

Why this qualifier?

Pointwise convergence does not imply uniform convergence



Quadratic Metrics of Sketched Ensembles 
•Ensemble of independent sketches: 

•Quadratic error metrics: 
• Includes test risk
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Well, ain’t this a geometrical oddity.
 

           from everywhere! 
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Vanishing prediction error!



Better Sketches? 

115

What if I use a better/faster 
sketch than i.i.d.?
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Orthogonal Sketching 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•Same form as i.i.d. sketching, but with less regularization



Equivalence for Sketches Used in Practice? 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Summary 
•Early work:

• Hints of deep connection between ensembles and ridge
• Tuned ensembles with subsampling achieve same risk as optimal ridge
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Summary 
•Early work:

• Hints of deep connection between ensembles and ridge
• Tuned ensembles with subsampling achieve same risk as optimal ridge

•Current work:
• Asymptotic equivalence between random projections and ridge

• Ridge equivalence on a weak level even for single learners
• Convergence in quadratic metrics to ridge regression for ensembles
• Sufficiently large sketches enable accurate ridgeless regression even without ensembles

•Future work:
• More asymptotic equivalences

• Generalized cross-validation with sketching
• General linear models via leave-one-dimension-out
• Asymptotics of PCA
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Anisotropic Sketching 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Equivalence for PCA 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