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Creatinine=0.99, Sodium=132, Carbon Dioxide=21...
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Creatinine=0.79, Sodium=156, Carbon Dioxide=22...
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Too Much Data

Lots of instances
(Q(n) computation)
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Too Much Data

Lots of instances

(Q(n) computation) Age=27, Height=5"11", ABO=A, ALT=36, Glucose=7/8,

Creatinine=0.99, Sodium=132, Carbon Dioxide=21...
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Lots of features
(Q(p), Q(p?) computation)

Age=41, Height=6'4", ABO=0, ALT=36, Glucose=84,
Creatinine=0.79, Sodium=156, Carbon Dioxide=22...
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° Q: Odds of cancer in next 5 years?
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Too Much Data

Lots of instances

(Q(n) computation) Age=27, Height=5"11", ABO=A, ALT=36, Glucose=7/8,

Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

=56, Height=5’3", ABO=AB, ALT=40, Glucose=98,
tinine=0.63, Sodium=182, Carbon Dioxide=25...

Lots of features
(Q(p), Q(p?) computation)

Age=41, Height=6'4", ABO=0, ALT=36, Glucose=84,
nine=0.79, Sodium=156, Carbon Dioxide=22...

Curse of dimensionality
(Too many solutions)

° Q: Odds of cancer in next 5 years?
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Occam’s razor:
The true function should not be
too complicated.
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Occam’s razor:
The true function should not be
too complicated.
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Occam’s razor:
The true function should not be
too complicated.
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The State of Data Science
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Existing Practice

 Random forests [1]

* Ensemble of decision trees
* Trained on bootstrap samples
* Branch onrandom feature subsets
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[1] L Breiman. “Random forests.” Machine Learning 45, 2001.
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Existing Practice

 Random forests [1]

* Ensemble of decision trees
* Trained on bootstrap samples
* Branch onrandom feature subsets

« Random projection ensembles [2]

* Ensemble of sketched regressors
* Randomly project observations
* Randomly project features

[1] L Breiman. “Random forests.” Machine Learning 45, 2001.
[2] GA Thanei, C Heinze, N Meinshausen. “Random projections for large-scale regression.” Big and Complex Data Analysis, 2017.
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Existing Practice

 Random forests [1]
* Ensemble of decision trees X=91X

» Trained on bootstrap samples : ﬂ““—"’—“' -

* Branchonrandom fe

* Random projection e

* Ensemble of sketche
* Randomly project ob
* Randomly project features

[1] L Breiman. “Random forests.” Machine Learning 45, 2001.
[2] GA Thanei, C Heinze, N Meinshausen. “Random projections for large-scale regression.” Big and Complex Data Analysis, 2017.
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Theoretical Questions

* Prior work: What performance do ensembles provably achieve?
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Theoretical Questions

* Prior work: What performance do ensembles provably achieve?

 Random forests are difficult to analyze
« E.g., purely random forests [3] make analysis tractable

« Simplified models [e.g., 2, 3] have proven upper bounds
« Consistent estimation
* Ensembles strictly better than individual models

[3] S Arlot, R Genuer. “Analysis of purely random forests bias.” arXiv preprint arXiv:1407.3939.
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Theoretical Questions

* Prior work: What performance do ensembles provably achieve?
 Random forests are difficult to analyze
« E.g., purely random forests [3] make analysis tractable

« Simplified models [e.g., 2, 3] have proven upper bounds
« Consistent estimation
* Ensembles strictly better than individual models

But what is this predictor?

* New question: What predictions do ensembles provably make?
e If thereis implicit regularization in ensembles, can we make it explicit?

 Stronger than consistency, tighter than upper bounds
* Understand both good/optimal as well as suboptimal ensemble models

[3] S Arlot, R Genuer. “Analysis of purely random forests bias.” arXiv preprint arXiv:1407.3939.
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Theoretical Questions

* Prior work: What performance do ensembles provably achieve?
 Random forests are difficult to analyze
« E.g., purely random forests [3] make analysis tractable

« Simplified models | o ' '
» Consistent estimat
* Ensembles strictly |

But what is this predictor?
Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

* New question: Wha., __Jvably make?
e If thereis implicit regularization in ensembles, can we make it explicit?

 Stronger than consistency, tighter than upper bounds
* Understand both good/optimal as well as suboptimal ensemble models

[3] S Arlot, R Genuer. “Analysis of purely random forests bias.” arXiv preprint arXiv:1407.3939.
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Notation

 Ground truth function f: X - R
Ensemble of estimators f1,..., fx: X =& R
* Squared error

R(fi,....fx) 2 E [R(fl,...,fK;x)]

K )
R(fla'“)fK;x) = L (%Z‘fk(m) —f(ﬂ?))
k=1

30



Early Work: Linear Regression Setting

*Training data: w _ [Xl o ]T c R™¥P

y:(y17'°'7yn)T e R"”

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Early Work: Linear Regression Setting

*Training data: w _ [X1 3 .xn]T c R™¥P
vy = (y1,...,yn) €R"
 Data model: X, i.id. N(0,1,), f(x)= 3*Tx, 18*, =1
Yi NN(f(Xz‘)aUz)

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Early Work: Linear Reg@ign Setting
*Training data: w _ [X1 o ]T c R™¥P
y=(1,...,yn)" €R"

Datamodel x, "IN (0,1), f(x) =B"Tx, 87, =1
Yi ~~ N (f(xz), 02)

e Estimators: fk (x) _ I’B\I;rx

By = S - argmin 3[| T (y — XSyb)|

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Random Subsampling

 Subsampling operators S, € RP*Y, T, e R™™ m > qg+1
e Uniformly random columns of identity matrix

y X c

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Random Subsampling

* Subsampling operators S, € RP*? T, e R™™™ m >qg+1
e Uniformly random columns of identity matrix

Tiry TIXSl .
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[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.

35



Random Subsampling

* Subsampling operators S, € RP*? T, e R™™™ m >qg+1
e Uniformly random columns of identity matrix

S/
1 M1
Ty T XS, - SIBs
L7 R T]y T/XS, X
| VRRKEAN | N
- - N / /\ . AN N\ e 2 N _[_/\
Z 7//8%/// \4%////\//§7, < | Tiy  T{XS; TR
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[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Turn the Crank...

Wishart matrix
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Turn the Crank...

Theorems
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Error under Proportional Asymptotics

* Exact error expression for finite ensembles

Theorem 1. In the limit as (n,p,m,q) — oo with p/n — ~v, m/n —n, q/p — a, if n > a,

A A K—1/[((1-0a)?+0c%a%y +1 n(l — a) + c?ay
K 1 — a2y K n— oy '

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Error under Proportional Asymptotics

* Exact error expression for finite ensembles

Theorem 1. In the limit as (n,p,m,q) — oo with p/n — ~v, m/n —n, q/p — a, if n > a,

K—1/[((1-0a)?+0c%a%y +1 n(l — a) + c?ay
K 1 — a2y K n— oy '

R(fla'“’fK) —

* Infinite ensemble error depends only on feature subsampling

. A ~ 1 — 2+0'2C¥2
Rg?ls(a)é lim R(fl:,fK):( ) Y

K—o0 1 — a2y

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Optimality Theorem

- Ridge regression: fy(x) = B x, Bx = argmin 5 |y — Xb|3 + 3/b||;
b

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Optimality Theorem

» Ridge regression: fy(x) = 81 x, B\ = arggnin s |y — Xb||5 + %||b||§
* Tuning feature subsamping i1s optumai

Theorem 2. Under the conditions of Theorem 1 and if B3* ~ N(0,p 1),

ag;f_ , Rens(@) = inf R(f).

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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Optimality Theorem

» Ridge regression: fy(x) = 81 x, B\ = arggnin s |y — Xb||5 + %||b||§
* Tuning feature subsampiing 1s optmai

Theorem 2. Under the conditions of Theorem 1 and if B3* ~ N(0,p 1),

ag;f_ , Rens(@) = inf R(f).

Randomized ensembles = ridge

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.

43



Optimality Theorem

« Ridge regression: fx(x) = 8, x, ,BA:argmm—HY Xbl||2 + ’\||b||§
* Tuning feature subsamping i1s optumai

Theorem 2. Under the conditions of Theorem 1 and if B3* ~ N(0,p 1),

inf R () = inf R(f»).

a<y! A>0
* However, proof sheds little insight
inf ROO()z1 /Y__1_02_|_ o2~ 17~ 2+402 = inf R(f))
a<y—1 O0F 2 v v A0 A

[4] DL, H Javadi, RG Baraniuk. “The implicit regularization of ordinary least squares ensembles.” AISTATS, 2020.
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InterpretatLion of Results

* Sinceridge regression is optimal, ensemble is optimal
 Ridge regression is the minimum mean squared error (MMSE) estimator
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InterpretatLion of Results

* Sinceridge regression is optimal, ensemble is optimal
 Ridge regression is the minimum mean squared error (MMSE) estimator

* Does this imply ensemble converges to ridge regression?
* For finite dimensions, MMSE is unique
* For infinite dimensions?
* Optimality theorem suggests convergence to ridge, but not rigorous
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InterpretatLion of Results

* Sinceridge regression is optimal, ensemble is optimal
 Ridge regression is the minimum mean squared error (MMSE) estimator

* For finite dimensions,
* For infinite dimensioj
* Optimality theorem st
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Concurrent Observations

* Infinite ensemble with only feature subsampling:

K K
f&(x)= lim £y Blx=y'X < lim % ) Sk (STXTXS,) ™ s;f) X
k=1

K—oo K—oco
k=1
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Concurrent Observations

* Infinite ensemble with only feature subsampling:

K K
f&(x)= lim £y Blx=y'X < lim % ) Sk (STXTXS,) ™ s;{) X
k=1

K—oo K—oco
k=1

* Determinantal Point Process pseudoinverse [ 7]:

Theorem (Mutny et al. 2020). If M > 0 and S ~ DPP(:M),
E[S(STMS) ST =(M+A)7,

where X is the solution to E [%S] = tr(M (M + AI) ).

[5] M Mutny, M Derezinski, A Krause. “Convergence analysis of block coordinate algorithms with determinantal sampling.” AISTATS, 2020.
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Moving to Sketched Ensembles

* Problem: strict isotropic assumption on data
» Solution: let subsampling operators be isotropic sketches instead
i.1.d. 1 i.1.d. 1
Slij ~"N(0, £), [T]i; ~ N(O, +;)

' q
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» Solution: let subsampling operators be isotropic sketches instead
i.1.d. 1 i.1.d. 1
Slij ~"N(0, ), [T]i; ~ N, ;)
* Problem: marginal error results
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* Problem: estimators use ordinary least squares, m > q + 1
* Solution: consider ridge regression for arbitrary sketch sizes
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Moving to Sketched Ensembles

* Problem: strict isotropic assumption on data
» Solution: let subsampling operators be isotropic sketches instead

S "R AN Y Tl MR A LY

Spoiler:

* Problem: marginal €

 Solution: use asymp Randomized least squares = ridge + noise trix theory (RMT)
Randomized ensembles = ridge

* Problem: estimators use ordinary least squares, m > q + 1
* Solution: consider ridge regression for arbitrary sketch sizes
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Asymptotig quivalences

« Asymptotic equivalences [6]:

Definition. Two sequences of matrices A,,, B, are asymptotically equivalent, written
A, ~ B, if for every sequence ®,, having uniformly bounded trace norm, almost surely

lim tr [®,(A, —B,)] =0.

n—oo

[6] E Dobriban, Y Sheng. “Distributed linear regression by averaging.” Annals of Statistics, 202 1.

54



Asymptotig quivalences

« Asymptotic equivalences [6]:

Definition. Two sequences of matrices A,,, B, are asymptotically equivalent, written
A, ~ B, if for every sequence ®,, having uniformly bounded trace norm, almost surely

lim tr [®,(A, —B,)] =0.

n—oo

* Admits a calculus:
e Addition A, ~B,, C,,~D,, — A,+C,~B, +D,
e Multiplication A,, ~B,, — C,A,D, ~C,B,D,
* Elements A, ~B,, = [A,];; — [Bn]ij; — 0
e Differentiation [7] f(A,;2) 2 g(Bn;2) = [f(A,;2) = ¢ (By;2)

[6] E Dobriban, Y Sheng. “Distributed linear regression by averaging.” Annals of Statistics, 202 1.
[7] E Dobriban, Y Sheng. “WONDER: Weighted one-shot distributed ridge regression in high dimensions.” JMLR, 2020.

55



An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let Z € C™*P be a random matriz consisting of i.i.d.
random variables that have mean 0, variance 1, and finite absolute moment of order 8+9 for

some d > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly
bounded in p, and let X = ZXY2. Then, for z € Ct, asn,p — oo such that 0 < lim inf £ <
limsup £ < oo, we have

1

(EXMX - 2L) 7 > (c(2)2 - 21,) (32)

where c(z) is the unique solution in C~ to the fized point equation

% ~1= L[S ()= - 21,) 7. (33)

Furthermore, %tr [3(c(2)X — 2L,) | is a Stieltjes transform of a certain positive measure

on R>o with total mass %tr[Z] :
[8] F Rubio, X Mestre. “Spectral convergence for a general class of random matrices.” Statistics & Probability Letters, 2011.
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An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let Z € C™*P be a random matriz consisting of i.i.d.
random variables that have mean 0, variance 1, and finite absolute moment of order 8446 for

some d > 0. Let 3 € CP*P be a positive_semidefinite matriz with operator norm uniformly
bounded in p, and let X = ZXY2. Then,|for z € Ct | asn,p — oo such that 0 < lim inf £ <

limsup £ < oo, we have \
(l zI ! o |
If e fized point equatt

—1=1g [2 (c(2)S — zIp)‘l] . (33)

What about real arguments?

wherei c(z) is the unique solution in C— 0

b
c(2)

Furthermore, %tr [3(c(2)X — 2L,) | is a Stieltjes transform of a certain positive measure
on R>o with total mass %tr[Z].

[8] F Rubio, X Mestre. “Spectral convergence for a general class of random matrices.” Statistics & Probability Letters, 2011.
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Theorem (Rubio & Mestre 2011). Let Z € C**? be a random matriz consisting of i.i.d.
random variables that have mean 0, variance 1, and finite absolute moment of order 84§ for
some § > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly
bounded in p, and let X = ZX'/2. Then, for z € C*, as n,p — oo such that 0 < lim inf% <
limsup 2 < oo, we have

(XX - 2L,) '~ ((2)Z - 21,) (32)

where ¢(z) is the unique solution in C~ to the fized point equation

1 _1 -1
o lEa [z (c(2)S - 21,) ] . (33)
Furthermore, %tr [E(c(z)): - zIp)’l] is a Stieltjes transform of a certain positive measure
on Rxq with total mass ’%tr[EL

Real-valued Asymptotic Equivalence
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Real-valued Asymptotic Equivalence

Theorem (Rubio & Mestre 2011). Let Z € C**? be a random matriz consisting of i.i.d.

Theorem 3. Let (y,z9 € R be the unique solutions, satisfying (o < )\;;in(E), to system of
equations

1= ltr [22 (= - golp)—2] z20=Co ( — Ly [2 (= - gOIp)‘l]) . (34)

Then, for each z € R satisfying z < liminf 29, as n,p — oo such that 0 < liminf £ <
limsup £ < oo, we have

random variables that have mean 0, variance 1, and finite absolute moment of order 84§ for
some § > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly

bounded in p, and let X = ZX'/2. Then, for z € C*, as n,p — oo such that 0 < lim inf% <
limsup 2 < oo, we have

2(AXMX —2L,) T > (B - (T) (35)

(AXMX - 21,)

where ¢(z) is the . . - = P .
Analytic continuation where ¢ € R is the unique solution in (—oo,(p) to the fixed-point equation
Furthev"mo‘re, %tr [Z((r(z)E - zIp)’l] is a Stieltjes transform of a certain positive measure 1
—¢(1- e [E-ay]) -

Furthermore, as n,p — oo, |(+ v—(lg)-| 224 0, where v(z) is the companion Stieltjes transform

of the spectrum of %XHX given by
v(z) = Ler| (AXXH - 21,) 7',
and |20 — AL (2XHX)| == 0.

min
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Real-valued Asymptotic Equivalence

Theorem 3. Let (p,z9 € R be the unique solutions, satisfying (o < )\;in(E), to system of
equations

Limits of negative regularization -»l 1= 2tr [22 (2 — COIp)“z] , 20 ="Co ( — Ltr [2 (2 — COIp)‘l])‘. (34)

hen, for each z € R satisfying z < liminf 29, as n,p — oo such that 0 < liminf 2 <
sup £ < oo, we have

11

Theorem (Rubio & Mestre 2011). Let Z € C**? be a random matriz consisting of i.i.d.

random variables that have mean 0, variance 1, and finite absolute moment of order 84§ for

some § > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly

bounded in p, and let X = ZX'/2. Then, for z € C*, asn,p — oo such that 0 < liminf 2 < H — 1 _ 1

limsup 2 < oo, we have Z(lX. X _ zI ) ~ C(E — CI ) (35)
n p - p ’

(XX = 21) ! ()2 - 2T) (32)

where ¢(z) is the unique solution in C~ to the fized point equation

N wheng ¢ € R is the unique solution in (—oo, () to the fized-point equation
Ee)

Furthermore, ;‘,tr [E(c(2)® — 21,,)7] is a Stieltjes transform of a certain positive measure

“1=ly [z ()2 - zlp)“] . (33)

on Rxq with total mass %tr[2]4

2= ( — Lgy [2 (= — ap)‘l]) . (36)

Furthermgore, as n,p — oo, |(+ ﬁ| 224 0, where v(z) is the companion Stieltjes transform

of the spé&ctrum of %XHX given by

v(z) = %tr[(%XXH _ zIn)_l]’

min\ n,

and||zo —Af (AxHX)| 22 O.‘
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Real-valued Asymptotic Equivalence

Theorem 3. Let (y, 29 € R be the unique solutions, satisfying (o < A\1. (%), to system of
equations

1= ltr [22 (= - gOIp)“2] z20=Co ( — Ly [2 (= - COIp)‘l]) . (34)

Then, for each z € R satisfying z < liminf 29, as n,p — oo such that 0 < liminf £ <
limsup £ < oo, we have

Theorem (Rubio & Mestre 2011). Let Z € C**? be a random matriz consisting of i.i.d.
random variables that have mean 0, variance 1, and finite absolute moment of order 84§ for
some § > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly
bounded in p, and let X = ZX'/2. Then, for z € C*, asn,p — oo such that 0 < liminf 2 <

‘ (LXHX — 2L) " ~ (c(2)% — 21,) "

1
c(2)
Furthermore, ;‘)tr [E(C(Z)E — zIp)’l] is a Stieltjes transform of a ceri sitive measure
on Rxq with total mass ’%tr[EL

| 2(AXFX —2L) > (B L,) 7Y (35)

where ( € R is ¢ 1que solution in (—oo,(p) to the fized-point equation

1=l [z (e(2)= - zI,,)“] . (33)

7=t (1 — Lgy [2 (= — 41,,)‘1]) . (36)

Reparameterization (rthermore, asn,p — oo, ¢+ ﬁ| 225 0, where v(z) is the companion Stieltjes transform

of the spectrum of %XHX given by
_ 1 1 H -1
v(z) = Htr[(HXX — zL,) ],
and |20 — AL (2XHX)| == 0.

min

61



Real-valued Asymptotic Equivalence

Theorem 3. Let (y, 29 € R be the unique solutions, satisfying (o < A\1. (%), to system of
equations

1= ltr [22 (= - gOIp)—2] z20=Co ( — Ly [2 (= - COIp)_l]) . (34)

Then, for each z € R satisfying z < liminf 29, as n,p — oo such that 0 < liminf £ <
limsup £ < oo, we have

Theorem (Rubio & Mestre 2011). Let Z € C**? be a random matriz consisting of i.i.d.
random variables that have mean 0, variance 1, and finite absolute moment of order 84§ for
some § > 0. Let 3 € CP*P be a positive semidefinite matriz with operator norm uniformly
bounded in p, and let X = ZX'/2. Then, for z € C*, asn,p — oo such that 0 < liminf 2 <

2(AXMX —2L,) T > (B - (T) (35)

(XX = 21) ! ()2 - 2T) (32)

where ¢(z) is the unique solution in C~ to the fized point equation

where ¢ € R is the unique solution in (—o

1

5 Explicit form of implicit value

Furthermore, ;‘)tr [E(C(Z)E — zIp)’l] is a Stieltjes transform of a certain positive measure
on Rxq with total mass ’%tr[)]]4 2 C 1 tr (I ) (36)
— n D .

Furthermore, asn,p — oo,l ¢+ ﬁ| 22 Ol where v(

—1=1lu [z (c(2)= — zI,,)-‘] . (33)

of the spectrum of %XHX given by

v(z) = %tr[(%XXH _ zIn)_IH

and |zo — M. (2 XHX)| 225 0.

min\ g,
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Obtaining a Sketching Eq_uivalengg

2(AXPX — 21,) 7 ~ ¢ (B - (L) !
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Obtaining a Sketching Eq_uivalengg

2(AXPX — 21,) 7 ~ ¢ (B - (L) !

X = /gS"Al/?
A=—2
p=—C
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Obtaining a Sketching Eq_uivalengg

2(AXPX — 21,) 7 ~ ¢ (B - (L) !

X = /gS"Al/?
A=—2
p=—C

I, — A(AYV2SSHAY2 4 L) ' ~ 1, — p(A +pl,)
— AY/2S(SMAS +AL) 'SHAYZ ~ AV2(A 4 L) A2
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Obtaining a Sketching Eq_uivalengg

2(AXPX — 21,) 7 ~ ¢ (B - (L) !

Uniform convergence
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First-order Sketching Equivalence

Theorem 4. For each A > limsup \g, as q,p — o0,
S(SHAS + AL,) 'S" ~ (A +pu1,) 7!,

where p is the unique solution in (ug,00) to the fized point equation

A= p (1 — Lo [A (A+u1p)—1]) .
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First-order Sketching Equivalence

Theorem 4. For each A > limsup \g, as q,p — o0,

|S(S"AS + ML) "'s"[~(A + uL,) 7|

where p is the unique solution in (ug,00) to the fized point equation

)\z,u( — %tr [A(A—I—ulp)_l]).

* That is, sketching + ridge = another ridge without sketching.
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First-order Sketching Equivalence

Theorem 4. For each A > limsup \g, as q,p — o0,

S(SHAS + AL,) " 'SH ~ (A + pI=t
| | o |E [q—s] = tr(M (M + uI) ™)
where u is the unique solution in (g, 00) to the fized poin b

)\zu(] —%tr [A(A—I—plp)—l.u). \

| Same as DPPwhen A = 0

* That is, sketching + ridge = another ridge without sketching.
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First-order Sketching Equivalence

Theorem 4. For each A > limsup \g, as q,p — o0,
S(SHAS + AL,) 'S" ~ (A +pu1,) 7!,

where p is the unique solution in (ug,00) to the fized point equation

A= p (1 — Lo [A (A+u1p)—1]) .

* That is, sketching + ketching.

Randomized least squares = ridge

@
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Element-wise Convergence

A =diag(0...,1...,2...)

oa=0.8
B = Diagonals Off-diagonals

p = 60
p = 300
p = 1500

b~ 1.63 0y 0

10 20

l 10 A l
0 I u ‘.*d-‘ S 0 T T T T
0.2 0.4 0.6 0.8

—0.4 —0.2 0.0 0.2 0.4
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Element-wise Convergence

A =diag(0...,1...,2...)

oa=0.8
B = Diagonals Off-diagonals

p = 60
p = 300
p = 1500

0~ 1.63 20 10
15 - 30

10 20 -

10 :
0 T T A T T

—0.4 —0.2 0.0 0.2 0.4
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Original Image

256x256

A Blurring Analggy
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A Blurring Analggy

Original Image

256x256

64x64

32x32

16x16

SHAS
Downsample
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Original Image

256x256

64x64

32x32

16x16

SHAS
Downsample

(SHAS + ALy) ™

Blur (1.6%)

1

A Blurring Analggy
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A Blurring Analggy

S"AS (S"AS + L)' S(SHAS + L) 'sH
Downsample Blur (1.6%) Upsample

64x64 0

Original Image

256x256

32x32 L] L]

16x16 o m
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A Blurring Analggy

S"AS (S"AS + L)' S(SHAS + L) 'sH (A + pI,) "
Downsample Blur (1.6%) Upsample

Original Image

Blur (1.6%)

64x64 0

Original Image

256x256

32x32 L] L]
Blur (3.1%)

16x16 o m
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Imylicit Regularization Behavior

(), Isotropic

—  *Example: isotropic spectrum with r(A) = %

ALY/
..... | | | | | |
-1 _1 0 1 1 3 1
2 4 4 2 4
A
w(a), Isotropic
SN
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Imylicit Regularization Behavior

(), Isotropic

3 _—7
2 -
1 urd
0 R
..... : | | T T |
_1 _1 9 1 1 3
2 4 4 2 4
A
w(a), Isotropic
3 = %ﬁf’:zm\
2 -
0 f------- e
6 5 4 3 T2

» Example: isotropic spectrum with r(A) =
* A\ — pisincreasing and concave
e — 1 isdecreasingunlessa > r(A)and A < 0

1
2
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Imylicit Regularization Behavior

» Example: isotropic spectrum with r(A) =
* A\ — [ isincreasing and concave

e — 1 isdecreasingunlessa > r(A)and A < 0
1t > Aunlessa > r(A)and \ < 0

u < A+ %tr[A]

1
2
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Imylicit Regularization Behavior

o = [\) W
| | | |

o = (V] w
|

..... i |

_1 o 1
4
A

w(a), Isotropic
S

T |
3 r=3 12w
(8

» Example: isotropic spectrum with r(A)
* A\ — [ isincreasing and concave

1
2

e — p isdecreasingunlessa > r(A) and \ < 0

1t > Aunlessa > r(A)and X < 0
' < A+ ctr[A]

»sign(p) = sign(A) if a > r(A)
celse u > 0

31



Imylicit Regularization Behavior

1(A), Isotropic

N B /,;’Ef
2 —
14 4
I
_____ I | | | | |
B T S T
2 4 ' 2 4
A
u(a), Isotropic
3 —%Tf“
2 &%
0 — R
| | ' | | | '
1 g 1 5 r=3 12
6 2 ! 3 B
Q

(A, % Marchenko—Pastur(2)

- i";::’”c"'
2 —
1 —
0 4
| I | I | I
P (O 0 1 1 3 1
2 4 4 2 4

3 T
2 - !
1 4
O | ;m;\ .......................
T T T T 1
1 1 1 1 ,=1 1 2
6 5 4 3 2
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First-Order is Not Er_lough_

* First-order equivalence is similar to expectation equivalence
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First-Order is Not Enough

* First-order equivalence is similar to expectation equivalence
» E [X] = E [Y] does not imply that E [X?] = E [Y?]
* Similarly, products of equivalences do not compose if not independent
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First-Order is Not Enough

* First-order equivalence is similar to expectation equivalence

* E [X] = E [Y] does not imply that E [X?] = E [V?]

* Similarly, products of equivalences do not compose if not independent
 Solution: derivative rule of asymptotic equivalence

L(A—2I) = —(A—2D)"°
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Second-order Sketching Equivalence

Theorem 5. If ¥ € CP*P 45 a deterministic or random positive semidefinite matrix inde-
pendent of S with ||[¥||, uniformly bounded in p, then

|

S(SHAS T )‘Iq)_lsH‘I’S(SHAS + )‘IQ)_ SH ~ (A &5 ,UIp)_l (‘I’ .5 .U/Ip) (A T ,UJIp)_l ;

where
Lr 1% (A + 1) "' @ (A + L)
A+ %tr [u2A (A + qu)_2]

/

= > 0.
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Second-order Sketching Equivalence

Theorem 5. If ¥ € CP*P 45 a deterministic or random positive semidefinite matrix inde-
pendent of S with ||[¥||, uniformly bounded in p, then

S(SHAS + ML) S"WS(S"AS + L) T SH o~ (A + 4uI,) T (A L) (A + L)
where
Lr 1% (A + 1) "' @ (A + L)
A+ %tr [/ﬂA (A + qu)_2]

/

= > 0.

* That is, second-order adds an isotropic inflation factor
* Depends significantly on the choice of W
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Second-order Sketching Equivalence

Theorem 5. If ¥ € CP*P 45 a deterministic or random positive semidefinite matrix inde-
pendent of S with ||[¥||, uniformly bounded in p, then

1 | | p | | N 1

S(S"A

T~ (A4 ,UIp)_l (¥ 4 .U/Ip] (A + ,UJIp)_l ;

where . : :
Randomized least squares = ridge + noise

W (A + ulp)‘l]

> 0.
AT It [PAA + ulp)‘2]

* That is, second-order adds an isotropic inflation factor
* Depends significantly on the choice of W
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One Incredible Regime

» Example: isotropic spectrum with r(A) = 2

2.0 - % =l 2.0 - v = A
1.5 1.5 -
S 1.0+ 1.5 -
0.5 - 0.5 -
—0.5 : . . —0.5
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One Incredible Regime

 Example: isotropic spectrum with r(A) =

v=1I, v=A

2.0 1 2.0 1

1.5 1.5

S 1.04 7.0

0.5 - 0.5

T T T
—0.5 0.0 0.5 1.0 0.5 0.0 0.5 1.0

p p

*If ¥ € Range(A), a > r(A),and u = A = 0, thereis noinflation
» Agrees with classical sketching results: sketch larger than rank
» Sketchingis ideal for benign overfitting

20



Application: Ridge Regression

How about a machine
learning problem?
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Sketched Ridge Regression

* Primal (observations) and dual (features) sketching:
A . y
Br £ arg min LITT (y — Xb)||, + Alb|;
Bp £ S -argmin 2 |y — XSb]|3 + A||bl|3
b

Brp £ S - argmin = ||TT(y — XSb)H; + )\||b||§
b
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Preparimg for quivalenggs

* Express in terms of the sketched pseudoinverse:

s

w_LXiY7 wE{PvDapD}

3

XL & L(LXTTTTX + A1) XTTT'

3\

n

Bl

i
P
Xt 2 Lg(lgTXTXS +AI) tgTxT
1 g

Xip = (ASTXTTTTXS +AI) STX'TTT

S

n
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First-order Data Pseudoinverse Eq_uivilgu;e__

Theorem 6. If HﬁXHOp 18 uniformly bounded in p, then as m,n,q,p — oo,

XE o~ L (IXMX 4 1) XM

S

n

where [y, are is the most positive solutions to the equations
i 1 ~H 1~ H —1
A= pp (1= Ler [2X*X (2X*X 4+ ppD) )
m

1= (9 —1), 0 =ppp (1— 2tr | 1XHX (XMX +pppT) ).
qd \MPD

D >

24



Sharp Phase Transition for Joint Sketching

21_7/n=0.5,)\=0.05 p/n=05X1=05 p/n=05A=5 p/n=0.5X=50

i -
/J'max_>‘
L ! 1.0
p/n=1,A=50
0.8
_ 0.6
] 0.4
1 1
p/n=2,X=50 0.2
0.0
1 -]
2
0 ] I I - I ] 1 1 1 I I I 1 1
0 1 - 2 0 i1 1 2 0 1 1 2 0 1 1. 2
2 2 2 2
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Sharp Phase Transition for Joint Sketching

Depends only on «

21_)/n=0.5 A

= 0.05

p/n=0.5,A=0.5

p/n=0.5,Xx=>50

plh=0bB,A=D5

p/n=1,A=50

o
N~ —
[

\V]

©m—A

Hmax — A

1.0

0.8

0.6

0.4

0.2

0.0
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SketchingMakes Same Predictions as Rid_gg

Corollary 7. If || ﬁy”z is uniformly bounded in p and w € CP is independent of S and T

such that |w||y is uniformly bounded in p, then for any continuous function f: C — C, as
D — o9,

FW"By) — Fw"Bidse) 22 0.
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SketchingMakes Same Predictions as Rid_gg

Corollary 7. If || ﬁy”z is uniformly bounded in p and w € CP is independent of S and T

such that |w||y is uniformly bounded in p, then for any continuous function f: C — C, as
D — o9,

FWHBy) - f(wH i) 225 0.

» Sketching asymptotically makes the same prediction as the equivalent
ridge on any single test point
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SketchingMakes Same Predictions as Rid_gg

Corollary 7. If || ﬁy”z is uniformly bounded in p and w € CP is independent of S and T

such that |w||y is uniformly bounded in p, then for any continuous function f: C — C, as
D — o9,

FWHBy) - f(wH i) 225 0.

» Sketching asymptotically makes the same nrediction as the equivalent

ridge on any single test p
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SketchingMakes Same Predictions as Rid_gg

such that |w||y is uniformly bounded in p, then for any continuous fun C, as
p — o0,

: : ‘\o’i. . :
» Sketching asymptoti 30e° _—nrediction as the equivalent

Why this qualifier?
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Quadratic Metrics of Sketched Ensembles

K
- Ensemble of independent sketches: g5 = 1 Zﬁfﬁ
k=1

 Quadratic error metrics: & (8,8)=(B8-8)"®¥ (8- 3

* Includes test risk
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Quadratic Metrics of Sketched Ensembles

Theorem 8. If ¥ € CP*P is a positive semidefinite matriz and B’ € CP a vector such that
|||, and [|B'||, are uniformly bounded in p and (¥, B) is independent of (Sk, Tr)E_,, then

forw € {P,D},

(IBenS ) ( (ﬁrldge,ﬁ)_l_lﬂ{_PyH( XXH+MPI)_2y) 2500

(ensa:@) ( (ﬁﬁgge, ’) %DyHX( XHX—I—,uDI) XHy)&o
where

Lor [pd (XXM 4+ ppl) T IXWXH (LXXM 4 pipl) |

)

A+ Ltr |pd 2XXH (LXXH + ppl) 7]
Lr |, (AXPX 4 ppl) " @ (AXHX + ppl) |
A+ Ltr |3, 1XHX (AXHX + ppl) 7]
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Quadratic Metrics of Sketched Ensembles

Theorem 8. If ¥ € CP*P is a positive semidefinite matriz and 3’ € CP a vector such that
|||, and [|B'||, are uniformly bounded in p and (¥, B) is independent of (Sk, Tr)E |, then

forw € {P,D},

(IBrldge IBI) +0 (u_’w)

K

where

Lor [pd (XXM 4+ ppl) T IXWXH (LXXM 4 pipl) |

)

A+ Ltr |pd 2XXH (LXXH + ppl) 7]
Lr |3, (AXHX + pupT) ™ @ (LXHX + ppT) |
A+ Ltr |3, 1XHX (AXHX + ppl) 7]
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Quadratic Metrics of Sketched Ensembles

Theorem 8. If ¥ € CP*P is a positive semidefinite matriz and 3’ € CP a vector such that
|||, and [|B'||, are uniformly bounded in p and (¥, B) is independent of (Sk, Tr)E_,, then

for zp € {P,D},
b

ens aridge
£ (B, ) 2% £q (Bidee,3) + O (12

where Well, ain’t this a geometrical oddity.

Ltr [up (£X o) (%’”) from everywhere!

)\—I—ltr[,uplxx = -
Lr |3, (AXHX + pupT) ™ @ (LXHX + ppT) |
A+ Ltr (43, LXHX (1XHX + ppl) 7]
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Quadratic Conclusions

AN

u (B3, 8) 2 £x (Bie, 8) + 0 (1)

 For infinite K, sketched ensemble = ridge
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Quadratic Conclusions

(IBens ,3,) a. (,Brldge,,@,) _I_O (/J%)

 For infinite K, sketched ensemble = ridge

Randomized ensembles = ridge
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Quadratic Conclusions

o a.s. Srideoe ,Ll,/
Eu (B, B') 225 £4 (B, B) + O (%)

 For infinite K, sketched ensemble = ridge
 For finite K, sketched ensemble is worse than ridge
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Quadratic Conclusions

AN

u (B3, 8) 2 £x (Bie, 8) + 0 (1)

 For infinite K, sketched ensemble = ridge

 For finite K, sketched ensemble is worse than ridge
* Unless ¥ € Range(A), a > r(A),andy =\ =0
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A Sketched Ensemble Efficiency Experiment

* Setup: fixed O(p°n)budget ensembles with K’ = | 5 |, 7(X) = z
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A Sketched Ensemble Efficiency Experiment

* Setup: fixed O(p°n)budget ensembles with K’ = | 5 |, 7(X) =
* Fixed target up, varying o, with X\ uniquely determined

1
2
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A Sketched Ensemble Efficiency Experiment

» Setup: fixed O(p°n)budget ensembles with K = | =5 |, (X
* Fixed target up, varying o, with X\ uniquely determined

« Error: relative error £ (B5®, BLid)
g\Il( r1dge)

_ 1
2
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A Sketched Ensemble Efficiency Experiment

* Setup: fixed O(p°n)budget ensembles with K’ = | 5 |, 7(X) =
* Fixed target up, varying o, with \ uniquely determined
«Error: relative error £e (85, Bide)

1
2

S\Il ( r1dge)

Estimation (¥ = I,,) Prediction (¥ = X0)

10

0.1

0.01

Relative Error

-0.01
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A Sketched Ensemble Efficiency Experiment

* Setup: fixed O(p°n)budget ensembles with K’ = | 5 |, 7(X) =
* Fixed target up,varying o, with A uniquely determined
« Error: relative error €= ( ens,ﬁ”dge)

E r1dge
\Iz
Non-vanishing estimation error

Estimation (\I' = 1) Prediction (¥ = X0)

1
2

0.1

0.01

Relative Error

-0.01
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A Sketched Ensemble Efficiency Experiment

* Setup: fixed O(p°n)budget ensembles with K’ = | 5 |, 7(X) =
* Fixed target up,varying o, with A uniquely determined
« Error: relative error &w (83", B,ie%)

1
2

Vanishing prediction error!

dge
g\IJ( I'1 )
Estimation (¥ = I,,) Prediction (¥ = 2
: E: = : E: UD
5 10
o
63 1.
.g 0.1
+~
%‘ 0.01
o' -0.01
10~4 T T T ] T T 10~ T T T ] T T 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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What if | use a better/faster
sketch thani.i.d.?
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A Free Sketching Conjecture

Conjecture 9. Let S € CP*9 be a norm-preserving sketch such that SSY and A converge
almost surely to operators that are free with respect to the average trace %tr[-]. Then there
exists a monotonic mapping A — v such that

I} 1

S(S"TAS +AI,) "S"~ (A+1I,) .
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A Free Sketching Conjecture

Conjecture 9. Let S € CPX9 be a norm-preserving sketch such that SSY and A converge

almost surely to operators that are free with respect to the average trace +tr[-]. Then there

exists a monotonic mapping A — v such that g
S(SHAS +AL) 'S" ~ (A +41,) .

* Includes i.i.d. sketching and more

* Orthogonal sketching
» Efficient sketches like CountSketch, FJLT, SRHT?
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A Free Sketching Conjecture

Conjecture 9. Let S € CPX9 be a norm-preserving sketch such that SSY and A converge
almost surely to operators that are free with respect to the average trace %tr[-]. Then there
exists a monotonic mapping A — v such that

S(SHAS +AL) 'S" ~ (A +41,) .

* Includes i.i.d. sketching and more

* Orthogonal sketching
» Efficient sketches like CountSketch, FJLT, SRHT?

» Spectrum of sketch controls A\ — ~
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A Free Sketching Conjecture

Conjecture 9. Let S € CP*9 be a norm-preserving sketch such that SSY and A converge
almost surely to operators that are free with respect to the average trace %tr[-]. Then there
exists a monotonic mapping A — v such that

S(SHAS +AL) 'S" ~ (A +41,) .

* Includes i.i.d. sketching and more

* Orthogonal sketching
» Efficient sketches like CountSketch, FJLT, SRHT?

» Spectrum of sketch controls A\ — ~
* Higher order equivalences naturally follow
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A Free Sketching Conjecture

Conjecture 9. Let S € CPX9 be a norm-preserving sketch such that SSY and A converge
almost surely to operators that are free with respect to the average trace %tr[-]. Then there
exists a monotonic mapping A — v such that

S(SHAS +AL) 'S" ~ (A +41,) .

* Includes i.i.d. sketching and more

*|Orthogonal sketching|
» Efficient sketches like CountSketch, FJLT, SRHT?

» Spectrum of sketch controls A\ — ~
* Higher order equivalences naturally follow
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Orthogonal Sketching

Conjecture 10. Forq < p let \/g Q € CP*9? be a Haar-distributed matrixz with orthonormal

columns. Then

1

Q(Q"AQ+ L) Q" ~ (A +4IL,) ",

where v s the most positive solution to
%tr [(A + ’yIp)_l] (vy—a)) =1-—a.

Furthermore, for u > 0 applied to the same (A, a, \), we have v < p.
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Orthogonal Sketching

Conjecture 10. Forq < p let \/g Q € CP*9? be a Haar-distributed matrixz with orthonormal

columns. Then

1

Q(Q"AQ+ L) Q" ~ (A +4IL,) ",

where v s the most positive solution to
—1
%tr [(A +~I,) ] (vy—aX) =1-q.
Furthermore, for u > 0 applied to the same (A, a, ), we have|y < .

» Same form as i.i.d. sketching, but with less regularization
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actice?

——

ivalence for Sketches Used in Pr

Equ

AdaptiveSketch

CountSketch

Orthogonal
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Summary

* Early work:

* Hints of deep connection between ensembles and ridge
* Tuned ensembles with subsampling achieve same risk as optimal ridge
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Summary

* Early work:

* Hints of deep connection between ensembles and ridge
* Tuned ensembles with subsampling achieve same risk as optimal ridge

e Current work:

« Asymptotic equivalence between random projections and ridge
* Ridge equivalence on a weak level even for single learners
» Convergence in quadratic metrics to ridge regression for ensembles
» Sufficiently large sketches enable accurate ridgeless regression even without ensembles
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Summary

* Early work:

* Hints of deep connection between ensembles and ridge
* Tuned ensembles with subsampling achieve same risk as optimal ridge

e Current work:

« Asymptotic equivalence between random projections and ridge
* Ridge equivalence on a weak level even for single learners
» Convergence in quadratic metrics to ridge regression for ensembles
» Sufficiently large sketches enable accurate ridgeless regression even without ensembles

e Future work:

* More asymptotic equivalences
* Generalized cross-validation with sketching

* General linear models via leave-one-dimension-out
* Asymptotics of PCA
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Questions?

Questions’
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Anisotropic Sketching

Corollary 11. Let W be an invertible p X p positive semidefnite matriz, either deterministic
or random but independent of S with limsup [[W]|| < co. Let S = W1/28. Then for each

A > —liminf AT

min

(§TA§) as p,q — oo such that 0 < lim inf% < lim sung9 < O,

S(STAS+AI,) 'ST ~ (A+puW™ 1)},

where p most positive solution to

A=p(1-ttr|A(A+pw)7)).
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Equivalence for PCA

Theorem 12. Let X = ZXY2 agnd ¥ € CP*P have eigenvalue decomposition UDUH,

and let I1 4 be the projection operator of the principal eigenspace corresponding to a set of
eigenvalues A of the matrix %XHX. Then there exists a family of measures py2 for all
o2 > 0 such that for any A C R>, in the limit as p — oo,

14 ~ UAU"

where A 1s a diagonal matriz defined for by
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