Asymptotics of the Sketched Pseudoinverse

December 2022

Daniel LeJeune

Rice University

Pratik Patil

Carnegie Mellon University

Department of Electrical and Computer Engineering Department of Statistics and Machine Learning

Joint work with: Hamid Javadi, Richard Baraniuk, Ryan Tibshirani

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21…

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25…

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22…

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21…

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25…

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22…

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21…

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25…

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22…

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21…

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, μ tinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22…

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21…

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25…

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22…

- •Random forests [1]
	- Ensemble of decision trees
		- Trained on bootstrap samples
		- Branch on random feature subsets

Existing Practice

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

22

- •Random forests [1]
	- Ensemble of decision trees
		- Trained on bootstrap samples
		- Branch on random feature subsets
- Random projection ensembles [2]
	- Ensemble of sketched regressors
		- Randomly project observations
		- Randomly project features

Existing Practice

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

[2] GA Thanei, C Heinze, N Meinshausen. "Random projections for large-scale regression." Big and Complex Data Analysis, 2017.

• Ensemble of decision trees • Trained on bootstrap samples $\widetilde{\mathbf{x}} = \mathbf{S}_2^{\top} \mathbf{x}$ \cdot Branch on random fet Neural networks? $\widetilde{\mathbf{x}} = \mathbf{S}_3^{\top} \mathbf{x}$ \cdot Random projection e • Ensemble of sketche • Randomly project ob $\mathbf{f}(\mathbf{x})$ • Randomly project features $\hat{f}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_3^{\top} \tilde{\mathbf{x}}$

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

•Random forests [1]

[2] GA Thanei, C Heinze, N Meinshausen. "Random projections for large-scale regression." Big and Complex Data Analysis, 2017.

•Prior work: What performance do ensembles provably achieve?

- •Prior work: What performance do ensembles provably achieve?
	- Random forests are difficult to analyze
		- E.g., purely random forests [3] make analysis tractable
	- Simplified models [e.g., 2, 3] have proven upper bounds
		- Consistent estimation
		- Ensembles strictly better than individual models

[3] S Arlot, R Genuer. "Analysis of purely random forests bias." arXiv preprint arXiv:1407.3939.

- •Prior work: What performance do ensembles provably achieve?
	- Random forests are difficult to analyze
		- E.g., purely random forests [3] make analysis tractable
	- Simplified models [e.g., 2, 3] have proven upper bounds
		- Consistent estimation
		- Ensembles strictly better than individual models

•New question: What predictions do ensembles provably make?

[3] S Arlot, R Genuer. "Analysis of purely random forests bias." arXiv preprint arXiv:1407.3939.

- •Prior work: What performance do ensembles provably achieve?
	- Random forests are difficult to analyze
		- E.g., purely random forests [3] make analysis tractable
	- Simplified models [e.g., 2, 3] have proven upper bounds
		- Consistent estimation
		- Ensembles strictly better than individual models

But what is this predictor?

•New question: What predictions do ensembles provably make?

- •Prior work: What performance do ensembles provably achieve?
	- Random forests are difficult to analyze
		- E.g., purely random forests [3] make analysis tractable
	- Simplified models [e.g., 2, 3] have proven upper bounds
		- Consistent estimation
		- Ensembles strictly better than individual models

But what is this predictor?

- •New question: What predictions do ensembles provably make?
	- If there is implicit regularization in ensembles, can we make it explicit?
	- Stronger than consistency, tighter than upper bounds
		- Understand both good/optimal as well as suboptimal ensemble models

But what is this predictor?

•Prior work: What performance do ensembles provably achieve?

- Random forests are difficult to analyze
	- E.g., purely random forests [3] make analysis tractable
- Simplified models [q.
	- Consistent estimati
	- Ensembles strictly

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

• New question: What predictions are predictioned by make?

- If there is implicit regularization in ensembles, can we make it explicit?
- Stronger than consistency, tighter than upper bounds
	- Understand both good/optimal as well as suboptimal ensemble models

- \bullet Ground truth function $f\colon \mathcal{X}\to \mathbb{R}$
- Ensemble of estimators $\hat{f}_1,\ldots,\hat{f}_K\colon \mathcal{X}\to \mathbb{R}$
- Squared error

$$
R(\hat{f}_1, \dots, \hat{f}_K) \triangleq \mathbb{E}\left[R(\hat{f}_1, \dots, \hat{f}_K; x)\right]
$$

$$
R(\hat{f}_1, \dots, \hat{f}_K; x) \triangleq \mathbb{E}\left[\left(\frac{1}{K} \sum_{k=1}^K \hat{f}_k(x) - f(x)\right)^2\right]
$$

$$
31\,
$$

Early Work: Linear Regression Setting

• Training data:
$$
\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}
$$

 $\mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$

• Training data:
$$
\mathbf{X} = [\mathbf{x}_1 \dots \mathbf{x}_n]^{\top} \in \mathbb{R}^{n \times p}
$$

$$
\mathbf{y} = (y_1, \dots, y_n)^{\top} \in \mathbb{R}^n
$$

• Data model:
$$
\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p), \ f(\mathbf{x}) = \boldsymbol{\beta}^{*\top} \mathbf{x}, \ \|\boldsymbol{\beta}^*\|_2 = 1
$$

 $y_i \sim \mathcal{N}\left(f(\mathbf{x}_i), \sigma^2\right)$

Early Work: Linear Regression Setting

• Training data:
$$
\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}
$$

$$
\mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n
$$

• Data model:
$$
\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p), \ f(\mathbf{x}) = \boldsymbol{\beta}^{*T} \mathbf{x}, \ \|\boldsymbol{\beta}^*\|_2 = 1
$$

 $y_i \sim \mathcal{N}\left(f(\mathbf{x}_i), \sigma^2\right)$

•Estimators: $\hat{f}_k(\mathbf{x}) = \widehat{\boldsymbol{\beta}}_k^\top \mathbf{x}$ $\hat{\boldsymbol{\beta}}_k = \mathbf{S}_k \cdot \argmin_{\mathbf{b}} \frac{1}{2} ||\mathbf{T}_k^{\top} (\mathbf{y} - \mathbf{X} \mathbf{S}_k \mathbf{b})||_2^2$

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}$, $\mathbf{T}_k \in \mathbb{R}^{n \times m}$, $m > q + 1$
	- Uniformly random columns of identity matrix

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}$, $\mathbf{T}_k \in \mathbb{R}^{n \times m}$, $m > q + 1$
	- Uniformly random columns of identity matrix

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}$, $\mathbf{T}_k \in \mathbb{R}^{n \times m}$, $m > q + 1$
	- Uniformly random columns of identity matrix

Turn the Crank…

Error under Proportional Asymptotics

•Exact error expression for finite ensembles

Theorem 1. In the limit as $(n, p, m, q) \to \infty$ with $p/n \to \gamma$, $m/n \to \eta$, $q/p \to \alpha$, if $\eta > \alpha \gamma$,

$$
R(\hat{f}_1,\ldots,\hat{f}_K)=\frac{K-1}{K}\left(\frac{(1-\alpha)^2+\sigma^2\alpha^2\gamma}{1-\alpha^2\gamma}\right)+\frac{1}{K}\left(\frac{\eta(1-\alpha)+\sigma^2\alpha\gamma}{\eta-\alpha\gamma}\right).
$$

Error under Proportional Asymptotics

•Exact error expression for finite ensembles

Theorem 1. In the limit as $(n, p, m, q) \to \infty$ with $p/n \to \gamma$, $m/n \to \eta$, $q/p \to \alpha$, if $\eta > \alpha \gamma$,

$$
R(\hat{f}_1,\ldots,\hat{f}_K) = \frac{K-1}{K} \left(\frac{(1-\alpha)^2 + \sigma^2 \alpha^2 \gamma}{1 - \alpha^2 \gamma} \right) + \frac{1}{K} \left(\frac{\eta(1-\alpha) + \sigma^2 \alpha \gamma}{\eta - \alpha \gamma} \right)
$$

• Infinite ensemble error depends only on feature subsampling

$$
R_{\text{ens}}^{\infty}(\alpha) \triangleq \lim_{K \to \infty} R(\hat{f}_1, \dots, \hat{f}_K) = \frac{(1 - \alpha)^2 + \sigma^2 \alpha^2 \gamma}{1 - \alpha^2 \gamma}
$$

• Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top}\mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \argmin_{\mathbf{b}} \frac{1}{2n} {\lVert \mathbf{y} - \mathbf{X} \mathbf{b} \rVert}^2_2 + \frac{\lambda}{2} {\lVert \mathbf{b} \rVert}^2_2$

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top} \mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \arg \min \frac{1}{2n} ||\mathbf{y} \mathbf{X} \mathbf{b}||_2^2 + \frac{\lambda}{2} ||\mathbf{b}||_2^2$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(0, p^{-1}I)$,

$$
\inf_{\alpha < \gamma^{-1}} R_{\text{ens}}^{\infty}(\alpha) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})
$$

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top} \mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \arg \min \frac{1}{2n} ||\mathbf{y} \mathbf{X} \mathbf{b}||_2^2 + \frac{\lambda}{2} ||\mathbf{b}||_2^2$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(0, p^{-1}I)$,

$$
\inf_{\alpha < \gamma^{-1}} R_{\text{ens}}^{\infty}(\alpha) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})
$$

Spoiler: Randomized least squares = ridge + noise Randomized ensembles = ridge

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \widehat{\boldsymbol{\beta}}_{\lambda}^{\top} \mathbf{x}, \ \widehat{\boldsymbol{\beta}}_{\lambda} = \argmin_{\mathbf{2}n} \|\mathbf{y} \mathbf{X} \mathbf{b}\|_2^2 + \frac{\lambda}{2} {\|\mathbf{b}\|}_2^2$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(0, p^{-1}I)$,

$$
\inf_{\alpha<\gamma^{-1}}R_{\text{ens}}^\infty(\alpha)=\inf_{\lambda>0}R(\hat{f}_\lambda)
$$

• However, proof sheds little insight

$$
\inf_{\alpha < \gamma^{-1}} R_{\text{ens}}^{\infty}(\alpha) = \frac{1}{2} \left(\frac{\gamma - 1}{\gamma} - \sigma^2 + \sqrt{\left(\sigma^2 - \frac{\gamma - 1}{\gamma} \right)^2 + 4\sigma^2} \right) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})
$$

Interpretation of Results

- Since ridge regression is optimal, ensemble is optimal
	- Ridge regression is the minimum mean squared error (MMSE) estimator
- Since ridge regression is optimal, ensemble is optimal
	- Ridge regression is the minimum mean squared error (MMSE) estimator
- •Does this imply ensemble converges to ridge regression?
	- For finite dimensions, MMSE is unique
	- For infinite dimensions?
	- Optimality theorem suggests convergence to ridge, but not rigorous

Interpretation of Results

- Since ridge regression is optimal, ensemble is optimal
	- Ridge regression is the minimum mean squared error (MMSE) estimator
- •Does this imply ensemble converges to ridge regression?
	- For finite dimensions, $M^{p,q}$
	- For infinite dimension
	- Optimality theorem suggests convergence to rigorous

But what is this predictor?

• Infinite ensemble with only feature subsampling:

$$
\hat{f}_{\text{ens}}^{\infty}(\mathbf{x})=\lim_{K\rightarrow\infty}\tfrac{1}{K}\sum_{k=1}^{K}\widehat{\boldsymbol{\beta}}_{k}^{\top}\mathbf{x}=\mathbf{y}^{\top}\mathbf{X}\left(\lim_{K\rightarrow\infty}\tfrac{1}{K}\sum_{k=1}^{K}\mathbf{S}_{k}\left(\mathbf{S}_{k}^{\top}\mathbf{X}^{\top}\mathbf{X}\mathbf{S}_{k}\right)^{-1}\mathbf{S}_{k}^{\top}\right)\mathbf{x}
$$

• Infinite ensemble with only feature subsampling:

$$
\hat{f}_{\text{ens}}^{\infty}(\mathbf{x}) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \hat{\beta}_{k}^{\top} \mathbf{x} = \mathbf{y}^{\top} \mathbf{X} \left(\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} \left(\mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} \right)^{-1} \mathbf{S}_{k}^{\top} \right) \mathbf{x}
$$
\n• Determinantal Point Process pseudoinverse [7]:

Theorem (Mutny et al. 2020). If $M \succ 0$ and $S \sim \mathcal{DPP}(\frac{1}{\lambda}M)$,

$$
\mathbb{E}\left[{\mathbf{S}\left(\mathbf{S}^{\top} \mathbf{M} \mathbf{S}\right)}^{-1}\,\mathbf{S}^{\top}\right] = \left(\mathbf{M} + \lambda \mathbf{I}\right)^{-1},
$$

where λ is the solution to $\mathbb{E}\left[\frac{q_{\mathbf{S}}}{p}\right] = \text{tr}(\mathbf{M}(\mathbf{M} + \lambda \mathbf{I})^{-1}).$

[5] M Mutny, M Dereziński, A Krause. "Convergence analysis of block coordinate algorithms with determinantal sampling." AISTATS, 2020.

Moving to Sketched Ensembles

- •Problem: strict isotropic assumption on data
	- Solution: let subsampling operators be isotropic sketches instead

$$
[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \tfrac{1}{q}), [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \tfrac{1}{m})
$$

- •Problem: strict isotropic assumption on data
	- Solution: let subsampling operators be isotropic sketches instead

$$
[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,\tfrac{1}{q}), \ [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,\tfrac{1}{m})
$$

- •Problem: marginal error results
	- Solution: use asymptotic equivalences from random matrix theory (RMT)
- •Problem: strict isotropic assumption on data
	- Solution: let subsampling operators be isotropic sketches instead

$$
[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,\tfrac{1}{q}), \ [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0,\tfrac{1}{m})
$$

- •Problem: marginal error results
	- Solution: use asymptotic equivalences from random matrix theory (RMT)
- Problem: estimators use ordinary least squares, $m > q + 1$
	- Solution: consider ridge regression for arbitrary sketch sizes

Moving to Sketched Ensembles

- •Problem: strict isotropic assumption on data
	- Solution: let subsampling operators be isotropic sketches instead

$$
[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\underline{0\ 1}) \quad [\mathbf{T}] \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\underline{0\ 1})
$$

Spoiler:

- Problem: marginal e
	- Solution: use asymper Randomized least squares = ridge + noise $\frac{1}{1}$ trix theory (RMT)

Randomized least squares = ridge + noise

Randomized ensembles = ridge

- Problem: estimators use ordinary least squares, $m > q + 1$
	- Solution: consider ridge regression for arbitrary sketch sizes

•Asymptotic equivalences [6]:

Definition. Two sequences of matrices A_n , B_n are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for every sequence $\mathbf{\Theta}_n$ having uniformly bounded trace norm, almost surely

 $\lim_{n\to\infty} \text{tr}\left[\mathbf{\Theta}_n(\mathbf{A}_n - \mathbf{B}_n)\right] = 0.$

[6] E Dobriban, Y Sheng. "Distributed linear regression by averaging." Annals of Statistics, 2021.

•Asymptotic equivalences [6]:

Definition. Two sequences of matrices A_n , B_n are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for every sequence $\mathbf{\Theta}_n$ having uniformly bounded trace norm, almost surely

 $\lim_{n\to\infty} \text{tr}\left[\mathbf{\Theta}_n(\mathbf{A}_n - \mathbf{B}_n)\right] = 0.$

•Admits a calculus:

- Addition $A_n \simeq B_n$, $C_n \simeq D_n \implies A_n + C_n \simeq B_n + D_n$
- Multiplication $A_n \simeq B_n \implies C_n A_n D_n \simeq C_n B_n D_n$
- Elements $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]_{ij} [\mathbf{B}_n]_{ij} \stackrel{\text{a.s.}}{\longrightarrow} 0$
- Differentiation [7] $f(\mathbf{A}_n; z) \simeq g(\mathbf{B}_n; z) \implies f'(\mathbf{A}_n; z) \simeq g'(\mathbf{B}_n; z)$

[6] E Dobriban, Y Sheng. "Distributed linear regression by averaging." Annals of Statistics, 2021.

[7] E Dobriban, Y Sheng. "WONDER: Weighted one-shot distributed ridge regression in high dimensions." JMLR, 2020.

An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \left(c(z)\mathbf{\Sigma} - z\mathbf{I}_p\right)^{-1},\tag{32}
$$

where $c(z)$ is the unique solution in \mathbb{C}^- to the fixed point equation

$$
\frac{1}{c(z)} - 1 = \frac{1}{n} \text{tr} \left[\Sigma \left(c(z) \Sigma - z \mathbf{I}_p \right)^{-1} \right]. \tag{33}
$$

Furthermore, $\frac{1}{p}$ tr $[\Sigma(c(z)\Sigma - zI_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$.

[8] F Rubio, X Mestre. "Spectral convergence for a general class of random matrices." Statistics & Probability Letters, 2011.

An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}-z\mathbf{I}_{p}\right)^{-1}\simeq\left(c(z)\boldsymbol{\Sigma}-z\right)
$$
 What about real arguments?

where $c(z)$ is the unique solution in \mathbb{C}^- to the fixed point equation

$$
\frac{1}{c(z)} - 1 = \frac{1}{n} \text{tr} \left[\Sigma \left(c(z) \Sigma - z \mathbf{I}_p \right)^{-1} \right]. \tag{33}
$$

Furthermore, $\frac{1}{p}$ tr $\left[\Sigma(c(z)\Sigma - zI_p)^{-1}\right]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$.

[8] F Rubio, X Mestre. "Spectral convergence for a general class of random matrices." Statistics & Probability Letters, 2011.

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean \acute{o} , variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{n \to \infty} \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \left(c(z)\mathbf{\Sigma} - z\mathbf{I}_p\right)^{-1},\tag{32}
$$

where $c(z)$ is the unique solution in \mathbb{C}^- to the fixed point equation

$$
\frac{1}{c(z)} - 1 = \frac{1}{n} \text{tr} \left[\Sigma \left(c(z) \Sigma - z \mathbf{I}_p \right)^{-1} \right]. \tag{33}
$$

Furthermore, $\frac{1}{n}$ tr $[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$.

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$
1 = \frac{1}{n} \text{tr}\left[\Sigma^2 \left(\Sigma - \zeta_0 \mathbf{I}_p\right)^{-2}\right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \text{tr}\left[\Sigma \left(\Sigma - \zeta_0 \mathbf{I}_p\right)^{-1}\right]\right).
$$
 (34)

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta\mathbf{I}_p\right)^{-1},\tag{35}
$$

 \blacktriangledown where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation Analytic continuation

Furthermore,
$$
\frac{1}{p}\text{tr}[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]
$$
 is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p}\text{tr}[\Sigma]$.

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean $\hat{\theta}$, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{n \to \infty} \frac{p}{n} \le$

 $\left(\frac{1}{n}\mathbf{X}^{H}\mathbf{X}-z\mathbf{I}_{p}\right)$

 $\limsup \frac{p}{\epsilon} < \infty$, we have

$$
z = \zeta \left(1 - \frac{1}{n} \text{tr} \left[\Sigma \left(\Sigma - \zeta \mathbf{I}_p \right)^{-1} \right] \right). \tag{36}
$$

Furthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{a.s.} 0$, where $v(z)$ is the companion Stieltjes transform of the spectrum of $\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}$ given by

$$
v(z) = \frac{1}{n} \text{tr} \left[\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_{n} \right)^{-1} \right],
$$

and $|z_0 - \lambda_{\min}^+ (\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X})| \xrightarrow{\text{a.s.}} 0.$

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

 $\mathcal{L}_1 = \frac{1}{n} \mathrm{tr} \left[\mathbf{\Sigma}^2 \left(\mathbf{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \mathrm{tr} \left[\mathbf{\Sigma} \left(\mathbf{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right).$

Limits of negative regularization

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{n \to \infty} \frac{p}{n} \le$ $\limsup_{x \to \infty} \frac{p}{x} < \infty$, we have

$$
\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \left(c(z)\mathbf{\Sigma} - z\mathbf{I}_p\right)^{-1},\,
$$

where $c(z)$ is the unique solution in \mathbb{C}^- to the fixed point equation

$$
\frac{1}{c(z)} - 1 = \frac{1}{n} \text{tr} \left[\Sigma \left(c(z) \Sigma - z \mathbf{I}_p \right)^{-1} \right]. \tag{33}
$$

 (32)

Furthermore, $\frac{1}{n}$ tr $\left[\sum (c(z)\sum -zI_p)^{-1}\right]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$.

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\ln \min \frac{p}{n} < \infty$, we have

$$
z\left(\frac{1}{n}\mathbf{X}^{H}\mathbf{X}-z\mathbf{I}_{p}\right)^{-1}\simeq\zeta\left(\mathbf{\Sigma}-\zeta\mathbf{I}_{p}\right)^{-1},\tag{35}
$$

where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation

$$
z = \zeta \left(1 - \frac{1}{n} \text{tr} \left[\Sigma \left(\Sigma - \zeta \mathbf{I}_p \right)^{-1} \right] \right). \tag{36}
$$

Furthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{a.s.} 0$, where $v(z)$ is the companion Stieltjes transform of the spectrum of $\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}$ given by

$$
v(z) = \frac{1}{n} \text{tr}\left[\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_{n} \right)^{-1} \right],
$$

and $|z_0 - \lambda_{\min}^+ (\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X})| \stackrel{\text{a.s.}}{\longrightarrow} 0.$

 (34)

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$
1 = \frac{1}{n} \text{tr} \left[\mathbf{\Sigma}^2 \left(\mathbf{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \text{tr} \left[\mathbf{\Sigma} \left(\mathbf{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right).
$$
 (34)

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
z\left(\frac{1}{n}\mathbf{X}^{H}\mathbf{X}-z\mathbf{I}_{p}\right)^{-1}\simeq\zeta\left(\mathbf{\Sigma}-\zeta\mathbf{I}_{p}\right)^{-1},\tag{35}
$$

where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation

 $z = \zeta \left(1 - \frac{1}{n} \text{tr} \left[\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma} - \zeta \mathbf{I}_p \right)^{-1} \right] \right).$ (36)

rthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{a.s.} 0$, where $v(z)$ is the companion Stieltjes transform Reparameterization \overline{of} the spectrum of $\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}$ given by

$$
v(z) = \tfrac{1}{n} \mathrm{tr} \Big[\big(\tfrac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_{n} \big)^{-1} \Big],
$$

and $|z_0 - \lambda_{\min}^+ (\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X})| \stackrel{\text{a.s.}}{\longrightarrow} 0.$

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{n \to \infty} \frac{p}{n}$.

 $\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}-z\mathbf{I}_{p}\right)^{-1}\simeq\left(c(z)\mathbf{\Sigma}-z\mathbf{I}_{p}\right)^{-1}$

 $\frac{1}{a(s)} - 1 = \frac{1}{n} \text{tr} \left[\sum (c(z) \Sigma - z \mathbf{I}_p)^{-1} \right].$

Furthermore, $\frac{1}{n}$ tr $[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a cert

on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$

 (33)

sitive measure

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$
1 = \frac{1}{n} \text{tr} \left[\Sigma^2 \left(\Sigma - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \text{tr} \left[\Sigma \left(\Sigma - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right). \tag{34}
$$

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$
z\left(\frac{1}{n}\mathbf{X}^{H}\mathbf{X}-z\mathbf{I}_{p}\right)^{-1}\simeq\zeta\left(\mathbf{\Sigma}-\zeta\mathbf{I}_{p}\right)^{-1},\tag{35}
$$

where
$$
\zeta \in \mathbb{R}
$$
 is the unique solution in $(-\infty)$
\n
$$
z = \zeta \left(1 - \frac{1}{n} \text{tr} \left[\sum (\sum \zeta I_p)^{-1}\right]\right).
$$
\n(36)
\nFurthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{a.s.} 0$, where $v(z)$ is the companion Stieltjes transform of the spectrum of $\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X}$ given by

$$
v(z) = \frac{1}{n} \text{tr} \left[\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_{n} \right)^{-1} \right]
$$

and $|z_0 - \lambda_{\min}^+(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X})| \stackrel{\text{a.s.}}{\longrightarrow} 0.$

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{\epsilon} < \infty$, we have

$$
\frac{1}{n}\mathbf{X}^{H}\mathbf{X} - z\mathbf{I}_{p}^{-1} \simeq (c(z)\mathbf{\Sigma} - z\mathbf{I}_{p})^{-1},\tag{32}
$$

where $c(z)$ is the unique solution in \mathbb{C}^- to the fixed point equation

$$
\frac{1}{c(z)} - 1 = \frac{1}{n} \text{tr} \left[\Sigma \left(c(z) \Sigma - z \mathbf{I}_p \right)^{-1} \right]. \tag{33}
$$

Furthermore, $\frac{1}{n}$ tr $[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \text{tr}[\Sigma]$.

$$
z\big(\tfrac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}-z\mathbf{I}_p\big)^{-1} \simeq \zeta\left(\mathbf{\Sigma} - \zeta\mathbf{I}_p\right)^{-1}
$$

$$
z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta\mathbf{I}_p\right)^{-1}
$$

$$
\mathbf{X} = \sqrt{q}\mathbf{S}^{\mathsf{H}}\mathbf{A}^{1/2}
$$

$$
\lambda = -z
$$

$$
\mu = -\zeta
$$

$$
z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_p\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta\mathbf{I}_p\right)^{-1}
$$

$$
\mathbf{X} = \sqrt{q}\mathbf{S}^{\mathsf{H}}\mathbf{A}^{1/2}
$$

$$
\lambda = -z
$$

$$
\mu = -\zeta
$$

$$
\mathbf{I}_p - \lambda \big(\mathbf{A}^{1/2} \mathbf{S} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2} + \lambda \mathbf{I}_p \big)^{-1} \simeq \mathbf{I}_p - \mu \big(\mathbf{A} + \mu \mathbf{I}_p \big)^{-1} \\ \implies \mathbf{A}^{1/2} \mathbf{S} \big(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q \big)^{-1} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2} \simeq \mathbf{A}^{1/2} \big(\mathbf{A} + \mu \mathbf{I}_p \big)^{-1} \mathbf{A}^{1/2}
$$

$$
z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta\mathbf{I}_{p}\right)^{-1}
$$
\n
$$
\mathbf{X} = \sqrt{q}\mathbf{S}^{\mathsf{H}}\mathbf{A}^{1/2}
$$
\n
$$
\lambda = -z
$$
\n
$$
\mu = -\zeta
$$
\n

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$
\mathbf{S} \big(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q \big)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1},
$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$
\lambda = \mu \left(1 - \frac{1}{q} \text{tr}\left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).
$$

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$
\boxed{{\mathbf S} \big({\mathbf S}^{\mathsf H} {\mathbf A} {\mathbf S} + \lambda {\mathbf I}_q \big)^{-1} {\mathbf S}^{\mathsf H} } \! \simeq \! \! \big[\big({\mathbf A} + \mu {\mathbf I}_p \big)^{-1} \! \big],
$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$
\lambda = \mu \left(1 - \frac{1}{q} \text{tr}\left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).
$$

• That is, sketching + ridge = another ridge without sketching.

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$
\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu \mathbf{I})^{-1}
$$

where μ is the unique solution in (μ_{0}, ∞) to the fixed point $\mathbb{E}\left[\frac{q_{\mathbf{S}}}{p}\right] = \text{tr}(\mathbf{M}(\mathbf{M} + \mu \mathbf{I})^{-1})$

$$
\lambda = \mu \left(1 - \frac{1}{q} \text{tr}\left[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_{p})^{-1}\right]\right).
$$

Same as DPP when $\lambda = 0$

• That is, sketching + ridge = another ridge without sketching.

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$
\mathbf{S} \big(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q \big)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1},
$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$
\lambda = \mu \left(1 - \frac{1}{q} \text{tr}\left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).
$$

• That is, sketching + \vert ridge with spons and \vert ketching.

Spoiler:

Randomized least squares = $ridge + noise$

Randomized ensembles = ridge

Element-wise Convergence

Element-wise Convergence

16x16 \mathbf{w}

16x16 \boldsymbol{v} \boldsymbol{v}

• Example: isotropic spectrum with $r(A) = \frac{1}{2}$

- Example: isotropic spectrum with $r(A) = \frac{1}{2}$
- $\cdot \lambda \mapsto \mu$ is increasing and concave
- $\cdot \alpha \mapsto \mu$ is decreasing unless $\alpha > r(A)$ and $\lambda < 0$

- Example: isotropic spectrum with $r(A) = \frac{1}{2}$
- $\cdot \lambda \mapsto \mu$ is increasing and concave
- $\cdot \alpha \mapsto \mu$ is decreasing unless $\alpha > r(A)$ and $\lambda < 0$
- $\cdot \mu \geq \lambda$ unless $\alpha > r(A)$ and $\lambda < 0$

$$
\bullet | \mu \leq \lambda + \tfrac{1}{q} \mathrm{tr}[\mathbf{A}]
$$

• Example: isotropic spectrum with $r(A) = \frac{1}{2}$ $\cdot \lambda \mapsto \mu$ is increasing and concave $\cdot \alpha \mapsto \mu$ is decreasing unless $\alpha > r(A)$ and $\lambda < 0$ $\cdot \mu \geq \lambda$ unless $\alpha > r(A)$ and $\lambda < 0$ • \cdot sign (μ) = sign (λ) if • else $\mu \geq 0$

First-Order is Not Enough

• First-order equivalence is similar to expectation equivalence

- First-order equivalence is similar to expectation equivalence
- $\bullet \mathbb{E}[X] = \mathbb{E}[Y]$ does not imply that $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$
- Similarly, products of equivalences do not compose if not independent
- First-order equivalence is similar to expectation equivalence
- $\mathbb{E}[X] = \mathbb{E}[Y]$ does not imply that $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$
- Similarly, products of equivalences do not compose if not independent
- Solution: derivative rule of asymptotic equivalence

$$
\tfrac{d}{dz}\left(\mathbf{A}-z\mathbf{I}\right)^{-1}=-\left(\mathbf{A}-z\mathbf{I}\right)^{-2}
$$

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of S with $\|\Psi\|_{\infty}$ uniformly bounded in p, then

$$
\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{H}}\mathbf{\Psi}\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu\mathbf{I}_p)^{-1}(\mathbf{\Psi} + \mu'\mathbf{I}_p)(\mathbf{A} + \mu\mathbf{I}_p)^{-1},
$$

$$
\mu' = \frac{\frac{1}{q} \text{tr}\left[\mu^3 \left(\mathbf{A} + \mu \mathbf{I}_p\right)^{-1} \mathbf{\Psi}\left(\mathbf{A} + \mu \mathbf{I}_p\right)^{-1}\right]}{\lambda + \frac{1}{q} \text{tr}\left[\mu^2 \mathbf{A}\left(\mathbf{A} + \mu \mathbf{I}_p\right)^{-2}\right]} \geq 0.
$$

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of S with $\|\Psi\|_{\text{op}}$ uniformly bounded in p, then

 w_k

$$
\mu' = \frac{\frac{1}{q}\mathrm{tr}\left[\mu^3\left(\mathbf{A} + \mu\mathbf{I}_p\right)^{-1}\mathbf{\Psi}\left(\mathbf{A} + \mu\mathbf{I}_p\right)^{-1}\right]}{\lambda + \frac{1}{q}\mathrm{tr}\left[\mu^2\mathbf{A}\left(\mathbf{A} + \mu\mathbf{I}_p\right)^{-2}\right]}\n\geq 0.
$$

- •That is, second-order adds an isotropic inflation factor
- Depends significantly on the choice of Ψ

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of S with $\|\Psi\|_{\infty}$ uniformly bounded in p, then

-
- Depends significantly on the choice of Ψ

One Incredible Regime

• Example: isotropic spectrum with $r(A) = \frac{1}{2}$

One Incredible Regime

• If $\Psi \in \text{Range}(\mathbf{A}), \alpha > r(\mathbf{A})$, and $\mu = \lambda = 0$, there is no inflation

- Agrees with classical sketching results: sketch larger than rank
- Sketching is ideal for benign overfitting

Application: Ridge Regression

$$
\hat{\boldsymbol{\beta}}_{PD} \triangleq \mathbf{S} \cdot \arg \min_{\mathbf{b}} \frac{1}{n} \left\| \mathbf{T}^{\top} (\mathbf{y} - \mathbf{X} \mathbf{S} \mathbf{b}) \right\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2}
$$

 $\widehat{\boldsymbol{\beta}}_{P} \triangleq \argmin_{\mathbf{b}} \frac{1}{n} \left\| \mathbf{T}^{\top} (\mathbf{y} - \mathbf{X} \mathbf{b}) \right\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2}$

 $\hat{\boldsymbol{\beta}}_D \triangleq \mathbf{S} \cdot \arg \min \frac{1}{n} ||\mathbf{y} - \mathbf{X} \mathbf{S} \mathbf{b}||_2^2 + \lambda ||\mathbf{b}||_2^2$

Sketched Ridge Regression

•Primal (observations) and dual (features) sketching:

Preparing for Equivalences

•Express in terms of the sketched pseudoinverse:

$$
\widehat{\boldsymbol{\beta}}_{\psi} = \frac{1}{\sqrt{n}} \mathbf{X}_{\psi}^{\dagger} \mathbf{y}, \ \psi \in \{P, D, PD\}
$$
\n
$$
\mathbf{X}_{P}^{\dagger} \triangleq \frac{1}{\sqrt{n}} \left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top} \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top}
$$
\n
$$
\mathbf{X}_{D}^{\dagger} \triangleq \frac{1}{\sqrt{n}} \mathbf{S} \left(\frac{1}{n} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S} + \lambda \mathbf{I}\right)^{-1} \mathbf{S}^{\top} \mathbf{X}^{\top}
$$
\n
$$
\mathbf{X}_{PD}^{\dagger} \triangleq \frac{1}{\sqrt{n}} \mathbf{S} \left(\frac{1}{n} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top} \mathbf{X} \mathbf{S} + \lambda \mathbf{I}\right)^{-1} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top}
$$

First-order Data Pseudoinverse Equivalence

Theorem 6. If $\left\|\frac{1}{\sqrt{n}}\mathbf{X}\right\|_{\text{op}}$ is uniformly bounded in p, then as $m, n, q, p \to \infty$,

$$
\mathbf{X}_{\psi}^{\ddagger} \simeq \frac{1}{\sqrt{n}} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{\psi} \mathbf{I} \right)^{-1} \mathbf{X}^{\mathsf{H}},
$$

where μ_{ψ} are is the most positive solutions to the equations

$$
\lambda = \mu_P \left(1 - \frac{1}{m} \text{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_P \mathbf{I} \right)^{-1} \right] \right),
$$
\n
$$
\lambda = \mu_D \left(1 - \frac{1}{q} \text{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-1} \right] \right),
$$
\n
$$
\frac{\lambda}{\theta} - 1 = \frac{m}{q} \left(\frac{\theta}{\mu_{PD}} - 1 \right), \quad \theta = \mu_{PD} \left(1 - \frac{1}{m} \text{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{PD} \mathbf{I} \right)^{-1} \right] \right).
$$

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of S and T such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p\rightarrow\infty,$

$$
f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\psi})-f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}})\xrightarrow{a.s.}0.
$$

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of S and T such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p\rightarrow\infty,$

$$
f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\psi})-f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}})\xrightarrow{a.s.}0.
$$

• Sketching asymptotically makes the same prediction as the equivalent ridge on any single test point

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of S and T such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p\rightarrow\infty,$

$$
f(\mathbf{w}^\textsf{H} \widehat{\boldsymbol{\beta}}_{\psi}) - f(\mathbf{w}^\textsf{H} \widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}) \xrightarrow{\text{a.s.}} 0.
$$

• Sketching asymptotically makes the same prediction as the equivalent ridge on any single test point Why this qualifier?

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of $and \mathbf{T}$ \mathbb{C} , as $p\rightarrow\infty,$

• Sketching asymptotically makes n° and same prediction as the equivalent ridge on any single presence $f(\mathbf{w}^H \hat{g}_{\psi}) - f(\mathbf{w}^H \hat{g}^{\text{ridge}})$

ing asymptotically and the equipment of th

- Ensemble of independent sketches: $\widehat{\beta}_{\psi}^{\text{ens}} = \frac{1}{K} \sum \widehat{\beta}_{\psi}^{(k)}$
- Quadratic error metrics: $\mathcal{E}_{\Psi} (\beta, \beta') = (\beta \beta')^{\mathsf{H}} \Psi (\beta \beta')$
	- Includes test risk

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\boldsymbol{\beta}' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\boldsymbol{\beta}'\|_{2}$ are uniformly bounded in p and $(\Psi,\boldsymbol{\beta})$ is independent of $(\mathbf{S}_k,\mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\},\$

$$
\mathcal{E}_{\Psi}(\widehat{\beta}_P^{\text{ens}},\beta') - \left(\mathcal{E}_{\Psi}(\widehat{\beta}_{\mu_P}^{\text{ridge}},\beta') + \frac{\mu_P'}{Kn} \mathbf{y}^{\text{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\text{H}} + \mu_P \mathbf{I}\right)^{-2} \mathbf{y}\right) \xrightarrow{\text{a.s.}} 0,
$$

$$
\mathcal{E}_{\Psi}(\widehat{\beta}_D^{\text{ens}},\beta') - \left(\mathcal{E}_{\Psi}(\widehat{\beta}_{\mu_D}^{\text{ridge}},\beta') + \frac{\mu_D'}{Kn} \mathbf{y}^{\text{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\text{H}} \mathbf{X} + \mu_D \mathbf{I}\right)^{-2} \mathbf{X}^{\text{H}} \mathbf{y}\right) \xrightarrow{\text{a.s.}} 0,
$$

$$
\mu'_{P} = \frac{\frac{1}{m} \text{tr} \left[\mu_{P}^{3} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{\Psi} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{m} \text{tr} \left[\mu_{P}^{2} \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-2} \right]},
$$

$$
\mu'_{D} = \frac{\frac{1}{q} \text{tr} \left[\mu_{D}^{3} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \mathbf{\Psi} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{q} \text{tr} \left[\mu_{D}^{2} \frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-2} \right]}.
$$

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\boldsymbol{\beta}' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\boldsymbol{\beta}'\|_2$ are uniformly bounded in p and $(\Psi,\boldsymbol{\beta})$ is independent of $(\mathbf{S}_k,\mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\},\$

$$
\mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\beta}_{\psi}^{\text{ens}}, \boldsymbol{\beta}^{\prime}\big) \xrightarrow{\text{a.s.}} \mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\beta}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}^{\prime}\big) + O\left(\frac{\mu_{\psi}^{\prime}}{K}\right)
$$

$$
\mu'_{P} = \frac{\frac{1}{m} \text{tr} \left[\mu_{P}^{3} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{\Psi} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{m} \text{tr} \left[\mu_{P}^{2} \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_{P} \mathbf{I} \right)^{-2} \right]},
$$
\n
$$
\mu'_{D} = \frac{\frac{1}{q} \text{tr} \left[\mu_{D}^{3} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \mathbf{\Psi} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{q} \text{tr} \left[\mu_{D}^{2} \frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-2} \right]}.
$$

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\boldsymbol{\beta}' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\beta'\|_2$ are uniformly bounded in p and (Ψ,β) is independent of $(\mathbf{S}_k,\mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\},\$

$$
\mathcal{E}_{\mathbf{\Psi}}\left(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}},\boldsymbol{\beta}'\right)\xrightarrow{\text{a.s.}}\mathcal{E}_{\mathbf{\Psi}}\left(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}},\boldsymbol{\beta}'\right)+O\left(\frac{\mu'_{\psi}}{K}\right)
$$
\nWell, ain't this a geometrical oddity.\n
$$
\mu'_{P} = \frac{\frac{1}{m}\text{tr}\left[\mu_{P}^{3}\left(\frac{1}{n}\mathbf{X}\right)\right]_{\lambda+\frac{1}{m}\text{tr}\left[\mu_{P}^{2}\frac{1}{n}\mathbf{X}\mathbf{X}^{\text{fr}}\left(\frac{1}{K}\mathbf{X}\mathbf{X}^{+}+\mu_{P}\mathbf{Y}\right)\right]}_{\lambda+\frac{1}{m}\text{tr}\left[\mu_{D}^{3}\left(\frac{1}{n}\mathbf{X}^{+}\mathbf{X}+\mu_{D}\mathbf{I}\right)^{-1}\mathbf{\Psi}\left(\frac{1}{n}\mathbf{X}^{+}\mathbf{X}+\mu_{D}\mathbf{I}\right)^{-1}\right]}_{\lambda+\frac{1}{q}\text{tr}\left[\mu_{D}^{2}\frac{1}{n}\mathbf{X}^{+}\mathbf{X}\left(\frac{1}{n}\mathbf{X}^{+}\mathbf{X}+\mu_{D}\mathbf{I}\right)^{-2}\right]}
$$

$$
\mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\mathrm{ens}}_{\psi}, \boldsymbol{\beta}^{\prime} \big) \stackrel{\mathrm{a.s.}}{\longrightarrow} \mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\mathrm{ridge}}_{\mu_{\psi}}, \boldsymbol{\beta}^{\prime} \big) + O\left(\frac{\mu^{\prime}_{\psi}}{K} \right)
$$

• For infinite K , sketched ensemble = ridge

$$
\mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\mathrm{ens}}_{\psi}, \boldsymbol{\beta}^{\prime} \big) \stackrel{\mathrm{a.s.}}{\longrightarrow} \mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\mathrm{ridge}}_{\mu_{\psi}}, \boldsymbol{\beta}^{\prime} \big) + O\left(\frac{\mu^{\prime}_{\psi}}{K} \right)
$$

• For infinite K , sketched ensemble = ridge

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

$$
\mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\text{ens}}_{\psi}, \boldsymbol{\beta}^{\prime} \big) \stackrel{\text{a.s.}}{\longrightarrow} \mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\text{ridge}}_{\mu_{\psi}}, \boldsymbol{\beta}^{\prime} \big) + O\left(\frac{\mu^{\prime}_{\psi}}{K} \right)
$$

- For infinite K , sketched ensemble = ridge
- For finite K , sketched ensemble is worse than ridge

$$
\mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\text{ens}}_{\psi}, \boldsymbol{\beta}^{\prime} \big) \stackrel{\text{a.s.}}{\longrightarrow} \mathcal{E}_{\mathbf{\Psi}}\big(\widehat{\boldsymbol{\beta}}^{\text{ridge}}_{\mu_{\psi}}, \boldsymbol{\beta}^{\prime} \big) + O\left(\frac{\mu^{\prime}_{\psi}}{K} \right)
$$

- For infinite K , sketched ensemble = ridge
- For finite K , sketched ensemble is worse than ridge
	- Unless $\Psi \in \text{Range}(\mathbf{A}), \alpha > r(\mathbf{A}),$ and $\mu = \lambda = 0!$

• Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\boldsymbol{\Sigma}) = \frac{1}{2}$

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\mathbf{\Sigma}) = \frac{1}{2}$
- Fixed target μ_D , varying α , with λ uniquely determined

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\mathbf{\Sigma}) = \frac{1}{2}$
- Fixed target μ_D , varying α , with λ uniquely determined
- Error: relative error $\frac{\mathcal{E}_{\Psi}(\widehat{\beta}_{D}^{\text{ens}},\widehat{\beta}_{\mu_{D}}^{\text{ridge}})}{P_{\mu_{D}}}$ $\boxed{\mathcal{E}_{\mathbf{\Psi}}\big(\mathbf{0},\widehat{\boldsymbol{\beta}}_{\mu_D}^{\text{ridge}}\big)}$

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\mathbf{\Sigma}) = \frac{1}{2}$
- Fixed target μ_D , varying α , with λ uniquely determined

• Error: relative error $\frac{\mathcal{E}_{\Psi}(\widehat{\beta}_{D}^{\text{ens}},\widehat{\beta}_{\mu_D}^{\text{ridge}})}$ $\overline{\mathcal{E}_{\mathbf{\Psi}}\big(\mathbf{0},\widehat{\boldsymbol{\beta}}_{\mu_D}^{\text{ridge}}\big)}$

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\mathbf{\Sigma}) = \frac{1}{2}$
- Fixed target μ_D , varying α , with λ uniquely determined

Better Sketches?

$$
\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1}.
$$

$$
\mathbf{S}\big(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q\big)^{-1}\mathbf{S}^{\mathsf{H}} \simeq \big(\mathbf{A} + \gamma \mathbf{I}_p\big)^{-1}.
$$

- •Includes i.i.d. sketching and more
	- Orthogonal sketching
	- Efficient sketches like CountSketch, FJLT, SRHT?

$$
\mathbf{S}\big(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q\big)^{-1}\mathbf{S}^{\mathsf{H}} \simeq \big(\mathbf{A} + \gamma \mathbf{I}_p\big)^{-1}.
$$

- •Includes i.i.d. sketching and more
	- Orthogonal sketching
	- Efficient sketches like CountSketch, FJLT, SRHT?
- Spectrum of sketch controls $\lambda \mapsto \gamma$

$$
\mathbf{S}(\mathbf{S}^{\mathsf{H}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \gamma \mathbf{I}_p\right)^{-1}.
$$

- •Includes i.i.d. sketching and more
	- Orthogonal sketching
	- Efficient sketches like CountSketch, FJLT, SRHT?
- Spectrum of sketch controls $\lambda \mapsto \gamma$
- •Higher order equivalences naturally follow

$$
\mathbf{S} \big(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q \big)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \big(\mathbf{A} + \gamma \mathbf{I}_p \big)^{-1}.
$$

- •Includes i.i.d. sketching and more
	- Orthogonal sketching
	- Efficient sketches like CountSketch, FJLT, SRHT?
- Spectrum of sketch controls $\lambda \mapsto \gamma$
- •Higher order equivalences naturally follow

Orthogonal Sketching

Conjecture 10. For $q \leq p$ let $\sqrt{\frac{q}{p}}\mathbf{Q} \in \mathbb{C}^{p \times q}$ be a Haar-distributed matrix with orthonormal columns. Then

$$
\mathbf{Q}\big(\mathbf{Q}^{\mathsf{H}}\mathbf{A}\mathbf{Q} + \lambda \mathbf{I}_q\big)^{-1}\mathbf{Q}^{\mathsf{H}} \simeq \big(\mathbf{A} + \gamma \mathbf{I}_p\big)^{-1},
$$

where γ is the most positive solution to

$$
\frac{1}{p}\mathrm{tr}\left[\left(\mathbf{A}+\gamma\mathbf{I}_p\right)^{-1}\right]\left(\gamma-\alpha\lambda\right)=1-\alpha.
$$

Furthermore, for $\mu > 0$ applied to the same (A, α, λ) , we have $\gamma < \mu$.

Orthogonal Sketching

Conjecture 10. For $q \leq p$ let $\sqrt{\frac{q}{p}}\mathbf{Q} \in \mathbb{C}^{p \times q}$ be a Haar-distributed matrix with orthonormal columns. Then

$$
\mathbf{Q}\big(\mathbf{Q}^{\mathsf{H}}\mathbf{A}\mathbf{Q} + \lambda \mathbf{I}_q\big)^{-1}\mathbf{Q}^{\mathsf{H}} \simeq \big(\mathbf{A} + \gamma \mathbf{I}_p\big)^{-1},
$$

where γ is the most positive solution to

$$
\frac{1}{p}\mathrm{tr}\left[\left(\mathbf{A}+\gamma\mathbf{I}_p\right)^{-1}\right]\left(\gamma-\alpha\lambda\right)=1-\alpha.
$$

Furthermore, for $\mu > 0$ applied to the same (A, α, λ) , we have $\gamma < \mu$. • Same form as i.i.d. sketching, but with less regularization

Equivalence for Sketches Used in Practice?

•Early work:

• Hints of deep connection between ensembles and ridge

• Tuned ensembles with subsampling achieve same risk as optimal ridge

Summary

•Early work:

- Hints of deep connection between ensembles and ridge
	- Tuned ensembles with subsampling achieve same risk as optimal ridge
- •Current work:
	- Asymptotic equivalence between random projections and ridge
		- Ridge equivalence on a weak level even for single learners
		- Convergence in quadratic metrics to ridge regression for ensembles
		- Sufficiently large sketches enable accurate ridgeless regression even without ensembles

Summary

•Early work:

- Hints of deep connection between ensembles and ridge
	- Tuned ensembles with subsampling achieve same risk as optimal ridge
- •Current work:
	- Asymptotic equivalence between random projections and ridge
		- Ridge equivalence on a weak level even for single learners
		- Convergence in quadratic metrics to ridge regression for ensembles
		- Sufficiently large sketches enable accurate ridgeless regression even without ensembles

• Future work:

- More asymptotic equivalences
	- Generalized cross-validation with sketching
	- General linear models via leave-one-dimension-out
	- Asymptotics of PCA

Summary

Questions?

Corollary 11. Let W be an invertible $p \times p$ positive semidefinite matrix, either deterministic or random but independent of S with $\limsup ||W||_{op} < \infty$. Let $\widetilde{S} = W^{1/2}S$. Then for each $\lambda > -\liminf_{m \to \infty} \lambda^+_{\min} (\widetilde{\mathbf{S}}^\top \mathbf{A} \widetilde{\mathbf{S}})$ as $p, q \to \infty$ such that $0 < \liminf_{n \to \infty} \frac{q}{n} \leq \limsup_{n \to \infty} \frac{q}{n} < \infty$,

$$
\widetilde{\mathbf{S}}\big(\widetilde{\mathbf{S}}^\top \mathbf{A}\widetilde{\mathbf{S}} + \lambda \mathbf{I}_q\big)^{-1}\widetilde{\mathbf{S}}^\top \simeq \big(\mathbf{A} + \mu \mathbf{W}^{-1}\big)^{-1},
$$

where μ most positive solution to

$$
\lambda = \mu \left(1 - \frac{1}{q} \text{tr}\left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{W}^{-1} \right)^{-1} \right] \right).
$$

Theorem 12. Let $X = \mathbb{Z}\Sigma^{1/2}$ and $\Sigma \in \mathbb{C}^{p \times p}$ have eigenvalue decomposition UDU^{H} , and let Π_A be the projection operator of the principal eigenspace corresponding to a set of eigenvalues A of the matrix $\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}$. Then there exists a family of measures μ_{σ^2} for all $\sigma^2 \geq 0$ such that for any $A \subseteq \mathbb{R}_{\geq 0}$, in the limit as $p \to \infty$,

 $\Pi_A \simeq \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{\mathsf{H}},$

where Λ is a diagonal matrix defined for by

 $[\mathbf{\Lambda}]_{ii} = \mu_{[\mathbf{\Sigma}]_{ii}}(\mathcal{A}).$