Asymptotics of the Sketched Pseudoinverse

December 2022

Daniel LeJeune

Rice University

Pratik Patil

Carnegie Mellon University

Department of Electrical and Computer Engineering Department of Statistics and Machine Learning

Joint work with: Hamid Javadi, Richard Baraniuk, Ryan Tibshirani

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22...

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22...

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22...

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, tinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22...

Age=27, Height=5'11", ABO=A, ALT=36, Glucose=78, Creatinine=0.99, Sodium=132, Carbon Dioxide=21...

Age=56, Height=5'3", ABO=AB, ALT=40, Glucose=98, Creatinine=0.63, Sodium=182, Carbon Dioxide=25...

Age=41, Height=6'4", ABO=O, ALT=36, Glucose=84, Creatinine=0.79, Sodium=156, Carbon Dioxide=22...

- Random forests [1]
 - Ensemble of decision trees
 - Trained on bootstrap samples
 - Branch on random feature subsets

Existing Practice

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

22

- Random forests [1]
 - Ensemble of decision trees
 - Trained on **bootstrap samples**
 - Branch on random feature subsets
- Random projection ensembles [2]
 - Ensemble of sketched regressors
 - Randomly project observations
 - Randomly project features

Existing Practice

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

[2] GA Thanei, C Heinze, N Meinshausen. "Random projections for large-scale regression." Big and Complex Data Analysis, 2017.

[1] L Breiman. "Random forests." Machine Learning 45, 2001.

[2] GA Thanei, C Heinze, N Meinshausen. "Random projections for large-scale regression." Big and Complex Data Analysis, 2017.

• Prior work: What performance do ensembles provably achieve?

- Prior work: What performance do ensembles provably achieve?
 - Random forests are difficult to analyze
 - E.g., purely random forests [3] make analysis tractable
 - Simplified models [e.g., 2, 3] have proven upper bounds
 - Consistent estimation
 - Ensembles strictly better than individual models

[3] S Arlot, R Genuer. "Analysis of purely random forests bias." arXiv preprint arXiv:1407.3939.

- Prior work: What performance do ensembles provably achieve?
 - Random forests are difficult to analyze
 - E.g., purely random forests [3] make analysis tractable
 - Simplified models [e.g., 2, 3] have proven upper bounds
 - Consistent estimation
 - Ensembles strictly better than individual models

• New question: What predictions do ensembles provably make?

[3] S Arlot, R Genuer. "Analysis of purely random forests bias." arXiv preprint arXiv:1407.3939.

- Prior work: What performance do ensembles provably achieve?
 - Random forests are difficult to analyze
 - E.g., purely random forests [3] make analysis tractable
 - Simplified models [e.g., 2, 3] have proven upper bounds
 - Consistent estimation
 - Ensembles strictly better than individual models

But what is this predictor?

• New question: What predictions do ensembles provably make?

- Prior work: What performance do ensembles provably achieve?
 - Random forests are difficult to analyze
 - E.g., purely random forests [3] make analysis tractable
 - Simplified models [e.g., 2, 3] have proven upper bounds
 - Consistent estimation
 - Ensembles strictly better than individual models

- If there is implicit regularization in ensembles, can we make it explicit?
- Stronger than consistency, tighter than upper bounds
 - Understand both good/optimal as well as suboptimal ensemble models

vably make?

But what is this predictor?

• Prior work: What performance do ensembles provably achieve?

- Random forests are difficult to analyze
 - E.g., purely random forests [3] make analysis tractable
- Simplified models [
 - Consistent estimat
 - Ensembles strictly

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

• New question: Wha

- If there is implicit regularization in ensembles, can we make it explicit?
- Stronger than consistency, tighter than upper bounds
 - Understand both good/optimal as well as suboptimal ensemble models

- Ground truth function $f\colon \mathcal{X} o \mathbb{R}$
- Ensemble of estimators $\hat{f}_1, \ldots, \hat{f}_K \colon \mathcal{X} \to \mathbb{R}$
- Squared error

$$R(\hat{f}_1, \dots, \hat{f}_K) \triangleq \mathbb{E} \left[R(\hat{f}_1, \dots, \hat{f}_K; x) \right]$$
$$R(\hat{f}_1, \dots, \hat{f}_K; x) \triangleq \mathbb{E} \left[\left(\frac{1}{K} \sum_{k=1}^K \hat{f}_k(x) - f(x) \right)^2 \right]$$

$$\mathbf{y} = (y_1, \dots, y_n)^ op \in \mathbb{R}^n$$

Early Work: Linear Regression Setting

[4] DL, H Javadi, RG Baraniuk. "The implicit regularization of ordinary least squares ensembles." AISTATS, 2020.

• Training data: $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}$

• Training data:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}$$

 $\mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$

• Data model:
$$\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p), \ f(\mathbf{x}) = \boldsymbol{\beta}^{*\top} \mathbf{x}, \ \|\boldsymbol{\beta}^*\|_2 = 1$$

 $y_i \sim \mathcal{N}(f(\mathbf{x}_i), \sigma^2)$

<u>Early Work: Linear Regression Setting</u>

• Training data:
$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 \dots \mathbf{x}_n \end{bmatrix}^\top \in \mathbb{R}^{n \times p}$$

 $\mathbf{y} = (y_1, \dots, y_n)^\top \in \mathbb{R}^n$

• Data model:
$$\mathbf{x}_i \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \mathbf{I}_p), \ f(\mathbf{x}) = \boldsymbol{\beta}^{*\top} \mathbf{x}, \ \|\boldsymbol{\beta}^*\|_2 = 1$$

 $y_i \sim \mathcal{N}\left(f(\mathbf{x}_i), \sigma^2\right)$

• Estimators:
$$\hat{f}_k(\mathbf{x}) = \widehat{\boldsymbol{\beta}}_k^\top \mathbf{x}$$

 $\widehat{\boldsymbol{\beta}}_k = \mathbf{S}_k \cdot \operatorname*{arg\,min}_{\mathbf{b}} \frac{1}{2} \| \mathbf{T}_k^\top (\mathbf{y} - \mathbf{X}\mathbf{S}_k \mathbf{b}) \|_2^2$

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}, \ \mathbf{T}_k \in \mathbb{R}^{n \times m}, \ m > q + 1$
 - Uniformly random columns of identity matrix

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}, \ \mathbf{T}_k \in \mathbb{R}^{n \times m}, \ m > q+1$
 - Uniformly random columns of identity matrix

Random Subsampling

- Subsampling operators $\mathbf{S}_k \in \mathbb{R}^{p \times q}, \ \mathbf{T}_k \in \mathbb{R}^{n \times m}, \ m > q+1$
 - Uniformly random columns of identity matrix

Turn the Crank...

Error under Proportional Asymptotics

• Exact error expression for finite ensembles

Theorem 1. In the limit as $(n, p, m, q) \to \infty$ with $p/n \to \gamma$, $m/n \to \eta$, $q/p \to \alpha$, if $\eta > \alpha \gamma$,

$$R(\hat{f}_1,\ldots,\hat{f}_K) = \frac{K-1}{K} \left(\frac{(1-\alpha)^2 + \sigma^2 \alpha^2 \gamma}{1-\alpha^2 \gamma} \right) + \frac{1}{K} \left(\frac{\eta(1-\alpha) + \sigma^2 \alpha \gamma}{\eta - \alpha \gamma} \right).$$

• Exact error expression for finite ensembles

Theorem 1. In the limit as $(n, p, m, q) \to \infty$ with $p/n \to \gamma$, $m/n \to \eta$, $q/p \to \alpha$, if $\eta > \alpha \gamma$,

$$R(\hat{f}_1,\ldots,\hat{f}_K) = \frac{K-1}{K} \left(\frac{(1-\alpha)^2 + \sigma^2 \alpha^2 \gamma}{1-\alpha^2 \gamma} \right) + \frac{1}{K} \left(\frac{\eta(1-\alpha) + \sigma^2 \alpha \gamma}{\eta - \alpha \gamma} \right)$$

Infinite ensemble error depends only on feature subsampling

$$R_{\mathrm{ens}}^{\infty}(\boldsymbol{\alpha}) \triangleq \lim_{K \to \infty} R(\hat{f}_1, \dots, \hat{f}_K) = \frac{(1-\boldsymbol{\alpha})^2 + \sigma^2 \boldsymbol{\alpha}^2 \gamma}{1-\boldsymbol{\alpha}^2 \gamma}$$

• Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \widehat{\boldsymbol{\beta}}_{\lambda}^{\top}\mathbf{x}, \ \widehat{\boldsymbol{\beta}}_{\lambda} = \operatorname*{arg\,min}_{\mathbf{b}} \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_{2}^{2} + \frac{\lambda}{2} \|\mathbf{b}\|_{2}^{2}$

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top}\mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \arg\min\frac{1}{2n}\|\mathbf{y} \mathbf{X}\mathbf{b}\|_{2}^{2} + \frac{\lambda}{2}\|\mathbf{b}\|_{2}^{2}$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(\mathbf{0}, p^{-1}\mathbf{I})$,

$$\inf_{\alpha < \gamma^{-1}} R^{\infty}_{\text{ens}}(\alpha) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})$$

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top}\mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \arg\min\frac{1}{2n}\|\mathbf{y} \mathbf{X}\mathbf{b}\|_{2}^{2} + \frac{\lambda}{2}\|\mathbf{b}\|_{2}^{2}$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(\mathbf{0}, p^{-1}\mathbf{I})$,

$$\inf_{\alpha < \gamma^{-1}} R^{\infty}_{\text{ens}}(\alpha) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})$$

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

- Ridge regression: $\hat{f}_{\lambda}(\mathbf{x}) = \hat{\boldsymbol{\beta}}_{\lambda}^{\top}\mathbf{x}, \ \hat{\boldsymbol{\beta}}_{\lambda} = \arg\min\frac{1}{2n}\|\mathbf{y} \mathbf{X}\mathbf{b}\|_{2}^{2} + \frac{\lambda}{2}\|\mathbf{b}\|_{2}^{2}$
- Tuning feature subsampling is optimal

Theorem 2. Under the conditions of Theorem 1 and if $\beta^* \sim \mathcal{N}(\mathbf{0}, p^{-1}\mathbf{I})$,

$$\inf_{lpha < \gamma^{-1}} R^{\infty}_{ ext{ens}}(lpha) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})$$

• However, proof sheds little insight

$$\inf_{\alpha < \gamma^{-1}} R^{\infty}_{\text{ens}}(\alpha) = \frac{1}{2} \left(\frac{\gamma - 1}{\gamma} - \sigma^2 + \sqrt{\left(\sigma^2 - \frac{\gamma - 1}{\gamma}\right)^2 + 4\sigma^2} \right) = \inf_{\lambda > 0} R(\hat{f}_{\lambda})$$

Interpretation of Results

- Since ridge regression is optimal, ensemble is optimal
 - Ridge regression is the minimum mean squared error (MMSE) estimator

- Since ridge regression is optimal, ensemble is optimal
 - Ridge regression is the minimum mean squared error (MMSE) estimator
- Does this imply ensemble converges to ridge regression?
 - For finite dimensions, MMSE is unique
 - For infinite dimensions?
 - Optimality theorem suggests convergence to ridge, but not rigorous

Interpretation of Results

- Since ridge regression is optimal, ensemble is optimal
 - Ridge regression is the minimum mean squared error (MMSE) estimator
- Does this imply ensemble converges to ridge regression?
 - For finite dimensions, MM
 - For infinite dimensior
 - Optimality theorem su

But what is this predictor?

Jut not rigorous

• Infinite ensemble with only feature subsampling:

$$\hat{f}_{\text{ens}}^{\infty}(\mathbf{x}) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \widehat{\boldsymbol{\beta}}_{k}^{\top} \mathbf{x} = \mathbf{y}^{\top} \mathbf{X} \left(\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} \left(\mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} \right)^{-1} \mathbf{S}_{k}^{\top} \right) \mathbf{x}$$

• Infinite ensemble with only feature subsampling:

$$\hat{f}_{ens}^{\infty}(\mathbf{x}) = \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \widehat{\boldsymbol{\beta}}_{k}^{\top} \mathbf{x} = \mathbf{y}^{\top} \mathbf{X} \left(\lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} \left(\mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} \right)^{-1} \mathbf{S}_{k}^{\top} \right) \mathbf{x}$$

Determinantal Point Process pseudoinverse [7]:

Theorem (Mutny et al. 2020). If $\mathbf{M} \succ \mathbf{0}$ and $\mathbf{S} \sim \mathcal{DPP}(\frac{1}{\lambda}\mathbf{M})$,

$$\mathbb{E}\left[\mathbf{S}\left(\mathbf{S}^{ op}\mathbf{M}\mathbf{S}
ight)^{-1}\mathbf{S}^{ op}
ight]=\left(\mathbf{M}+\lambda\mathbf{I}
ight)^{-1},$$

where λ is the solution to $\mathbb{E}\left[\frac{q_{\mathbf{S}}}{p}\right] = \operatorname{tr}(\mathbf{M}\left(\mathbf{M} + \lambda \mathbf{I}\right)^{-1}).$

[5] M Mutny, M Dereziński, A Krause. "Convergence analysis of block coordinate algorithms with determinantal sampling." AISTATS, 2020.

Moving to Sketched Ensembles

- Problem: strict isotropic assumption on data
 - Solution: let subsampling operators be isotropic sketches instead

$$[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{q}), \ [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{m})$$

- Problem: strict isotropic assumption on data
 - Solution: let subsampling operators be isotropic sketches instead

$$[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{q}), \ [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{m})$$

- Problem: marginal error results
 - Solution: use asymptotic equivalences from random matrix theory (RMT)

- Problem: strict isotropic assumption on data
 - Solution: let subsampling operators be isotropic sketches instead

$$[\mathbf{S}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{q}), \ [\mathbf{T}]_{ij} \overset{\text{i.i.d.}}{\sim} \mathcal{N}(0, \frac{1}{m})$$

- Problem: marginal error results
 - Solution: use asymptotic equivalences from random matrix theory (RMT)
- Problem: estimators use ordinary least squares, m > q + 1
 - Solution: consider ridge regression for arbitrary sketch sizes

Moving to Sketched Ensembles

- Problem: strict isotropic assumption on data
 - Solution: let subsampling operators be isotropic sketches instead

$$[\mathbf{S}]_{ij} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0 \ \underline{1}) \quad [\mathbf{T}]_{\cdot \cdot} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0 \ \underline{1})$$

- Problem: marginal e
 - Solution: use asymp

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

trix theory (RMT)

- Problem: estimators use ordinary least squares, m > q + 1
 - Solution: consider ridge regression for arbitrary sketch sizes

• Asymptotic equivalences [6]:

Definition. Two sequences of matrices $\mathbf{A}_n, \mathbf{B}_n$ are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for every sequence $\mathbf{\Theta}_n$ having uniformly bounded trace norm, almost surely

 $\lim_{n\to\infty} \operatorname{tr} \left[\boldsymbol{\Theta}_n (\mathbf{A}_n - \mathbf{B}_n) \right] = 0.$

[6] E Dobriban, Y Sheng. "Distributed linear regression by averaging." Annals of Statistics, 2021.

• Asymptotic equivalences [6]:

Definition. Two sequences of matrices $\mathbf{A}_n, \mathbf{B}_n$ are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for every sequence $\mathbf{\Theta}_n$ having uniformly bounded trace norm, almost surely

 $\lim_{n\to\infty} \operatorname{tr} \left[\mathbf{\Theta}_n (\mathbf{A}_n - \mathbf{B}_n) \right] = 0.$

• Admits a calculus:

- Addition $\mathbf{A}_n \simeq \mathbf{B}_n, \ \mathbf{C}_n \simeq \mathbf{D}_n \implies \mathbf{A}_n + \mathbf{C}_n \simeq \mathbf{B}_n + \mathbf{D}_n$
- Multiplication $\mathbf{A}_n \simeq \mathbf{B}_n \implies \mathbf{C}_n \mathbf{A}_n \mathbf{D}_n \simeq \mathbf{C}_n \mathbf{B}_n \mathbf{D}_n$
- Elements $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]_{ij} [\mathbf{B}_n]_{ij} \xrightarrow{\text{a.s.}} 0$
- Differentiation [7] $f(\mathbf{A}_n; z) \simeq g(\mathbf{B}_n; z) \implies f'(\mathbf{A}_n; z) \simeq g'(\mathbf{B}_n; z)$

[6] E Dobriban, Y Sheng. "Distributed linear regression by averaging." Annals of Statistics, 2021.[7] E Dobriban, Y Sheng. "WONDER: Weighted one-shot distributed ridge regression in high dimensions." JMLR, 2020.

An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z}\mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \leq \lim \sup \frac{p}{n} < \infty$, we have

$$\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \left(c(z)\boldsymbol{\Sigma} - z\mathbf{I}_{p}\right)^{-1},\tag{32}$$

where c(z) is the unique solution in \mathbb{C}^- to the fixed point equation

$$\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(c(z) \mathbf{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$$
(33)

Furthermore, $\frac{1}{p} \operatorname{tr} \left[\mathbf{\Sigma}(c(z)\mathbf{\Sigma} - z\mathbf{I}_p)^{-1} \right]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p} \operatorname{tr}[\mathbf{\Sigma}]$.

[8] F Rubio, X Mestre. "Spectral convergence for a general class of random matrices." Statistics & Probability Letters, 2011.

An Asymptotic Equivalence of Resolvents

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le$ $\limsup \frac{p}{n} < \infty$, we have

$$\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq (c(z)\boldsymbol{\Sigma} - z)$$
 What about real arguments?

where c(z) is the unique solution in \mathbb{C}^- to the fixed point equation

$$\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(c(z) \boldsymbol{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$$
(33)

Furthermore, $\frac{1}{p} \operatorname{tr} \left[\mathbf{\Sigma}(c(z)\mathbf{\Sigma} - z\mathbf{I}_p)^{-1} \right]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p} \operatorname{tr}[\mathbf{\Sigma}]$.

[8] F Rubio, X Mestre. "Spectral convergence for a general class of random matrices." Statistics & Probability Letters, 2011.

Real-valued Asymptotic Equivalence

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{p} \leq 1$ lim $\sup_{k} \mathbb{P}_{k}^{<} < \infty$, we have

$$\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq (c(z)\boldsymbol{\Sigma} - z\mathbf{I}_{p})^{-1}, \qquad (32)$$

where c(z) is the unique solution in \mathbb{C}^- to the fixed point equation

$$\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(c(z) \mathbf{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$$
(33)

Furthermore, $\frac{1}{p}$ tr $[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p}$ tr $[\Sigma]$.

<u>Real-valued Asymptotic Equivalence</u>

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma}^2 \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right). \tag{34}$$

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \leq 1$ $\limsup \frac{p}{n} < \infty$, we have

$$z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \zeta\left(\mathbf{\Sigma} - \zeta\mathbf{I}_{p}\right)^{-1},\tag{35}$$

where c(z) is the u

some $\delta > 0$. Let $\Sigma \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \leq \infty$ $\limsup \frac{p}{p} < \infty$, we have $\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)$

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for

Analytic continuation

Furthermore, $\frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} (c(z) \mathbf{\Sigma} - z \mathbf{I}_p)^{-1} \right]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{n} \operatorname{tr}[\Sigma]$.

Where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation

$$z = \zeta \left(1 - \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(\mathbf{\Sigma} - \zeta \mathbf{I}_p \right)^{-1} \right] \right).$$
(36)

Furthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{\text{a.s.}} 0$, where v(z) is the companion Stieltjes transform of the spectrum of $\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X}$ given by

$$v(z) = \frac{1}{n} \operatorname{tr}\left[\left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_{n}\right)^{-1}\right],$$

and $|z_0 - \lambda_{\min}^+(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X})| \xrightarrow{\text{a.s.}} 0.$

Real-valued Asymptotic Equivalence

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

 $1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma}^2 \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right).$

Limits of negative regularization

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8 + \delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_n \frac{p}{n} \leq 1$ lim sup $\frac{p}{n} < \infty$, we have

$$\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \left(c(z)\boldsymbol{\Sigma} - z\mathbf{I}_{p}\right)^{-1},$$

where c(z) is the unique solution in \mathbb{C}^- to the fixed point equation

$$\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(c(z) \boldsymbol{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$$
(33)

(32)

Furthermore, $\frac{1}{p}$ tr $[\mathbf{\Sigma}(c(z)\mathbf{\Sigma} - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p}$ tr $[\mathbf{\Sigma}]$.

Then, for each
$$z \in \mathbb{R}$$
 satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \le n \sup \frac{p}{n} < \infty$, we have

$$z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \zeta\left(\mathbf{\Sigma} - \zeta\mathbf{I}_{p}\right)^{-1},\tag{35}$$

where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation

$$z = \zeta \left(1 - \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(\mathbf{\Sigma} - \zeta \mathbf{I}_p \right)^{-1} \right] \right).$$
(36)

Furthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{\text{a.s.}} 0$, where v(z) is the companion Stieltjes transform of the spectrum of $\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X}$ given by

$$v(z) = rac{1}{n} \mathrm{tr} \Big[\Big(rac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_n \Big)^{-1} \Big],$$

and $|z_0 - \lambda_{\min}^+(\frac{1}{n}\mathbf{X}^\mathsf{H}\mathbf{X})| \xrightarrow{\text{a.s.}} 0.$

(34)

Real-valued Asymptotic Equivalence

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma}^2 \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right). \tag{34}$$

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \leq \limsup \frac{p}{n} < \infty$, we have

$$z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \zeta\left(\mathbf{\Sigma} - \zeta\mathbf{I}_{p}\right)^{-1},\tag{35}$$

where $\zeta \in \mathbb{R}$ is the unique solution in $(-\infty, \zeta_0)$ to the fixed-point equation

 $z = \zeta \left(1 - \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(\mathbf{\Sigma} - \zeta \mathbf{I}_p \right)^{-1} \right] \right).$ (36)

Reparameterization $f = \frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X}$ given by $(\zeta + \frac{1}{v(z)}) \xrightarrow{\text{a.s.}} 0$, where v(z) is the companion Stieltjes transform

$$v(z) = rac{1}{n} \mathrm{tr} \Big[\left(rac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} - z \mathbf{I}_n
ight)^{-1} \Big],$$

and $|z_0 - \lambda_{\min}^+(\frac{1}{n}\mathbf{X}^\mathsf{H}\mathbf{X})| \xrightarrow{\text{a.s.}} 0.$

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8 + \delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf f_z \leq$

 $\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \left(c(z)\boldsymbol{\Sigma} - z\mathbf{I}_{p}\right)^{-1}$

 $\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(c(z) \boldsymbol{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$

Furthermore, $\frac{1}{2} \operatorname{tr} \left[\mathbf{\Sigma}(c(z)\mathbf{\Sigma} - z\mathbf{I}_p)^{-1} \right]$ is a Stieltjes transform of a cert

on $\mathbb{R}_{>0}$ with total mass $\frac{1}{n} \operatorname{tr}[\Sigma]$

(33)

sitive measure

<u>Real-valued Asymptotic Equivalence</u>

Theorem 3. Let $\zeta_0, z_0 \in \mathbb{R}$ be the unique solutions, satisfying $\zeta_0 < \lambda_{\min}^+(\Sigma)$, to system of equations

$$1 = \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma}^2 \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-2} \right], \quad z_0 = \zeta_0 \left(1 - \frac{1}{n} \operatorname{tr} \left[\boldsymbol{\Sigma} \left(\boldsymbol{\Sigma} - \zeta_0 \mathbf{I}_p \right)^{-1} \right] \right). \tag{34}$$

Then, for each $z \in \mathbb{R}$ satisfying $z < \liminf z_0$, as $n, p \to \infty$ such that $0 < \liminf \frac{p}{n} \leq \limsup \frac{p}{n} < \infty$, we have

$$z\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\right)^{-1} \simeq \zeta\left(\mathbf{\Sigma} - \zeta\mathbf{I}_{p}\right)^{-1},\tag{35}$$

where
$$\zeta \in \mathbb{R}$$
 is the unique solution in $(-\infty \text{Explicit form of implicit value})$
 $z = \zeta \left(1 - \frac{1}{n} \operatorname{tr} \left[\Sigma (\Sigma - \zeta \mathbf{I}_p)^{-T} \right] \right).$ (36)
Furthermore, as $n, p \to \infty$, $|\zeta + \frac{1}{v(z)}| \xrightarrow{\text{a.s.}} 0$, where $v(z)$ is the companion Stieltjes transform
of the spectrum of $\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X}$ given by

$$v(z) = \frac{1}{n} \operatorname{tr}\left[\left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{H}} - z\mathbf{I}_{n}\right)^{-1}\right]$$

and $|z_0 - \lambda_{\min}^+(\frac{1}{n}\mathbf{X}^\mathsf{H}\mathbf{X})| \xrightarrow{\text{a.s.}} 0.$

Theorem (Rubio & Mestre 2011). Let $\mathbf{Z} \in \mathbb{C}^{n \times p}$ be a random matrix consisting of i.i.d. random variables that have mean 0, variance 1, and finite absolute moment of order $8+\delta$ for some $\delta > 0$. Let $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ be a positive semidefinite matrix with operator norm uniformly bounded in p, and let $\mathbf{X} = \mathbf{Z}\mathbf{\Sigma}^{1/2}$. Then, for $z \in \mathbb{C}^+$, as $n, p \to \infty$ such that $0 < \liminf_{p \to \infty} \frac{p}{n} \leq \infty$, we have

$$\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} - z\mathbf{I}_{p}\Big)^{-1} \simeq (c(z)\boldsymbol{\Sigma} - z\mathbf{I}_{p})^{-1}, \qquad (32)$$

where c(z) is the unique solution in \mathbb{C}^- to the fixed point equation

$$\frac{1}{c(z)} - 1 = \frac{1}{n} \operatorname{tr} \left[\mathbf{\Sigma} \left(c(z) \mathbf{\Sigma} - z \mathbf{I}_p \right)^{-1} \right].$$
(33)

Furthermore, $\frac{1}{p}$ tr $[\Sigma(c(z)\Sigma - z\mathbf{I}_p)^{-1}]$ is a Stieltjes transform of a certain positive measure on $\mathbb{R}_{\geq 0}$ with total mass $\frac{1}{p}$ tr $[\Sigma]$.

Obtaining a Sketching Equivalence

$$z \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} - z \mathbf{I}_{p}\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta \mathbf{I}_{p}\right)^{-1}$$

Obtaining a Sketching Equivalence

$$z \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} - z \mathbf{I}_{p}\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta \mathbf{I}_{p}\right)^{-1}$$
$$\mathbf{X} = \sqrt{q} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2}$$
$$\lambda = -z$$
$$\mu = -\zeta$$

Obtaining a Sketching Equivalence

$$z \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} - z \mathbf{I}_{p}\right)^{-1} \simeq \zeta \left(\mathbf{\Sigma} - \zeta \mathbf{I}_{p}\right)^{-1}$$
$$\mathbf{X} = \sqrt{q} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2}$$
$$\lambda = -z$$
$$\mu = -\zeta$$

$$\mathbf{I}_{p} - \lambda \left(\mathbf{A}^{1/2} \mathbf{S} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2} + \lambda \mathbf{I}_{p} \right)^{-1} \simeq \mathbf{I}_{p} - \mu \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1}$$
$$\implies \mathbf{A}^{1/2} \mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \mathbf{A}^{1/2} \simeq \mathbf{A}^{1/2} \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \mathbf{A}^{1/2}$$

<u>Obtaining a Sketching Equivalence</u>

<u>First-order Sketching Equivalence</u>

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).$$

First-order Sketching Equivalence

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).$$

• That is, sketching + ridge = another ridge without sketching.

<u>First-order Sketching Equivalence</u>

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

where μ

$$\mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \mu \mathbf{I} \right)^{-1}$$

is the unique solution in (μ_{0}, ∞) to the fixed point $\mathbb{E} \left[\frac{q_{\mathbf{S}}}{p} \right] = \operatorname{tr} \left(\mathbf{M} \left(\mathbf{M} + \mu \mathbf{I} \right)^{-1} \right)$
 $\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \right] \right).$
Same as DPP when $\lambda = 0$

• That is, sketching + ridge = another ridge without sketching.

First-order Sketching Equivalence

Theorem 4. For each $\lambda > \limsup \lambda_0$, as $q, p \to \infty$,

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

where μ is the unique solution in (μ_0, ∞) to the fixed point equation

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right] \right).$$

• That is, sketching +

Spoiler:

ketching.

Randomized least squares = ridge + noise

Randomized ensembles = ridge

<u>Element-wise Convergence</u>

Element-wise Convergence

16x16 🛛

16x16 🔤 🔤

• Example: isotropic spectrum with $r(\mathbf{A}) = \frac{1}{2}$

- Example: isotropic spectrum with $r(\mathbf{A}) = \frac{1}{2}$
- ${\:}^{\bullet}\lambda\mapsto\mu$ is increasing and concave
- $\bullet \alpha \mapsto \mu \text{ is decreasing unless } \alpha > r(\mathbf{A}) \text{ and } \lambda < 0$

- Example: isotropic spectrum with $r(\mathbf{A}) = \frac{1}{2}$
- ${\:}{\:}{\:}\lambda\mapsto\mu$ is increasing and concave
- $\bullet \alpha \mapsto \mu \text{ is decreasing unless } \alpha > r(\mathbf{A}) \text{ and } \lambda < 0$
- $\bullet\,\mu\geq\lambda\,\text{unless}\,\alpha>r(\mathbf{A})\,\text{and}\,\lambda<0$

•
$$\mu \leq \lambda + \frac{1}{q} \operatorname{tr}[\mathbf{A}]$$

- Example: isotropic spectrum with $r(\mathbf{A}) = \frac{1}{2}$
- ${\:}{\:}{\:}\lambda\mapsto\mu$ is increasing and concave
- $\bullet \alpha \mapsto \mu \text{ is decreasing unless } \alpha > r(\mathbf{A}) \text{ and } \lambda < 0$
- $\bullet\,\mu\geq\lambda\,\text{unless}\,\alpha>r(\mathbf{A})\,\text{and}\,\lambda<0$
- $\mu \leq \lambda + \frac{1}{q} \operatorname{tr}[\mathbf{A}]$ • $\operatorname{sign}(\mu) = \operatorname{sign}(\lambda)$ if $\alpha > r(\mathbf{A})$ • else $\mu \geq 0$

First-Order is Not Enough

• First-order equivalence is similar to expectation equivalence

- First-order equivalence is similar to expectation equivalence
- $\mathbb{E}[X] = \mathbb{E}[Y]$ does not imply that $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$
- Similarly, products of equivalences do not compose if not independent

- First-order equivalence is similar to expectation equivalence
- $\mathbb{E}[X] = \mathbb{E}[Y]$ does not imply that $\mathbb{E}[X^2] = \mathbb{E}[Y^2]$
- Similarly, products of equivalences do not compose if not independent
- Solution: derivative rule of asymptotic equivalence

$$\frac{d}{dz} \left(\mathbf{A} - z\mathbf{I} \right)^{-1} = -\left(\mathbf{A} - z\mathbf{I} \right)^{-2}$$

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of **S** with $\|\Psi\|_{op}$ uniformly bounded in p, then

$$\mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \Psi \mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \left(\Psi + \mu' \mathbf{I}_{p} \right) \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1},$$

$$\mu' = \frac{\frac{1}{q} \operatorname{tr} \left[\mu^3 \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \mathbf{\Psi} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right]}{\lambda + \frac{1}{q} \operatorname{tr} \left[\mu^2 \mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-2} \right]} \ge 0.$$

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of **S** with $\|\Psi\|_{op}$ uniformly bounded in p, then

$$\mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \Psi \mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \left(\Psi + \mu' \mathbf{I}_{p} \right) \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1},$$

where
$$\frac{1}{q} \operatorname{tr} \left[\mu^{3} \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \Psi \left(\mathbf{A} + \mu \mathbf{I}_{p} \right)^{-1} \right] > 0$$

wh

$$\mu' = \frac{\frac{1}{q} \operatorname{tr} \left[\mu^3 \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \mathbf{\Psi} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-1} \right]}{\lambda + \frac{1}{q} \operatorname{tr} \left[\mu^2 \mathbf{A} \left(\mathbf{A} + \mu \mathbf{I}_p \right)^{-2} \right]} \ge 0.$$

- That is, second-order adds an isotropic inflation factor
- Depends significantly on the choice of Ψ

Second-order Sketching Equivalence

Theorem 5. If $\Psi \in \mathbb{C}^{p \times p}$ is a deterministic or random positive semidefinite matrix independent of **S** with $\|\Psi\|_{op}$ uniformly bounded in p, then

- That is, second-order adds an isotropic inflation factor
- ullet Depends significantly on the choice of Ψ

One Incredible Regime

• Example: isotropic spectrum with $r(\mathbf{A}) = \frac{1}{2}$

One Incredible Regime

- If $\Psi \in \operatorname{Range}(\mathbf{A}), \, \alpha > r(\mathbf{A}),$ and $\mu = \lambda = 0$, there is no inflation

- Agrees with classical sketching results: sketch larger than rank
- Sketching is ideal for benign overfitting

Application: Ridge Regression

<u>Sketched Ridge Regression</u>

 $\widehat{\boldsymbol{\beta}}_{\boldsymbol{P}} \triangleq \operatorname*{arg\,min}_{\mathbf{b}} \frac{1}{n} \left\| \mathbf{T}^{\top} (\mathbf{y} - \mathbf{X}\mathbf{b}) \right\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2}$ $\widehat{\boldsymbol{\beta}}_{D} \triangleq \mathbf{S} \cdot \operatorname*{arg\,min}_{\mathbf{b}} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2}$ $\widehat{\boldsymbol{\beta}}_{PD} \triangleq \mathbf{S} \cdot \operatorname*{arg\,min}_{\mathbf{b}} \frac{1}{n} \|\mathbf{T}^{\top}(\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b})\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2}$

Primal (observations) and dual (features) sketching:

Preparing for Equivalences

• Express in terms of the sketched pseudoinverse:

$$\widehat{\boldsymbol{\beta}}_{\psi} = \frac{1}{\sqrt{n}} \mathbf{X}_{\psi}^{\ddagger} \mathbf{y}, \ \psi \in \{\boldsymbol{P}, \boldsymbol{D}, \boldsymbol{P}\boldsymbol{D}\}$$
$$\mathbf{X}_{\boldsymbol{P}}^{\ddagger} \triangleq \frac{1}{\sqrt{n}} \left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top} \mathbf{X} + \lambda \mathbf{I}\right)^{-1} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top}$$
$$\mathbf{X}_{\boldsymbol{D}}^{\ddagger} \triangleq \frac{1}{\sqrt{n}} \mathbf{S} \left(\frac{1}{n} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S} + \lambda \mathbf{I}\right)^{-1} \mathbf{S}^{\top} \mathbf{X}^{\top}$$
$$\mathbf{X}_{\boldsymbol{D}}^{\ddagger} \triangleq \frac{1}{\sqrt{n}} \mathbf{S} \left(\frac{1}{n} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top} \mathbf{X} \mathbf{S} + \lambda \mathbf{I}\right)^{-1} \mathbf{S}^{\top} \mathbf{X}^{\top}$$
$$\mathbf{X}_{\boldsymbol{P}\boldsymbol{D}}^{\ddagger} \triangleq \frac{1}{\sqrt{n}} \mathbf{S} \left(\frac{1}{n} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top} \mathbf{X} \mathbf{S} + \lambda \mathbf{I}\right)^{-1} \mathbf{S}^{\top} \mathbf{X}^{\top} \mathbf{T} \mathbf{T}^{\top}$$

<u>First-order Data Pseudoinverse Equivalence</u>

Theorem 6. If $\left\|\frac{1}{\sqrt{n}}\mathbf{X}\right\|_{\text{op}}$ is uniformly bounded in p, then as $m, n, q, p \to \infty$,

$$\mathbf{X}_{\psi}^{\ddagger} \simeq \frac{1}{\sqrt{n}} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{\psi} \mathbf{I} \right)^{-1} \mathbf{X}^{\mathsf{H}},$$

where μ_{ψ} are is the most positive solutions to the equations

$$\lambda = \mu_{P} \left(1 - \frac{1}{m} \operatorname{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{P} \mathbf{I} \right)^{-1} \right] \right),$$
$$\lambda = \mu_{D} \left(1 - \frac{1}{q} \operatorname{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \right] \right),$$
$$\frac{\lambda}{\theta} - 1 = \frac{m}{q} \left(\frac{\theta}{\mu_{PD}} - 1 \right), \quad \theta = \mu_{PD} \left(1 - \frac{1}{m} \operatorname{tr} \left[\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_{PD} \mathbf{I} \right)^{-1} \right] \right).$$

<u>Sketching Makes Same Predictions as Ridge</u>

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of \mathbf{S} and \mathbf{T} such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p \to \infty$,

$$f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\psi}) - f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\mathrm{ridge}}) \xrightarrow{\mathrm{a.s.}} 0.$$

Sketching Makes Same Predictions as Ridge

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of \mathbf{S} and \mathbf{T} such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p \to \infty$,

$$f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\psi}) - f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\mathrm{ridge}}) \xrightarrow{\mathrm{a.s.}} 0.$$

• Sketching asymptotically makes the same prediction as the equivalent ridge on any single test point

Sketching Makes Same Predictions as Ridge

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of \mathbf{S} and \mathbf{T} such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous function $f: \mathbb{C} \to \mathbb{C}$, as $p \to \infty$,

$$f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\psi}) - f(\mathbf{w}^{\mathsf{H}}\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\mathrm{ridge}}) \xrightarrow{\mathrm{a.s.}} 0.$$

• Sketching asymptotically makes the same prediction as the equivalent ridge on any single test point Why this qualifier?

Sketching Makes Same Predictions as Ridge

Corollary 7. If $\|\frac{1}{\sqrt{n}}\mathbf{y}\|_2$ is uniformly bounded in p and $\mathbf{w} \in \mathbb{C}^p$ is independent of \mathbf{v} and ${f T}$ such that $\|\mathbf{w}\|_2$ is uniformly bounded in p, then for any continuous funct \mathbb{C}, as $p \to \infty$,

Pointwise convergence does not imply uniform convergence prediction as the equivalent Sketching asymptotic ridge on any sin

- Ensemble of independent sketches: $\hat{\beta}_{\psi}^{\text{ens}} = \frac{1}{K} \sum_{k=1}^{K} \hat{\beta}_{\psi}^{(k)}$
- Quadratic error metrics: $\mathcal{E}_{\Psi}(\boldsymbol{\beta}, \boldsymbol{\beta}') = (\boldsymbol{\beta} \boldsymbol{\beta}')^{\mathsf{H}} \Psi (\boldsymbol{\beta} \boldsymbol{\beta}')$
 - Includes test risk

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\beta' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\beta'\|_2$ are uniformly bounded in p and (Ψ, β) is independent of $(\mathbf{S}_k, \mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\}$,

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{P}^{\text{ens}},\boldsymbol{\beta}') - \left(\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{P}}^{\text{ridge}},\boldsymbol{\beta}') + \frac{\mu_{P}'}{Kn}\mathbf{y}^{\mathsf{H}}\left(\frac{1}{n}\mathbf{X}\mathbf{X}^{\mathsf{H}} + \mu_{P}\mathbf{I}\right)^{-2}\mathbf{y}\right) \xrightarrow{\text{a.s.}} 0, \\ \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{D}^{\text{ens}},\boldsymbol{\beta}') - \left(\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\text{ridge}},\boldsymbol{\beta}') + \frac{\mu_{D}'}{Kn}\mathbf{y}^{\mathsf{H}}\mathbf{X}\left(\frac{1}{n}\mathbf{X}^{\mathsf{H}}\mathbf{X} + \mu_{D}\mathbf{I}\right)^{-2}\mathbf{X}^{\mathsf{H}}\mathbf{y}\right) \xrightarrow{\text{a.s.}} 0,$$

$$\mu_P' = \frac{\frac{1}{m} \operatorname{tr} \left[\mu_P^3 \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{\Psi} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{m} \operatorname{tr} \left[\mu_P^2 \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-2} \right]}{\mu_D' = \frac{\frac{1}{q} \operatorname{tr} \left[\mu_D^3 \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-1} \mathbf{\Psi} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{q} \operatorname{tr} \left[\mu_D^2 \frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-2} \right]}.$$

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\beta' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\beta'\|_2$ are uniformly bounded in p and (Ψ, β) is independent of $(\mathbf{S}_k, \mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\}$,

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\psi}^{\mathrm{ens}}, \boldsymbol{\beta}') \xrightarrow{\mathrm{a.s.}} \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\mathrm{ridge}}, \boldsymbol{\beta}') + O\left(\frac{\mu_{\psi}'}{K}\right)$$

$$\mu_P' = \frac{\frac{1}{m} \operatorname{tr} \left[\mu_P^3 \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-1} \frac{1}{n} \mathbf{X} \mathbf{\Psi} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{m} \operatorname{tr} \left[\mu_P^2 \frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} \left(\frac{1}{n} \mathbf{X} \mathbf{X}^{\mathsf{H}} + \mu_P \mathbf{I} \right)^{-2} \right]}{\mu_D'},$$
$$\mu_D' = \frac{\frac{1}{q} \operatorname{tr} \left[\mu_D^3 \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-1} \mathbf{\Psi} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-1} \right]}{\lambda + \frac{1}{q} \operatorname{tr} \left[\mu_D^2 \frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} \left(\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X} + \mu_D \mathbf{I} \right)^{-2} \right]}.$$

Theorem 8. If $\Psi \in \mathbb{C}^{p \times p}$ is a positive semidefinite matrix and $\beta' \in \mathbb{C}^p$ a vector such that $\|\Psi\|_{\text{op}}$ and $\|\beta'\|_2$ are uniformly bounded in p and (Ψ, β) is independent of $(\mathbf{S}_k, \mathbf{T}_k)_{k=1}^K$, then for $\psi \in \{P, D\}$,

$$\mathcal{E}_{\Psi} \left(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}}, \boldsymbol{\beta}' \right) \xrightarrow{\text{a.s.}} \mathcal{E}_{\Psi} \left(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}' \right) + O \left(\frac{\mu_{\psi}'}{K} \right)$$

$$\text{Well, ain't this a geometrical oddity.}$$

$$\mu_{P}' = \frac{\frac{1}{m} \text{tr} \left[\mu_{P}^{3} \left(\frac{1}{n} \mathbf{X} \mathbf{X} \right) & O \left(\frac{\mu_{\psi}'}{K} \right) \right]$$

$$\mu_{D}' = \frac{\frac{1}{m} \text{tr} \left[\mu_{P}^{3} \left(\frac{1}{n} \mathbf{X} \mathbf{X} \right) & O \left(\frac{\mu_{\psi}'}{K} \right) \right]$$

$$\mu_{D}' = \frac{\frac{1}{q} \text{tr} \left[\mu_{D}^{3} \left(\frac{1}{n} \mathbf{X}^{\text{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \Psi \left(\frac{1}{n} \mathbf{X}^{\text{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \right]$$

$$\mu_{D}' = \frac{\frac{1}{q} \text{tr} \left[\mu_{D}^{3} \left(\frac{1}{n} \mathbf{X}^{\text{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \Psi \left(\frac{1}{n} \mathbf{X}^{\text{H}} \mathbf{X} + \mu_{D} \mathbf{I} \right)^{-1} \right]$$

Quadratic Conclusions

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}}, \boldsymbol{\beta}') \xrightarrow{\text{a.s.}} \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}') + O\left(\frac{\mu_{\psi}'}{K}\right)$$

• For infinite *K*, sketched ensemble = ridge

Quadratic Conclusions

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}}, \boldsymbol{\beta}') \xrightarrow{\text{a.s.}} \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}') + O\left(\frac{\mu_{\psi}'}{K}\right)$$

• For infinite *K*, sketched ensemble = ridge

Spoiler:

Randomized least squares = ridge + noise

Randomized ensembles = ridge

Quadratic Conclusions

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}}, \boldsymbol{\beta}') \xrightarrow{\text{a.s.}} \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}') + O\left(\frac{\mu_{\psi}'}{K}\right)$$

- For infinite *K*, sketched ensemble = ridge
- For finite K, sketched ensemble is worse than ridge

<u>Quadratic Conclusions</u>

$$\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\psi}^{\text{ens}}, \boldsymbol{\beta}') \xrightarrow{\text{a.s.}} \mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{\mu_{\psi}}^{\text{ridge}}, \boldsymbol{\beta}') + O\left(\frac{\mu_{\psi}'}{K}\right)$$

- For infinite *K*, sketched ensemble = ridge
- For finite K, sketched ensemble is worse than ridge
 - Unless $\Psi \in \operatorname{Range}(\mathbf{A})$, $\alpha > r(\mathbf{A})$, and $\mu = \lambda = 0$!

• Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$
- Fixed target μ_D , varying lpha , with λ uniquely determined

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$
- Fixed target μ_D , varying lpha , with λ uniquely determined
- Error: relative error $\frac{\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{D}^{\mathrm{ens}}, \widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\mathrm{ridge}})}{\mathcal{E}_{\Psi}(\mathbf{0}, \widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\mathrm{ridge}})}$

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$
- Fixed target μ_D , varying lpha , with λ uniquely determined

• Error: relative error $\frac{\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{D}^{\text{ens}}, \widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\text{ridge}})}{\mathcal{E}_{\Psi}(\mathbf{0}, \widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\text{ridge}})}$

A Sketched Ensemble Efficiency Experiment • Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$ • Fixed target μ_D , varying lpha, with λ uniquely determined • Error: relative error $\underline{\mathcal{E}_{\Psi}(\widehat{\boldsymbol{\beta}}_{D}^{\text{ens}},\widehat{\boldsymbol{\beta}}_{\mu_{D}}^{\text{ridge}})}$ $\mathcal{E}_{oldsymbol{\Psi}}(oldsymbol{0},\widehat{oldsymbol{eta}}_{\mu_{\mathcal{D}}}^{\mathrm{ridge}})$ Non-vanishing estimation error Estimation $(\Psi = \mathbf{I}_p)$ Prediction ($\Psi = \Sigma$) μ_D 10^{4} 10^{4} - 10 Relative Error 10^2 10^2 0.1 10^0 10^{0} 0.01 10^{-2} 10^{-2} -0.01 10^{-4} 10^{-4} 0.30.50.60.20.3 0.40.50.20.40.70.60.70.10.8 0.10.8 α α

- Setup: fixed $O(p^2n)$ budget ensembles with $K = \lfloor \frac{1}{\alpha^2} \rfloor$, $r(\Sigma) = \frac{1}{2}$
- Fixed target μ_D , varying lpha , with λ uniquely determined

Better Sketches?

$$\mathbf{S} \left(\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_{q} \right)^{-1} \mathbf{S}^{\mathsf{H}} \simeq \left(\mathbf{A} + \gamma \mathbf{I}_{p} \right)^{-1}.$$

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1}.$$

- Includes i.i.d. sketching and more
 - Orthogonal sketching
 - Efficient sketches like CountSketch, FJLT, SRHT?

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1}.$$

- Includes i.i.d. sketching and more
 - Orthogonal sketching
 - Efficient sketches like CountSketch, FJLT, SRHT?
- $\bullet \operatorname{Spectrum} \operatorname{of} \operatorname{sketch} \operatorname{controls} \lambda \mapsto \gamma$

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1}.$$

- Includes i.i.d. sketching and more
 - Orthogonal sketching
 - Efficient sketches like CountSketch, FJLT, SRHT?
- $\bullet \operatorname{Spectrum of sketch} \operatorname{controls} \lambda \mapsto \gamma$
- Higher order equivalences naturally follow

$$\mathbf{S} (\mathbf{S}^{\mathsf{H}} \mathbf{A} \mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1}.$$

- Includes i.i.d. sketching and more
 - Orthogonal sketching
 - Efficient sketches like CountSketch, FJLT, SRHT?
- $\bullet \operatorname{Spectrum of sketch} \operatorname{controls} \lambda \mapsto \gamma$
- Higher order equivalences naturally follow

Orthogonal Sketching

Conjecture 10. For $q \leq p$ let $\sqrt{\frac{q}{p}} \mathbf{Q} \in \mathbb{C}^{p \times q}$ be a Haar-distributed matrix with orthonormal columns. Then

$$\mathbf{Q} (\mathbf{Q}^{\mathsf{H}} \mathbf{A} \mathbf{Q} + \lambda \mathbf{I}_{q})^{-1} \mathbf{Q}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_{p})^{-1},$$

where γ is the most positive solution to

$$\frac{1}{p} \operatorname{tr} \left[\left(\mathbf{A} + \gamma \mathbf{I}_p \right)^{-1} \right] \left(\gamma - \alpha \lambda \right) = 1 - \alpha.$$

Furthermore, for $\mu > 0$ applied to the same $(\mathbf{A}, \alpha, \lambda)$, we have $\gamma < \mu$.

Orthogonal Sketching

Conjecture 10. For $q \leq p$ let $\sqrt{\frac{q}{p}} \mathbf{Q} \in \mathbb{C}^{p \times q}$ be a Haar-distributed matrix with orthonormal columns. Then

$$\mathbf{Q} (\mathbf{Q}^{\mathsf{H}} \mathbf{A} \mathbf{Q} + \lambda \mathbf{I}_{q})^{-1} \mathbf{Q}^{\mathsf{H}} \simeq (\mathbf{A} + \gamma \mathbf{I}_{p})^{-1},$$

where γ is the most positive solution to

$$\frac{1}{p} \operatorname{tr} \left[\left(\mathbf{A} + \gamma \mathbf{I}_p \right)^{-1} \right] \left(\gamma - \alpha \lambda \right) = 1 - \alpha.$$

Furthermore, for $\mu > 0$ *applied to the same* (**A**, α , λ)*, we have* $\gamma < \mu$. • Same form as i.i.d. sketching, but with less regularization

Equivalence for Sketches Used in Practice?

• Early work:

• Hints of deep connection between ensembles and ridge

• Tuned ensembles with subsampling achieve same risk as optimal ridge

Sumi

marv

• Early work:

- Hints of deep connection between ensembles and ridge
 - Tuned ensembles with subsampling achieve same risk as optimal ridge
- Current work:
 - Asymptotic equivalence between random projections and ridge
 - Ridge equivalence on a weak level even for single learners
 - Convergence in quadratic metrics to ridge regression for ensembles
 - Sufficiently large sketches enable accurate ridgeless regression even without ensembles

• Early work:

- Hints of deep connection between ensembles and ridge
 - Tuned ensembles with subsampling achieve same risk as optimal ridge
- Current work:
 - Asymptotic equivalence between random projections and ridge
 - Ridge equivalence on a weak level even for single learners
 - Convergence in quadratic metrics to ridge regression for ensembles
 - Sufficiently large sketches enable accurate ridgeless regression even without ensembles

• Future work:

- More asymptotic equivalences
 - Generalized cross-validation with sketching
 - General linear models via leave-one-dimension-out
 - Asymptotics of PCA

Questions?

Corollary 11. Let \mathbf{W} be an invertible $p \times p$ positive semidefinite matrix, either deterministic or random but independent of \mathbf{S} with $\limsup \|\mathbf{W}\|_{op} < \infty$. Let $\widetilde{\mathbf{S}} = \mathbf{W}^{1/2}\mathbf{S}$. Then for each $\lambda > -\liminf \lambda_{\min}^{+}(\widetilde{\mathbf{S}}^{\top}\mathbf{A}\widetilde{\mathbf{S}})$ as $p, q \to \infty$ such that $0 < \liminf \inf \frac{q}{p} \le \limsup \frac{q}{p} < \infty$,

$$\widetilde{\mathbf{S}} \big(\widetilde{\mathbf{S}}^{\top} \mathbf{A} \widetilde{\mathbf{S}} + \lambda \mathbf{I}_q \big)^{-1} \widetilde{\mathbf{S}}^{\top} \simeq \big(\mathbf{A} + \mu \mathbf{W}^{-1} \big)^{-1},$$

where μ most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr} \left[\mathbf{A} \left(\mathbf{A} + \mu \mathbf{W}^{-1} \right)^{-1} \right] \right).$$

Theorem 12. Let $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$ and $\mathbf{\Sigma} \in \mathbb{C}^{p \times p}$ have eigenvalue decomposition $\mathbf{U} \mathbf{D} \mathbf{U}^{\mathsf{H}}$, and let $\mathbf{\Pi}_{\mathcal{A}}$ be the projection operator of the principal eigenspace corresponding to a set of eigenvalues \mathcal{A} of the matrix $\frac{1}{n} \mathbf{X}^{\mathsf{H}} \mathbf{X}$. Then there exists a family of measures μ_{σ^2} for all $\sigma^2 \geq 0$ such that for any $\mathcal{A} \subseteq \mathbb{R}_{\geq 0}$, in the limit as $p \to \infty$,

 $\Pi_{\mathcal{A}}\simeq \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^{\mathsf{H}},$

where Λ is a diagonal matrix defined for by

 $[\mathbf{\Lambda}]_{ii} = \mu_{[\mathbf{\Sigma}]_{ii}}(\mathcal{A}).$