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1. Thanks, Lexin! Hi everyone! It is good to be here. I have never been to
this seminar series, so thanks for the invite. But I already know some
people here, so it is a nice opportunity for me to say hello to them, and
meet some new people.

2. Let me say a few words about myself. As Pierre said, I am Pratik. I am
currently a postdoc at Berkeley. I was a PhD student at CMU.

3. The talk is broadly going to be about overparameterized learning. A part
of it is based on work I did for my PhD. A part is some new extensions. It
is broadly based on three papers.
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1. Mitigating multiple descents: A model-agnostic framework for risk
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regularization (joint with Jin-Hong Du) [connections to ridge]
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1. There are three parts to the talk, based on three papers. My goal is to try
to convey three different points: one on subsampling, one on ensembling,
and one on connections to ridge regression. Here are pointers to the
papers:

2. The first one is about model-agnostic risk monotonization. This form the
basis of the talk. The key takeaway here is the benefit of subsampling.

3. The second one is about an explicit bagging analysis. The key takeaway
here is the benefit of ensembling.

4. The third one is about some connections to ridge regression. The key
takeaway here is certain equivalences to ridge regression.



Outline

Overview of overparameterization
Double descent
Current theoretical understanding
Case study of linear regression

Risk monotonization
Motivation
Zero-step procedure
Takeaways and extensions

Bagging analysis
Motivation
Risk characterization
Optimal subsample size

Connections to ridge regularization
Risk and structural equivalences
Implications of equivalences
Discussion and extensions

Conclusion

Here’s an outline of what I am going to be talking about. I will start by giving

an overview of overparameterization and somee motivations behind risk mono-

tonization. And then I will go in detail and tell you some of our results.



Overparametrization in machine learning

Modern machine learning models typically fit a huge number of
parameters. Such overparameterization seems to be useful for:

• Representation: allows rich, expressive models for diverse real data

• Optimization: simple, local optimization methods often find
near-optimal solutions to empirical risk minimization problem

• Generalization: despite overfitting, models generalize well in practice

This talk is about generalization aspect in overparameterized learning.
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1. To set the stage, we will mainly be focusing on overparameterized learning.
As we all know, machine learning models these days fit a large number of
parameters compared to the number of observations. By parameters here,
I mean either raw features in the dataset, or learned features. Such
overparameterization seems to be useful for a number of things.

2. First, more parameters allow for rich classes of models that are capable of
representing diverse set of real data.

3. Second, somewhat surprisingly, the optimization problem to fit these
models simplifies dramatically in the overparametrized regime. So even
simple, local optimization approaches often find near-optimal solutions.

4. Third, even more surprisingly, without any explicit regularization, the
fitted models seem to perform well on unseen data in practice.

5. The focus of this talk will be on this third generalization aspect in
overparameterized learning.



An influential experiment

“Understanding deep learning requires rethinking generalization”

Zhang, Bengio, Hardt, Recht, Vinyals, 2017

• CIFAR10 data (60,000 images [32 × 32]) with artificial label noise
• Three neural network architectures (with number of parameters):

Inception (1,649,402), AlexNet (1,387,786), MLP 1x512 (1,209,866)
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1. As an illustration, let’s look at a real example. This is a plot from a paper
from a few of years ago.

2. This is for a image classification problem using the CIFAR10 dataset,
which has 10 categories, and about 60,000 observations.

3. The experiment adds increasing levels of artificial noise to the labels and
trains three neural network architectures which are highly
overparametrized (with parameters on the order of 20-30 times the
number of observations).

4. The x-axis of the left plot shows the amount of label corruption. The
y-axis show how much time is needed to fit completely with 0 training
error to such label-corrupted data.

5. As we can observe, the network takes longer to fit with label corruption,
but is still able to fit completely indicating that the models are rich
enough to fit increasing levels of noise.

6. The right plot shows the test error with for the same models that are
completely overfit at each label corruption level.

7. The striking thing about this plot is that even with the models trained
with 0 error on highly noisy data, the prediction performance is still
reasonably well.

8. For example, at noise level 0.2, the test error of models that completely
overfit to the training data is still below the random chance which is 0.9
for this 10-category classification problem. The test error smoothly
increasing with the amount of label corruption.
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1. Overparameterized models exhibit peculiar generalization behavior that’s
illustrated in this plot. This plot is from a paper by Belkin, Hsu, Ma, and
Mandal.

2. They looked at various model classes and their generalization performance
as you increase the model capacity, typically measured in terms of the
number of model parameters.

3. They observed that the prediction risk obeys the classical bias-variance
trade-off until the point of interpolation, but beyond interpolation, it
again decreases.
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1. Overparameterized models exhibit peculiar generalization behavior that’s
illustrated in this plot. This plot is from a paper by Belkin, Hsu, Ma, and
Mandal.

2. They looked at various model classes and their generalization performance
as you increase the model capacity, typically measured in terms of the
number of model parameters.

3. They observed that the prediction risk obeys the classical bias-variance
trade-off until the point of interpolation, but beyond interpolation, it
again decreases.

4. This phenomenon is called double descent in the risk curve as a function
of model capacity.

5. They found that such trend holds more generally for many classes of
models beyond neural networks including kernel methods, random forests,
boosting, etc.

6. The interesting aspect here is that the minimum of the prediction risk can
happen on the right side of the curve, i.e., in the overparametrized regime.
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1. Motivated by this, there has been some work in the last couple years
understanding generalization of interpolators in different settings using a
variety of techniques.

2. For linear regression, there’s been work understanding the risk behavior of
the min-norm least squares interpolator. There are some results both in
an asymptotic setting where the number of features grow with the
number of observations and also in finite setting trying to understand the
phenomenon of benign overfitting.

3. Beyond linear regression, there’s also been work on kernel methods with
special kinds of kernels: kernels which are non-linear functions of inner
product kernel, and Laplace kernels.

4. There’s been work on nearest neighbor rules and simplicial interpolation.
There’s also work on kernel smoothing with singular kernels.

5. And there’s been many interesting papers understanding the risk behavior
of interpolators in different settings.



What do we currently understand?

• In nearly all applications, current practice suggests we should design
models to be massively overparametrized

• Once trained (typically by SGD), these models interpolate the
training data (achieve zero training error)

• Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

However, the story is fairly well-understood for linear models, kernel
models, and random feature models. See, e.g., nice monographs:

• Bartlett, Montanari, and Rakhlin (2021), “Deep learning: a
statistical viewpoint”

• Belkin (2021), “Fit without fear: remarkable mathematical
phenomena of deep learning through the prism of interpolation”
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1. So in nutshell: the current practice suggests that in nearly all applications,
we should design our models to be massively overparametrized.

2. Once trained fully, these models will typically nearly interpolate the
training data, that is achieve near zero training error.

3. And still the trained models can and often do have good test error.
4. Now, how much of this do we understand theoretically?
5. Not a whole lot in full generality.
6. There has been a flurry of work in the last few years, and we do

understand some of this simplified models. But there is still a lot that we
do not understand.

7. But, there has been a flurry of work in the last few years understanding
generalization of near interpolators, and we do understand this story for
simplified models, such as ridge regression, kernel regression, etc.

8. There are two nice survey papers on this by Bartlett, Montanari, Rakhlin
and Belkin in Acta Numerica that summarize the current results on these,
which I recommend for those who are interested in these topics.



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless
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Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)

6 / 37



Double in linear regression

Here σ2 = 1, thus signal-to-noise ratio (SNR) is ρ2, and γ = p/n.

Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”
7 / 37

Just to recall: this is the double descent behaviour for the min ℓ2-norm interpo-

lator as a function of the aspect ratio p/n denotedy by γ.



Double descent interpretations

• The risk first increases as p/n increases up to some threshold and
then decreases.

• There are two ways to view this:

– If p is thought of as fixed (large value), this implies that as sample
size increases the risk first decreases and then increases.
More data hurts.

– If n is thought of as fixed (large value), this implies that as the
number of features/covariates increase the risk first increases and
then decreases.
More features do not hurt.

• We will focus on the first interpretation: more data can hurt.
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Now we will switch to the risk monotonziation aspect.



Motivation and main punchlines

• When the data comprises of i.i.d. observations, we expect that more
data will help in prediction or estimation.

• Double or multiple descent behaviour implies that for fixed feature
size p (large value), as sample size increases the risk first decreases
and then increases. More data can hurt!

• A procedure leading to worse risk as the number of observations
increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the
double or multiple descent behavior and achieve a monotonic risk behavior?

We propose two methods, dubbed zero-step and one-step, that take an
input an arbitrary procedure and return a modified procedure that has a
monotonic risk behavior. The main idea is that of subsampling.
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1. In general, when we have i.i.d. data, we expect that more data will help in
prediction or estimation.

2. One consequence of the double descent behaviour is that, if you fix
feature size p, then as the sample size increases, the risk first decreases,
but then increases. So in a sense, more data hurts.

3. And thus, a procedure that leads to worse risk as number of observations
increases is somehow not using the data properly, and is “suboptimal” in
some sense.

4. The key question that we ask is if it is possible to modify an arbitrary
prediction procedure so that it has a monotonic risk behavior?

5. We show in this work that it is possible. In particular, we propose two
methods, think of them as wrapper methods, dubbed zero-step and
one-step, that can take as input any arbitrary prediction procedure and
return modified procedures who monotonic risk and avoid double or
multiple descent risk behaviour. This is one via subsampling and simply
using less observations for better risk behavior.



Method overview and the problem

Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”
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This is the double descent behaviour for the min ℓ2-norm interpolator as a func-

tion of the aspect ratio p/n denotedy by γ. If we are operating at an aspect

ration of say 0.8, then it is better to move to a higher aspect ratio of say 2, in

terms of risk behaviour.



The problem

• Given a number of observations (n) and a number of features (p),
how do we know if a lesser number of observations would actually
yield a better risk?

• What is the best sample size to reduce the dataset in order to attain
the best possible risk?

Solution: cross-validation.
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1. Now this simple strategy will work if we knew the oracle risk profile. But
in order to implement such a strategy in practice using available data, the
main problem is how do we know if a smaller n will actually lead to a
better risk?

2. And moreover, what is the best sample size to reduce the dataset to in
order to attain the best possible risk?

3. And one solution to this is via cross-validation.



Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio γ = p/n:

1. Risk estimation: construct a (dense grid of) aspect ratios ≥ γ by
using datasets of sizes smaller than n, and estimate risks on test set

2. Model selection: select aspect ratio that delivers the smallest
estimated risk and return the corresponding predictor

3. Risk monotonization: show that the risk profile of the resulting
procedure is asymptotically monotone in the aspect ratio

Method highlights:

• applicable to generic (e.g black-box) prediction methods
and common classification and regression loss functions

• model agnostic and requires minimal distributional assumptions

• works for procedures with diverging risks at some aspect ratios
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that aspect ratio that gives the best estimated risk
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6. Some highlight of this procedure are:
7. The method can applied for any generic starting procedure, along with

common loss functions of interest.
8. The method is model agnostic and require minimal distributional

assumptions to show the monotonicity property.
9. Moreover, the method works even there are diverging risks at various

aspect ratios, which is common in the overparameterized settings



Risk monotonization illustration

If Rn represents the “risk” of a procedure at sample size n, then by risk
monotonization we mean a procedure with risk minm≤n Rm.

13 / 37

Here’s a cartoon illustration of what the risk monotization looks like. For every

n, we will return a predictor whose risk is no more than the risk at any smaller

sample size. So in this sense, the resulting risk profile would the largest monotone

function below the original risk profile.



Split sample cross-validation

• Given data Dn of n i.i.d. observations and a prediction procedure f̃ ,
split Dn into training data Dtr with n(1− 1/ log n) observations and
test data Dte with n/ log n observations.

• Note that
lim
n

p

n
= lim

n

p

n(1− 1/ log n)
.

• For n1/2 ≤ k ≤ |Dtr|, obtain a predictor f̃k by training f̃ on a subset
of Dtr with k observations.

• If p/n converges to γ as n → ∞, then{
p

n1/2
,

p

n1/2 + 1
, . . . ,

p

|Dtr|

}
” → ” [γ,∞].

The set of aspect ratios for the predictors f̃k covers [γ,∞].

• Choose one out of f̃k , n
1/2 ≤ k ≤ |Dtr| using an estimate of

out-of-sample risk computed from Dte This is split sample
cross-validation.

14 / 37

I will skip the details how we actually do the cross-validation in the interest of

time, but I am happy to discuss more either towards the end or later offline.



Cross-validation risk estimate

• Traditionally, the risk of a predictor based on a test data is done via
average loss. For example, with squared error loss, the traditional
estimate of (prediction) risk of a predictor f̃k

R̂(f̃k) :=
1

|Dte|
∑
j∈Dte

(Yj − f̃k(Xj))
2.

• For a good performance simultaneously over O(n) predictors and
also to avoid strong tail assumptions on the loss, we also consider
the median-of-means estimator.

• With either the average or median-of-means estimator of risk, we
return the predictor f̂ := f̃k̂ where

k̂ := argmin
n1/2≤k≤|Dtr|

R̂(f̃k).

• k̂ represents the “best” sample size to use for the given number of
features in the dataset and f̃k̂ is what we call a zero-step predictor
that achieves risk monotonization.
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Risk monotonization guarantee

Theorem. Under the proportional asymptotics regime (p/n → γ), and a

mild assumption on the convergence of the prediction risk of f̂ trained on
datasets with a limiting aspect ratio ζ converges to Rdet(ζ; f̂ ), we show:

R(f̂ cv) = inf
ζ∈[γ,∞]

Rdet(ζ; f̂ ) × (1 + op(1)).

This shows that the zero-step predictor has a monotone risk in terms of
the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the
data. This is unlike most results in overparametrized learning which
require stringent assumptions.

16 / 37
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1. Here’s an informal statement that we can show. If the original prediction
procedure has a cerain risk profile, then the risk profile of the zero-step
procedure would be a monotonized version of that risk profile.

2. This result requires minimal ditributional assumptions, that’s unlike other
results in overparameterized litetaure, which require strong assumptions
on the data generating distribution.



Risk monotonization (illustration)
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As an illustration, for the min ℓ2-norm and ℓ1-norm interpolators, here’s how the

risk monotonization by the zero-step procedure looks like.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.

2. We have introduced a general-purpose method, dubbed zero-step, that
can provably monotonizes the risk of any given predictor.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.

2. We have introduced a general-purpose method, dubbed zero-step, that
can provably monotonizes the risk of any given predictor.

3. The main idea behind our approach is that of cross-validation with careful
splitting of data.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.

2. We have introduced a general-purpose method, dubbed zero-step, that
can provably monotonizes the risk of any given predictor.

3. The main idea behind our approach is that of cross-validation with careful
splitting of data.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.

2. We have introduced a general-purpose method, dubbed zero-step, that
can provably monotonizes the risk of any given predictor.

3. The main idea behind our approach is that of cross-validation with careful
splitting of data.

4. We also have a one-step variant that improves on the zero-step procedure
and also has a monotone risk behavior. This is akin to boosting.



Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)

18 / 37

1. So let me start wrapping up by giving an overall summary of our
contributions in this work.

2. We have introduced a general-purpose method, dubbed zero-step, that
can provably monotonizes the risk of any given predictor.

3. The main idea behind our approach is that of cross-validation with careful
splitting of data.

4. We also have a one-step variant that improves on the zero-step procedure
and also has a monotone risk behavior. This is akin to boosting.

5. We also consider subsampling more than once and averaging predictors
fitted on different subsamples. This is akin to bagging.
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Motivation beyond bagging analysis

Key question: How much improvement do we get if we use an ensemble of
M > 1 subsampled datasets, rather than just a single subsampled dataset?
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Null risk

We provide precise risk characterization for ridgeless (and ridge) ensemles.
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Ridge ensembles

• Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset. The ridge
estimator fitted on subsampled dataset DI with I ⊆ [n], |I | = k is:

β̂λk (DI ) = argmin
β∈Rp

1

k

∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥22.

• For λ ≥ 0 fixed, ensemble ridge estimator is:

β̃λk,M(Dn; {Iℓ}Mℓ=1) :=
1

M

∑
ℓ∈[M]

β̂λk (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M → ∞.

• The goal is to quantify and estimate the conditional prediction risk:

Rλk,M := E[(y − x⊤β̃λk,M)2 | Dn, {Iℓ}Mℓ=1]

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ϕs . Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.
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Data assumptions
1. Feature model:

– Feature structure: xi = Σ1/2zi , zi ∈ Rp is a random vector
containing i.i.d. entries with mean 0, variance 1, and bounded
moment of order 4 + δ for some δ > 0.

– Covariance norm: There exist rmin, rmax independent of p with
0 < rmin ≤ rmax < ∞ such that rminIp ⪯ Σ ⪯ rmaxIp.

2. Response model:
– Response structure: yi = x⊤

i β0 + ϵi .
– Noise structure: ϵi is an unobserved error that is assumed to be

independent of xi with mean 0, variance σ2, and bounded moment of
order 4 + δ for some δ > 0.

– Signal norm: ∥β0∥2 uniformly bounded in p and limp ∥β0∥22 = ρ2.
3. Convergence of covariance and signal-weighted spectrums:

– Covariance spectrum: Σ = WRW⊤ is the eigenvalue decomposition.
– Empirical spectrums: Assume there exist fixed distributions H and G

such that the empirical spectral distributions satisfy

Hp(r) :=
1

p

p∑
i=1

1{ri≤r}
d−→ H,

Gp(r) :=
1

∥β0∥22

p∑
i=1

(β⊤
0 wi )

2
1{ri≤r}

d−→ G .
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Risk characterization of bagged ridge predictors
Theorem. Under aforementioned assumptions, as k, n, p → ∞ such that
p/n → ϕ ∈ (0,∞)︸ ︷︷ ︸

data aspect ratio

and p/k → ϕs ∈ [ϕ,∞]︸ ︷︷ ︸
subsample aspect ratio

, the asymptotic risk Rsub
λ,M(ϕ, ϕs) is:

Rsub
λ,M(ϕ, ϕs) = σ2 + Bsub

λ,M(ϕ, ϕs) + V sub
λ,M(ϕ, ϕs),

where the bias and variance terms are given by

Bsub
λ,M(ϕ, ϕs) = M−1Bλ(ϕs , ϕs) + (1−M−1)Bλ(ϕ, ϕs),

V sub
λ,M(ϕ, ϕs) = M−1Vλ(ϕs , ϕs) + (1−M−1)Vλ(ϕ, ϕs),

and the functions Bλ(·, ·) and Vλ(·, ·) are defined as

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ).

Here the non-negative constants ṽ(−λ;ϑ, θ) and c̃(−λ; θ) are defined as:

ṽ(−λ;ϑ, θ) =
ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

,

c̃(−λ; θ) =

∫
r

(1 + v(−λ; θ)r)2
dG(r).

Finally, v(−λ; θ) is the unique nonnegative solution to the fixed-point equation:

1

v(−λ; θ)
= λ+ θ

∫
r

1 + v(−λ; θ)r
dH(r).
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Bagged ridge risk characterization (illustration)
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Figure: Asymptotic prediction risk curves for bagged ridgeless predictors
(λ = 0), under AR1 model when ρar1 = 0.25 and σ2 = 1, for varying
subsample sizes k = ⌊p/ϕs⌋ and numbers of bags M. The null risk is marked
as a dotted line. For each value of M, the points denote finite-sample risks
averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left
and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively.
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Optimal bagged ridgeless predictor

Theorem. For any ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained

in ϕ∗
s ∈ (1,∞). That is

sup
M∈N,ϕs∈[ϕ,∞]

Rsub
0,M(ϕ, ϕs) = Rsub

0,∞(ϕ, ϕ∗
s )︸ ︷︷ ︸

optimal bagged risk

< min{Rsub
0,1 (ϕ, ϕ)︸ ︷︷ ︸

unbagged risk

,Rsub
0,1 (ϕ,∞)︸ ︷︷ ︸
null risk

}
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Subagged ridgeless interpolators always outperform subagged least squares,
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Optimal bagged ridgeless predictor
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Back to risk monotonization

• Risk characterization → risk monotonization.
• Data splitting and cross-validation over subsample size.
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Figure: Asymptotic excess risk curves for cross-validated bagged ridgeless
predictors (λ = 0), under the isotopic model when ρ2 = 1 for varying SNR,
subsample sizes k = ⌊p/ϕs⌋, and numbers of bags M with replacement. For
each value of M, the points denote finite-sample risks and the shaded regions
denote the values within one standard deviation, with n = 1000, nte = 63, and
p = ⌊nϕ⌋.
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Comparison with optimal ridge regularization
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Recall here γ = p/n is the aspect ratio. The base predictor is ridgeless.

Key question: Is the connection to ridge regularization just coincedental?
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Prediction risk equivalence

• As p/n → ϕ and p/k → ϕs , the
prediction risk in the full
ensemble (M = ∞) converges:

Rλk,∞
a.s.−−→ Rλ

∞(ϕ, ϕs).

• For ϕ = 0.1, the risk profile as
a function of (λ, ϕs) is shown in
the figure in the log-log scale.
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• Risk equivalence (Theorem 2.3):

min
ϕs≥ϕ

Rsub
0,∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridgeless
ensemble

= min
λ≥0

Rsub
λ,∞(ϕ, ϕ)

︸ ︷︷ ︸
opt. ridge
predictor

= min
ϕs≥ϕ,
λ≥0

Rsub
λ,∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridge
ensemble

.
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Generalized risk

• Let β0 = E[xx⊤]−1E[xy ] be the best linear projection of y onto x
• For a linear functional L(β) = Aβ + b, we study generalized risks:

R(β̂;A,b,β0) =
1

nrow(A)
∥L(β̂ − β0)∥22, (1)

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ψ. Here, ϕ and ψ are the data and subsample aspect ratios,
respectively.

Statistical learning problem L(β̂ − β0) A b nrow(A)

vector coefficient estimation β̂ − β0 Ip 0 p

projected coefficient estimation a⊤(β̂ − β0) a⊤ 0 1

training error estimation X β̂ − y X −fnl n

in-sample prediction X (β̂ − β0) X 0 n

out-of-sample prediction x⊤
0 β̂ − y0 x⊤

0 −ϵ0 1
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Asymptotic equivalence and relaxed assumptions

Asymptotic equivalence:

• Let Ap and Bp be sequences of (additively) conformable matrices of
arbitrary dimensions (including vectors and scalars).

• We say that Ap and Bp are asymptotically equivalent, denoted as
Ap ≃ Bp, if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any
sequence of random matrices Cp with bounded trace norm that are
(multiplicatively) conformable and independent of Ap and Bp.

• Note that for sequences of scalar random variables, the definition
simply reduces to the typical almost sure convergence of sequences
of random variables involved.

Data assumptions:

• Feature distribution: Each feature vector xi for i ∈ [n] can be
decomposed as xi = Σ1/2zi , where zi ∈ Rp contains i.i.d. entries zij
for j ∈ [p] with mean 0, variance 1, and bounded 4 + µ moments for
some µ > 0.

• Response distribution: Each response variable yi for i ∈ [n] has
mean 0, and bounded 4 + µ moments.
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Generalized risk equivalences

Theorem. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as defined in (4). Then, for
any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ̄;ϕ, ψ̄) as defined in
(5), the generalized risk functionals (1) of the full-ensemble estimator are
asymptotically equivalent:

R
(
β̂λ1

⌊p/ψ1⌋,∞;A,b,β0

)
≃ R

(
β̂λ2

⌊p/ψ2⌋,∞;A,b,β0

)
. (2)
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Structural equivalences

Theorem. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as in (4). Then, for any M ∈
N ∪ {∞} and any pair of (λ1, ψ1) and (λ2, ψ2) on the path (5), the M-
ensemble estimators are asymptotically equivalent:

β̂λ1

⌊p/ψ1⌋,M ≃ β̂λ2

⌊p/ψ2⌋,M , ∀(λ1, ψ1), (λ2, ψ2) ∈ P(λ̄;ϕ, ψ̄). (3)

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 

(a) Uniform, M = 1 Uniform, M = 5 Uniform, M = 50

0.1 1 10

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 

(b) Uniform, M = 100

0.1 1 10
Subsample aspect ratio 

Gaussian, M = 100

0.1 1 10

Student's t, M = 100

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.030

0.025

0.020

0.015

0.010

0.000

0.002

0.004

0.006

0.008

0.010

31 / 37



Equivalence paths

• Given ϕ ∈ (0,∞) and ψ̄ ∈ [ϕ,∞], our statement of equivalences
between different ensemble estimators is defined through certain
paths characterized by two endpoints (0, ψ̄) and (λ̄, ϕ).

• Let Hp be the empirical spectral distribution of Σ:
Hp(r) = p−1

∑p
i=1 1{ri≤r}, where ri ’s are the eigenvalues of Σ.

Consider the following system of equations in λ̄ and v :

1

v
= λ̄+ ϕ

∫
r

1 + vr
dHp(r), and

1

v
= ψ̄

∫
r

1 + vr
dHp(r). (4)

• Now, define a path P(λ̄;ϕ, ψ̄) that passes through the endpoints
(0, ψ̄) and (λ̄, ϕ):

P(λ̄;ϕ, ψ̄) =
{
(1− θ) · (λ̄, ϕ) + θ · (0, ψ̄) | θ ∈ [0, 1]

}
. (5)

• For any M ∈ N ∪ {∞}, let λ̄n be the value that satisfies the
following equation in ensemble ridgeless and ridge gram matrices:

1

M

M∑
ℓ=1

1

k
tr

[( 1

k
LIℓXX⊤LIℓ

)+
]
=

1

n
tr

[(1
n
XX⊤ + λ̄nIn

)−1
]
. (6)

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n).
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Implications: Monotonicity of optimal ridge

• An open problem raised by Nakkiran et al. (2021) asks whether the
prediction risk of ridge regression with optimal ridge penalty λ∗ is
monotonically increasing in the data aspect ratio ϕ = p/n.

• Our equivalences imply that the prediction risk of an optimally-tuned
ridge estimator is monotonically increasing in the data aspect ratio
under mild regularity conditions.

• Under proportional asymptotics, our result settles a recent open
question raised by Conjecture 1 of Nakkiran et al. (2021) concerning
the monotonicity of optimal ridge regression under anisotropic
features and general data models while maintaining a regularity
condition that preserves the linearized signal-to-noise ratios across
regression problems.
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Implications of equivalences: illustration

Theorem. Let k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k →
ψ ∈ [ϕ,∞]. Then, for A = Σ1/2 and b = 0, the optimal risk of the
ridgeless ensemble, minψ≥ϕ R(0;ϕ, ψ), is monotonically increasing in ϕ.
Consequently, the optimal risk of the ridge predictor, min≥0 R(;ϕ, ϕ), is
also monotonically increasing in ϕ.
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Extension 1: Equivalences for random features

Conjecture. Define ϕn = p/n. Let k ≤ n be the subsample size and
denote by ψ̄n = p/k. Suppose φ satisfies certain regularity conditions.
For any M ∈ N ∪ {∞}, let λ̄n be the value that satisfies

1

M

M∑
ℓ=1

1

k
tr

[( 1

k
φ(LIℓXF⊤)φ(LIℓXF⊤)⊤

)+
]
=

1

n
tr

[( 1

n
φ(XF⊤)φ(XF⊤)⊤+λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then similar equiv-
alences continue to hold along Pn.
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Extension 2: Equivalences for kernel features

Conjecture. Define ϕn = p/n. Suppose the kernel K satisfies certain
regularity conditions. Let k ≤ n be the subsample size and denote by
ψ̄n = p/k . For any M ∈ N ∪ {∞}, let λ̄n be a solution to

1

M

M∑
ℓ=1

tr
[
K+

Iℓ

]
= tr

[(
K[n] +

n

p
λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then similar equiv-
alences continue to hold along Pn.
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Main takeaways

1. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

2. Ensembling helps significantly near the interpolator threshold.
Subagged ridgeless interpolators always outperform subagged least
squares, even when the full data has more observations than the
number of features.

3. There are connections between the implicit regularization induced by
subsampling and explicit ridge regularization for subsampled ridge
ensembles.
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1. Alright, to conclude my talk: in this thesis, we studied three aspects of
overparameterized learning: cross-validation, risk monotonization, and
model complexity. And the takeaways are:

2. One that cross-validation still works in the overparameterized regime for
ridge regression, even when the regularization is 0 via suitable analytic
continuation.

3. Second that it is possible to modify any arbitrary prediction procedure so
that it has monotonic risk behavior via suitable subsampling and
cross-validation.

4. And three that there is a principled measure of model complexity in the
overparameterized regime in the form of random-X degrees of freedom.



Thanks for listening!

Questions/comments/thoughts?



What about lasso?
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“Mitigating multiple descents: A model-agnostic framework for risk monotonization”

P., Kuchibhotla, Wei, Rinaldo, 2021
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More empirical evidence for lasso
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