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COx is the main component of carbon cycle and greenhouse effect.
Balance of COs is essential to sustaining life on Earth. But ...
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CO, trend

Atmospheric CO, at Mauna Loa Observatory
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COg levels were 280 ppm at start of industrial revolution. Now 45% 7.
Present levels highest in last 800,000 and possibly last 20 million years.
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CO4 sources and sinks
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Only half of CO4 emitted is getting absorbed. Sink processes fluctuating.
What is the spatial and temporal distribution of sources and sinks?
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Orbiting Carbon Observatory - 2

Source: NASA
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CO2 map

Orbiting Carbon Observatory - 2
XCO2 Data (5/14/15 - 8/16/15)

Source: NASA

This project investigates how reliable these estimates are.

5/28



Observation system: physical model
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x € RP: state vector, F: forward model, e: noise, y € R™: observations
The quantity of interest is a functional of state vector §(x) € R

6/28



Observation system: approximated model !

> state vector x:

— CO2 profile (layer 1 to layer 20) [20 elements]
— surface pressure [1 elements]

surface albedo [6 elements]

aerosols [12 elements]

» forward model F:
linearized with forward model Jacobian K(x) = agg{x)

» noise e: normal approximation

» observations y:
discretized radiances in 3 near-infrared bands [1024 in each band]
— 02 A-band (around 0.76 microns)
— weak CO2 band (around 1.61 microns)
— strong CO2 band (around 2.06 microns)

Lprovided by Jon Hobbs [Hobbs et al., SIAM/ASA Journal on Uncertainty

Quantification, 2017]
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Question of interest

Input:

» radiance observations y
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» an approximated model y ~ Kx + e
Output:

» a functional §(x) of the form h”x that measure column averaged
CO3 with corresponding confidence interval [Q,ﬂ with the

frequentest coverage guarantee P(6 € [6,6]) ~ 1 — o for any x.
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lll-posed inverse problem

magnitude of singular values
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decreasing order of singular values

Inverse problem is severely ill-posed. Exponential singular values decay.

Some eigenvalues are numerically zero leading to null space directions.
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Operational retrieval

Key idea: let prior on x regularize the problem (Bayesian procedure)
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Assume prior distribution on p(x).

Combine prior with likelihood from forward model F(x) using
observations y to get posterior p(x|y)

Compute MAP estimator X maximizing p(x|y).
Use plug-in estimate as § = 0(X)
From the posterior distribution p(x|y), estimate covariance 3 of X.

Use plug-in estimate for variance 6 as o(X).

Set the (1 — «) credible interval as [é — 2q/20, 0+ za/Qﬁ}

Potential issues: bias and undercoverage
The true uncertainty could be drastically underestimated!
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Issues with operational retrieval: single sounding

Coverage for some single soundings at Lamont, OK
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The lowest coverage sometimes drops even below 50%.
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Issues with operational retrieval: single sounding
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State instance: 5, operational coverage: 0.764
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Issues with operational retrieval: single sounding
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State instance: 4, operational coverage: 0.787
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Issues with operational retrieval: grid sounding

operational coverage (relative to nomial coverage)
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Issues with operational retrieval: grid sounding

operational coverge (relative to nominal coverage)
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Proposed retrieval: version 1

Key idea 1: let actual physical constraints regularize the problem?

observation space state space

E.
0

0=0(x), 0= min 6(x), 0= max 6(x)

xeCnND xeCnD

2Gtark, Journal of Geophysical Research, 1992; Kuusela and Stark, Annals of
Applied Statistics, 2017
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Proposed retrieval: version 2

» Version 1 is working harder than it needs to. The interval [Q,gj has
correct finite-sample coverage for any functional 6. But we only care
about a particular functional.

» Key idea 2: only require the procedure to satisfy one-at-time
coverage rather than simultaneous coverage?

» One way is to restrict the set D in version 1 that still preserves the
coverage guarantee for . For example, assume Gaussian white noise
for simplicity. Then,

— version 1 uses D = {x : |ly — F(x)||* < xa(a)} which has (1 — a)
coverage set in the state space.

— version 2 restricts it such that D' = {x : [ly — F(x)||” < 22 , + b*},
where b = min |y — F(x)]|

3inspired by Leary and Rust, SIAM Journal on Scientific and Statistical Computing,
1986
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Improvements from proposed retrieval: single sounding

state instance operational coverage proposed coverage

1 0.777 0.952
2 0.800 0.955
3 0.780 0.952
4 0.787 0.956
5 0.764 0.953
6 0.830 0.950
7 0.830 0.960
8 0.729 0.952
9 0.735 0.955
10 0.787 0.950

Length of operational interval about 4, proposed interval about 11.
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Improvements from proposed retrieval: single sounding
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Improvements from proposed retrieval: single sounding
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State instance: 4, proposed coverage: 0.956
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Improvements from proposed retrieval: grid sounding

latitude
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Improvements from proposed retrieval: grid sounding
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Proposed retrieval: version 3

» So far, we only used actual physical constraints on the state vector.

» But, what if we wanted to incorporate more information about state.
— Certain ranges for some elements of state vector more likely.
— Possibility of borrowing certainty from other sources.
» Version 3 provides a framework for incorporating additional
probabilistic information and still maintaining finite-sample coverage
guarantees.
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Deterministic exact information on individual elements

proposed interv al length
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proposed interval length

Deterministic range for pressure
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deterministic range for pressure (within +~ mbar)
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proposed interval length

Probabilistic range for pressure
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proposed interval length

Probabilistic range for pressure
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Conclusions and extensions

Uncertainties for CO2 estimates are important.

Some evidence of potential bias and undercoverage for the
operational retrieval.

Proposed method can provide good coverage guarantees.
Further improvements in the size of intervals from the proposed
retrieval possible using additional information.

Many extensions possible:

— Different ways of restricting the sets for one-at-a-time intervals.
— Optimality for the size of the intervals.

— Combining information from different missions.

Different approaches for non-linear forward models.

Using intervals for downstream tasks instead of point estimates.
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