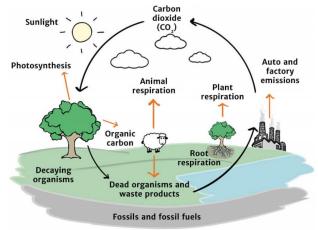
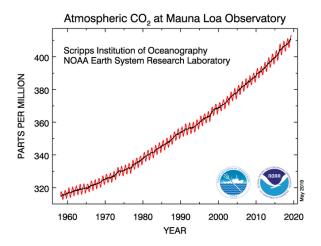
Uncertainty Quantification in CO₂ Retrieval


Pratik Patil

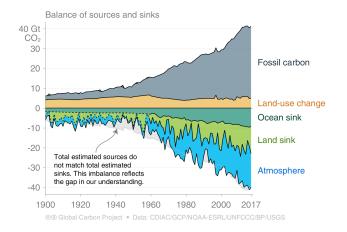
Carnegie Mellon University

Data Analysis Talk 2019

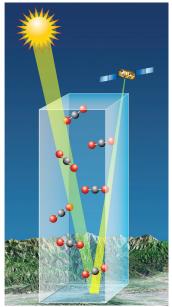
Based on joint work with Mikael Kuusela and Jonathan Hobbs

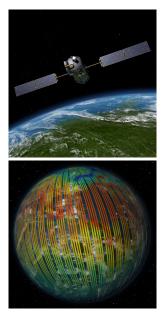

Carbon cycle

Source: Scholar Schools

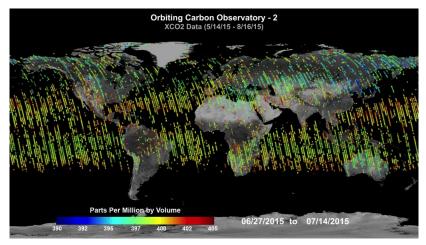

 CO_2 is the main component of carbon cycle and greenhouse effect. Balance of CO_2 is essential to sustaining life on Earth. But ...

CO_2 trend

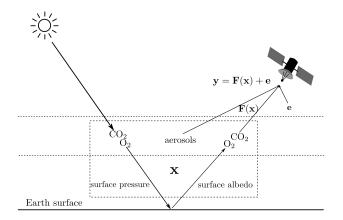

 CO_2 levels were 280 ppm at start of industrial revolution. Now 45% \uparrow . Present levels highest in last 800,000 and possibly last 20 million years.


CO_2 sources and sinks

Only half of CO_2 emitted is getting absorbed. Sink processes fluctuating. What is the spatial and temporal distribution of sources and sinks?


Orbiting Carbon Observatory - 2

Source: NASA


CO_2 map

Source: NASA

This project investigates how *reliable* these estimates are.

Observation system: physical model

 $\mathbf{x} \in \mathbb{R}^p$: state vector, \mathbf{F} : forward model, \mathbf{e} : noise, $\mathbf{y} \in \mathbb{R}^n$: observations The quantity of interest is a functional of state vector $\theta(\mathbf{x}) \in \mathbb{R}$

Observation system: approximated model ¹

state vector x:

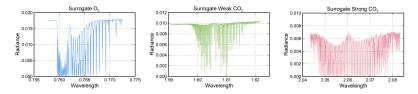
- CO2 profile (layer 1 to layer 20) [20 elements]
- surface pressure [1 elements]
- surface albedo [6 elements]
- aerosols [12 elements]
- ► forward model **F**:

linearized with forward model Jacobian $\mathbf{K}(\mathbf{x}) = \frac{\partial \mathbf{F}(\mathbf{x})}{\partial \mathbf{x}}$

▶ noise e: normal approximation

observations y:

discretized radiances in 3 near-infrared bands [1024 in each band]

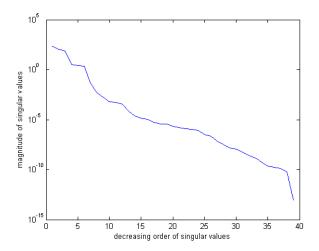

- O2 A-band (around 0.76 microns)
- weak CO2 band (around 1.61 microns)
- strong CO2 band (around 2.06 microns)

 $^{^1 \}text{provided}$ by Jon Hobbs [Hobbs et al., SIAM/ASA Journal on Uncertainty Quantification, 2017]

Question of interest

Input:

radiance observations y



 \blacktriangleright an approximated model $\mathbf{y}\approx\mathbf{K}\mathbf{x}+\mathbf{e}$

Output:

▶ a functional $\theta(\mathbf{x})$ of the form $\mathbf{h}^T \mathbf{x}$ that measure column averaged CO_2 with corresponding confidence interval $[\underline{\theta}, \overline{\theta}]$ with the frequentest coverage guarantee $\mathbb{P}(\theta \in [\underline{\theta}, \overline{\theta}]) \approx 1 - \alpha$ for any \mathbf{x} .

Ill-posed inverse problem

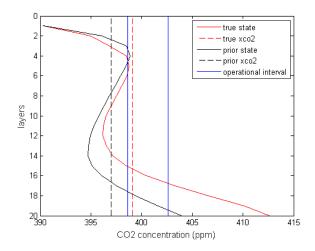
Inverse problem is severely ill-posed. Exponential singular values decay. Some eigenvalues are numerically zero leading to null space directions.

Operational retrieval

Key idea: let prior on x regularize the problem (Bayesian procedure)

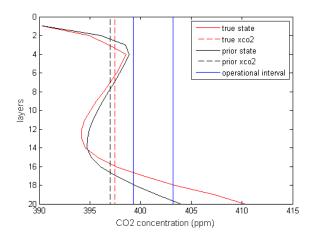
- Assume prior distribution on $p(\mathbf{x})$.
- \blacktriangleright Combine prior with likelihood from forward model ${\bf F}({\bf x})$ using observations ${\bf y}$ to get posterior $p({\bf x}|{\bf y})$
- Compute MAP estimator $\hat{\mathbf{x}}$ maximizing $p(\mathbf{x}|\mathbf{y})$.
- Use plug-in estimate as $\hat{\theta} = \theta(\hat{\mathbf{x}})$
- From the posterior distribution $p(\mathbf{x}|\mathbf{y})$, estimate covariance $\hat{\boldsymbol{\Sigma}}$ of $\hat{\mathbf{x}}$.
- Use plug-in estimate for variance $\hat{\sigma}$ as $\sigma(\hat{\Sigma})$.
- Set the (1α) credible interval as $\left[\hat{\theta} z_{\alpha/2}\hat{\sigma}, \hat{\theta} + z_{\alpha/2}\hat{\sigma}\right]$

Potential issues: bias and undercoverage The true uncertainty could be drastically underestimated!


Issues with operational retrieval: single sounding

state instance	operational coverage	
1	0.777	
2	0.800	
3	0.780	
4	0.787	
5	0.764	
6	0.830	
7	0.830	
8	0.729	
9	0.735	
10	0.787	

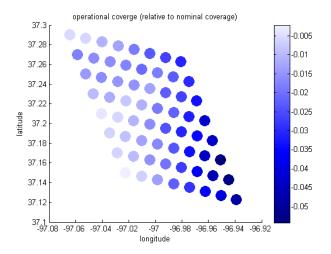
Coverage for some single soundings at Lamont, OK


The lowest coverage sometimes drops even below 50%.

Issues with operational retrieval: single sounding

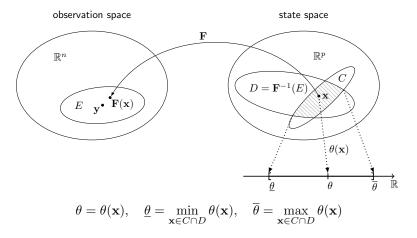

State instance: 5, operational coverage: 0.764

Issues with operational retrieval: single sounding


State instance: 4, operational coverage: 0.787

Issues with operational retrieval: grid sounding

Fraction of soundings below nominal coverage: 0.55


Issues with operational retrieval: grid sounding

Fraction of soundings below nominal coverage: 1

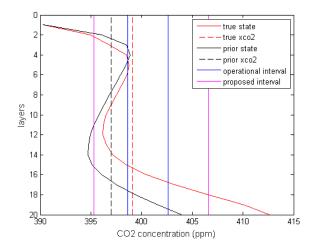
Proposed retrieval: version 1

Key idea 1: let actual physical constraints regularize the problem²

²Stark, Journal of Geophysical Research, 1992; Kuusela and Stark, Annals of Applied Statistics, 2017

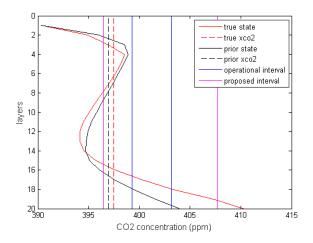
Proposed retrieval: version 2

- Version 1 is working harder than it needs to. The interval [<u>θ</u>, <u>θ</u>] has correct finite-sample coverage for any functional θ. But we only care about a particular functional.
- Key idea 2: only require the procedure to satisfy one-at-time coverage rather than simultaneous coverage³
- One way is to restrict the set D in version 1 that still preserves the coverage guarantee for θ. For example, assume Gaussian white noise for simplicity. Then,
 - version 1 uses $D = {\mathbf{x} : \|\mathbf{y} \mathbf{F}(\mathbf{x})\|^2 \le \chi_n^2(\alpha)}$ which has (1α) coverage set in the state space.
 - version 2 restricts it such that $D' = \{\mathbf{x} : \|\mathbf{y} \mathbf{F}(\mathbf{x})\|^2 \le z_{\alpha/2}^2 + b^2\},\$ where $b = \min_{\mathbf{x} \in C} \|\mathbf{y} - \mathbf{F}(\mathbf{x})\|$

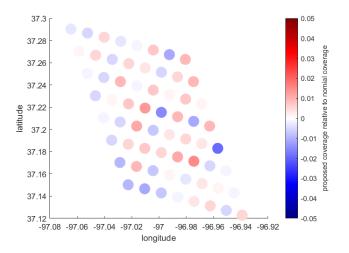

³inspired by Leary and Rust, SIAM Journal on Scientific and Statistical Computing, 1986

Improvements from proposed retrieval: single sounding

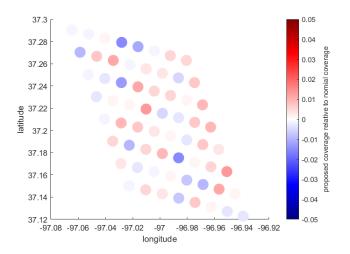
state instance	operational coverage	proposed coverage
1	0.777	0.952
2	0.800	0.955
3	0.780	0.952
4	0.787	0.956
5	0.764	0.953
6	0.830	0.950
7	0.830	0.960
8	0.729	0.952
9	0.735	0.955
10	0.787	0.950


Length of operational interval about 4, proposed interval about 11.

Improvements from proposed retrieval: single sounding

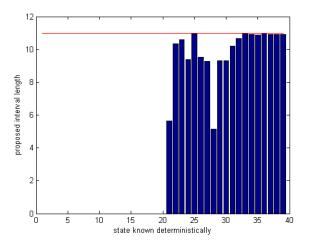

State instance: 5, proposed coverage: 0.953

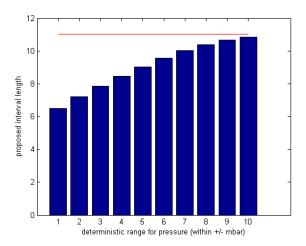
Improvements from proposed retrieval: single sounding



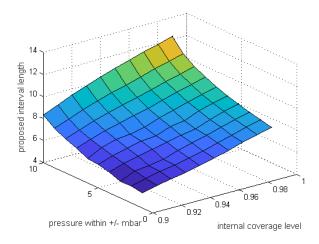
State instance: 4, proposed coverage: 0.956

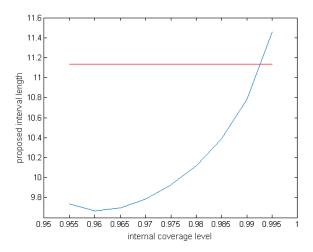
Improvements from proposed retrieval: grid sounding


Improvements from proposed retrieval: grid sounding


Proposed retrieval: version 3

- ▶ So far, we only used actual physical constraints on the state vector.
- But, what if we wanted to incorporate more information about state.
 - Certain ranges for some elements of state vector more likely.
 - Possibility of borrowing certainty from other sources.
- Version 3 provides a framework for incorporating additional probabilistic information and still maintaining finite-sample coverage guarantees.


Deterministic exact information on individual elements


Deterministic range for pressure

Probabilistic range for pressure

Probabilistic range for pressure

Conclusions and extensions

- Uncertainties for CO2 estimates are important.
- Some evidence of potential bias and undercoverage for the operational retrieval.
- Proposed method can provide good coverage guarantees.
- Further improvements in the size of intervals from the proposed retrieval possible using additional information.
- Many extensions possible:
 - Different ways of restricting the sets for one-at-a-time intervals.
 - Optimality for the size of the intervals.
 - Combining information from different missions.
 - Different approaches for non-linear forward models.
 - Using intervals for downstream tasks instead of point estimates.