Michael (Mike) Stanley | Mikael Kuusela | April 13, 2022 | SIAM UQ

Optimizing Confidence Intervals for Satellite-Based Carbon Flux Inversion

Thanks and acknowledgements

- Pratik Patil (CMU)
- Brendan Byrne (JPL)
- Junjie Liu (JPL)
- Peyman Tavallali (JPL)
- Daven Henze (UC Boulder)
- JPL UQ and CMU STAMPS

This work was supported by NSF grants DMS-2053804 and PHY-2020295 as well as JPL RSA No. 1670375.

Goal: provide UQ for carbon flux (CF) inversion

- 1. Provide a quick recap of CF inversion motivation,
- 2. Define our operational setup to test inversion methods,
- 3. Review a few other CF UQ approaches and some associated challenges,
- 4. Explain our methodological attempt to address these challenges,
- 5. Demonstrate our method on a toy problem,
- 6. And, elucidate our method's application to CF UQ.

Identifying terrestrial [carbon sources/sinks](#page-23-0) requires good UQ

- Insufficient understanding of natural carbon sinks creates a gap in our knowledge of the global carbon budget.
- Carbon fluxes inferred from satellite observations and a chemical transport model (CTM) come with uncertainty.
- **•** We can use an Observing System Simulation Experiment (OSSE) to investigate these properties with some frequently used inversion elements.
	- **•** Our OSSEs are defined over 8 months Jan 1, 2010 to September 1, 2010

Inversion Elements

Satellite Observations

True Fluxes*

Control Fluxes^{*} Experiment Control Fluxes^{*}

*: Net Ecosystem Exchange (NEE) Fluxes

4D-Var and GEOS-Chem Adjoint can provide flux estimation and UQ

1 2 $(y - K_x c)$ T *S*^{−1} $\int_{0}^{-1}(y - K_{\chi}c)$

Produces the MAP estimator $c_{MAP}(c_a, y)$

 $c \mid y \sim \mathcal{N}(\mu_p, \Sigma_p)$ d^2 : Prior uncertainty

$$
J(c) = \frac{1}{2}(c - c_a)^{\top} S_a^{-1}(c - c_a) +
$$

- c scaling factors to optimize (in $\mathbb{R}^{72\times46\times8}$)
- c_a a priori scaling factors (set to unity)
- S_a, S_O a priori and observation covariance matrices
- K_x forward model (GEOS-Chem + GOSAT XCO2 Observation Operator) with control flux x (we assume linear)
- *y* satellite observations

Bayesian Interpretation

 $c \sim \mathcal{N}(c_a, d^2I)$

 $y \mid c \sim \mathcal{N}(K_{x}c, S_{0})$

There are a variety of ways to approach Bayesian UQ for high-dimensional linear models

- **Monte Carlo-based** methods
	- Chevallier et al., 2007 | Bousserez et al., 2015 | Stanley et al., 2022
- **Low-Rank Hessian Approximation** methods
	- Flath et al., 2011 | Kalmikov and Heimbach, 2014 | Bousserez et al., 2015 | Bousserez and Henze, 2018
- **MCMC-based** approaches
	-

• WOMBAT, Zammit-Mangion, A., et al., 2022 | SN-MCMC Petra et al., 2007

A Monte Carlo method reveals a key challenge in the Bayesian formulation

- A misspecified prior distribution can make a problem well-posed at the cost of introducing a bias.
- With our OSSE and the MC method, $\frac{1}{2}$ we observe the effects of the prior's we observe the effects of the prior's misspecification

Global Average Monthly Fluxes

We endeavor to eliminate the prior to avoid the misspecification effect

- We propose a prior-free approach based on [Patil et al., 2020] involving the direct computation of endpoints of a confidence interval with coverage guarantees
- With a linear forward model $K \in \mathbb{R}^{m \times n}$, linear functional $\theta(\pmb{x}) = \pmb{h}^T\pmb{x}$ and $confidence level 1 - \alpha$,

, and $\theta^* = \theta(x^*)$ and x^* is the true parameter value.

 $y = Kx + \varepsilon$, $[\underline{\theta},\bar{\theta}]$ $\mathbf{l} = |\min_{\mathbf{x} \in C_{\infty}}$ *x*∈*C^α θ*(*x*), max *x*∈*C^α θ*(*x*)] where $\mathbb{P}(\theta^* \in [\underline{\theta}, \bar{\theta}]) \geq 1 - \alpha$ Statistical Model CI Definition Coverage Guarantee

$$
\boldsymbol{\varepsilon} \sim N(\boldsymbol{0}, \boldsymbol{I})
$$

The definition of the feasible set, C_{α} , depends on the desired coverage properties *Cα*

- Define $C_{\alpha} := \{x \mid ||y Kx||_2^2 \leq \psi_{\alpha}^2 \text{ and } Ax \leq b\}$
	- problem.
- - For **simultaneous coverage** : $\psi_{\alpha}^{2} := \chi_{\alpha}^{2}(m)$ [Stark 1992]
	- For **one-at-a-time coverage** : $\psi_{\alpha}^2 := z_{1-\alpha/2}^2 + s^2$, where [Patil et al. 2020, Rust and O'Leary 1994]

• where A and b characterize physical constraints we might know about the

• How we choose ψ_{α}^2 determines the coverage properties of the interval $\left[\underline{\theta},\bar{\theta}\right]$ $\psi_{\alpha}^2 := z_{1-\alpha/2}^2 + s^2$, where $s^2 = \min_{\mathbf{x}:A\mathbf{x}\leq \mathbf{b}}\|\mathbf{y} - \mathbf{K}\mathbf{x}\|_2^2$ *x*: *Ax*≤*b*

We want to minimize interval length subject to a coverage guarantee

- The one-at-a-time ellipsoid constraint appears to have empirically correct coverage but is not yet provable [Patil et al. 2020].
- Based on the one-at-a-time intervals, in a decision theoretic sense, we can characterize interval endpoints as decision rules from a set $\mathscr{D},$ where all decision rules $\delta \in \mathscr{D}$ have desired coverage guarantee
	- Optimal decisions can then be characterized as those δ producing the shortest expected interval with respect to a prior \rightarrow ["Prior-Optimized](#page-24-0)" (PO) Intervals
	- [Patil et al. 2020, Stanley et al. 2021].
-

Method exposition on a toy-model: density deconvolution

• Using the same linear model

• $y = Kx + \varepsilon$, $\varepsilon \sim N(0, I)$,

- Information that each bin mean must be non-negative
	- $Ax \leq b$ where $A = -I$ and $b = 0$,
- a collection of functionals $\langle h_i \rangle_{i=1}^{\infty}$, 10 *i*=1
- and a confidence level 1α , e.g. 95%

Using physical constraint information provides significant interval length improvement

- Seeing the data y, we perform inference on the functionals of the true bin counts by computing our CIs, $\left[\underline{\theta},\bar{\theta}\right]$]*i*
- Interval Types
	- OSB == "One-at-a-time Strict Bounds" $using \psi_{\alpha}^{2} := z_{1-\alpha/2}^{2} + s^{2}$
	- $PO == "Prior Optimized"$ (i.e., the decision theoretic framework)
	- Least-squares is equivalent to OSB with no constraint [Patil et al. 2020] *Ax* ≤ *b* [Stanley et al. 2021]

Applying the method to CF inversion Defining the *lower endpoint* optimization

minimize *c* $\bm{h}^T\bm{c}$

- First, we make the reasonable assumption that the forward model, K , is linear
- We use the $\psi_{\alpha}^2 := \chi_{\alpha}^2(m)$ ellipsoid constraint

subject to $(y - K_x c)$

 $x\in\mathbb{R}^{n'}$: control flux $\textbf{\textit{K}}_{x} \in \mathbb{R}^{n \times m}$: forward operator with control flux x $c \in \mathbb{R}^n$: monthly scaling factors $y \in \mathbb{R}^m$: GOSAT XCO2 observations $\textbf{S}_{O} \in \mathbb{R}^{m \times m}$: observation error covariance $A \in \mathbb{R}^{s \times n},$ $b \in \mathbb{R}^{s}$: physical constraint matrix/vector $h \in \mathbb{R}^n$: functional of interest

 $T S_o^{-1}(y - K_x c) \leq \chi^2_{\alpha}(m)$ $Ac \leq b$

Applying the method to CF inversion Creating a functional

- A scientific question can motivate a functional's definition
	- e.g., what is the average June 2010 flux over the continental US?
- To define this functional h ,
	- let $h_i = NEE_i \cdot a_i, i = 1, ..., n$, where
		- \cdot a_i 's are the region area weights and
		- \cdot \overline{NEE}_i 's are the monthly average control fluxes

Applying the method to CF inversion Creating the constraints

 $\bullet~$ Based on the idea that net ecosystem exchange (NEE) is decomposable into ecosystem respiration (R_{e}) and gross primary product (GPP) we have

•
$$
NEE = R_e - GPP
$$
 where $R_e \ge 0$ and $GPP \ge 0$ [Byrne 2018]

 \bullet To incorporate this decomposition with our monthly scaling factors, for each month t and spatiotemporal index *i* we have,

\n- $$
c_i \cdot \overline{NEE}_{t,i} + \overline{GPP}_{t,i} \geq 0 \implies c_i \geq -\frac{GPP_{t,i}}{\overline{NEE}_{t,i}}
$$
\n- $\implies A = I$ and $b_i = -\frac{\overline{GPP}_{t,i}}{\overline{NEE}_{t,i}}$
\n

$$
\frac{\overline{rPP}_{t,i}}{\overline{r}\overline{r}\overline{r}}
$$

NEEt,*ⁱ*

Solving this optimization comes with some challenges

- The forward model is only accessible via runs of GEOS-Chem on a supercomputer (i.e., each iteration is costly)
- From the GEOS-Chem Adjoint model, we are limited to using the gradient of the 4D-Var objective function
- The following optimization approaches the original as positive $\mu \to \infty$

minimize
$$
h^T c + \mu \max\left\{0, (y - K_x c)^T S_o^{-1} (y - K_x c) - \chi_\alpha^2(m)\right\}
$$

Lower bound optimization approaches from below in deconvolution example

• Starting with $\mu = 1$ and for each iteration using the update $\mu \leftarrow 2\mu$, we bounds,

display the following convergence for one of the deconvolution interval lower

Summary of key points

- Current UQ approaches for CF inversion are exposed to prior misspecification
- We propose the application of a prior-free methodology for directly computing flux confidence intervals with coverage guarantees
	- The linear functional form is well suited for ill-posed inverse problems because of the implicit regularization
	- The variational form is well-suited to the computational complexity of problems involving complex simulators
- For CF inversion, decomposition of NEE flux motivates the affine inequality constraints

Special thanks to Cheyenne at NCAR for hosting our computations!

References

(3) Chevallier, F., Breon, F.-M., and Raynor, P. J. (2007). Contribution of the orbiting carbon observatory to the estimation of CO2 sources and sinks: theoretical study in a variational data (4) Flath, H. P. et al. (2011). Fast algorithms for bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial hessian approximation. *SIAM Journal on* (5) Kalmikov, A. G., and Heimbach, P. (2014). A hessian-based method for uncertainty quantification in global ocean state estimation. *SIAM Journal on Scientific Computing*. 36. (6) Patil, P., Kuusela, M., Hobbs, J. (2020). Objective frequentist uncertainty quantification for atmospheric CO2 retrievals. To appear in the *SIAM / ASA Journal on Uncertainty Quantification*. (7) Petra, N., et al. (2007). A computational framework for infinite-dimensional bayesian inverse problems, part II: stochastic newton mcmc with application to ice sheet flow inverse problems. (10) Stanley, M., Patil, P., Kuusela, M. (2021). Uncertainty quantification for wide-bin unfolding: one-at-a-time strict bounds and prior-optimized confidence intervals. Preprint on arXiv: [https://](https://arxiv.org/pdf/2111.01091.pdf)

- model. *Quarterly Journal of the Royal Meteorological Society*.
- (2) Byrne, B. (2018). Monitoring the carbon cycle: Evaluation of terrestrial biosphere models and anthropogenic greenhouse gas emissions with atmospheric observations. *PhD Thesis*.
- assimilation framework. *Journal of Geophysical Research.* 112.
- *Scientific Computing*. 33.
-
- Preprint on arXiv: [https://arxiv.org/abs/2007.14975.](https://arxiv.org/abs/2007.14975)
- *SIAM Journal on Scientific Computing*. 36.
- (8) B. W. Rust and D. P. O'Leary (1994). Confidence intervals for discrete approximations to ill-posed problems. *Journal of Computational and Graphical Statistics*. 3.
- (9) Stanley, M., Kuusela, M., Byrne, B., Liu, J. (2022). Estimating Posterior Uncertainty via a Monte Carlo Procedure Specialized for Data Assimilation. In preparation.
- arxiv.org/pdf/2111.01091.pdf.
- (11) P. B. Stark (1992). Inference in infinite-dimensional inverse problems: Discretization and duality. *Journal of Geophysical Research*. 97.
- (12) Zammit-Mangion, A., et al. (2022). WOMBAT v1.0: a fully Bayesian global flux-inversion framework. *Geoscientific Model Development*. 15.

Bousserez, N., et al. (2015). Improved analysis-error covariance matrix for high-dimensional variational inversions: application to source estimation using a 3D atmospheric transport

Thank you!

Appendix

The carbon cycle - sources and sinks

Carbon *Sink**

Prior-Optimized Confidence Intervals [Stanley et al. 2021]

Decision rule parameterized by

subject to $h + A^Tc - K^Tw = 0$ $h - A^T\bar{c} - K^T\bar{w} = 0$ $c, \bar{c} \geq 0$ Constraints defining a set of decision rules with guaranteed coverage

[Return](#page-10-0)