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Goal: provide UQ for carbon flux (CF) inversion

1. Provide a quick recap of CF inversion motivation,


2. Define our operational setup to test inversion methods,


3. Review a few other CF UQ approaches and some associated challenges,


4. Explain our methodological attempt to address these challenges,


5. Demonstrate our method on a toy problem,


6. And, elucidate our method’s application to CF UQ.
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Identifying terrestrial carbon sources/sinks 
requires good UQ
• Insufficient understanding of natural carbon sinks creates a gap in our 

knowledge of the global carbon budget.


• Carbon fluxes inferred from satellite observations and a chemical transport 
model (CTM) come with uncertainty.


• We can use an Observing System Simulation Experiment (OSSE) to 
investigate these properties with some frequently used inversion elements.


• Our OSSEs are defined over 8 months - Jan 1, 2010 to September 1, 2010
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Inversion Elements
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Simulator/Forward Model

Satellite Observations

True Fluxes*

Control Fluxes* CarbonTracker

*: Net Ecosystem Exchange (NEE) Fluxes



4D-Var and GEOS-Chem Adjoint can provide 
flux estimation and UQ

•  - scaling factors to optimize (in )


•  - a priori scaling factors (set to unity)


•  - a priori and observation covariance matrices


•  - forward model (GEOS-Chem + GOSAT XCO2 Observation Operator) with control 
flux  (we assume linear)


•  - satellite observations
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(c − ca)⊤S−1
a (c − ca) +

1
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(y − Kxc)⊤S−1
O (y − Kxc)

c ∼ 𝒩(ca, d2I)

y |c ∼ 𝒩(Kxc, SO)
c ∣ y ∼ 𝒩(μp, Σp)

 Prior uncertaintyd2 :

Bayesian Interpretation

Produces the MAP estimator - 
cMAP(ca, y)



There are a variety of ways to approach 
Bayesian UQ for high-dimensional linear models
• Monte Carlo-based methods


• Chevallier et al., 2007 | Bousserez et al., 2015 | Stanley et al., 2022


• Low-Rank Hessian Approximation methods


• Flath et al., 2011 | Kalmikov and Heimbach, 2014 | Bousserez et al., 2015 | 
Bousserez and Henze, 2018


• MCMC-based approaches


• WOMBAT, Zammit-Mangion, A., et al., 2022 | SN-MCMC Petra et al., 2007
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A Monte Carlo method reveals a key challenge 
in the Bayesian formulation
• A misspecified prior distribution can 

make a problem well-posed at the 
cost of introducing a bias.


• With our OSSE and the MC method, 
we observe the effects of the prior’s 
misspecification 
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We endeavor to eliminate the prior to avoid the 
misspecification effect
• We propose a prior-free approach based on [Patil et al., 2020] involving the direct 

computation of endpoints of a confidence interval with coverage guarantees


• With a linear forward model , linear functional  and 
confidence level ,

K ∈ ℝm×n θ(x) = hT x
1 − α
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y = Kx + ε, ε ∼ N(0, I)

[θ, θ̄] = [ min
x∈Cα

θ(x), max
x∈Cα

θ(x)]
, and 

 and  is the true parameter value.
where ℙ (θ* ∈ [θ, θ̄]) ≥ 1 − α
θ* = θ(x*) x*

Statistical Model

CI Definition

Coverage Guarantee



The definition of the feasible set, , depends 
on the desired coverage properties

Cα

• Define 


• where  and  characterize physical constraints we might know about the 
problem.


• How we choose  determines the coverage properties of the interval 


• For simultaneous coverage :  [Stark 1992]


• For one-at-a-time coverage : , where  
[Patil et al. 2020, Rust and O’Leary 1994] 

Cα := {x ∣ ∥y − Kx∥2
2 ≤ ψ2

α and Ax ≤ b}

A b

ψ2
α [θ, θ̄]

ψ2
α := χ2

α(m)

ψ2
α := z2

1−α/2 + s2 s2 = min
x: Ax≤b

∥y − Kx∥2
2
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We want to minimize interval length subject to 
a coverage guarantee
• The one-at-a-time ellipsoid constraint appears to have empirically correct 

coverage but is not yet provable [Patil et al. 2020].


• Based on the one-at-a-time intervals, in a decision theoretic sense, we can 
characterize interval endpoints as decision rules from a set , where all 
decision rules  have desired coverage guarantee


• Optimal decisions can then be characterized as those  producing the 
shortest expected interval with respect to a prior —> “Prior-Optimized” (PO) 
Intervals


• [Patil et al. 2020, Stanley et al. 2021].

𝒟
δ ∈ 𝒟

δ
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Method exposition on a toy-model: density 
deconvolution
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hT
i x

• Using the same linear model


• ,


• Information that each bin mean must 
be non-negative


•  where  and ,


• a collection of functionals ,


• and a confidence level , e.g. 
95%

y = Kx + ε, ε ∼ N(0, I)

Ax ≤ b A = − I b = 0

{hi}10
i=1

1 − α

 and x Kx  and {hT
i x}i {hT

i Kx}i



Using physical constraint information provides 
significant interval length improvement
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• Seeing the data , we perform inference on 
the functionals of the true bin counts by 
computing our CIs, 


• Interval Types


• OSB == “One-at-a-time Strict Bounds” 
using 


• PO == “Prior Optimized” (i.e., the 
decision theoretic framework)


• Least-squares is equivalent to OSB with 
no  constraint [Patil et al. 2020]

y

[θ, θ̄]i

ψ2
α := z2

1−α/2 + s2

Ax ≤ b [Stanley et al. 2021]



Applying the method to CF inversion

• First, we make the reasonable assumption that the forward model, , is linear


• We use the  ellipsoid constraint

K

ψ2
α := χ2

α(m)

14

Defining the lower endpoint optimization

minimize
c

hTc

subject to (y − Kxc)TS−1
o (y − Kxc) ≤ χ2

α(m)
Ac ≤ b : functional of interest


 : control flux

 : forward operator with control flux 


 : monthly scaling factors

 : GOSAT XCO2 observations


 : observation error covariance

 : physical constraint matrix/vector

h ∈ ℝn

x ∈ ℝn′ 

Kx ∈ ℝn×m x
c ∈ ℝn

y ∈ ℝm

SO ∈ ℝm×m

A ∈ ℝs×n, b ∈ ℝs



Applying the method to CF inversion

• A scientific question can motivate a functional’s definition


• e.g., what is the average June 2010 flux over the continental US?


• To define this functional ,


• let , where


• ’s are the region area weights and


• ’s are the monthly average control fluxes

h

hi = NEEi ⋅ ai, i = 1,…, n

ai

NEEi
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Creating a functional

Spatial Locations of non-zero functional values



Applying the method to CF inversion

• Based on the idea that net ecosystem exchange ( ) is decomposable into ecosystem 
respiration ( ) and gross primary product ( ) we have


•  where  and  [Byrne 2018] 


• To incorporate this decomposition with our monthly scaling factors, for each month  and 
spatiotemporal index  we have,


• 


•

NEE
Re GPP

NEE = Re − GPP Re ≥ 0 GPP ≥ 0

t
i

ci ⋅ NEEt,i + GPPt,i ≥ 0 ⟹ ci ≥ −
GPPt,i

NEEt,i

⟹ A = I and bi = −
GPPt,i

NEEt,i
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Creating the constraints



Solving this optimization comes with some 
challenges
• The forward model is only accessible via runs of GEOS-Chem on a 

supercomputer (i.e., each iteration is costly)


• From the GEOS-Chem Adjoint model, we are limited to using the gradient of 
the 4D-Var objective function


• The following optimization approaches the original as positive μ → ∞
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minimize
c≥b

hTc + μ max {0, (y − Kxc)TS−1
o (y − Kxc) − χ2

α(m)}



Lower bound optimization approaches from 
below in deconvolution example 
• Starting with  and for each iteration using the update , we 

display the following convergence for one of the deconvolution interval lower 
bounds,

μ = 1 μ ← 2μ
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Summary of key points

• Current UQ approaches for CF inversion are exposed to prior misspecification


• We propose the application of a prior-free methodology for directly computing 
flux confidence intervals with coverage guarantees


• The linear functional form is well suited for ill-posed inverse problems 
because of the implicit regularization


• The variational form is well-suited to the computational complexity of 
problems involving complex simulators


• For CF inversion, decomposition of NEE flux motivates the affine inequality 
constraints
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Thank you!
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Appendix
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The carbon cycle - sources and sinks
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Carbon Sink*

Carbon Source*

Return



Prior-Optimized Confidence Intervals
[Stanley et al. 2021]
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minimize
w,c,w̄,c̄

r(πx, δ)

subject to h + ATc − KTw = 0
h − AT c̄ − KTw̄ = 0
c, c̄ ≥ 0

Decision rule parameterized by 
( w, c, w̄, c̄)Prior distribution on x

Bayes risk where loss is 
defined by interval length

Constraints defining a set of 
decision rules with guaranteed 
coverage

Return


