Streaming Erasure Codes under Mismatched

Source-Channel Frame Rates

Pratik Patil
University of Toronto

Joint work with Ahmed Badr (U of T) and Ashish Khisti (U of T)

CWIT 2013

Basic delay-sensitive streaming setup (matched scenario)

Basic delay-sensitive streaming setup (matched scenario)

Time

Source
stream j

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy
Rate=%

n

Basic delay-sensitive streaming setup (matched scenario)

Time

Source
stream j

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy

Rate=£

n

Basic delay-sensitive streaming setup (matched scenario)

5 Time
ource
stream =

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy

Rate=£

n

Basic delay-sensitive streaming setup (matched scenario)

5 Time
j

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy

—_—

n

Basic delay-sensitive streaming setup (matched scenario)

5 Time
ource

stream jm * *

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy

Rate—%

Basic delay-sensitive streaming setup (matched scenario)

5 Time
ource

stream jm * *

s[i] € F%

Causal encoder: x[i] = fi(s[0],s[1],---,s[i]) € Fy

TTHE

Basic delay-sensitive streaming setup (matched scenario)

Time
Souree jm * * * mm ﬁ
s[i] € F%

Causal encoder: x[i] = fi(s[0],s -,sli]) € Fy
Rate——'

Basic delay-sensitive streaming setup (matched scenario)

Time
Souree jm * * * “m m
s[i] € F%

Causal encoder: x[i] = fi(s[0],s -,sli]) € Fy
Rate——'

Packet Erasure Channel
y[i] = * for packet erasure; otherwise y[i] = x[i]

Basic delay-sensitive streaming setup (matched scenario)

Time
Souree jm * * * “m ﬁ
s[i] € F%

Causal encoder: x[i] = fi(s[0],s -,sli]) € Fy
Rate——'

Packet Erasure Channel
y[i] = * for packet erasure; otherwise y[i] = x[i]

Delay constrained decoder: s[i] = ¢;(y[0],y[1],---,y[i + T])

Basic delay-sensitive streaming setup (matched scenario)

Time
Souree jm * * * “m ﬁ
s[i] € F%

Causal encoder: x[i] = fi(s[0],s -,sli]) € Fy
Rate——'

Packet Erasure Channel

y[i] = * for packet erasure; otherwise y[i] = x[i]
Delay constrained decoder: s[i] = ¢;(y[0],y[1],---,y[i + T])
s[0]
Delay T'

Basic delay-sensitive streaming setup (matched scenario)

Time
5852:22 jm * * * s[T-1] m ﬁ
s[i] € F%

Causal encoder: x[i] = fi(s[0],s -,sli]) € Fy
Rate——'

Packet Erasure Channel

y[i] = * for packet erasure; otherwise y[i] = x[i]
Delay constrained decoder: s[i] = ¢;(y[0],y[1],---,y[i + T])

S[O] 5[1]
Delay T' .
Delay T'

What codes are optimal for such a delay-constrained setup?

@ How about random linear codes?

@ How about random linear codes?

i

@ How about random linear codes?

IR

@ How about random linear codes?

1T TR

@ How about random linear codes?

HENEEEEE

@ How about random linear codes?

IR B

@ How about random linear codes?

K O

@ How about random linear codes?

eeeeee

@ How about random linear codes?

nlkz v }

1/
Recover \

So> S19 8 S5

Lost symbols recovered simultaneously once sufficient parities are available!

@ How about random linear codes?

S TTTTEETR

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

EEEE}X.
EEEEEEEE

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

T

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

T

So

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

THPPTTR

So S

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

TR

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

LN R

@ How about random linear codes?

HNENEE RS

J»\\)
Recover \ 7/

S0>S19 8 83

Lost symbols recovered simultaneously once sufficient parities are available!
@ What about just repetition?

WIEII}

\%,
\

0 1 2 3 \ \

Rate is only half!

Layered Architecture

VoViVoYs

Layered Architecture

B 2

Layered Architecture

po pl pz p3 p4 p5 p6 p7 ps p9 plo p11 u

-8 -7 -6 -5 -2 -1 0

Layered Architecture

_utv
3u+v

Layered Architecture

_utv
2u+v

Layered Architecture

=
=
=
=
=
=
=
=
=
=
=
=
<

Layered Architecture

=
=
=
=
=
a
=
K
=
o
=
)
=
s
_:
<

VoVpVaV;

Layered Architecture

s uo ll1 uz u3 u4 uS u6 u7 “s u9 ulo u11 u
1
\% V \ﬁé \% Vall Vs || Ve Vall Ve || Yo || Yo || Yu 4 X
1
p4 p5 p6 p7 ps p9 plo p11 u
uy fru) fa) fua) tu tu, o, tu |t ta)) o
u+v ¢ ¢ ¢ L
= dutv VopVpVeValy U u,

Layered Architecture

e
-
w
&~
wn

p4 p5 p6 p7 ps p9 p10 p11 u

uy fu) fuy fu)itu oy tuy) tu) tag ety
. Pt
- 2u+v V‘],V],VZ,V3 u0 u] uz u3
Encoding: ¢
@ Split each source symbol into 2 groups s; = (u;,v;) S, S, S, S,

@ Apply random linear code to the v; stream generating p; parities
© Repeat the u; symbols with a shift of T
@ Combine the repeated u;'s with the p;'s

Layere chitecture

p4 p5 p6 p7 ps p9 p10 p11 u

’l’“l’"f’u’

_utv
- P u+v V‘),VI,VZ,V3 uo u
Encoding: ¢
@ Split each source symbol into 2 groups s; = (u;,v;) S, S, S, S,

@ Apply random linear code to the v; stream generating p; parities
© Repeat the u; symbols with a shift of T
@ Combine the repeated u;'s with the p;'s

@ Choosingu=Bandv=T-B, R= T+B (Optimal) [Badr, Khisti-Infocom '13]

p4 p5 p6 p7 ps p9 p10 p11 u

u- -4 2 +u-l +u0 l'll 3
o T ¢ !
= uty VpVpVpV U u,
Encoding: ¢
@ Split each source symbol into 2 groups s; = (u;,v;) S, S, S, S,

@ Apply random linear code to the v; stream generating p; parities

© Repeat the u; symbols with a shift of T

@ Combine the repeated u;'s with the p;'s

@ Choosingu=Bandv=T-B, R= T+B (Optimal) [Badr, Khisti-Infocom '13]

@ Capacity first analyzed by Martinian and Sundberg (IT-2004) (alternative construction)

General streaming setup (mismatched scenario)

General streaming setup (mismatched scenario)

s[0] s[1] s[2] s(3] s[T] s[T +1]
QD{D 0 I I A I D DD] O]
X0 | XL X2 TXE T XL KT

Macro-packet

Individual channel packet

@ Source model: i.i.d. process with s[i] ~ uniform over F%
@ Streaming encoder: x[i,] = f; j(s[0],s[1],-- - ,s[i]) € Fg
@ Macro-packet: X[i,:] = [x[/,1] | ... | x[i, M]]

® Rate: R =[5 =

General streaming setup (mismatched scenario)

Macro-packet

s[0] s[1] s[2] s(3] s[T] s[T +1]
QD{D 10 o A D DD] O]
X0, | XL Xz TXE T XL KT

Burst of length B ‘

Individual channel packet

Source model: i.i.d. process with s[i] ~ uniform over F%
Streaming encoder: x[i,j] = f; j(s[0],s[1],--- ,s[i]) € Fg
Macro-packet: X[i,:] = [x[i/,1] | ... | x[i, M]]

H(s) _ &k
Rate: R = nXM = nxM

Packet erasure channel: erasure burst of maximum B channel packets

General streaming setup (mismatched scenario)

Macro-packet

[0 1] s[2) s[3) S[1] [T+ 1]

{
2 O o DDD o-O-e-0 ae-

0.1 x(0.2) x|
— —>
X[3,] X7, X[T+1,]

Deadline for s[0] Deadline for s[1]

>

xX[0,1 | XL X2

Burst of length B \

Individual channel packet

Source model: i.i.d. process with s[i] ~ uniform over F%
Streaming encoder: x[i,j] = f; j(s[0],s[1],--- ,s[i]) € Fg
Macro-packet: X[i,:] = [x[i/,1] | ... | x[i, M]]

H(s) _ &k
Rate: R = nXM = nxM

Packet erasure channel: erasure burst of maximum B channel packets

Delay-constrained decoder: s[i] needs to be recovered by macro-packet i + T

Main result

For the streaming setup considered, with any M, T and B, the streaming
capacity C is given by the following expression:
B <M, T>b,

-
T+b> T+b
MZLT+b+1)—B

b
C: W, B,>mM7 T>b,
ME B'>%4, T=b,
0, T < b.

where the constants b and B’ are defined via

B=bM+B, B e{0,1,...,M—1}, beNC

Numerical Comparison

M=20,T=5
T T T
agoes -®-Optimal Codes
0.7 gc,:%i,. : --SCo Codes
“ouy %, + MDP Codes
‘\"I
065, "oy .
~ * “q:om.
= .
N . L
T ""N,.%-. , 1
& 4 "Ry Mo,
. "'c.,i
*. "'bg 00088
055+ — L : i
b b
. i T,
. ®agow,
05F T *ta,
1 | .. Il 1 1
40 50 60 70 80 90 100 110

Burst Length (B)

Code construction

Encoding
@ Source splitting

o split s[i] into k symbols and divide them into two groups, urgent
symbols and non-urgent symbols

sli] = (su[i], - - -, sk[i])

= (], ., ug[il, valil, - -, vk, [i])

uvec[,‘] vvec [I]
slo] s[l] s[2] sli]
hyvee [0] hivee [1] L vee [2] L vee ['L]
hvee [O] Uuec[l] hyvee [2] hyvee [Z]

Code construction (cont.)

@ Parity generation
o layer 1: (k, + ky, k,, T) Strongly-MDS code applied to v¥*°[]
generating q¥°°[f]
e layer 2: repetition code on urgent symbols with a shift of T

s[0]

\

s(1] s[T+1]

vec[T + 1]

‘ ~ [T + 1]
™, N
Parity layer 1

~ ~
Parity layer 2 k'u[E"“[l] Repetition code
rate 3

ku + ko, ko)

Code construction (cont.)

o Overall combined parity: pY°[i] = q"*°[i] + u¥*°[i — T]

slo] sl sf2] s[i SiT) s[T+1)
k-“ uvec[o] uvec[l] vec[2] uvec[i] hvee [T] uuec[T + 1]
kv yvee [0] vec[]_] vec [2] hvee [Z] vvec[T] wec[T_I_ 1]

Overall parity of

each macro-packet ku pvec [0] pvec[l] pvec [2 """ pvec [7’] """ pvec[T] pvec[T + 1] """

Code construction (cont.)

© Reshaping and macro-packet generation
o reshape u"c[i], v¥*¢[i] and p¥*[i] into groups each of n symbols
(recall-each individual packet has n symbols)
e concatenate groups generated in the last step to form macro-packet
bX[i,:] with M channel packets of n symbols each as required

< A
ku uvec[i] /
-
ko pUecli] \ ﬂ' . M channel packets

ku+ky
2kutky

|n

Concatenate

Rate of the code=

Code construction (con

Decoding
© Step 1: All non-urgent symbol recovered before the first deadline

@ Step 2: Urgent symbols recovered at their respective deadlines

i i+1 i+b i+T—-1 i+T

Erasure Burst B! starting at x[i, 1]

Actual Macro-packets with Erasure Burst

Decoding window for recovery of erased non-urgent symbols

all non-urgent symbols are rem\'ered‘

urgent symbols are recovered at their respective deadlines

Simulation results

@ Two state Gilbert channel (good state, bad state)
@ Pr.{good state to bad state}=«, Pr.{bad state to good state}: (3

Gilbert Channel (.~ 10°%) - (M.T) = (103, R = 3/5
T PR 7 T

evessiiii, - -Uncoded
! M o o o Codes
: : "| ~—Baseline Erasure Codes (BEC)
%\ —e-Streaming Codes (SCo)
10° : ; : ;
10
ol
107
10° i i i i i
0.1 012 014 0.16 0.18 02 022 0.24 026 028 03

Figure: (M, T, R) = (10,3, 3/5)

Conclusions

@ Extension to previously studied streaming setup (M = 1) for the mismatched
scenario (general M)

@ Complete characterization of the associated capacity
© New layered code construction
@ Improvements in packet-loss rate over statistical Gilbert channel

© What about both burst and isolated erasures?

Thank you for listening!

Any questions/comments/thoughts?

