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What codes are optimal for such a delay-constrained setup?
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Encoding: ¢
@ Split each source symbol into 2 groups s; = (u;,v;) S, S, S, S,

@ Apply random linear code to the v; stream generating p; parities

© Repeat the u; symbols with a shift of T

@ Combine the repeated u;'s with the p;'s

@ Choosingu=Bandv=T-B, R= T+B (Optimal) [Badr, Khisti-Infocom '13]

@ Capacity first analyzed by Martinian and Sundberg (IT-2004) (alternative construction)
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Packet erasure channel: erasure burst of maximum B channel packets

Delay-constrained decoder: s[i] needs to be recovered by macro-packet i + T



Main result

For the streaming setup considered, with any M, T and B, the streaming
capacity C is given by the following expression:
B <M, T>b,

-
T+b> T+b
MZLT+b+1)—B

b
C: W, B,>mM7 T>b,
ME B'>%4, T=b,
0, T < b.

where the constants b and B’ are defined via

B=bM+B, B e{0,1,...,M—1}, beNC




Numerical Comparison
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Code construction

Encoding
@ Source splitting

o split s[i] into k symbols and divide them into two groups, urgent
symbols and non-urgent symbols

sli] = (su[i], - - -, sk[i])

= (], ., ug[il, valil, - -, vk, [i])

uvec[,‘] vvec [I]
slo]  s[l]  s[2] sli]
hyvee [0] hivee [1] L vee [2] L vee ['L]
hvee [O] Uuec[l] hyvee [2] hyvee [Z]




Code construction (cont.)

@ Parity generation
o layer 1: (k, + ky, k,, T) Strongly-MDS code applied to v¥*°[]
generating q¥°°[f]
e layer 2: repetition code on urgent symbols with a shift of T

s[0]

\

s(1] s[T+1]

vec[T + 1]

‘ ~ [T + 1]
™, N
Parity layer 1

~ ~
Parity layer 2 k'u[ E"“[l] Repetition code
rate 3

ku + ko, ko)




Code construction (cont.)

o Overall combined parity: pY°[i] = q"*°[i] + u¥*°[i — T]

slo] sl sf2] s[i SiT) s[T+1)
k-“ uvec[o] uvec[l] vec[2] uvec[i] hvee [T] uuec[T + 1]
kv yvee [0] vec[]_] vec [2] hvee [Z] vvec[T] wec[T_I_ 1]

Overall parity of

each macro-packet ku pvec [0] pvec[l] pvec [2 """ pvec [7’] """ pvec[T] pvec[T + 1] """




Code construction (cont.)

© Reshaping and macro-packet generation
o reshape u"c[i], v¥*¢[i] and p¥*[i] into groups each of n symbols
(recall-each individual packet has n symbols)
e concatenate groups generated in the last step to form macro-packet
bX[i,:] with M channel packets of n symbols each as required

< A
ku uvec[i] /
-
ko pUecli] \ ﬂ' . M channel packets

ku+ky
2kutky

|n

Concatenate

Rate of the code=




Code construction (con

Decoding
© Step 1: All non-urgent symbol recovered before the first deadline

@ Step 2: Urgent symbols recovered at their respective deadlines

i i+1 i+b i+T—-1 i+T

Erasure Burst B! starting at x[i, 1]

Actual Macro-packets with Erasure Burst

Decoding window for recovery of erased non-urgent symbols

all non-urgent symbols are rem\'ered‘

urgent symbols are recovered at their respective deadlines



Simulation results

@ Two state Gilbert channel (good state, bad state)
@ Pr.{good state to bad state}=«, Pr.{bad state to good state}: (3

Gilbert Channel (.~ 10°%) - (M.T) = (103, R = 3/5
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Figure: (M, T, R) = (10,3, 3/5)



Conclusions

@ Extension to previously studied streaming setup (M = 1) for the mismatched
scenario (general M)

@ Complete characterization of the associated capacity
© New layered code construction
@ Improvements in packet-loss rate over statistical Gilbert channel

© What about both burst and isolated erasures?



Thank you for listening!

Any questions/comments/thoughts?



