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Future Cellular Wireless: Dense, Massive, and Cooperative

Bottlenecks for cellular networks:
Path-loss, fading, and interference

Emerging useful ideas:
Dense

Heterogeneous network
Massive

Large-scale MIMO in each base station (BS)
Cooperative

Signal processing for interference cancellation

This talk: Cooperative communication
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Cloud Radio Access Network (C-RAN)

Figure: Illustration of the CRAN downlink
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C-RAN Architecture

C-RAN
BSs are connected to a centralized, cloud-computing based processor.
Backhaul links have high (but not infinite) capacities.

Motivation
Centralized service provisioning, easy BS upgrade, etc.
Enable joint multi-cell processing interference management.

Uplink
Joint decoding in the cloud.
Virtual multiple-access channel with BSs as relays.

Downlink
Joint encoding in the cloud.
Virtual broadcast channel with BSs as relays.

This talk: Downlink transmission strategies in C-RAN with finite backhaul.
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Information Theoretic Problem Setup

Figure: C-RAN downlink

Infinite backhaul case: Downlink C-RAN is just a broadcast channel.
This talk: Practical and more challenging case of finite backhaul.
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Existing Transmission Strategies for Downlink C-RAN

BSs need to broadcast: Beamforming + dirty paper coding
BSs also act as relays:

Decode-and-forward relaying strategy (Data-sharing strategy):
User messages are shared with BSs for joint beamforming, e.g.,
[Marsch and Fettweis, 2009].
To limit backhaul, we need to form clusters [Ng et al., 2008],
[Zakhour and Gesbert, 2011], [Zhao et al., 2013].

Compression-and-forward relaying strategy (Compression-based
strategy):

Precode at the cloud, compress the signals and send compressed
versions to BSs. [Simeone et al., 2009], [Marsch and Fettweis, 2008].
Benefits of multivariate compression studied in [Park et al., 2013].

Compute-and-forward relaying strategy [Nazer et al., 2009]:
Reverse-CoF and integer-forcing ideas studied [Hong and Caire, 2013].
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How to Best Utilize the Limited Backhaul

Which transmission and relaying strategy should the cloud and BSs adopt?
Data-sharing strategy:

To limit backhaul, we need to limit the size of BS clusters.
Compression-based strategy:

To limit the backhaul, we need to compress the beamformed signals.
System-level comparison is difficult.

Data-sharing strategy: BS clusters need to be optimized, along with
the beamforming design.
Compression-based strategy: Quantization noise levels need to be
optimized, along with the beamformers.
Network wide optimization in each case needs to take into account user
scheduling, power control, etc.
Impact due to practical modulation and coding, practical quantization
not clear.
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Our Contributions

Optimization framework for data-sharing and compression strategies:
Data-sharing: Use of weighted l1 approximation of l0 norm to
approximate the cluster size, based on [Dai and Yu, 2014].
Compression: Joint optimization of quantization noise levels and
beamformers using of WSR - WMMSE equivalence.
Algorithms account for losses due to practical modulation (SNR gap)
and practical quantization (rate-distortion gap).

System-level performance comparison on a heterogeneous network:
Compression outperforms data-sharing for high backhaul capacities.
Data-sharing superior to compression strategy for low backhaul.
At moderate backhaul capacities, both are comparable.

New hybrid strategy to balance the trade-off:
A unified framework that combines both data-sharing and
compression-based strategies.
Intuition: Send direct data for strong users without any quantization
noises and compress rest of the beamformed signals.
Noticeable performance gain at moderate backhaul capacities.

7 / 24



Problem Statement

CRAN with L single-antenna BSs serving K single-antenna users.
Received signal at user k is yk = hH

k x + zk where
x = [x1, · · · , xL]T is the aggregate signal from the L BSs.
hk = [h1,k , · · · , hL,k ]T is the channel from the L BSs to the user k.
zk is the additive zero-mean Gaussian noise with variance σ2.

Network resources:
Backhaul capacity between BS l to the central processor: Cl .
Power constraint at BS l : Pl .

All user data available at the central processor. CSI known to the
central processor and all the BSs.
Objective: Maximize the log utility of the system.
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Data-sharing Strategy

Transmitted signal x from all BSs is x =
∑K

k=1 wksk where
sk : zero-mean unit-variance Gaussian signal for user k.
wk = [w1,k , . . . , wL,k ]T : beamforming direction for user k from L BSs.
If BS l does not participate in transmitting to user k, wl,k = 0.

Signal-to-noise-interference-ratio at user k, SINRk = |hH
k wk |2∑

j ̸=k |hH
k wj |2+σ2 .

Achievable rate for user k is Rk = log(1 + SINRk
Γm

). Γm is the SNR gap.
Γm captures the extra amount of power needed to achieve a given
rate when using practical QAM constellations, instead of Gaussian
signaling. Typical values: 9 dB (uncoded), 8.5 dB (moderate coding).
Deciding which subset of BSs should serve each user is non-trivial.
We follow the trick used in [Dai and Yu, 2014] to approximate the
cluster size, using weighted l1 norm approximation to l0 norm.
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Optimization of Data-sharing Strategy

maximize
wl,k

K∑
k=1

αkRk (1a)

subject to
K∑

k=1
|wl ,k |2 ≤ Pl , ∀l (1b)

K∑
k=1

1

{
|wl ,k |2

}
Rk ≤ Cl , ∀l (1c)

Trick: 1
{

|wl,k |2
}

=
∥∥|wl,k |2

∥∥
0 ≈ βl,k |wl,k |2 where βl,k is updated iteratively

βl,k = 1
|wl,k |2+τ using |wl,k |2 from the previous iteration.

Extend equivalence between WSR-WMMSE with the SNR gap.
Closed form expressions for receive beamformers and MSE weights.
Transmit beamforming optimization becomes a QCQP problem.
To reduce computations: combine the l0-l1 approximation inside the
WMMSE updates.
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Optimization Algorithm for Data-sharing

Algorithm 1 WSR maximization for data-sharing strategy
Initialization: {βl ,k}, {wk}, {Rk};
Repeat:

1 For fixed {wk}, compute the MMSE receivers and the corresponding
MSE;

2 Update the MSE weights;
3 For fixed MMSE receivers, MSE weights, and {Rk} in (1c), find the

optimal transmit beamformer {wl ,k} by solving a QCQP program;
4 Update {βl ,k}. Compute the achievable rate {Rk};

Until convergence
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Compression-based Strategy

Precoded signals intended for BSs formed at central processor,
x̂ = [x̂1, · · · , x̂L]T =

∑K
k=1 wksk .

Quantization for x̂ modeled as x = x̂ + e, where e is the quantization
noise with covariance Q, assumed to be independent of x̂.
Achievable rate for user k is again Rk = log(1 + SINRk

Γm
) where

SINRk = |hH
k wk |2∑

j ̸=k |hH
k wj |2+σ2+|hH

k Qhk | .

Assuming ideal quantizer and independent quantization of BSs signals
(diagonal Q with quantization noise levels q1, . . . , qL), the backhaul

capacity Cl must satisfy log
(

1 +
∑K

k=1 |wl,k |2
ql

)
≤ Cl .

Multivariate compression (generic Q) is also possible
[Park et al., 2013], but the backhaul capacity region has an
exponential number of terms. Computationally difficult.
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Gap to rate-distortion

Recall the SNR gap Γm: Extra amount of power when using QAM
signaling instead of Gaussian signals. Similar notion for rate-distortion
result.

The backhaul relation log
(

1 +
∑K

k=1 |wl,k |2
ql

)
≤ Cl assumes a vector

Gaussian quantization codebook.
When using practical quantizers, extra amount of induced SNR is
necessary to maintain the same quantization rate. This can be
captured by rate-distortion gap Γq.

Backhaul relation with the gap: log
(

1 + Γq
∑K

k=1 |wl,k |2
ql

)
≤ Cl .

Typical values: 2.72 for fixed-rate (uncoded) uniform scalar quantizer,
1.42 with variable-rate entropy coding, 1 for ideal quantizer.
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Optimization of Compression-based Strategy

maximize
wl,k ,ql

K∑
k=1

αkRk (2a)

subject to
K∑

k=1
|wl ,k |2 + ql ≤ Pl , ∀l (2b)

K∑
k=1

|wl ,k |2 − 2Cl − 1
Γq

ql ≤ 0, ∀l (2c)

Extend the WSR-WMMSE equivalence with quantization noise levels.
Closed form expression for receive beamformers and MSE weights.
Transmit beamformers and quantization noise levels are jointly
optimized by solving a convex program.
Convergence to a local optimal solution guaranteed.

[Park et al., 2013] optimize the WSR directly using a majorization
minimization (MM) algorithm, but with a SDP rank relaxation.
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Optimization Algorithm for Compression-based Strategy

Algorithm 2 WSR maximization for compression strategy
Initialization: {wk}, {ql};
Repeat:

1 For fixed {wk}, {ql}, compute the MMSE receivers and the
corresponding MSE;

2 Update the MSE weights;
3 For fixed MMSE receivers and MSE weights, find the optimal

transmit beamformers {wk} and quantization noise levels {ql} jointly
by solving a QCQP program;

Until convergence

Optimization structure in Step 3 can further be exploited to eliminate the
optimization of quantization noise levels {ql}. Resulting program is QCQP
in transmit beamformers {wk}.
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Performance Comparison: Simulation Setup
7-cell wrapped-around heterogeneous network with two tiers

Channel bandwidth 10 MHz
Distance between cells 0.8 km
Number of users/cell 30

Number of macro-BSs/cell 1
Number of pico-BSs/cell 3

Max. Tx power at macro-BS 43 dBm
Max. Tx Power at pico-BS 30 dBm

Antenna gain 15 dBi
Background noise −169 dBm/Hz

Path loss from macro-BS to user 128.1 + 37.6 log10(d)
Path loss from pico-BS to user 140.7 + 36.7 log10(d)

Log-normal shadowing 8 dB
Rayleigh small scale fading 0 dB

SNR gap (Γm) 9 dB
Rate-distortion gap (Γq) 4.3 dB

Table: Simulation Parameters
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Performance Comparison
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Figure: Comparison of cumulative distribution of user rates for the data-sharing
and compression strategies.
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New Hybrid Data-sharing and Compression Strategy
Balance the trade-off

In data-sharing strategy:
Backhaul links carry user messages.

In compression-based strategy:
Backhaul links carry compressed signals.

In the hybrid strategy:
Part of backhaul is used to send direct messages for some users and
remaining to carry the compressed signal of the rest of the users

Intuition: Direct data for strong users; compression for rest.
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Hybrid Strategy
A unified approach

Direct data beamforming:
Signals computed at the BSs using direct data, xd =

∑K
k=1 wd

k sk .
wd

k = [wd
1,k , . . . , wd

L,k ]T : direct data beamforming direction for user k.
If BS l does not participate in transmitting to user k, wd

l,k = 0.
Backhaul consumed at BS l :

∑K
k=1 1{|wd

l,k |2}Rk .
Compressed signal beamforming:

Signals to be compressed at central processor, x̂c =
∑K

k=1 wc
ksk .

wc
k = [w c

1,k , . . . , w c
L,k ]T : compressed signal beamformers for user k.

Quantization for x̂c modeled as xc = x̂c + e, where e is the
quantization noise with covariance Q, independent of x̂.

Backhaul consumed at BS l : log
(

1 + Γq
∑K

k=1
|w c

l,k |2

ql

)
.

Achievable rate for user k is again Rk = log(1 + SINRk
Γm

) where

SINRk = |hH
k wk |2∑

j ̸=k |hH
k wj |2+σ2+|hH

k Qhk | , if we let wd
k + wc

k = wk .
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Optimization of Hybrid Strategy

maximize
wd

l,k ,w c
l,k

K∑
k=1

αkRk (3a)

subject to
K∑

k=1
|wl,k |2 + ql ≤ Pl , ∀l (3b)

K∑
k=1

1
{

|wd
l,k |2

}
Rk + log

(
1 +

Γq
∑K

k=1 |w c
l,k |2

ql

)
≤ Cl , ∀l (3c)

wd
l,k + w c

l,k = wl,k , ∀l , k. (3d)

Data-sharing backhaul term: 1{|wd
l,k |2} = ∥|wd

l,k |2∥0 ≈ βd
l,k |wd

l,k |2 where βd
l,k

is updated iteratively βd
l,k = 1

|wd
l,k |2+τ

.

Compression backhaul term: successive convex approximation on the first
part log(ql + Γq

∑K
k=1 |w c

l,k |2)
Beamformers optimized for the equivalent WMMSE optimization problem.
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Performance of Hybrid Strategy
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Figure: Comparison of sum rate vs. sum backhaul capacity for the data-sharing,
compression, and hybrid strategies.
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Thanks for listening!

Any questions/comments/thoughts?


