Comparison of Downlink Transmission Strategies for Cloud Radio Access Networks

Pratik Patil, Binbin Dai, Wei Yu

Department of Electrical and Computer Engineering

University of Toronto, Canada

EUSIPCO 2015

- **Bottlenecks for cellular networks:**
	- Path-loss, fading, and interference
- **•** Emerging useful ideas:
	- **a** Dense
		- **•** Heterogeneous network
	- **•** Massive
		- Large-scale MIMO in each base station (BS)
	- **Cooperative**
		- Signal processing for interference cancellation
- This talk: Cooperative communication

Cloud Radio Access Network (C-RAN)

C-RAN Architecture

- C-RAN
	- BSs are connected to a centralized, cloud-computing based processor.
	- Backhaul links have high (but not infinite) capacities.
- **•** Motivation
	- Centralized service provisioning, easy BS upgrade, etc.
	- Enable joint multi-cell processing interference management.
- Uplink
	- Joint decoding in the cloud.
	- Virtual multiple-access channel with BSs as relays.
- **o** Downlink
	- Joint encoding in the cloud.
	- Virtual broadcast channel with BSs as relays.

This talk: Downlink transmission strategies in C-RAN with finite backhaul.

Information Theoretic Problem Setup

Figure: C-RAN downlink

Infinite backhaul case: Downlink C-RAN is just a broadcast channel.

This talk: Practical and more challenging case of finite backhaul.

BSs need to broadcast: Beamforming + dirty paper coding **BSs also act as relays**:

- Decode-and-forward relaying strategy (Data-sharing strategy):
	- User messages are shared with BSs for joint beamforming, e.g., [\[Marsch and Fettweis, 2009\]](#page-23-0).
	- To limit backhaul, we need to form clusters [\[Ng et al., 2008\]](#page-23-1), [\[Zakhour and Gesbert, 2011\]](#page-24-0), [\[Zhao et al., 2013\]](#page-24-1).
- Compression-and-forward relaying strategy (Compression-based strategy):
	- Precode at the cloud, compress the signals and send compressed versions to BSs. [\[Simeone et al., 2009\]](#page-23-2), [\[Marsch and Fettweis, 2008\]](#page-22-0).
	- Benefits of multivariate compression studied in [\[Park et al., 2013\]](#page-23-3).
- Compute-and-forward relaying strategy [Nazer et al., 2009]:
	- Reverse-CoF and integer-forcing ideas studied [\[Hong and Caire, 2013\]](#page-22-1).

Which transmission and relaying strategy should the cloud and BSs adopt?

- Data-sharing strategy:
	- To limit backhaul, we need to limit the size of BS clusters.
- Compression-based strategy:
	- To limit the backhaul, we need to compress the beamformed signals.
- System-level comparison is difficult.
	- Data-sharing strategy: BS clusters need to be optimized, along with the beamforming design.
	- Compression-based strategy: Quantization noise levels need to be optimized, along with the beamformers.
	- Network wide optimization in each case needs to take into account user scheduling, power control, etc.
	- Impact due to practical modulation and coding, practical quantization not clear.

Our Contributions

- Optimization framework for data-sharing and compression strategies:
	- Data-sharing: Use of weighted l_1 approximation of l_0 norm to approximate the cluster size, based on [\[Dai and Yu, 2014\]](#page-22-2).
	- Compression: Joint optimization of quantization noise levels and beamformers using of WSR - WMMSE equivalence.
	- Algorithms account for losses due to practical modulation (SNR gap) and practical quantization (rate-distortion gap).

System-level performance comparison on a heterogeneous network:

- Compression outperforms data-sharing for high backhaul capacities.
- Data-sharing superior to compression strategy for low backhaul.
- At moderate backhaul capacities, both are comparable.
- New hybrid strategy to balance the trade-off:
	- A unified framework that combines both data-sharing and compression-based strategies.
	- Intuition: Send direct data for strong users without any quantization noises and compress rest of the beamformed signals.
	- Noticeable performance gain at moderate backhaul capacities.
- CRAN with L single-antenna BSs serving K single-antenna users.
- Received signal at user k is $y_k = \mathbf{h}_k^H \mathbf{x} + z_k$ where
	- $\mathbf{x} = [x_1, \cdots, x_L]^T$ is the aggregate signal from the L BSs.
	- $\textbf{h}_k = [h_{1,k}, \cdots, h_{L,k}]^T$ is the channel from the L BSs to the user k .
	- z_k is the additive zero-mean Gaussian noise with variance $\sigma^2.$
- **Network resources:**
	- Backhaul capacity between BS l to the central processor: C_l .
	- Power constraint at BS $I: P_I$.
- All user data available at the central processor. CSI known to the central processor and all the BSs.
- Objective: Maximize the log utility of the system.

Data-sharing Strategy

- Transmitted signal **x** from all BSs is $\mathbf{x} = \sum_{k=1}^{K} \mathbf{w}_k s_k$ where
	- \bullet s_k : zero-mean unit-variance Gaussian signal for user k .
	- $\mathbf{w}_k = [w_{1,k}, \ldots, w_{L,k}]^T$: beamforming direction for user *k* from *L* BSs. If BS *I* does not participate in transmitting to user k , $w_{l,k} = 0$.
- ${\rm Signal{\text -}to{\text -}noise{\text -}interference{\text -}ratio}$ at user k , ${\rm SINR}_k = \frac{|\mathbf{h}_k^H \mathbf{w}_k|^2}{\sum_{\mathbf{h}^H \mathbf{w}_k|^2}}$ $\frac{|\mathbf{h}_k \mathbf{w}_k|}{\sum_{j \neq k} |\mathbf{h}_k^H \mathbf{w}_j|^2 + \sigma^2}$.
- Achievable rate for user k is $R_k = \log(1 + \frac{{\sf SINR}_k}{\Gamma_m}).$ Γ_m is the SNR gap.
- \bullet Γ_m captures the extra amount of power needed to achieve a given rate when using practical QAM constellations, instead of Gaussian signaling. Typical values: 9 dB (uncoded), 8.5 dB (moderate coding).
- Deciding which subset of BSs should serve each user is non-trivial. We follow the trick used in [\[Dai and Yu, 2014\]](#page-22-2) to approximate the cluster size, using weighted l_1 norm approximation to l_0 norm.

Optimization of Data-sharing Strategy

$$
\begin{array}{ll}\n\text{maximize} & \sum_{k=1}^{K} \alpha_k R_k \quad \text{(1a)}\\ \n\text{subject to} & \sum_{k=1}^{K} |w_{l,k}|^2 \le P_l, \quad \forall l \quad \text{(1b)}\\ \n& \sum_{k=1}^{K} \mathbb{1} \left\{ |w_{l,k}|^2 \right\} R_k \le C_l, \quad \forall l \quad \text{(1c)}\n\end{array}
$$

- Trick: $\mathbb{1}\left\{ |w_{l,k}|^2 \right\} = \left\| |w_{l,k}|^2 \right\|_0 \approx \beta_{l,k} |w_{l,k}|^2$ where $\beta_{l,k}$ is updated iteratively $\beta_{l,k} = \frac{1}{|w_{l,k}|^2+\tau}$ using $|w_{l,k}|^2$ from the previous iteration.
- Extend equivalence between WSR-WMMSE with the SNR gap.
	- Closed form expressions for receive beamformers and MSE weights.
	- Transmit beamforming optimization becomes a QCQP problem.
	- To reduce computations: combine the l_0-l_1 approximation inside the WMMSE updates.

Algorithm 1 WSR maximization for data-sharing strategy

```
Initialization: \{\beta_{l,k}\}, \{\mathbf{w}_k\}, \{R_k\};
```
Repeat:

- **1** For fixed $\{w_k\}$, compute the MMSE receivers and the corresponding MSE;
- **2** Update the MSE weights;
- **3** For fixed MMSE receivers, MSE weights, and $\{R_k\}$ in [\(1c\)](#page-10-0), find the optimal transmit beamformer $\{w_{l,k}\}\$ by solving a QCQP program;
- \bigoplus Update $\{\beta_{l,k}\}\right.$ Compute the achievable rate $\{R_k\}\$;

Until convergence

- Precoded signals intended for BSs formed at central processor, $\hat{\mathbf{x}} = [\hat{x}_1, \cdots, \hat{x}_L]^T = \sum_{k=1}^K \mathbf{w}_k s_k.$
- Quantization for $\hat{\mathbf{x}}$ modeled as $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{e}$, where **e** is the quantization noise with covariance **Q**, assumed to be independent of **x**ˆ.
- Achievable rate for user k is again $R_k = \log(1 + \frac{{\sf SINR}_k}{\sfGamma}_m)$ where $\textsf{SINR}_k = \frac{|\mathbf{h}_k^H \mathbf{w}_k|^2}{\sum_{\mathbf{h}^H \mathbf{w}_k | 2 + \sigma^2}$ $\frac{|\mathbf{h}_k \mathbf{w}_k|}{\sum_{j \neq k} |\mathbf{h}_k^H \mathbf{w}_j|^2 + \sigma^2 + |\mathbf{h}_k^H \mathbf{Q} \mathbf{h}_k|}.$
- Assuming ideal quantizer and independent quantization of BSs signals (diagonal **Q** with quantization noise levels q_1, \ldots, q_l), the backhaul capacity C_l must satisfy $\log \Big(1 + \frac{\sum_{k=1}^K |w_{l,k}|^2}{a_l} \Big)$ q $\Big) \leq C_l$.
- Multivariate compression (generic **Q**) is also possible [\[Park et al., 2013\]](#page-23-3), but the backhaul capacity region has an exponential number of terms. Computationally difficult.

Gap to rate-distortion

- Recall the SNR gap Γ_m : Extra amount of power when using QAM signaling instead of Gaussian signals. Similar notion for rate-distortion result.
- The backhaul relation log $\left(1+\frac{\sum_{k=1}^K |w_{l,k}|^2}{a_k}\right)$ ql $\Big) \leq \mathcal{C}_l$ assumes a vector Gaussian quantization codebook.
- When using practical quantizers, extra amount of induced SNR is necessary to maintain the same quantization rate. This can be captured by rate-distortion gap Γ_a .
- Backhaul relation with the gap: $\log \left(1 + \frac{\Gamma_q \sum_{k=1}^K |w_{l,k}|^2}{\sigma_l} \right)$ ql $\Big) \leq C_1$.
- Typical values: 2.72 for fixed-rate (uncoded) uniform scalar quantizer, 1.42 with variable-rate entropy coding, 1 for ideal quantizer.

Optimization of Compression-based Strategy

$$
\begin{array}{ll}\n\text{maximize} & \sum_{k=1}^{K} \alpha_k R_k \quad \text{(2a)}\\
\text{subject to} & \sum_{k=1}^{K} |w_{l,k}|^2 + q_l \le P_l, \quad \forall l \quad \text{(2b)}\\
& \sum_{k=1}^{K} |w_{l,k}|^2 - \frac{2^{C_l} - 1}{\Gamma_q} \ q_l \le 0, \quad \forall l \quad \text{(2c)}\n\end{array}
$$

- **Extend the WSR-WMMSE equivalence with quantization noise levels.**
	- Closed form expression for receive beamformers and MSE weights.
	- Transmit beamformers and quantization noise levels are jointly optimized by solving a convex program.
	- Convergence to a local optimal solution guaranteed.
- [\[Park et al., 2013\]](#page-23-3) optimize the WSR directly using a majorization minimization (MM) algorithm, but with a SDP rank relaxation.

Algorithm 2 WSR maximization for compression strategy

Initialization: $\{w_k\}, \{q_l\};$

Repeat:

- **1** For fixed $\{w_k\}$, $\{q_l\}$, compute the MMSE receivers and the corresponding MSE;
- **2** Update the MSE weights;
- ³ For fixed MMSE receivers and MSE weights, find the optimal transmit beamformers $\{w_k\}$ and quantization noise levels $\{q_l\}$ jointly by solving a QCQP program;

Until convergence

Optimization structure in Step 3 can further be exploited to eliminate the optimization of quantization noise levels $\{q_l\}$. Resulting program is QCQP in transmit beamformers $\{w_k\}$.

Performance Comparison: Simulation Setup

7-cell wrapped-around heterogeneous network with two tiers

Table: Simulation Parameters

Performance Comparison

Figure: Comparison of cumulative distribution of user rates for the data-sharing and compression strategies.

New Hybrid Data-sharing and Compression Strategy Balance the trade-off

- In data-sharing strategy:
	- Backhaul links carry user messages.
- In compression-based strategy:
	- Backhaul links carry compressed signals.
- \bullet In the hybrid strategy:
	- Part of backhaul is used to send direct messages for some users and remaining to carry the compressed signal of the rest of the users
- Intuition: Direct data for strong users; compression for rest.
- Direct data beamforming:
	- Signals computed at the BSs using direct data, $\mathbf{x}^d = \sum_{k=1}^K \mathbf{w}_k^d s_k$.
	- $\mathbf{w}_k^d = [w_{1,k}^d, \dots, w_{L,k}^d]^{\mathcal{T}}$: direct data beamforming direction for user $k.$
	- If BS *I* does not participate in transmitting to user *k*, $w_{l,k}^d = 0$.
	- Backhaul consumed at BS *I*: $\sum_{k=1}^{K} \mathbb{1}\{|\mathsf{w}_{l,k}^{d}|^{2}\}R_{k}$.
- Compressed signal beamforming:
	- Signals to be compressed at central processor, $\hat{\mathbf{x}^c} = \sum_{k=1}^{K} \mathbf{w}^c_k s_k$.
	- $\mathbf{w}_k^c = [w_{1,k}^c, \dots, w_{L,k}^c]^T$: compressed signal beamformers for user $k.$
	- Quantization for $\hat{\mathbf{x}^c}$ modeled as $\mathbf{x}^c = \hat{\mathbf{x}^c} + \mathbf{e}$, where \mathbf{e} is the quantization noise with covariance **Q**, independent of **x**ˆ.
	- Backhaul consumed at BS *I*: $\log \left(1 + \frac{\Gamma_q \sum_{k=1}^{K} |w_{i,k}^c|^2}{\sigma_k}\right)$ q .
- Achievable rate for user k is again $R_k = \log(1 + \frac{{\sf SINR}_k}{\sfT}_m)$ where $\textsf{SINR}_k = \frac{|\mathbf{h}_k^H \mathbf{w}_k|^2}{\sum_{\mathbf{h}_k^H \mathbf{w}_k^2 + \sigma^2}$ $\frac{|\mathbf{n}_k^{\prime\prime}\mathbf{w}_k|^2}{\sum_{j\neq k}|\mathbf{h}_k^H\mathbf{w}_j|^2+\sigma^2+|\mathbf{h}_k^H\mathbf{Q}\mathbf{h}_k|}$, if we let $\mathbf{w}_k^d+\mathbf{w}_k^c=\mathbf{w}_k$.

maximize
$$
\sum_{w_{i,k}^d, w_{i,k}^c}^K
$$
 (3a)
\nsubject to $\sum_{k=1}^K |w_{i,k}|^2 + q_i \le P_i$, $\forall I$ (3b)
\n $\sum_{k=1}^K \mathbb{1} \{|w_{i,k}^d|^2\} R_k + \log \left(1 + \frac{\Gamma_q \sum_{k=1}^K |w_{i,k}^c|^2}{q_i}\right) \le C_i$, $\forall I$ (3c)
\n $w_{i,k}^d + w_{i,k}^c = w_{i,k}$, $\forall I, k$. (3d)

- Data-sharing backhaul term: $\mathbb{1}\{|w_{l,k}^d|^2\} = \||w_{l,k}^d|^2\|_0 \approx \beta_{l,k}^d |w_{l,k}^d|^2$ where $\beta_{l,k}^d$ $\log \frac{1}{\log \frac{d}{\lambda}}$ is updated iteratively $\beta_{l,k}^d = \frac{1}{|w_{l,k}^d|^2 + \tau}.$
- Compression backhaul term: successive convex approximation on the first part $\log(q_l + \Gamma_q \sum_{k=1}^K |w_{l,k}^c|^2)$
- **•** Beamformers optimized for the equivalent WMMSE optimization problem.

Performance of Hybrid Strategy

Figure: Comparison of sum rate vs. sum backhaul capacity for the data-sharing, compression, and hybrid strategies.

Dai, B. and Yu, W. (2014).

Sparse beamforming and user-centric clustering for downlink cloud radio access network.

IEEE Access, 2:1326–1339.

Hong, S.-N. and Caire, G. (2013).

Compute-and-forward strategies for cooperative distributed antenna systems.

IEEE Trans. Inf. Theory, 59(9):5227–5243.

Marsch, P. and Fettweis, G. (2008).

On base station cooperation schemes for downlink network MIMO under a constrained backhaul.

In Proc. IEEE Global Commun. Conf. (Globecom).

References II

-
- Marsch, P. and Fettweis, G. (2009).

On downlink network mimo under a constrained backhaul and imperfect channel knowledge.

In Proc. IEEE Global Commun. Conf. (Globecom).

- Ng, B. L., Evans, J., Hanly, S., and Aktas, D. (2008). Distributed downlink beamforming with cooperative base stations. IEEE Trans. Inf. Theory, 54(12):5491–5499.
- Park, S.-H., Simeone, O., Sahin, O., and Shamai, S. (2013). Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks. IEEE Trans. Signal Process., 61(22):5646–5658.
	- Simeone, O., Somekh, O., Poor, H., and Shamai, S. (2009). Downlink multicell processing with limited-backhaul capacity. EURASIP J. Advances Singal Process.

歸

Zakhour, R. and Gesbert, D. (2011).

Optimized data sharing in multicell MIMO with finite backhaul capacity.

IEEE Trans. Signal Process., 59(12):6102–6111.

Zhao, J., Quek, T., and Lei, Z. (2013).

Coordinated multipoint transmission with limited backhaul data transfer.

"IEEE Trans. Wireless Commun.", 12(6):2762–2775.

Thanks for listening!

Any questions/comments/thoughts?