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Ensemble learning

▶ Bagging and its variants combine multiple models, each fitted on different
bootstrapped or subsampled datasets, to improve prediction accuracy and stability.
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Ensemble tuning

Two key parameters:
▶ The ensemble size M

▶ Role: as M → ∞, the predictive accuracy improves while variance decreases and
stabilizes (algorithmic convergence[1,2]).

▶ The approach[1,2] relies on the convergence rate of variance or quantile estimators, to
gauge the point at which the ensembles performance stabilizes as M → ∞.
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Ensemble tuning

Two key parameters:
▶ The ensemble size M
▶ The subsample size k

▶ In low-dimensional scenarios, only a smaller k yields consistent results for k -of-n
bootstrap[3].

▶ In high-dimensional scenarios, tuning k helps to mitigate the multiple descents of the
prediction risk.

▶ Common tuning methods include sample-split CV[4] and K -fold CV, which are
computationally and statistically inefficient.

[3] Peter J Bickel, Friedrich Götze, and Willem R van Zwet. “Resampling fewer than n observations: gains, losses, and remedies for losses”. In:
Statistica Sinica 7.1 (1997), pp. 1–31

[4] Pratik Patil, Jin-Hong Du, and Arun Kumar Kuchibhotla. “Bagging in overparameterized learning: Risk characterization and risk monotonization”. In:

arXiv preprint arXiv:2210.11445 (2022)
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Goal

An agnostic procedure to efficiently determine (M, k) of general ensemble
predictors for optimal prediction risk.

▶ Statistical consistency over all M ∈ N and a grid of k .
▶ Computational efficiency while avoiding sample splitting.
▶ Allow for constraints on the maximum ensemble size (δ-optimal).
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Setup

▶ Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset and Iℓ ⊆ [n], ℓ = 1, . . . ,M be
independent indices with |Iℓ| = k .
Given the base predictor f̂ , a bagged predictor is defined as

f̃M,k (x ; {DIℓ}
M
ℓ=1) =

1
M

M∑
ℓ=1

f̂ (x ;DIℓ). (1)

The conditional prediction risk for a bagged predictor f̃M,k :

R(̃fM,k ; Dn, {Iℓ}M
ℓ=1) =

∫ (
y0 − f̃M,k (x0; {DIℓ}

M
ℓ=1)

)2
dP(x0, y0). (2)
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Risk decomposition

▶ It decomposes into

R(̃fM,k ; Dn, {Iℓ}M
ℓ=1) = −

(
1 − 2

M

)
a1,M + 2

(
1 − 1

M

)
a2,M , (3)

where

a1,M =
1
M

M∑
ℓ=1

R(̃f1,k ;Dn, {Iℓ}),

a2,M =
1

M(M − 1)

∑
ℓ,m∈[M]
ℓ̸=m

R(̃f2,k ; Dn, {Iℓ, Im}).

▶ a1,M and a2,M are Dn-conditional U-statiatics of 1-bagged and 2-bagged risks!
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Risk estimation for M = 1, 2

Proposition

Let σ̂I := ∥y0 − f̂ (x0;DI)∥ψ1|DI
be the variance proxy. If σ̂I/

√
|Ic |/ log n

p−→ 0, then

| R̂(̂f ;DIc )︸ ︷︷ ︸
OOB estimate

−R(̂f ;DI)︸ ︷︷ ︸
risk

| p−→ 0.

▶ For linear models (y0 = x⊤
0 β0 + ϵ) and linear predictors (̂f (x0;DI) = x⊤

0 β̂(DI)), σ̂I is
simply ∥β̂(DI)− β0∥Σ (generally bounded, e.g. for ridge predictors).

▶ Aggregate individual OOB estimates yields more stable risk estimates for M = 1, 2:

R̂ECV
M,k =


1

M0

M0∑
ℓ=1

R̂(̃f1,k (·;Dn, {Iℓ}),DIc
ℓ
), M = 1,

(4)
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M,k =


1

M0

M0∑
ℓ=1

R̂(̃f1,k (·;Dn, {Iℓ}),DIc
ℓ
), M = 1,

1
M0(M0−1)

∑
ℓ,m∈[M0]
ℓ̸=m

R̂(̃f2,k (·;Dn, {Iℓ, Im}),D(Iℓ∪Im)c ), M = 2, (4)
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Extrapolated cross-validation

▶ Extrapolate the risk estimations R̂ECV
M,k using

R̂ECV
M,k = −

(
1 − 2

M

)
R̂ECV

1,k + 2
(

1 − 1
M

)
R̂ECV

2,k , M > 2.

▶ Tuning: Select a subsample size k̂ ∈ Kn and a smallest ensemble size M̂ ∈ N
such that R̂ECV

M̂,k̂
is δ-close to the oracle.
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sup
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∣∣∣R̂ECV
M,k − RM,k

∣∣∣ = Op(ζn),

where
ζn = σ̂n

log n√
n︸ ︷︷ ︸

CV error

+ nϵ(γ1,n + γ2,n)︸ ︷︷ ︸
convergence rate for M = 1, 2

.
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▶ Tuning: Select a subsample size k̂ ∈ Kn and a smallest ensemble size M̂ ∈ N
such that R̂ECV

M̂,k̂
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Theorem (Sub-optimality of the tuned risk (w.r.t. the infinite-ensemble))∣∣∣∣RM̂,k̂ − inf
M∈N,k∈Kn

RM,k

∣∣∣∣ = δ +Op(ζn).
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Experiment

▶ Tuning ensemble sizes of random forests (n = 1, 000):
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Experiment

▶ Tuning ensemble sizes of random forests (n = 1, 000):

ECV estimates provide valid extrapolation paths in both low- and high-dimensional
scenarios.
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Experiment

▶ Tuning ensemble and subsample sizes with Mmax = 50:

p/n p/n p/n
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Experiment

▶ Tuning ensemble and subsample sizes with Mmax = 50:

p/n p/n p/n

ECV-tuned parameters
(M̂, k̂) give risks close to
the oracle choices within
the desired optimality
threshold δ in finite sam-
ples.
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Single-cell sequencing multiomic datasets

▶ Gene expressions (X ∈ R5,000) and protein abundances (Y ∈ R50) in each cell are
measured.

▶ We use all the gene expressions to predict the abundance of each protein.
▶ Our target is to select a δ-optimal random forest so that its prediction risk is no

more than δ = 0.05 away from the best random forest with 50 trees.
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Single-cell sequencing multiomic datasets
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Single-cell sequencing multiomic datasets
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Single-cell sequencing multiomic datasets

Better out-of-sample errors and time complexity!
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Thanks for your attention!
Any questions?
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