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Ensemble learning

» Bagging and its variants combine multiple models, each fitted on different
bootstrapped or subsampled datasets, to improve prediction accuracy and stability.
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Ensemble learning

» Bagging and its variants combine multiple models, each fitted on different
bootstrapped or subsampled datasets, to improve prediction accuracy and stability.
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Ensemble tuning

Two key parameters:

» The ensemble size VI

> Role: as M — oo, the predictive accuracy improves while variance decreases and
stabilizes (algorithmic convergencel’2]).

Extrapolated Cross-validation JSM 2023 3/13



Ensemble tuning

Two key parameters:
» The ensemble size \/
» Role: as M — oo, the predictive accuracy improves while variance decreases and
stabilizes (algorithmic convergencel'?l). Figure adapted from ['l.

Prediction Error vs. Ensemble Size Prediction Error vs. Ensemble Size
(1 ensemble trained with D fixed) (1,000 ensembles trained with D fixed)
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[1] Miles E Lopes. “Estimating the algorithmic variance of randomized ensembles via the bootstrap”. In: The Annals of Statistics 47.2 (2019),
pp. 1088-1112

[2] Miles E Lopes, Suofei Wu, and Thomas CM Lee. “Measuring the algorithmic convergence of randomized ensembles: The regression
setting”. In: SIAM Journal on Mathematics of Data Science 2.4 (2020), pp. 921-943
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» The approachl’?l relies on the convergence rate of variance or quantile estimators, to
gauge the point at which the ensembles performance stabilizes as / — oo.
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Ensemble tuning

Two key parameters:

» The ensemble size V/
» The subsample size k

[3] Peter J Bickel, Friedrich Gotze, and Willem R van Zwet. “Resampling fewer than n observations: gains, losses, and remedies for losses”. In:
Statistica Sinica 7.1 (1997), pp. 1-31

[4] Pratik Patil, Jin-Hong Du, and Arun Kumar Kuchibhotla. “Bagging in overparameterized learning: Risk characterization and risk monotonization”. In:

arXiv preprint arXiv:2210.11445 (2022)
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Ensemble tuning

Two key parameters:

» The ensemble size V/
» The subsample size k

> In low-dimensional scenarios, only a smaller k yields consistent results for k-of-n
bootstrapt®l.
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Ensemble tuning

Two key parameters:
» The ensemble size
» The subsample size k
> In low-dimensional scenarios, only a smaller k yields consistent results for k-of-n

bootstrapt®l.
» In high-dimensional scenarios, tuning k helps to mitigate the multiple descents of the

prediction risk.
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Ensemble tuning

Two key parameters:

» The ensemble size V/
» The subsample size k
> In low-dimensional scenarios, only a smaller k yields consistent results for k-of-n

bootstrapt®l.
» In high-dimensional scenarios, tuning k helps to mitigate the multiple descents of the

prediction risk.
» Common tuning methods include sample-split CVI4 and K-fold CV, which are

computationally and statistically inefficient.

[3] Bickel, Gotze, and Zwet, “Resampling fewer than n observations: gains, losses, and remedies for losses”

[4] Patil, Du, and Kuchibhotla, “Bagging in overparameterized learning: Risk characterization and risk monotonization”
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Goal

An agnostic procedure to efficiently determine (//, k) of general ensemble
predictors for optimal prediction risk.

» Statistical consistency over all / € N and a grid of k.
» Computational efficiency while avoiding sample splitting.
» Allow for constraints on the maximum ensemble size (§-optimal).

Extrapolated Cross-validation JSM 2023 5/13



Setup

> Let Dy = {(Xj, ;) € R°P xR :j € [n]} denote a datasetand I, C [n], £ =1,...,

independent indices with /’\/g‘ = K.
Given the base predictor f, a bagged predictor is defined as

M

~ 1

fuk (6 {Dy, }Ly) Z X; Dy,).
Z:1

The conditional prediction risk for a bagged predictor Af'M,k:

R(fuk; Dn, {1}11) = / (J/o — fuk(Xo; {Dlz}é\/’:1))2 dP(xo, Yo)-
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Risk decomposition

> |t decomposes into

~ 2 1
Ak Do U} 1y) = <1 - M) a2 (1 . M) o

where
1L~
aM = Z R(fi k; Dn, {1e}),
=1

1 ~

am = MM =1) Z R(fk; Dn, {le, Im}).
£,me[M)
0#m
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Risk decomposition

> |t decomposes into

~ 2 1
R(fuk; Dn, {le}i) = — <1 - M> aim+2 (1 — M) a u, (3)

where
1o~

aim= MZ R(fi k; Dn, {1e}),

/=

1 ~
am = MM =1) Z R(fk; Dy {le, Im})-
£,me[M)
0#m

—_

» aiy and a, v are Dp-conditional U-statiatics of 1-bagged and 2-bagged risks!
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Risk estimation for M = 1,2

Leto; = ||yo —?(xo; D)) |ly,p, be the variance proxy. If 7,/+/|1°|/ log n 2, 0, then

| R(f:Dr) —R(f: D) | > o0.
~——

OOB estimate risk
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| R(f:Dr) —R(f: D) | > o0.
~——

OOB estimate risk

» For linear models (yg = XOTBO + €) and linear predictors (7(x0; D)) = XOTE(D,)), ois
simply HB(D,) — Bollx (generally bounded, e.g. for ridge predictors).
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Risk estimation for M = 1,2

Leto; = ||yo —?(xo; D)) |ly,p, be the variance proxy. If 7,/+/|1°|/ log n 2, 0, then

| R(f:Dr) —R(f: D) | > o0.
~——

OOB estimate risk

» For linear models (yg = XOTBO + €) and linear predictors (7(x0; D)) = XOTB(D,)), ois
simply HB(D,) — Bollx (generally bounded, e.g. for ridge predictors).
> Aggregate individual OOB estimates yields more stable risk estimates for M = 1, 2:

o~ ~

M,
~ 2 SYR(Ff k(5 Dp, L1Y), D), M =1
RI\EJC,;IEI — Mo E; ( 1,k( ' na{ E})’ IZ)’ 3 (4)
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Risk estimation for M = 1,2

Leto; = ||yo —?(xo; D))l p, be the variance proxy. If 5,/+/|1°|/ log n 2, 0, then

| R(f:Dr) —R(f:D)| % 0.
N——
OOB estimate risk
» For linear models (yg = xOTBO + €) and linear predictors (?(xo; D)) = xOTB(D,)), o is

simply Hﬁ(D,) — Boll= (generally bounded, e.g. for ridge predictors).
» Aggregate individual OOB estimates yields more stable risk estimates for M = 1, 2:

Mo . -
~ MLOEZI R(f1’k(';Dn7{lf})aD/g)’ M = 1,
REA?;/: 1 Bt (-Dndl | D M=o (4)
Mo (My—1 Z (2,k(. m{ 2 m}), (/eU/m)C)a =2,
(Mo=1) i)
£#£m
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Extrapolated cross-validation

> Extrapolate the risk estimations RECY using

RESY = - (1 — 2) REQY +2 (1 - l:/’> REYY, M>2.

M
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Extrapolated cross-validation

> Extrapolate the risk estimations RECY using

N - 1) 5
RECY — _ <1 - ;) REQY 42 <1 - M> REGY, M>2

Theorem (Uniform consistency of risk extrapolation)

Under certain conditions, ECV estimates satisfy that

HECV
sup RS — Ruk| = Op(Cn),
MeN,kekp
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Extrapolated cross-validation

> Extrapolate the risk estimations RECY using

_ 2\ ~ 1\ -~
RAEfkv__<1_M)R1Ef;V+z<1_M> VM2

Theorem (Uniform consistency of risk extrapolation)

Under certain conditions, ECV estimates satisfy that

sup  |RES — Ruk| = Op(Cn),
MeN,kekn
where |
__logn .
=0 + n +
Cn n \m (71,n ’72,!7)

N———
CVerror  convergence rate forM = 1,2
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Extrapolated cross-validation

> Extrapolate the risk estimations RECY using

~ 2\ ~ 1\ ~
R,'\Ef,y:—<1—M)R1E7%V+2<1—M>F?Eﬁv, M>2.

> Tuning: Select a subsample size k € K, and a smallest ensemble size M € N
such that R/\Eﬁ’ is -close to the oracle.

)
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Extrapolated cross-validation

> Extrapolate the risk estimations RECY using

~ 2\ ~ 1\ ~
RAEJ?;’:—<1—M)RE%V+2<1—M> £, M>2

> Tuning: Select a subsample size k € K, and a smallest ensemble size M € N
such that RAEJCEV is -close to the oracle.

)

Theorem (Sub-optimality of the tuned risk (w.r.t. the infinite-ensemble))

R- - — inf R,
‘ Mk MeN, kekn M.k

= § + Op(Cn)-
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Experiment

» Tuning ensemble sizes of random forests (n = 1,000):
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Experiment

» Tuning ensemble sizes of random forests (n = 1,000):
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Experiment

» Tuning ensemble sizes of random forests (n = 1,000):

—e— ground truth -4- ECV estimate --#-- Hold-out estimate
Risk extrapolation path Risk estimates for M = 1000
4.5 i extrapolation
i from Mg =20 2.25
4.0 |
i 2.00
w35 |
o ] 1.75
3.0 |
| 1.50
23 ===l Hooowoc Fo-=-= c ellalelalle i 1.25
0 200 400 600 800 1000 0 1 2 3 4
Number of trees M Data aspect ratio %7

Extrapolated Cross-validation JSM 2023 10/13



Experiment

» Tuning ensemble sizes of random forests (n = 1,000):

—e— ground truth -4- ECV estimate --#-- Hold-out estimate
Risk extrapolation path Risk estimates for M = 1000
4.5 i extrapolation
i from My =20 2.25
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ECV estimates provide valid extrapolation paths in both low- and high-dimensional
scenarios.
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Experiment

» Tuning ensemble and subsample sizes with M,.x = 50:

Predictor Unbagged === Optimal 50-bagged
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Experiment

» Tuning ensemble and subsample sizes with M ,.x = 50:

Predictor Unbagged === Optimal 50-bagged
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Single-cell sequencing multiomic datasets

> Gene expressions (X € R%090) and protein abundances (Y € R%9) in each cell are
measured.
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Single-cell sequencing multiomic datasets

> Gene expressions (X € R%090) and protein abundances (Y € R%9) in each cell are
measured.

» We use all the gene expressions to predict the abundance of each protein.

» Our target is to select a ¢-optimal random forest so that its prediction risk is no
more than 6 = 0.05 away from the best random forest with 50 trees.
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Single-cell sequencing multiomic datasets

Methods === 5plitCV == KfoldCV (K= 3) === KfoldCV (K=5) = ECV

(a) Suboptimality
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Single-cell sequencing multiomic datasets

Methods === splitCV m=m KfoldCV (K= 3) === KfoldCV (K=15) = ECV
(a) Suboptimality (b) Time complexity
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Single-cell sequencing multiomic datasets

(a)
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=== KfoldCV (K=15) = ECV

Better out-of-sample errors and time complexity!

Extrapolated Cross-validation

(b) Time complexity
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Thanks for your attention!
Any questions?
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