A Framework for Efficient Model Evaluation via Stratification, Sampling, and Estimation

Riccardo Fogliato (AWS Themis Responsible AI)

arXiv: <u>https://arxiv.org/abs/2406.07320</u> (to appear also at ECCV '24) GitHub: https://github.com/amazon-science/ssepy

Joint work with

Pratik Patil UC Berkeley

Mathew Monfort AWS

Pietro Perona Caltech & AWS

A Framework for Quick and Cheap Model Evaluation via Tailored Inference Strategies

Why quick and cheap evaluations?

TPM

Can you quickly check the accuracy of our CV service on the customer's data?

FYI deadline is tomorrow

Scientist

No way... It will take 10 days and cost **\$5k** to obtain ground-truth labels! :(

Customer data

">5 objects?" ML API: yes ML confidence: 90%

Why quick and cheap evaluations?

TPM

Can you quickly check the accuracy of our CV service on the customer's data?

FYI deadline is tomorrow

Scientist

No way... It will take 10 days and cost **\$5k** to obtain ground-truth labels! :(

Senior Scientist

Don't worry TPM...It'll take 1 day and cost **\$<1k** with sampling techniques and prediction-powered inference!

Scientist What's this??

Customer data

">5 objects?" ML API: yes ML confidence: 90%

Ideal estimation setup

Ground truth labels often are not available

Workflows

Inputs: test data $\mathscr{D} = \{(X_i, \hat{Y}_i, f(X_i))\}_{i=1}^N$ and annotation budget n

Which method you use does matter

Estimator

- Horvitz-Thompson ×
- Difference \diamond

Survey design

- Simple random sample
 - Stratified sample proportional allocation Stratified sample Neyman allocation

Large-scale benchmarking

Sampling workflows

Simple random sampling (SRS)

Inputs: test data $\mathscr{D} = \{(X_i, \hat{Y}_i, f(X_i))\}_{i=1}^N$ and annotation budget *n*

Stratified simple random sampling (SSRS)

- proportional allocation $n_h \propto N_h/N$
- Neyman or optimal allocation $n_h \propto \sqrt{Var_h(Z)}$

$$\hat{\theta} = \sum_{h=1}^{H} \frac{N_h}{N} \frac{1}{n_h} \sum_{i \in \mathcal{S}_h} Z_i$$

Result: $\operatorname{Var}_{\operatorname{SRS}}(\hat{\theta}) \geq \operatorname{Var}_{\operatorname{prop}}(\hat{\theta}) \geq \operatorname{Var}_{\operatorname{opt}}(\hat{\theta})$

Stratified sampling with proportional allocation consistently yields good results. Neyman can help

How to best stratify? (hint: you should minimize $\operatorname{Var}_{\operatorname{prop}}(\hat{\theta})$ so stratify by $f(X) \approx Z$)

Stratifying on a more accurate f(X) means lower variance

Estimation workflows

Inputs:
$$\mathcal{D} = \{(X_i, \hat{Y}_i, f(X_i))\}$$

Horvitz-Thompson (HT) estimator

$\{X_i\}_{i=1}^N$ and annotation budget n

Difference (DF) estimator (aka predictionpowered) Uses both labeled and unlabeled data $\hat{\theta}_{\mathrm{DF}} = \frac{1}{N} \sum_{i \in \mathscr{D}} f(X_i) + \frac{1}{n} \sum_{i \in \mathscr{S}} (Z_i - f(X_i))$ **Result:**

Difference estimator generally increases the precision of the estimates

Takeaways

Always stratify by ML predictions and allocate budget proportionally

If ML predictions are accurate, Neyman allocation can help

If you use simple random sampling, estimate with the difference estimator w/ power tuning

Thank you! Questions?

Email: fogliato@amazon.com