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Ideal estimation setup

J(X)

ML prediction: >5 confidence: 50%



Ground truth labels often are not available

J(X)

ML prediction: >5 confidence: 50%



Workflows

Inputs: test data & = {(X,, Y, (X)) }¥ | and annotation budget

Scientist workflow Senior scientist workflow




MSE of estimated vs. actual
model performance
on full test set

Which method you use does matter
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Large-scale benchmarking

Zero-shot CLIP w/
ViT-B-32 or CLIP Ground-truth labels
w/ ViT-L-14

~40 datasets from Zero-shot CLIP w/
CLIP benchmark ViT-B-32
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Sampling workflows

Inputs: test data 2 = {(X,, Y, f(X;)}'L, and annotation budget

Simple random sampling (SRS) Stratified simple random sampling (SSRS)

» proportional allocation n, < N,/N

« Neyman or optimal allocation n;, \/Varh(Z)

VarSRS(é) > Varprop(é) > Varopt(é)
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Relative efficiency
of HT under SRS vs. method

Stratified sampling with proportional allocation
consistently yields good results. Neyman can help

SSRS proportional + HT

SSRS Neyman + HT

e == {
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How to best stratify?
(hint: you should minimize Varpmp(é) so stratify by /(X) ~ Z)

AX) = 0.5
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Relative efficiency
of HT under SRS vs. method

Stratifying on a more accurate f(X) means lower variance

SSRS proportional + HT

i
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Estimation workflows
Inputs: 2 = {(X, Y, f(X,)}.L, and annotation budget

Horvitz-Thompson (HT) estimator Difference (DF) estimator (aka prediction-
powered)

i e Uses both labeled and unlabeled data

* éDF — % Zf(Xl-) + % Z (Z; — f(X})

(= ed

Result:

Var(é’HT) > Var(é’DF)
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Relative efficiency
of HT under SRS vs. method

Difference estimator generally increases
the precision of the estimates

SRS + DF
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power tuning can resolve the
underperformance issues (see PPIl++)
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Takeaways

Always stratify by ML predictions and allocate budget
proportionally

If ML predictions are accurate, Neyman allocation can help

If you use simple random sampling, estimate with the
difference estimator w/ power tuning




Thank you!

Questions?

Email: fogliato@amazon.com
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