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Motivation and punchline of the paper

• Given D = {(xi , yi ) ∈ Rp × R, 1 ≤ i ≤ n}, let β̂λ be ridge estimator:

minimize
β∈Rp

n∑
i=1

(yi − xTi β)
2/n + λ∥β∥22

• The out-of-sample error of β̂λ is y0 − x⊤0 β̂λ for a test point (x0, y0)
• Estimating out-of-sample error well is crucial for model assessment
• Prior work shows leave-out-out and generalized cross-validation

consistently estimate the expected squared error E[(y0 − x⊤0 β̂λ)
2 | D]

Key question: can we reliably estimate the entire out-of-sample error
distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

1. the empirical distributions of re-weighted in-sample errors from
leave-one-out and generalized cross-validation converge weakly to
the out-of-sample error distribution, even when λ = 0

2. the plug-in estimators of these empirical distributions consistent for
a broad class of linear and non-linear functionals of error distribution
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High-dimensional ridge regression

• Let X ∈ Rn×p denote feature matrix, y ∈ Rn denote response vector

• Let β̂λ ∈ Rp denote the ridge estimator at regularization level λ:

β̂λ := argmin
β∈Rp

∥y − Xβ∥22/n + λ∥β∥22

– if λ > 0, the problem is convex in β and has an explicit solution:

β̂λ = (XTX/n + λIp)
−1XT y/n

– for any λ ∈ R, extend the solution using Moore-Penrose inverse:

β̂λ = (XTX/n + λIp)
+XT y/n

– when λ = 0, this reduces to least squares sol with minimum ℓ2 norm;
in particular, when rank(X ) = n ≤ p, the solution interpolates data,

i.e. X β̂ = y , and has minimum ℓ2 norm among all interpolators
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Out-of-sample error distribution and its functionals

• Let Pλ denote distribution of out-of-sample error of β̂λ:

Pλ = L
(
y0 − x⊤0 β̂λ | X , y

)
,

where (x0, y0) is sampled indep from the same training distribution
– a random distribution (conditional on observed data X and y)

• Let ψ denote a functional such that P 7→ ψ(P) ∈ R:
– Linear functional:

ψ(Pλ) =

∫
t(z) dPλ(z) = E

[
t(y0 − x⊤

0 β̂λ) | X , y
]
,

where t : R → R is an error function (e.g., squared or absolute error)
– Nonlinear functional:

ψ(Pλ) = Quantile(Pλ; τ) = inf{z : Fλ(z) ≥ τ},

where Fλ denotes the cumulative distribution function of Pλ

We construct estimators of Pλ and ψ(Pλ) by suitably extending
leave-one-out cross-validation and generalized cross-validation procedures.

3 / 11



Standard leave-one-out and generalized cross-validation

• Leave-one-out cross-validation (LOOCV):

– for every i , train on all data except (xi , yi ), call the estimate β̂−i
λ

– compute test error on the i th point and take average

loo(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂
−i
λ

)2
(shortcut)

=
1

n

n∑
i=1

(
yi − xT

i β̂λ
1− [Lλ]ii

)2

where Lλ = X (XTX/n + λIp)
+XT/n is the ridge smoothing matrix

• Generalized cross-validation (GCV)

– same as leave-one-out shortcut but a single re-weighting

gcv(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂λ
1− tr[Lλ]/n

)2

• Standard LOOCV and GCV are consistent for the expected squared
out-of-sample prediction error
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Proposed estimators

Natural estimators for Pλ and ψ(Pλ) building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

P̂gcv
λ =

1

n

n∑
i=1

δ

(
yi − x⊤i β̂λ
1− tr[Lλ]/n

)
and P̂ loo

λ =
1

n

n∑
i=1

δ

(
yi − x⊤i β̂λ
1− [Lλ]ii

)

• When β̂λ is an interpolator, i.e. Lλ = In, both estimates are “0/0”;
we then define the estimates as their respective limits as λ→ 0:

P̂gcv
0 =

1

n

n∑
i=1

δ

(
[(XX⊤)†y ]i
tr[(XX⊤)†]/n

)
and P̂ loo

0 =
1

n

n∑
i=1

δ

(
[(XX⊤)†y ]i
[(XX⊤)†]ii

)

• Plug-in GCV and LOO estimators:

ψ̂gcv
λ = ψ(P̂gcv

λ ) and ψ̂loo
λ = ψ(P̂gcv

λ )
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Distribution estimation

Under i.i.d. sampling of (xi , yi ), i = 1, . . . , n with

1. feature xi decomposable into xi = Σ1/2zi where zi contains i.i.d.
entries with mean 0, variance 1 and finite 4+ moment,
and max and min eigenvalues of Σ uniformly away from 0 and ∞,

2. response yi with bounded 4+ moment,

as n, p → ∞ such that p/n → γ ∈ (0,∞), almost surely

P̂gcv
λ

d−→ Pλ and P̂ loo
λ

d−→ Pλ.

Remarks:

• Almost sure convergence with respet to the training data

• The regression function does not need to be linear in x

• Amazingly, this results also holds when λ = 0 (min-norm estimator)
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Distribution estimation: illustration (p < n)
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• n = 2500, p = 2000, p/n = 0.8

• λ = 0, i.e., least squares
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Distribution estimation: illustration (p > n)
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• n = 2500, p = 5000, p/n = 2

• λ = 0, i.e., the min-norm estimator, zero in-sample errors
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Linear functional estimation (pointwise)

• Let Tλ be a linear functional of the out-of-sample error distribution:

Tλ = E
[
t(y0 − xT0 β̂λ) | X , y

]
• Let T̂ gcv

λ and T̂ loo
λ be plug-in estimators from GCV and LOOCV:

T̂ gcv
λ =

1

n

n∑
i=1

t

(
yi − xTi β̂λ
1− tr[Lλ]/n

)
and T̂ loo

λ =
1

n

n∑
i=1

t

(
yi − xTi β̂λ
1− [Lλ]ii

)

For error functions t : R → R
1. that are continuous,

2. have quadratic growth, i.e., there exist constats a, b, c > 0
such that |t(z)| ≤ az2 + b|z |+ c for any z ∈ R,

as n, p → ∞ with p/n → γ ∈ (0,∞), almost surely

T̂ gcv
λ → Tλ and T̂ loo

λ → Tλ.
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Linar functional estimation (uniform)

For error functions t : R → R
1. that are differentiable,

2. have derivative with linear growth rate, i.e., there exist constants
g , h > 0 such that |t ′(z)| ≤ g |z |+ h for any z ∈ R

as n, p → ∞ with p/n → γ ∈ (0,∞) for any compact set Λ,

sup
λ∈Λ

|T̂ gcv
λ − Tλ| → 0 and sup

λ∈Λ
|T̂ loo

λ − Tλ| → 0.

Remarks:

• Special case of t(r) = r2 exploits bias-variance decomposition

• No bias-variance decomposition for general error functions and result
requires a different proof technique via leave-one-out arguments

• Using uniformity arguments, the result can be extended for
non-linear variational functionals (see paper for more details)
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Discussion and future directions

Take-away from this work: empirical distributions of GCV and LOOCV
track out-of-sample error distribution and a wide class of its functionals
for ridge regression under proportional asymptotics framework

Key relation that we exploit:

yi − x⊤i β̂−i,λ =
yi − x⊤i β̂λ
1− [Lλ]ii

≈ yi − x⊤i β̂λ
1− tr[Lλ]/n

yi − x⊤i β̂−i,0 =
[(XX⊤)†y ]i
[(XX⊤)†]ii

≈ [(XX⊤)†y ]i
tr[(XX⊤)†]/n

Going beyond . . .

• Equivalences for ridge variants and other smoothers

• Finite sample analysis and rates of convergence
...
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Thanks for listening!

Questions/comments/thoughts?
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