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Motivation and punchline of the paper

Given D = {(x;,y;) € RP x R, 1 < < n}, let BA be ridge estimator:
minimize (vi —x" B)*/n+ X85

i=

The out-of-sample error of By is yo — XOTB,\ for a test point (o, yo)
Estimating out-of-sample error well is crucial for model assessment
Prior work shows leave-out-out and generalized cross-validation
consistently estimate the expected squared error E[(yo — xg 3x)? | D]

Key question: can we reliably estimate the entire out-of-sample error
distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

1. the empirical distributions of re-weighted in-sample errors from
leave-one-out and generalized cross-validation converge weakly to
the out-of-sample error distribution, even when A =0

2. the plug-in estimators of these empirical distributions consistent for
a broad class of linear and non-linear functionals of error distribution
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Outline

Problem setup



High-dimensional ridge regression
® Let X € R"*P denote feature matrix, y € R" denote response vector
® |let B,\ € RP denote the ridge estimator at regularization level A:

By :=argmin ||y — XB|3/n+ A 8|13
BERP

— if A > 0, the problem is convex in 5 and has an explicit solution:

Br=(X"X/n+ ) "X y/n

— for any X € R, extend the solution using Moore-Penrose inverse:

Br=(X"X/n+ ) XTy/n

— when A = 0, this reduces to least squares sol with minimum £, norm;
in particular, when rank(X) = n < p, the solution interpolates data,
i.e. XB =y, and has minimum ¢ norm among all interpolators

2/11



Out-of-sample error distribution and its functionals

® |et P, denote distribution of out-of-sample error of B)ﬁ
Px=L(yo —x B | X.y),

where (xo, ¥o) is sampled indep from the same training distribution
— a random distribution (conditional on observed data X and y)
® Let 1) denote a functional such that P — ¢(P) € R:
— Linear functional:

0(Py) = [ (2) dPy(2) = E[t(0 — x5 ) | X,

where t : R — R is an error function (e.g., squared or absolute error)
— Nonlinear functional:

P(Px) = Quantile(Px; 7) = inf{z : FA(z) > 7},

where F) denotes the cumulative distribution function of Py

We construct estimators of Py and 1(P)) by suitably extending

leave-one-out cross-validation and generalized cross-validation procedures.
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Standard leave-one-out and generalized cross-validation

® Leave-one-out cross-validation (LOOCV):

— for every i, train on all data except (x;, yi), call the estimate ,6’;/
— compute test error on the /™ point and take average

n

o) = 3 5~ (s =" B7)’

i=1
n TS5 2
(shortcut) 1 Z Yi — X; BA
n =y 1-— [L)\],','

where Ly = X(X"X/n+ \,)" X7 /n is the ridge smoothing matrix
® Generalized cross-validation (GCV)
— same as leave-one-out shortcut but a single re-weighting

—~ 2
i _ 1 y,-—x,-TﬂA
ng(A) - E; <1 tr[LA]/n>

® Standard LOOCV and GCV are consistent for the expected squared
out-of-sample prediction error
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Proposed estimators

Natural estimators for Py and v (Py) building off from GCV and LOOCV.

® Empirical distributions of the GCV, LOO re-weighted errors:
~oov 1 < _y,'—X-TB\)\ | — X 6)\
Pg(,x I 5 1 d P 00 — 5
A n’z:; (1 “ul/n) M Z 17 T [Lali

® When B,\ is an interpolator, i.e. Ly = I,, both estimates are “0/0";
we then define the estimates as their respective limits as A — 0:

® Plug-in GCV and LOO estimators:
aiw _ w(ﬁfCV) and ljloo ’(/}(/P\§CV)
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Distribution estimation



Distribution estimation

Under i.i.d. sampling of (x;,y;), i = 1,...,n with
1. feature x; decomposable into x; = ¥'/2z; where z; contains i.i.d.
entries with mean 0, variance 1 and finite 4+ moment,
and max and min eigenvalues of ¥ uniformly away from 0 and oo,

2. response y; with bounded 4+ moment,

as n, p — oo such that p/n — v € (0,00), almost surely

Hecev d B d
P{™ S Py and Py S P

Remarks:
® Almost sure convergence with respet to the training data

® The regression function does not need to be linear in x

® Amazingly, this results also holds when A = 0 (min-norm estimator)
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Distribution estimation: illustration (p < n)
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Error

® n = 2500, p =2000, p/n=0.8
® \ =0, i.e., least squares
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Distribution estimation:
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® n=2500, p=5000, p/n=2

® )\ =0, i.e., the min-norm estimator, zero in-sample errors
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Outline

Functional estimation



Linear functional estimation (pointwise)
® lLet T, be a linear functional of the out-of-sample error distribution:

Ta=E[t(yo — x Bx) | X, y]

e Let T5% and TI°° be plug-in estimators from GCV and LOOCV:

Ao 1 <& Vi —X-TBX = 1o Yi *X‘TB)\
TeY — = t i d loo _ = t i
YT ; <1 —wlLl/n) M T ; 1 [

For error functions t : R — R
1. that are continuous,

2. have quadratic growth, i.e., there exist constats a, b,c > 0
such that |t(z)| < az? + b|z| + ¢ for any z € R,

as n,p — oo with p/n — v € (0, 00), almost surely

TEY = Ty and T\ — Th.
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Linar functional estimation (uniform)

For error functions t : R — R
1. that are differentiable,

2. have derivative with linear growth rate, i.e., there exist constants
g, h > 0 such that |t/(z)| < g|z| + h for any z € R

as n, p — oo with p/n — v € (0,00) for any compact set A,

sup [TEY — To| = 0 and  sup|TL° — Ty| = 0.
AEA AeA

Remarks:
® Special case of t(r) = r? exploits bias-variance decomposition

® No bias-variance decomposition for general error functions and result
requires a different proof technique via leave-one-out arguments

® Using uniformity arguments, the result can be extended for
non-linear variational functionals (see paper for more details)
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Discussion and future directions

Take-away from this work: empirical distributions of GCV and LOOCV
track out-of-sample error distribution and a wide class of its functionals
for ridge regression under proportional asymptotics framework

Key relation that we exploit:

yi — x-Tﬁ o YiT X,'TB/\ ~ Yi— X,-TB,\
PTAPEA T T 1= tr[La/n
- XXyl XXyl

y 7B = X 00T

(XY~ el(XXT)f1/n

Going beyond ...

® Equivalences for ridge variants and other smoothers
® Finite sample analysis and rates of convergence
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Thanks for listening!

Questions/comments/thoughts?
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