Estimating functionals of the out-of-sample error distribution in high-dimensional ridge regression

Pratik Patil, Alessandro Rinaldo, Ryan J. Tibshirani

Carnegie Mellon University

AISTATS 2022

Motivation and punchline of the paper

• Given
$$
\mathcal{D} = \{ (x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \le i \le n \}
$$
, let $\widehat{\beta}_{\lambda}$ be ridge estimator:
\n
$$
\min_{\beta \in \mathbb{R}^p} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda ||\beta||_2^2
$$

• The out-of-sample error of β_{λ} is $y_0 - x_0^{\top} \beta_{\lambda}$ for a test point (x_0, y_0)

- Estimating out-of-sample error well is crucial for model assessment
- Prior work shows leave-out-out and generalized cross-validation consistently estimate the expected squared error $\mathbb{E}[(y_0 - x_0^{\top}\widehat{\beta}_{\lambda})^2 | \mathcal{D}]$

Key question: can we reliably estimate the entire out-of-sample error distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the plug-in estimators of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

Outline

[Problem setup](#page-2-0)

[Distribution estimation](#page-7-0)

[Functional estimation](#page-11-0)

High-dimensional ridge regression

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_\lambda \in \mathbb{R}^p$ denote the ridge estimator at regularization level λ :

$$
\widehat{\beta}_{\lambda} := \underset{\beta \in \mathbb{R}^p}{\arg \min} \ \|y - X\beta\|_2^2 / n + \lambda \|\beta\|_2^2
$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$
\widehat{\beta}_{\lambda} = (X^{T}X/n + \lambda I_{p})^{-1}X^{T}y/n
$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$
\widehat{\beta}_{\lambda} = (X^{T}X/n + \lambda I_{p})^{+}X^{T}y/n
$$

– when $\lambda = 0$, this reduces to least squares sol with minimum ℓ_2 norm; in particular, when rank $(X) = n \leq p$, the solution interpolates data, i.e. $X\widehat{\beta} = y$, and has minimum ℓ_2 norm among all interpolators

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$
P_{\lambda} = \mathcal{L}(y_0 - x_0^{\top} \widehat{\beta}_{\lambda} \mid X, y),
$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
	- Linear functional:

$$
\psi(P_{\lambda}) = \int t(z) dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],
$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) – Nonlinear functional:

$$
\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \geq \tau\},\
$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Standard leave-one-out and generalized cross-validation

- Leave-one-out cross-validation (LOOCV):
	- $-$ for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_\lambda^{-1}$
	- $-$ compute test error on the $i^{\rm th}$ point and take average

$$
\begin{aligned} \text{loo}(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \hat{\beta}_{\lambda}^{-i} \right)^2 \\ & \text{(short) } \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \hat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}
$$

where $L_\lambda = X (X^\mathsf{T} X / \mathsf{n} + \lambda I_\mathsf{p})^+ X^\mathsf{T} / \mathsf{n}$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

– same as leave-one-out shortcut but a single re-weighting

$$
\text{gcv}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right)^2
$$

• Standard LOOCV and GCV are consistent for the expected squared out-of-sample prediction error

Proposed estimators

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

$$
\widehat{P}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)
$$

• When $\widehat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0"; we then define the estimates as their respective limits as $\lambda \to 0$:

$$
\widehat{P}_0^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^n \delta\left(\frac{[(XX^\top)^\dagger y]_i}{\text{tr}[(XX^\top)^\dagger]/n}\right) \quad \text{and} \quad \widehat{P}_0^{\text{loo}} = \frac{1}{n} \sum_{i=1}^n \delta\left(\frac{[(XX^\top)^\dagger y]_i}{[(XX^\top)^\dagger]_{ii}}\right)
$$

• Plug-in GCV and LOO estimators:

$$
\widehat{\psi}_{\lambda}^{\text{gcv}} = \psi(\widehat{P}_{\lambda}^{\text{gcv}}) \quad \text{and} \quad \widehat{\psi}_{\lambda}^{\text{loo}} = \psi(\widehat{P}_{\lambda}^{\text{gcv}})
$$

Outline

[Problem setup](#page-2-0)

[Distribution estimation](#page-7-0)

[Functional estimation](#page-11-0)

Distribution estimation

Under i.i.d. sampling of (x_i, y_i) , $i = 1, \ldots, n$ with

1. <u>feature</u> x_i decomposable into $x_i = \sum^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1 and finite $4+$ moment, and max and min eigenvalues of Σ uniformly away from 0 and ∞ ,

2. response v_i with bounded $4+$ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely

$$
\widehat{P}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{d}} P_{\lambda} \quad \text{and} \quad \widehat{P}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{d}} P_{\lambda}.
$$

Remarks:

- Almost sure convergence with respet to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also holds when $\lambda = 0$ (min-norm estimator)

Distribution estimation: illustration ($p < n$)

- $n = 2500$, $p = 2000$, $p/n = 0.8$
- $\lambda = 0$, i.e., least squares

Distribution estimation: illustration ($p > n$)

•
$$
n = 2500
$$
, $p = 5000$, $p/n = 2$

• $\lambda = 0$, i.e., the min-norm estimator, zero in-sample errors

Outline

[Problem setup](#page-2-0)

[Distribution estimation](#page-7-0)

[Functional estimation](#page-11-0)

Linear functional estimation (pointwise)

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}\left[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y\right]$

• Let $\widehat{\mathcal{T}}^{\text{gcv}}_{\lambda}$ and $\widehat{\mathcal{T}}^{\text{loo}}_{\lambda}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gcv}} = \frac{1}{n}$ n $\sum_{i=1}^{n} t_i$ $i=1$ $\int \frac{y_i - x_i^T \widehat{\beta}_\lambda}{\lambda}$ $1-\mathop{\mathsf{tr}}\nolimits[L_{\lambda}]/n$ \setminus and $\widehat{\mathcal{T}}_{\lambda}^{\text{loo}}=\frac{1}{n}$ n $\sum_{}^n t$ $i=1$ $\left(\frac{y_i - x_i^T\widehat{\beta}_\lambda}{1 - [L_\lambda]_{ii}}\right)$

For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous,
- 2. have quadratic growth, i.e., there exist constats $a, b, c > 0$ such that $|t(z)| \leq az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$, almost surely

$$
\widehat{T}_{\lambda}^{\mathrm{gcv}} \to T_{\lambda} \quad \text{and} \quad \widehat{T}_{\lambda}^{\mathrm{loo}} \to T_{\lambda}.
$$

Linar functional estimation (uniform)

For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable,
- 2. have derivative with linear growth rate, i.e., there exist constants $g,h>0$ such that $|t'(z)|\leq g|z|+h$ for any $z\in\mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set Λ ,

$$
\sup_{\lambda\in\Lambda}|\widehat{\mathcal T}_\lambda^{\rm gcv}-{\mathcal T}_\lambda|\to0\quad\text{and}\quad \sup_{\lambda\in\Lambda}|\widehat{\mathcal T}_\lambda^{\rm loo}-{\mathcal T}_\lambda|\to0.
$$

Remarks:

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals (see paper for more details)

Discussion and future directions

Take-away from this work: empirical distributions of GCV and LOOCV track out-of-sample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit: $y_i - x_i^{\top} \widehat{\beta}_{-i,\lambda} = \frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}$ $\frac{y_i - x_i^{\top} \hat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_i - x_i^{\top} \hat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/\hat{\beta}_{\lambda}}$ $1-\text{tr}[L_\lambda]/n$ $y_i - x_i^{\top} \widehat{\beta}_{-i,0} =$ $[(XX^\top)^\dagger y]_i$ $\frac{[(XX^\top)^\dagger y]_i}{[(XX^\top)^\dagger]_{ii}} \approx \frac{[(XX^\top)^\dagger y]_i}{\text{tr}[(XX^\top)^\dagger]/i}$ $\mathrm{tr}[(XX^{\top})^{\dagger}]/n$

Going beyond . . .

. .

- Equivalences for ridge variants and other smoothers
- Finite sample analysis and rates of convergence .

Thanks for listening!

Questions/comments/thoughts?