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Over-parameterization and regularization

▶ In the big data era, the success of machine learning and deep
learning methods typically have much more parameters than
the training samples.

Random forest Kernel method Neural network

▶ Optimizing such over-parameterized models requires different
types of regularization.
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Ridge ensembles

▶ Ridge estimator: Consider a dataset Dn = {(xj, yj) : j ∈ [n]}
containing i.i.d. vectors in Rp × R. The ridge estimator fitted on
a subsampled dataset DI is:

β̂λk (DI) = argmin
β∈Rp

∑
j∈I

(yj − x⊤j β)
2/k + λ∥β∥2

2, I ⊆ [n], |I| = k. (1)

▶ Ensemble ridge estimator: For λ ≥ 0, the ensemble estimator
is then defined as:

β̃λk,M(Dn; {Iℓ}M
ℓ=1) :=

1
M

∑
ℓ∈[M]

β̂λk (DIℓ), (2)

where I1, . . . , IM are samples from
Ik := {{i1, i2, . . . , ik} : 1 ≤ i1 < i2 < . . . < ik ≤ n}. The
full-ensemble ridge estimator β̃λk,∞(Dn) is obtained with
M → ∞.
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Generalized risk

▶ Let β0 = E[xx⊤]−1E[xy] be the best linear projection of y onto x
▶ Generalized risk. For a linear functional LA,b(β) = Aβ + b, we

study

R(β̂;A, b,β0) =
1

nrow(A)
∥LA,b(β̂ − β0)∥2

2, (3)

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ψ. Here, ϕ and ψ are the data and subsample aspect
ratios, respectively.

Statistical learning problem LA,b(β̂ − β0) A b nrow(A)

vector coefficient estimation β̂ − β0 Ip 0 p
projected coefficient estimation a⊤(β̂ − β0) a⊤ 0 1

training error estimation Xβ̂ − y X −f NL n
in-sample prediction X(β̂ − β0) X 0 n

out-of-sample prediction x⊤
0 β̂ − y0 x⊤0 −ϵ0 1
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Motivation and summary of results

Data assumptions. Each feature vector xi for i ∈ [n] can be
decomposed as xi = Σ1/2zi, where zi ∈ Rp contains i.i.d. entries
zij for j ∈ [p] with mean 0, variance 1, and bounded 4 + µ
moments for some µ > 0. Response distribution: Each
response variable yi for i ∈ [n] has mean 0, and bounded 4 + µ
moments.

Table: Comparison with related work. “✓◦” indicates a partial
equivalence result connecting the optimal prediction risk of the ridge
predictor and the full ridgeless ensemble.

Type of equivalence results Type of data assumptions

pred. risk gen. risk estimator response feature lim. spectrum

Lejeune 2020 ✓◦ linear isotropic
Gaussian exists

Patil 2022 ✓◦ linear isotropic
RMT exists

Du 2023 ✓ linear anisotropic
RMT exists

This work ✓ ✓ ✓ arbitrary anisotropic
RMT need not exist
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Summary of results

▶ Risk equivalences. We establish asymptotic equivalences of
the full-ensemble ridge estimators at different ridge penalties λ
and subsample ratios ψ along specific paths in the (λ, ψ)-plane
for a variety of generalized risk functionals.

▶ Structural equivalences. We establish structural equivalences
for linear functionals of the ensemble ridge estimators that hold
for all ensemble sizes.

▶ Equivalence implications. The prediction risk of an optimally
tuned ridge estimator is monotonically increasing in p/n under
mild regularity conditions.

▶ Generality of equivalences. The results apply to arbitrary
responses with bounded 4 + µ moments, as well as features
with general covariance structures.
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Asymptotic equivalence

▶ Let Ap and Bp be sequences of (additively) conformable
matrices of arbitrary dimensions (including vectors and
scalars).

▶ We say that Ap and Bp are asymptotically equivalent, denoted
as Ap ≃ Bp, if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any
sequence of random matrices Cp with bounded trace norm that
are (multiplicatively) conformable and independent of Ap and
Bp.

▶ Note that for sequences of scalar random variables, the
definition simply reduces to the typical almost sure
convergence of sequences of random variables involved.
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Generalized risk equivalences

Equivalence paths. Given ϕ ∈ (0,∞) and ψ̄ ∈ [ϕ,∞], our
statement of equivalences between different ensemble
estimators is defined through certain paths characterized by
two endpoints (0, ψ̄) and (λ̄, ϕ). Let Hp be the empirical spectral
distribution of Σ: Hp(r) = p−1 ∑p

i=1 1{ri≤r}, where ri’s are the
eigenvalues of Σ. Consider the following system of equations in
λ̄ and v:

1
v
= λ̄+ ϕ

∫
r

1 + vr
dHp(r), and

1
v
= ψ̄

∫
r

1 + vr
dHp(r). (4)

Now, define a path P(λ̄;ϕ, ψ̄) that passes through the
endpoints (0, ψ̄) and (λ̄, ϕ):

P(λ̄;ϕ, ψ̄) =
{
(1 − θ) · (λ̄, ϕ) + θ · (0, ψ̄) | θ ∈ [0, 1]

}
. (5)
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Generalized risk equivalences: illustration

Theorem 1. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as defined in (4).
Then, for any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ̄;ϕ, ψ̄)
as defined in (5), the generalized risk functionals (3) of the
full-ensemble estimator are asymptotically equivalent:

R
(
β̂λ1
⌊p/ψ1⌋,∞;A, b,β0

)
≃ R

(
β̂λ2
⌊p/ψ2⌋,∞;A, b,β0

)
. (6)
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Structural equivalences

Theorem 3. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as in (4). Then, for
any M ∈ N ∪ {∞} and any pair of (λ1, ψ1) and (λ2, ψ2) on the
path (5), the M-ensemble estimators are asymptotically
equivalent:

β̂λ1
⌊p/ψ1⌋,M ≃ β̂λ2

⌊p/ψ2⌋,M, ∀(λ1, ψ1), (λ2, ψ2) ∈ P(λ̄;ϕ, ψ̄). (7)

Data-dependent paths. For any M ∈ N ∪ {∞}, let λ̄n be the
value that satisfies the following equation in ensemble ridgeless
and ridge gram matrices:

1
M

M∑
ℓ=1

1
k

tr

[(
1
k

LIℓXX⊤LIℓ

)+
]
=

1
n

tr

[(
1
n

XX⊤ + λ̄nIn

)−1
]
.

(8)
Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Theorems
1 & 3 hold with Pn.
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Structural equivalences: illustration
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Implications: Monotonicity of optimal ridge

▶ Many common methods, such as ridgeless or lassoless
predictors, exhibit non-monotonic behavior in the sample size
or the limiting aspect ratio.

▶ An open problem raised by Nakkiran et al. (2021) asks whether
the prediction risk of ridge regression with optimal ridge penalty
λ∗ is monotonically increasing in the data aspect ratio ϕ = p/n.

▶ Our equivalences imply that the prediction risk of an
optimally-tuned ridge estimator is monotonically increasing in
the data aspect ratio under mild regularity conditions.

▶ Under proportional asymptotics, our result settles a recent open
question raised by Conjecture 1 of Nakkiran et al. (2021)
concerning the monotonicity of optimal ridge regression under
anisotropic features and general data models while maintaining
a regularity condition that preserves the linearized
signal-to-noise ratios across regression problems.
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Implications of equivalences: illustration

Theorem 6. Let k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and
p/k → ψ ∈ [ϕ,∞]. Then, for A = Σ1/2 and b = 0, the optimal
risk of the ridgeless ensemble, minψ≥ϕ R(0;ϕ, ψ), is
monotonically increasing in ϕ. Consequently, the optimal risk of
the ridge predictor, min≥0 R(;ϕ, ϕ), is also monotonically
increasing in ϕ.
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Equivalences for random features

Conjecture 7. Define ϕn = p/n. Let k ≤ n be the subsample
size and denote by ψ̄n = p/k. Suppose φ satisfies certain
regularity conditions. For any M ∈ N ∪ {∞}, let λ̄n be the value
that satisfies

1
M

M∑
ℓ=1

1
k

tr

[(
1
k
φ(LIℓXF⊤)φ(LIℓXF⊤)⊤

)+
]
=

1
n

tr

[(
1
n
φ(XF⊤)φ(XF⊤)⊤ + λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then
similar equivalences continue to hold along Pn.
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Equivalences for kernel features

Conjecture 8. Define ϕn = p/n. Suppose the kernel K satisfies
certain regularity conditions. Let k ≤ n be the subsample size
and denote by ψ̄n = p/k. For any M ∈ N ∪ {∞}, let λ̄n be a
solution to

1
M

M∑
ℓ=1

tr
[
K+

Iℓ

]
= tr

[(
K[n] +

n
p
λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then
similar equivalences continue to hold along Pn.
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