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Overparametrization in machine learning

Modern machine learning models typically fit a huge number of
parameters. Such overparameterization seems to be useful for:

• Representation: allows rich, expressive models for diverse real data

• Optimization: simple, local optimization methods often find
near-optimal solutions to empirical risk minimization problem

• Generalization: despite overfitting, models generalize well in practice

This talk is about generalization aspect in overparameterized learning.
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The double/multiple descent phenomenon
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“Reconciling modern machine learning practice and the bias variance tradeoff”

Belkin, Hsu, Ma, Mandal, 2018

• The phenomenon is dubbed “double descent” in the risk curve.

• This trend holds for many model classes including linear regression,
kernel regression, random forest, boosting, neural networks, etc.

Is there an equivalent “reparameterization” of “overparameterization”?
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Recent theoretical developments

Understanding generalization of interpolators in simpler settings:

• Linear regression
– Hastie, Montanari, Rosset, Tibshirani, 2019
– Belkin, Hsu, Xu, 2019
– Muthukumar, Vodrahalli, Sahai, 2019
– Bartlett, Long, Lugosi, Tsigler, 2019
– Mei, Montanari, 2019

• Kernel regression
– Liang, Rakhlin, 2018
– Liang, Rakhlin, Zhai, 2019

• Local methods
– Belkin, Hsu, Mitra, 2018
– Belkin, Rakhlin, Tsybakov, 2018

• and many more ...
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What do we currently understand?

• In nearly all applications, current practice suggests we should design
models to be massively overparametrized

• Once trained (typically by SGD), these models interpolate the
training data (achieve zero training error)

• Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

However, the story is fairly well-understood for linear models, kernel
models, and random feature models. See, e.g., nice monographs:

• Bartlett, Montanari, and Rakhlin (2021), “Deep learning: a
statistical viewpoint”

• Belkin (2021), “Fit without fear: remarkable mathematical
phenomena of deep learning through the prism of interpolation”
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Goals of this work

This work attempts to answer the following questions:

• Is there a good measure of model complexity for predictive models?

• How to compare model complexity of different (near) interpolators?

5 / 34



Takaway points

• Propose measures of model complexity that are:

– algorithm-specific and applies for any prediction algorithm
– produce a number between 0 and n (the number of observations)

• Two variants of model complexities are:

– emergent model complexity that depends on the prediction algorithm
as well as underlying the regression function

– intrinsic model complexity that depends on the prediction algorithm
only and its adaptability to pure noise

• Results when applied to some illustrative examples:

– min ℓ2/ℓ1-norm interpolators: the complexity measures maximized
when n ≈ p and typically decreases as p increases beyond n

– we can reparameterize every overparameterized model into an
equivalent underparameterized model in terms of risk behavior

Based on extension of ideas from optimism theory and degrees of freedom.
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Outline

Two interludes

Degree of freedom (fixed-X setting)

Degrees of freedom (random-X setting)

Discussion



Interlude 1: why interpolators?

Perfectly reasonable question: Why should we care about interpol- ating
least squares?

Because in certain high-dimensional problems, the optimal amount of
regularization can actually be none!

Insight: limit of vanishing regularization is still implicitly regularized. For
example, in ridge regression:

lim
λ→0+

(X⊤X + λI )−1X⊤Y = (X⊤X )+X⊤Y

which is the minimum ℓ2 norm or “ridgeless” least squares estimator.
Surprisingly, λ = 0+ (ridgeless) can actually be the optimal level of
regularization in high dimensions!
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Example: ridgeless optimalityImplicit ridge regularization

Figure 2: a–d. Expected normalized MSE of ridge estimators using a model with correlated predictors.
On all subplots n = 64. Subplots correspond to the number of predictors p taking values 50, 75, 150,
and 1000. Dots mark the points with minimum risk. e. Expected normalized MSE of OLS (for n < p)
and minimum-norm OLS (for p > n) estimators using the same model with p 2 [10, 1000]. Dots mark the
dimensionalities corresponding to subplots (a–d). Dashed line: the expected normalized MSE of the optimal
ridge estimator. f. The values of � minimizing the expected risk. For p & 600, the optimal value of ridge
penalty was negative: �opt < 0. g. Expected normalized MSE of ridge estimators for p = 1000 including
negative values of �. The minimum was attained at �opt = �150.

gain compared to the minimum-norm OLS estimator became smaller and smaller and in the p � n
regime eventually disappeared. Moreover, for sufficiently large values of p, the optimal regularization
value �opt became negative (Figure 2f). We found it to be the case for p & 600. In sufficiently large
dimensionalities, the expected risk as a function of � had a minimum not at zero (Figure 2d), but
at some negative value of � (Figure 2g). For p = 1000, the lowest risk was achieved at �opt = �150
(Figure 2g).

To investigate this further, we found the optimal regularization value �opt for different sample
sizes n 2 [10, 100] and different dimensionalities p 2 [20, 1000] (Figure 3). For the spherical covari-
ance matrix (⇢ = 0), �opt did not depend on the sample sizes and grew linearly with dimensionality
(Figure 3a), in agreement with the analytical formula �opt = p�2/k�k2 = p/↵ (Nakkiran et al.,
2020b). But in our model with ⇢ = 0.1, for any given sample size, the optimal value �opt in suffi-
ciently high dimensionality was negative. The smallest dimensionality necessary for this to happen
grew nonlinearly with the sample size (Figure 3b).

This result might appear to contradict the literature; for example, Dobriban and Wager (2018)
and later Hastie et al. (2019) studied high-dimensional asymptotics of ridge regression performance

5

Kobak, Lomond, and Sanchez (2020)
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Interlude 2: cross-validation

A natural follow-up: Does cross-validation (CV) still “work” in the
overparametrized regime, when optimal λ can be zero?

For ridge, answer is yes: Patil, Rinaldo, Wei, and T. (2021), Patil, Rinaldo, and
T. (2022) prove CV is uniformly consistent for ridge risk under a
proportional asymptotics model, weak assumptions

Empirical verification: n = 2500, p = 100/2000/5000, and λ = 0+:
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Empirical verification: n = 2500, p = 100/2000/5000, and λ = 0+:
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Interlude on the interlude: LOO at λ = 0?

Recall, leave-one-out (LOO) CV for ridge:

loo(λ) =
1

n

n∑
i=1

(
yi − x⊤i β̂

−i
λ

)2
=

1

n

n∑
i=1

(
yi − x⊤i β̂λ
1− [Sλ]ii

)2

︸ ︷︷ ︸
”shortcut formula”

where Sλ = X (X⊤X + λI )−1X⊤ is the ridge smoother matrix

For λ = 0 in overparametrized regime, all summands are 0/0 ... but there
is a fix! Hastie, Montanari, Rosset, and T. (2022) propose:

loo(0) = lim
λ→0+

loo(λ) =
1

n

n∑
i=1

(
[(XX⊤)+Y ]i
[(XX⊤)+]ii

)2

(Continuation at λ = 0 works for GCV as well, as does consistency)
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Outline

Two interludes

Degree of freedom (fixed-X setting)

Degrees of freedom (random-X setting)

Discussion



Degrees of freedom at large

Degrees of freedom means different things in different fields, but they’re
more or less similar. There is a core concept behind it.

It essentially has to do with the dimension or effective number of
parameters of “something”.

• In mechanics, that something = mechanical system.

• In physics and chemistry, something = physical system.

• In statistics, something = prediction procedure.

A nice commonality is that we can usually guess the degrees of freedom
based on intuition, at least qualitatively.
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Degrees of freedom in statistics

Degrees of freedom in statistics is defined, intuitively, as the effective
number of parameters used by a prediction procedure.

While this seems vague, it has a precise definition for a broad class of
estimation problems. We will define this shortly.

Why is this an important concept? Why you would ever go to the trouble
of describing degrees of freedom?

Essentially, it provides a way to put two different prediction procedures
on equal footing.
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Degrees of freedom in statistics

Degrees of freedom (df) is a classical topic in statistics, dating back to
Mallows (1973), Stein (1981), Efron (1986)

Given an estimator f̂ of the regression function (i.e., f̂ (x) estimates
E[y |x ]), trained on (xi , yi ), i = 1, . . . , n, we define

df(f̂ ) =
1

σ2

n∑
i=1

Cov(yi , f̂ (xi ))

where σ2 = Var(y |x), and each xi is treated as fixed

Key fact. For f̂ the least squares estimator of response Y ∈ Rn on
feature matrix X ∈ Rn×p, with p linearly independent columns,

df(f̂ ) =
1

σ2
tr(Cov(Y ,PXY )) = tr(PX ) = p

13 / 34
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Connection to fixed-X error

This definition is intrinsically connected to fixed-X test error:

EY ,Y ∗

[
1

n

n∑
i=1

(y∗
i − f̂ (xi ))

2

]
︸ ︷︷ ︸

ErrF(f̂ )

= EY

[
1

n

n∑
i=1

(yi − f̂ (xi ))
2

]
︸ ︷︷ ︸

trainF(f̂ )

+
2σ2

n
df(f̂ )

The difference between test and training error is called optimism:

OptF(f̂ ) = ErrF(f̂ )− trainF(f̂ )

This nicely motivates degrees of freedom and connects it to practice

Also points to a big shortcoming ... fixed-X error is not as relevant to
modern stat/ML practice which is driven by random-X error

ErrR(f̂ ) = EX ,Y ,x0,y0 [(y0 − f̂ (x0))
2]
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The difference between test and training error is called optimism:

OptF(f̂ ) = ErrF(f̂ )− trainF(f̂ )

This nicely motivates degrees of freedom and connects it to practice

Also points to a big shortcoming ... fixed-X error is not as relevant to
modern stat/ML practice which is driven by random-X error

ErrR(f̂ ) = EX ,Y ,x0,y0 [(y0 − f̂ (x0))
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Fixed-X ̸= random-X, especially for interpolators

Classically—for smooth functions, in low dimensions—we can tie fixed-X
and random-X errors together (e.g., by empirical process theory)

But beyond this—nonsmooth functions, or high dimensions—they can be
very different.
Epitomized by generalizing interpolators:

• ErrR(f̂ ) → 0, but

• ErrF(f̂ ) = E[n−1
∑n

i=1(y
∗
i − yi )

2] = 2σ2

Similarly, for any interpolator f̂ :

df(f̂ ) =
1

σ2

n∑
i=1

Cov(yi , yi ) = n

which is useless!
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Example: degrees of freedom in linear regression

• Suppose p ≤ n and X has full (column) rank, and we take f̂ to be

ordinarly least squares predictor f̂ (X ) = X β̂, where

β̂ = argmin
β∈Rp

∥y − Xβ∥22 = (XTX )−1XT y .

dfF(f̂ ) = tr[Cov(y ,X β̂)]/σ2 = tr[σ2X (XTX )−1XT ]/σ2 = p.

• Suppose p ≥ n and X has full (row) rank, and we take f̂ to be

min ℓ2-norm least squares predictor f̂ (X ) = X β̂, where

β̂ = argmin
β∈Rp

{∥β∥2 : Xβ = y} = (X⊤X )†X⊤y .

dfF(f̂ ) = tr[Cov(y ,X β̂)]/σ2 = tr[σ2X⊤(XX⊤)−1X ]/σ2 = n.

Thus, dfF(f̂ ) is p for p ≤ n, but is always n for p ≥ n (not meaningful).

This is fixed-X degrees of freedom. How to extend for random-X setting?
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Example: ridgeless least squares df

Classical, fixed-X df for ridgeless least squares, with n = 100:
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Can we generalize df to random-X, and beyond?

Goals:

• Generalize df so that it connects to random-X error, and gives
meaningful answers for any estimator (even interpolators)

• Allow for decomposition of df according to some user-specified
components

Disclaimer: what follows is embarassingly simple ...
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Outline

Two interludes

Degree of freedom (fixed-X setting)

Degrees of freedom (random-X setting)

Discussion



What is complexity?

What makes up a measure of complexity? Two things:

• a metric

• a reference model

That is, the metric assigns a number to the given model f̂ , and the
reference model f̂ ref provides units, so we can interpret the metric

A bit more detail:

• Metric should be “negatively oriented” for complexity—smaller
values mean less complex

• Reference model should be something whose parameters we are
“happy to count”
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Re-interpreting degrees of freedom

We can actually re-interpret the classical definition of df in this light,
with: metric = OptF, and f̂ ref = least squares

That is, we will define df(f̂ ) = k , for the number k ≥ 0 such that

OptF(f̂ ) = OptF(f̂ lsk )

where f̂ lsk is the least squares estimator of the given Y ∈ Rn on a feature
matrix X ∈ Rn×k with k linearly independent columns

Think about it this way: df(f̂ ) = 5.3 means f̂ has the same fixed-X
optimism as least squares with 5.3 parameters
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Lifting this idea to random-X

Naturally we can lift this to the random-X setting. We define

OptR(f̂ ) = EX ,Y ,x0,y0 [(y0 − f̂ (x0))
2]︸ ︷︷ ︸

ErrR(f̂ )

−EX ,Y

[
1

n

n∑
i=1

(yi − f̂ (xi ))
2

]
︸ ︷︷ ︸

trainR(f̂ )

We will again use f̂ lsk for reference class: least squares on k features.
However, in the random-X setting, it matters:

• what these features are (law of xi )

• how they relate to the response (law of yi |xi )

(Recall, none of this mattered in the fixed-X setting ...)

So what data generating distribution should we use for our reference
model in the random-X setting?
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• how they relate to the response (law of yi |xi )

(Recall, none of this mattered in the fixed-X setting ...)

So what data generating distribution should we use for our reference
model in the random-X setting?
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Universal asymptotics

Consider i.i.d. samples (xi , yi ), i = 0, . . . , n + 1, from the following
standard random matrix theory (RMT) model:

• xi = Σ1/2zi , where Σ ∈ Rp×p is deterministic with eigenvalues
bounded away from 0 and ∞; and zi ∈ Rp has i.i.d. coordinates with
zero mean, unit variance, and finite 4th moment

• yi = x⊤i β + ϵi , where ϵi has zero mean, unit variance, and is
independent of xi

Theorem. Under the standard RMT model above, as n, p → ∞ with
p/n → γ < 1, the random-X optimism least squares satisfies:1

OptR(f̂ lsp )− σ2

(
n

n − p
− n − p

n

)
→ 0

1Convergence is actually almost sure wrt training features X ∈ Rn×p ; need uniform
integrability to get convergence in expectation.
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Emergent random-X df

Using this we can define a quantity we call emergent random-X df:
dfe(f̂ ) = k, for the number k ≥ 0 such that

OptR(f̂ ; {original data}) = OptR(f̂ lsk ; {RMT data})

• LHS: random-X opt of the given model f̂ on the original data

• RHS: random-X opt of least squares f̂ lsk on “RMT data”, i.e.,
xi = Σ1/2zi , yi = x⊤i β + ϵi , as before

• RHS admits simple asymptotic approximation: σ2( n
n−k − n−k

n )

We call this “emergent” random-X df as it refers to the complexity that
“emerges” from the optimism of f̂ on data at hand. The LHS generally
has both bias and variance components, whereas the RHS is pure variance
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Illustration: least squares as reference

Random-X optimism for least squares, with n = 50:
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Example: emergent random-X df

Ex with n = 200 samples, d = 300 features, E[y |x ] nonlinear in x :
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Intrinsic random-X df

We can also define a different quantity called intrinsic random-X df:
df i(f̂ ) = k , for the number k ≥ 0 such that

OptR(f̂ ; {original x , noisy y}) = OptR(f̂ lsk ; {RMT data})

• LHS: random-X opt of the given model f̂ on original features xi , but
with pure noise for the response yi ∼ N(0, σ2)

• RHS: random-X opt of least squares f̂ lsk on “RMT data”, i.e.,
xi = Σ1/2zi , yi = x⊤i β + ϵi , as before

• RHS admits simple asymptotic approximation: σ2( n
n−k − n−k

n )

We call this “intrinsic” random-X df as it refers to the complexity
internal to the model f̂ , regardless of the data. Note that both the LHS
and RHS reflect pure variance
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Example: intrinsic random-X df

Ex with n = 200 samples, d = 300 features, E[y |x ] nonlinear in x :
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Computing random-X degrees of freedom

We have defining equations for random-X degrees of freedom, but how
do we actually compute the solution in practice?

We need three numbers:

• OptR(A(X , y)): emergent random-X optimism
Either supplied by user or via cross or held-out validation

• OptR(A(X , v)): intrinstic random-X optimism
Simulate at noise level if known, otherwise average

• OptR(Aref(X , v)): reference optimism
Either simulate or use invariant asymptotic limit that holds under
quite generic conditions on the random design matrix and noise:

OptR(Aref(Uk , v))

σ2
→ 1− (1− ξ)2

1− ξ
as n, p → ∞ and p/n → ξ ∈ (0, 1),
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Computing random-X degrees of freedom

Under the asymptotic limit, solving for the random-X degrees of freedom
by matching optimisms leads:

dfR(f̂ )/n → 1 +
ψ

2
−
√
1 +

ψ2

4
.

where ψ is the normalized random-X optimism of the given predictor.

Remarks:

• There is a unique number in [0, n] satisfying the desired relations.

• This is an interpretable range for random-X degrees of freedom:

– The least complex predictor has dfR of 0,
– The most complex predictor has dfR of n, as if saturated model.
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Bias attribution

By subtracting emergent and intrinsic degrees of freedom, we are left
with the df due to bias:

dfbias(f̂ ) = dfe(f̂ )− df i(f̂ )

Back to our example:
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General decomposition

Generic decompositions are possible. Let e1, . . . , em be any list of
user-chosen error components. E.g., e1 = bias, e2 = covariate shift, and
so on

For any subset S ⊆ {e1, . . . , em}, let dfS(f̂ ) = k , for the number k ≥ 0
such that

OptR(f̂ ; {data subject to S}) = OptR(f̂ lsk ; {RMT data})

We can then attribute di df to each error component ei , as follows:

di =
∑

S⊆{e1,...,em}\{ei}

|S |!(m − |S | − 1)!

m!
(dfS∪{ei}(f̂ )− dfS(f̂ ))

This is an instance of a Shapley value. Therefore it obeys all of the
Shapley axioms; in particular, efficiency:

∑m
i=1 di = dfe(f̂ )
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Example: bias and covariate shift

Ex with n = 200 samples, d = 300 features, E[y |x ] nonlinear in x , and
covariate shift (Σ → Σ̃):
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Double descent, revisited

We can use random-X df (any flavor) to reparametrize error curve for
models with double descent. The df map is not monotone, but it shows
that in the overparametrized regime, the effective number of parameters
can actually be small

Back to our running example:
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Discussion and future directions

A high-level view of the work:

• Suppose we are given a family of models for which we want a
complexity measure under a specific error metric.

• Construct a family of “reference” models spanning same optimisms.

• Find the model in the reference family that is closest to the observed
optimism. Declare complexity as complexity of that reference model.

Key relation:
OptR(f̂ ) = OptR(f̂ ref)

Going beyond . . .

• Other error metrics beyond squared error

• Unsupervised setting?
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Thanks for listening!

Questions/comments/thoughts?
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