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Outlook

I Recent trend in statistics and machine learning:

– Assumption-free/distribution-free inference
– Safe inference
– Robust inference
– Agnostic inference

I Uncertainty quantification in inverse problems:

– Different uncertainties: noise, state, model
– Frequentist versus Bayesian measure of uncertainty

I This work on frequentist uncertainty quantification in CO2 retrieval:

– Potential undercoverage of operational retrieval confidence intervals
– Ways of constructing confidence intervals using physical constraints
– Ways of borrowing certainties from other sources or retrievals
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CO2 sensing system: general model

x ∈ Rp: state vector, F ∈ Rp → Rn: forward model,
ε ∈ Rn: instrument noise, y ∈ Rn: radiance observations
Quantity of interest: a functional of state vector θ(x) ∈ R
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CO2 sensing system: approximated model 1

I state vector x:

– CO2 profile (layer 1 to layer 20) [20 elements]
– surface pressure [1 elements]
– surface albedo [6 elements]
– aerosols [12 elements]

I forward model F :
linearized with forward model Jacobian K(x) = ∂F (x)

∂x

I noise ε: normal approximation

I observations y:
discretized radiances in 3 near-infrared bands [1024 in each band]

– O2 A-band (around 0.76 microns)
– weak CO2 band (around 1.61 microns)
– strong CO2 band (around 2.06 microns)

1provided by Jon Hobbs [Hobbs et al., SIAM/ASA Journal on Uncertainty
Quantification, 2017]
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Question of interest

Input:

I radiance observations y

I an approximated model y ≈Kx+ ε

Output:

I confidence interval
[
θ, θ
]

for a functional θ(x) of the form hTx that
measures column averaged CO2 with frequentist coverage
Pε(θ ∈

[
θ, θ
]
) ≈ 1− α for any x
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Ill-posed inverse problem
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Inverse problem severely ill-posed with exponential singular values decay
Lowest eigenvalue numerically zero leading to null space directions
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Operational retrieval: outline

Key idea: let prior on x regularize the problem (Bayesian procedure)

I Assume prior distribution on p(x)

I Combine prior with likelihood from forward model F (x) using
observations y to get posterior p(x|y)

I Compute MAP estimator x̂ maximizing p(x|y)
I Use plug-in estimate as θ̂ = θ(x̂)

I From the posterior distribution p(x|y), estimate covariance Σ̂ of x̂

I Use plug-in estimate for posterior variance σ̂2 as σ2(Σ̂)

I Set the (1− α) credible interval as
[
θ̂ − zα/2σ̂, θ̂ + zα/2σ̂

]
Potential issues: bias and undercoverage
The true uncertainty could be drastically underestimated!
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Operational retrieval: details

I Prior: x∼N (µa,Σa)

I Estimate: θ̂=hT (KTΣ−1
ε K+Σ−1

a )−1(KTΣ−1
ε y+Σ−1

a µa)

I Posterior variance: σ̂2=hT (KTΣ−1
ε K+Σ−1

a )−1h

I Standard error: se(θ̂)=
√
cTΣεc for cT=hT (KTΣ−1

ε K+Σ−1
a )−1KTΣ−1

ε

I Bias: bias(θ̂)=mT (x−µa) for m=(KTΣ−1
ε K(KTΣ−1

ε K+Σ−1
a )−1−I )h

I Coverage: Pε(θ∈[θ,θ])=Φ
(
− bias(θ̂)

se(θ̂)
+z1−α/2

σ̂
se(θ̂)

)
−Φ

(
− bias(θ̂)

se(θ̂)
−z1−α/2 σ̂

se(θ̂)

)
I Length: 2z1−α/2σ̂
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Operational retrieval: bias and coverage distributions

(a) bias distribution (b) coverage distribution

Minimum coverage: 78.9%
Fraction of cases below nominal coverage: 12.03%

9 / 29



Issues with operational retrieval: single sounding

Coverage for some single soundings at Lamont, OK

x realization operational bias operational coverage

1 1.417 0.789
2 1.370 0.809
3 1.303 0.834
4 1.235 0.857
5 1.164 0.880
6 1.079 0.903
7 0.978 0.926
8 0.842 0.950
9 0.659 0.972

10 0.000 0.995

The lowest coverage sometimes drops even below 50%.
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Operational retrieval illustration: single sounding

Minimum coverage:
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(b) bias components
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Operational retrieval illustration: single sounding

Maximum coverage:
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Operational retrieval illustration: single sounding

Nominal coverage:
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Issues with operational retrieval: grid sounding

(a) coverage pattern (b) bias pattern

Fraction of soundings below nominal coverage: 0.55
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Issues with operational retrieval: grid sounding

(a) coverage pattern (b) bias pattern

Fraction of soundings below nominal coverage: 1

15 / 29



Proposed retrieval: version 1

Key idea 1: let actual physical constraints regularize the problem2

Rn

observation space

Rp

state space

yE

D = F−1(E)
C

x

F

F (x)

R

θ(x)

θ θθ

θ = θ(x), θ = min
x∈C∩D

θ(x), θ = max
x∈C∩D

θ(x)

2Stark, Journal of Geophysical Research, 1992; Kuusela and Stark, Annals of
Applied Statistics, 2017
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Proposed retrieval: version 2

I Version 1 is working harder than it needs to. The interval
[
θ, θ
]

has
correct finite-sample coverage for any functional θ. But we only care
about a particular functional.

I Key idea 2: only require the procedure to satisfy one-at-time
coverage rather than simultaneous coverage3

I One way is to restrict the set D in version 1 that still preserves the
coverage guarantee for θ. For example, assume Gaussian white noise
for simplicity. Then,

– version 1 uses D = {x : ‖y − F (x)‖2 ≤ χ2
n(α)} which has (1− α)

coverage set in the state space.
– version 2 restricts it such that D′ = {x : ‖y − F (x)‖2 ≤ z2α/2 + b2},

where b = min
x∈C
‖y − F (x)‖

3inspired by Leary and Rust, SIAM Journal on Scientific and Statistical Computing,
1986
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Improvements from proposed retrieval: single sounding

x realization operational coverage proposed coverage

1 0.789 0.951
2 0.809 0.952
3 0.834 0.952
4 0.857 0.951
5 0.880 0.951
6 0.903 0.951
7 0.926 0.950
8 0.950 0.951
9 0.972 0.952

10 0.995 0.951

Length of operational interval about 4, proposed interval about 11.
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Proposed retrieval illustration: single sounding

Minimum coverage:
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Proposed retrieval illustration: single sounding

Maximum coverage:
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Proposed retrieval illustration: single sounding

Nominal coverage:
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Improvements from proposed retrieval: grid sounding
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Improvements from proposed retrieval: grid sounding
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Proposed retrieval: version 3

I So far, we only used actual physical constraints on the state vector.

I But, what if we wanted to incorporate more information about state.

– Certain ranges for some elements of state vector more likely.
– Possibility of borrowing certainty from other sources.

I Version 3 provides a framework for incorporating additional
probabilistic information and still maintaining finite-sample coverage
guarantees. As an example, consider the following:

– Individual state uncertainties
Pε(xi /∈

[
xi(αi), xi(αi)

]
) ≤ αi

– Internal coverage:
Pε(θ /∈

[
θ, θ
]
, xi(αi) ≤ xi ≤ xi(αi)) ≤ γ

– Final coverage:
Pε(θ /∈

[
θ, θ
]
) ≤ γ +

∑
i αi
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Deterministic exact information on individual elements
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Deterministic range for pressure
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Probabilistic range for pressure
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Probabilistic range for pressure

Name of the game:
Tradeoff γ and αi keeping γ +

∑
i αi ≤ α to make lengths smaller.
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Conclusions and extensions

I Take-away 1: Some evidence of potential bias and undercoverage for
the operational retrieval

I Take-away 2: Approach using only physical constraints to provide
good coverage guarantees with reasonable confidence interval sizes

I Take-away 3: Further improvements in the size of intervals from the
proposed retrieval possible using additional information

I Many extensions possible:

– Different ways of restricting the sets for one-at-a-time intervals
– Optimality for the size of the intervals
– Combining information from different missions
– Different approaches for non-linear forward models
– Using intervals for downstream tasks instead of point estimates
– General framework to combine different types of prior informations
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