Uncertainty quantification in $CO₂$ retrieval

JPL Visit October 2019

Pratik Patil, Mikael Kuusela, Jonathan Hobbs

Outlook

 \blacktriangleright Recent trend in statistics and machine learning:

- Assumption-free/distribution-free inference
- Safe inference
- Robust inference
- Agnostic inference
- \blacktriangleright Uncertainty quantification in inverse problems:
	- Different uncertainties: noise, state, model
	- Frequentist versus Bayesian measure of uncertainty
- In This work on frequentist uncertainty quantification in $CO₂$ retrieval:
	- Potential undercoverage of operational retrieval confidence intervals
	- Ways of constructing confidence intervals using physical constraints
	- Ways of borrowing certainties from other sources or retrievals

$CO₂$ sensing system: general model

 $\boldsymbol{x} \in \mathbb{R}^p$: state vector, $\boldsymbol{F} \in \mathbb{R}^p \to \mathbb{R}^n$: forward model, $\boldsymbol{\varepsilon} \in \mathbb{R}^n$: instrument noise, $\boldsymbol{y} \in \mathbb{R}^n$: radiance observations Quantity of interest: a functional of state vector $\theta(x) \in \mathbb{R}$

$CO₂$ sensing system: approximated model ¹

 \blacktriangleright state vector x :

- $-$ CO₂ profile (layer 1 to layer 20) [20 elements]
- surface pressure [1 elements]
- surface albedo [6 elements]
- aerosols [12 elements]
- \blacktriangleright forward model \mathbf{F} .

linearized with forward model Jacobian $\bm{K}(\bm{x}) = \frac{\partial \bm{F}(\bm{x})}{\partial \bm{x}}$

ighthaopted in noise ε : normal approximation

 \blacktriangleright observations y :

discretized radiances in 3 near-infrared bands [1024 in each band]

- $-$ O₂ A-band (around 0.76 microns)
- weak $CO₂$ band (around 1.61 microns)
- strong $CO₂$ band (around 2.06 microns)

¹ provided by Jon Hobbs [Hobbs et al., SIAM/ASA Journal on Uncertainty Quantification, 2017]

Question of interest

Input:

\blacktriangleright radiance observations y

ightharpoonup an approximated model $y \approx Kx + \varepsilon$

Output:

ightharpoon confidence interval $[\underline{\theta}, \overline{\theta}]$ for a functional $\theta(x)$ of the form $\boldsymbol{h}^T \boldsymbol{x}$ that measures column averaged $CO₂$ with frequentist coverage $\mathbb{P}_{\bm{\varepsilon}}(\theta\in\left[\underline{\theta},\overline{\theta}\right])\approx1-\alpha$ for any \bm{x}

Ill-posed inverse problem

Inverse problem severely ill-posed with exponential singular values decay Lowest eigenvalue numerically zero leading to null space directions

Operational retrieval: outline

Key idea: let prior on x regularize the problem (Bayesian procedure)

- Assume prior distribution on $p(x)$
- **If** Combine prior with likelihood from forward model $F(x)$ using observations y to get posterior $p(x|y)$
- ▶ Compute MAP estimator \hat{x} maximizing $p(x|y)$
- **IDE** Use plug-in estimate as $\hat{\theta} = \theta(\hat{x})$
- **F** From the posterior distribution $p(x|y)$, estimate covariance $\hat{\Sigma}$ of \hat{x}
- ► Use plug-in estimate for posterior variance $\hat{\sigma}^2$ as $\sigma^2(\hat{\Sigma})$

• Set the
$$
(1 - \alpha)
$$
 credible interval as $\left[\hat{\theta} - z_{\alpha/2}\hat{\sigma}, \hat{\theta} + z_{\alpha/2}\hat{\sigma}\right]$

Potential issues: bias and undercoverage The true uncertainty could be drastically underestimated!

Operational retrieval: details

 \triangleright Prior: $x \sim \mathcal{N}(u_0, \Sigma_0)$ ► Estimate: $\hat{\theta} = h^T (K^T \Sigma_{\varepsilon}^{-1} K + \Sigma_a^{-1})^{-1} (K^T \Sigma_{\varepsilon}^{-1} y + \Sigma_a^{-1} \mu_a)$ Posterior variance: $\hat{\sigma}^2 = h^T (K^T \Sigma_{\varepsilon}^{-1} K + \Sigma_a^{-1})^{-1} h$ Standard error: $se(\hat{\theta}) = \sqrt{\mathbf{c}^T \mathbf{\Sigma}_{\varepsilon} \mathbf{c}}$ for $\mathbf{c}^T = \mathbf{h}^T (\mathbf{K}^T \mathbf{\Sigma}_{\varepsilon}^{-1} \mathbf{K} + \mathbf{\Sigma}_{a}^{-1})^{-1} \mathbf{K}^T \mathbf{\Sigma}_{\varepsilon}^{-1}$ \blacktriangleright Bias: bias(θ̂)= $m^T(x-\mu_a)$ for $m=(K^T\Sigma_{\varepsilon}^{-1}K(K^T\Sigma_{\varepsilon}^{-1}K+\Sigma_a^{-1})^{-1}-I)h$ ► Coverage: $\mathbb{P}_{\varepsilon}(\theta \in [\theta, \overline{\theta}]) = \Phi\left(-\frac{\text{bias}(\hat{\theta})}{\text{se}(\hat{\theta})} + z_{1-\alpha/2} \frac{\hat{\sigma}}{\text{se}(\hat{\theta})}\right) - \Phi\left(-\frac{\text{bias}(\hat{\theta})}{\text{se}(\hat{\theta})} - z_{1-\alpha/2} \frac{\hat{\sigma}}{\text{se}(\hat{\theta})}\right)$ ► Length: $2z_{1-\alpha/2}\hat{\sigma}$

Operational retrieval: bias and coverage distributions

Minimum coverage: 78.9% Fraction of cases below nominal coverage: 12.03%

Issues with operational retrieval: single sounding

Coverage for some single soundings at Lamont, OK

The lowest coverage sometimes drops even below 50%.

Operational retrieval illustration: single sounding

Minimum coverage:

Operational retrieval illustration: single sounding

Maximum coverage:

Operational retrieval illustration: single sounding

Nominal coverage:

Issues with operational retrieval: grid sounding

Fraction of soundings below nominal coverage: 0.55

Issues with operational retrieval: grid sounding

Fraction of soundings below nominal coverage: 1

Proposed retrieval: version 1

Key idea 1: let actual physical constraints regularize the problem²

²Stark, Journal of Geophysical Research, 1992; Kuusela and Stark, Annals of Applied Statistics, 2017

Proposed retrieval: version 2

- \blacktriangleright Version 1 is working harder than it needs to. The interval $\left[\underline{\theta}, \overline{\theta}\right]$ has correct finite-sample coverage for any functional θ . But we only care about a particular functional.
- \blacktriangleright Key idea 2: only require the procedure to satisfy one-at-time coverage rather than simultaneous coverage³
- \triangleright One way is to restrict the set D in version 1 that still preserves the coverage guarantee for θ . For example, assume Gaussian white noise for simplicity. Then,
	- $-$ version 1 uses $D=\{\bm{x}:\|\bm{y}-\bm{F}(\bm{x})\|^2\leq \chi^2_n(\alpha)\}$ which has $(1-\alpha)$ coverage set in the state space.
	- $-$ version 2 restricts it such that $D' = \{\bm{x} : \|\bm{y} \bm{F}(\bm{x})\|^2 \leq z_{\alpha/2}^2 + b^2\},$ where $b = \min_{\bm{x} \in C} \|\bm{y} - \bm{F}(\bm{x})\|$

 3 inspired by Leary and Rust, SIAM Journal on Scientific and Statistical Computing, 1986

Improvements from proposed retrieval: single sounding

Length of operational interval about 4, proposed interval about 11.

Proposed retrieval illustration: single sounding

Minimum coverage:

Proposed retrieval illustration: single sounding

Maximum coverage:

Proposed retrieval illustration: single sounding

Nominal coverage:

Improvements from proposed retrieval: grid sounding

Improvements from proposed retrieval: grid sounding

Proposed retrieval: version 3

- \triangleright So far, we only used actual physical constraints on the state vector.
- \triangleright But, what if we wanted to incorporate more information about state.
	- Certain ranges for some elements of state vector more likely.
	- Possibility of borrowing certainty from other sources.
- \triangleright Version 3 provides a framework for incorporating additional probabilistic information and still maintaining finite-sample coverage guarantees. As an example, consider the following:
	- Individual state uncertainties
		- $\mathbb{P}_{\boldsymbol{\varepsilon}}(x_i \notin [x_i(\alpha_i), \overline{x_i}(\alpha_i)]) \leq \alpha_i$
	- Internal coverage: $\mathbb{P}_{\boldsymbol{\varepsilon}}(\theta \notin \left[\underline{\theta}, \overline{\theta}\right], \underline{x_i}(\alpha_i) \leq x_i \leq \overline{x_i}(\alpha_i)) \leq \gamma$
	- Final coverage: $\mathbb{P}_{\boldsymbol{\varepsilon}}(\theta \notin \left[\underline{\theta}, \overline{\theta}\right]) \leq \gamma + \sum_i \alpha_i$

Deterministic exact information on individual elements

Deterministic range for pressure

Probabilistic range for pressure

Probabilistic range for pressure

Name of the game: Tradeoff γ and α_i keeping $\gamma + \sum_i \alpha_i \leq \alpha$ to make lengths smaller.

Conclusions and extensions

- \triangleright Take-away 1: Some evidence of potential bias and undercoverage for the operational retrieval
- \triangleright Take-away 2: Approach using only physical constraints to provide good coverage guarantees with reasonable confidence interval sizes
- \triangleright Take-away 3: Further improvements in the size of intervals from the proposed retrieval possible using additional information
- \blacktriangleright Many extensions possible:
	- Different ways of restricting the sets for one-at-a-time intervals
	- Optimality for the size of the intervals
	- Combining information from different missions
	- Different approaches for non-linear forward models
	- Using intervals for downstream tasks instead of point estimates
	- General framework to combine different types of prior informations