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e Ridge regularization: selecting the regularization parameter A

e Gradient descent: determining whether and when to early stop the GD iteration 2
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e Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10)
Might suffer from significant bias [Rad and Maleki, 2020], [Rad et al., 2020]

e Leave-one-out cross-validation (LOOCV, K = n)
Mitigates bias issues, computationally expensive to implement

e Generalized cross-validation (GCV)
Approximation to LOOCV for estimators that are linear smoothers

e LOOCV and GCV are consistent for the prediction risk of ridge regression in
high-dimensional settings (p < n) [Patil et al., 2021]

e Is LOOCV and GCV consistent for GD, in the context of high-dimensional
regression?
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High-dimensional least squares regression

e Consider i.i.d. data {(z;,yi) }i<n CRP X R, p=n
e The ordinary least squares problem:
S 1
minimizegecre %Hy — X3

e Solve with gradient descent:

~ ~ 5’6—1 ~

/Bk:Bk—l+TXT(y_X/Bk—1)7 k:1a27"'7K

K steps, step size dx
e Want to estimate the out-of-sample prediction risk:
R(Br) = Eag o [(v0 — 23 5x)% | X, 9]

(z0,yo0) is a test data point. Expectation is taken over (z, yo)
e How well do LOOCV and GCV estimate R(j3;)?
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LOOCV

° Bk,i: output of GD with k iterations trained on (X_;,y_;)

n

R0 (By) = %Z(yi — &} Be,—i)?

i=1

e Under certain conditions,
max |R'°°(8,) — R(B)| 23 0
B |R'°(Br) — R(By)|
e Application: use LOOCV to tune early-stopped gradient descent:

k, = g RIOOA , RA — i RA a_s>0
arg krél[l% (Br) |R(Bk,) klél[l% (Br)|
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Feature vector decomposition: z; = X1/22z;, Zij ~iid. Pz || Z]lep < ox

yi = f(xi, &), fis Ly-Lipschitz, E[y}] < ms, €i ~iid. fe
® [, U satisfy the Tr-inequality

0<(¢L<p/n<(y<oo
K = o(n(logn)=3/?)
Initialization is bounded: ||fo]|2 < Bo
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Ts-inequality

Definition (7:-inequality)
We say a distribution p satisfies the Th-inequality if there exists a constant o(u) > 0,
such that for every distribution v,

) < V202 (1) Dxr(v | 1)

Examples of distributions that satisfy 75:

1. Distributions that satisfy log Sobolev inequality
2. Log-concave distributions

3. Gaussian convolutions of distributions with bounded support



Dimension-free concentration

Lemma, (Van Handel, 2014)

Let i be a probability measure, and X; ~;; 4. 4. Then the following are equivalent:

1. p satisfies Th-inequality with constant o

2. For every 1-Lipschitz function g,

P(lg(X1, -, Xn) — Elg(X1,---, XN)][ 2 1) < Cpe /2"
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Theorem

Assume all the aforementioned assumptions, then as n, p — oo,
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LOOCV consistency

Theorem
Assume all the aforementioned assumptions, also assume L. is pseudo-Lipschitz, then
as n,p — o0,

L'°(By) — L(By)| %3 0.
152%| (Be) — L(Br)| &
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Generalized cross-validation (GCV)

e LOOCV is consistent, while in most cases computationally expensive

For predictors that are linear smoothers, we can use GCV to approximate LOOCV
[Golub et al., 1979]

e Suppose we have a predictor f that is a linear smoother: f(a:) = sly, sz € R" is

a function of the training data X and the test point

o GCV estimate of the prediction risk:
seev iy _ Iy — Syli3
RSV —
(£) (1 —tr[S]/n)?
S € R™ ™ has rows s, , sl

GD and ridge are linear smoothers
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GCV inconsistency

e GCV is consistent for high-dimensional ridge regression under mild data

assumptions [Patil et al., 2021]
e Question: Is GCV also consistent for gradient descent?

e The answer is no: simple counterexample with Gaussian isotropic features
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The End
Thank youl!
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