Failures and Successes of Cross-Validation for Early-Stopped Gradient Descent

Yuchen Wu

3rd May 2024

Department of Statistics and Data Science The Wharton School, University of Pennsylvania

Pratik Patil Berkeley Stats

Ryan Tibshirani Berkeley Stats

Implicit regularization: regularization effect induced by the optimization algorithm

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration ²

Implicit regularization: regularization effect induced by the optimization algorithm

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration ²

Implicit regularization: regularization effect induced by the optimization algorithm

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration ²

Implicit regularization: regularization effect induced by the optimization algorithm Close connection between ℓ^2 regularization and gradient descent

[Suggala et al., [2018\]](#page-66-0), [Neu and Rosasco, [2018\]](#page-66-1), [Ali et al., [2019\]](#page-66-2), [Ali et al., [2020\]](#page-66-3)

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration 2

Implicit regularization: regularization effect induced by the optimization algorithm Close connection between ℓ^2 regularization and gradient descent

[Suggala et al., [2018\]](#page-66-0), [Neu and Rosasco, [2018\]](#page-66-1), [Ali et al., [2019\]](#page-66-2), [Ali et al., [2020\]](#page-66-3)

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration 2

Implicit regularization: regularization effect induced by the optimization algorithm Close connection between ℓ^2 regularization and gradient descent

[Suggala et al., [2018\]](#page-66-0), [Neu and Rosasco, [2018\]](#page-66-1), [Ali et al., [2019\]](#page-66-2), [Ali et al., [2020\]](#page-66-3)

- Ridge regularization: selecting the regularization parameter λ
- Gradient descent: determining whether and when to early stop the GD iteration $2\overline{2}$

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10)
- Leave-one-out cross-validation (LOOCV, $K = n$)
- Generalized cross-validation (GCV)
- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$)
- Generalized cross-validation (GCV)
- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$)

- Generalized cross-validation (GCV)
- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$) Mitigates bias issues, computationally expensive to implement
- Generalized cross-validation (GCV)
- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$) Mitigates bias issues, computationally expensive to implement
- Generalized cross-validation (GCV)

- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$) Mitigates bias issues, computationally expensive to implement
- Generalized cross-validation (GCV) Approximation to LOOCV for estimators that are linear smoothers
- LOOCV and GCV are consistent for the prediction risk of ridge regression in
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$) Mitigates bias issues, computationally expensive to implement
- Generalized cross-validation (GCV) Approximation to LOOCV for estimators that are linear smoothers
- LOOCV and GCV are consistent for the prediction risk of ridge regression in high-dimensional settings $(p \asymp n)$ [Patil et al., [2021\]](#page-66-6)
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional

- Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10) Might suffer from significant bias [Rad and Maleki, [2020\]](#page-66-4), [Rad et al., [2020\]](#page-66-5)
- Leave-one-out cross-validation (LOOCV, $K = n$) Mitigates bias issues, computationally expensive to implement
- Generalized cross-validation (GCV) Approximation to LOOCV for estimators that are linear smoothers
- LOOCV and GCV are consistent for the prediction risk of ridge regression in high-dimensional settings $(p \asymp n)$ [Patil et al., [2021\]](#page-66-6)
- Is LOOCV and GCV consistent for GD, in the context of high-dimensional regression?

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, \ p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y-X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\mathsf{T}} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

• Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$

• The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y - X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\mathsf{T}} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y-X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}}(y - X\hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0}[(y_0 - x_0^{\mathsf{T}} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y-X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

K steps, step size δ_k

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\mathsf{T}} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y-X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

K steps, step size δ_k

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\sf T} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y-X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

K steps, step size δ_k

• Wish to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\sf T} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

- Consider i.i.d. data $\{(x_i, y_i)\}_{i \leq n} \subseteq \mathbb{R}^p \times \mathbb{R}, p \asymp n$
- The ordinary least squares problem:

$$
\text{minimize}_{\beta \in \mathbb{R}^p} \ \frac{1}{2n} \|y - X\beta\|_2^2
$$

• Solve with gradient descent:

$$
\hat{\beta}_k = \hat{\beta}_{k-1} + \frac{\delta_{k-1}}{n} X^{\mathsf{T}} (y - X \hat{\beta}_{k-1}), \qquad k = 1, 2, \cdots, K
$$

K steps, step size δ_k

• Want to estimate the out-of-sample prediction risk:

$$
R(\hat{\beta}_k) = \mathbb{E}_{x_0, y_0} [(y_0 - x_0^{\sf T} \hat{\beta}_k)^2 \mid X, y]
$$

 (x_0, y_0) is a test data point. Expectation is taken over (x_0, y_0)

• How well do LOOCV and GCV estimate $R(\hat{\beta}_k)?$

 \bullet $\hat{\beta}_{k,i}$: output of GD with k iterations trained on (X_{-i},y_{-i})

$$
\hat{R}^{\text{loo}}(\hat{\beta}_k) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\text{T}} \hat{\beta}_{k,-i})^2
$$

• Under certain conditions,

$$
\max_{k \in [K]} \big| \hat R^{\rm loo}(\hat\beta_k) - R(\hat\beta_k) \big| \stackrel{\rm a.s.}{\to} 0
$$

$$
k_* = \arg\min_{k \in [K]} \hat{R}^{\text{loo}}(\hat{\beta}_k), \qquad |R(\hat{\beta}_{k_*}) - \min_{k \in [K]} R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

 \bullet $\hat{\beta}_{k,i}$: output of GD with k iterations trained on (X_{-i}, y_{-i})

$$
\hat{R}^{\text{loo}}(\hat{\beta}_k) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\text{T}} \hat{\beta}_{k,-i})^2
$$

• Under certain conditions.

$$
\max_{k \in [K]} \big| \hat R^{\rm loo}(\hat\beta_k) - R(\hat\beta_k) \big| \stackrel{\rm a.s.}{\to} 0
$$

$$
k_* = \arg\min_{k \in [K]} \hat{R}^{\text{loo}}(\hat{\beta}_k), \qquad |R(\hat{\beta}_{k_*}) - \min_{k \in [K]} R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

 \bullet $\hat{\beta}_{k,i}$: output of GD with k iterations trained on (X_{-i}, y_{-i})

$$
\hat{R}^{\text{loo}}(\hat{\beta}_k) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\text{T}} \hat{\beta}_{k,-i})^2
$$

• Under certain conditions,

$$
\max_{k \in [K]} |\hat{R}^{\text{loo}}(\hat{\beta}_k) - R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

$$
k_* = \arg\min_{k \in [K]} \hat{R}^{\text{loo}}(\hat{\beta}_k), \qquad |R(\hat{\beta}_{k_*}) - \min_{k \in [K]} R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

 \bullet $\hat{\beta}_{k,i}$: output of GD with k iterations trained on (X_{-i}, y_{-i})

$$
\hat{R}^{\text{loo}}(\hat{\beta}_k) = \frac{1}{n} \sum_{i=1}^{n} (y_i - x_i^{\text{T}} \hat{\beta}_{k,-i})^2
$$

• Under certain conditions,

$$
\max_{k \in [K]} |\hat{R}^{\text{loo}}(\hat{\beta}_k) - R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

$$
k_* = \arg\min_{k \in [K]} \hat{R}^{\text{loo}}(\hat{\beta}_k), \qquad |R(\hat{\beta}_{k_*}) - \min_{k \in [K]} R(\hat{\beta}_k)| \stackrel{\text{a.s.}}{\to} 0
$$

- $\bullet\,$ Feature vector decomposition: $x_i = \Sigma^{1/2} z_i$, $z_{ij} \sim_{i.i.d.} \mu_z$, $\|\Sigma\|_{\mathsf{op}} \leq \sigma_\Sigma$
- \bullet $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ε} satisfy the T_2 -inequality
- $0 < \zeta_L < p/n < \zeta_U < \infty$
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- \bullet $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ε} satisfy the T_2 -inequality
- $0 < \zeta_L \leq p/n \leq \zeta_U < \infty$
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ε} satisfy the T_2 -inequality
- $0 < \zeta_L < p/n < \zeta_U < \infty$
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ϵ} satisfy the T_2 -inequality
- $0 < \zeta_L < p/n < \zeta_U < \infty$
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ϵ} satisfy the T_2 -inequality
- \bullet 0 < ζ_L < p/n < ζ_U < ∞
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ϵ} satisfy the T_2 -inequality
- \bullet 0 < ζ_L < p/n < ζ_U < ∞
- $K = o(n(\log n)^{-3/2})$
- \bullet Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$
- $\bullet\,$ Feature vector decomposition: $x_i=\Sigma^{1/2}z_i$, $z_{ij}\sim_{i.i.d.}\mu_z$, $\|\Sigma\|_{\mathsf{op}}\leq\sigma_\Sigma$
- $y_i = f(x_i, \varepsilon_i)$, f is L_f -Lipschitz, $\mathbb{E}[y_1^8] \leq m_8$, $\varepsilon_i \sim_{i.i.d.} \mu_{\varepsilon}$
- μ_z , μ_{ε} satisfy the T_2 -inequality
- \bullet 0 < ζ_L < p/n < ζ_U < ∞
- $K = o(n(\log n)^{-3/2})$
- $\bullet\,$ Initialization is bounded: $\|\hat{\beta}_0\|_2 \leq B_0$

$$
W_2(\mu,\nu) \leq \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
-
- 3. Gaussian convolutions of distributions with bounded support

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \geq 0$, such that for every distribution ν ,

$$
W_2(\mu,\nu) \le \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
-
- 3. Gaussian convolutions of distributions with bounded support

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \geq 0$, such that for every distribution ν ,

$$
W_2(\mu,\nu) \le \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
-
- 3. Gaussian convolutions of distributions with bounded support

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \geq 0$, such that for every distribution ν ,

$$
W_2(\mu,\nu) \le \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
-
- 3. Gaussian convolutions of distributions with bounded support

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \geq 0$, such that for every distribution ν ,

$$
W_2(\mu,\nu) \le \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
- 2. Log-concave distributions
- 3. Gaussian convolutions of distributions with bounded support

Definition $(T_2$ -inequality)

We say a distribution μ satisfies the T₂-inequality if there exists a constant $\sigma(\mu) \geq 0$, such that for every distribution ν ,

$$
W_2(\mu,\nu) \le \sqrt{2\sigma^2(\mu)D_{\text{KL}}(\nu \parallel \mu)}
$$

- 1. Distributions that satisfy log Sobolev inequality
- 2. Log-concave distributions
- 3. Gaussian convolutions of distributions with bounded support

Lemma, (Van Handel, [2014\)](#page-66-7)

Let μ be a probability measure, and $X_i \sim_{i.i.d.} \mu$. Then the following are equivalent:

- 1. μ satisfies T_2 -inequality with constant σ
- 2. For every 1-Lipschitz function q ,

$$
\mathbb{P}\left(|g(X_1,\dots,X_N)-\mathbb{E}[g(X_1,\dots,X_N)]\right| \geq t\right) \leq C_0 e^{-t^2/2\sigma^2}
$$

Theorem

Assume all the aforementioned assumptions, then as $n, p \rightarrow \infty$,

$$
\max_{k \in [K]} |\hat{R}^{\text{loo}}(\hat{\beta}_k) - R(\hat{\beta}_k)| \stackrel{a.s.}{\to} 0.
$$

Theorem

Assume all the aforementioned assumptions, then as $n, p \rightarrow \infty$,

$$
\max_{k \in [K]} |\hat{R}^{\text{loo}}(\hat{\beta}_k) - R(\hat{\beta}_k)| \stackrel{a.s.}{\to} 0.
$$

Theorem

Assume all the aforementioned assumptions, also assume L is pseudo-Lipschitz, then as $n, p \rightarrow \infty$,

$$
\max_{k \in [K]} \left| \hat{L}^{\text{loo}}(\hat{\beta}_k) - L(\hat{\beta}_k) \right| \stackrel{a.s.}{\to} 0.
$$

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\rm gcv}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s^{\intercal}_x

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\rm gcv}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s^{\intercal}_x

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV [Golub et al., [1979\]](#page-66-8)
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\rm gcv}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s^{\intercal}_x

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV [Golub et al., [1979\]](#page-66-8)
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\text{gcv}}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s^{\intercal}_x

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV [Golub et al., [1979\]](#page-66-8)
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\rm gcv}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s_x^{T} $x_1, \cdots, s_x^{\mathsf{T}}$ \dot{x}_n

- LOOCV is consistent, while in most cases computationally expensive
- For predictors that are linear smoothers, we can use GCV to approximate LOOCV [Golub et al., [1979\]](#page-66-8)
- \bullet Suppose we have a predictor \hat{f} that is a linear smoother: $\hat{f}(x) = s_x^\intercal y$, $s_x \in \mathbb{R}^n$ is a function of the training data X and the test point x
- GCV estimate of the prediction risk:

$$
\hat{R}^{\rm gcv}(\hat{f}) = \frac{\|y - Sy\|_2^2}{(1 - \text{tr}[S]/n)^2}
$$

 $S \in \mathbb{R}^{n \times n}$ has rows s_x^{T} $x_1, \cdots, s_x^{\mathsf{T}}$ \dot{x}_n

- GCV is consistent for high-dimensional ridge regression under mild data
- Question: Is GCV also consistent for gradient descent?
- The answer is no: simple counterexample with Gaussian isotropic features
- GCV is consistent for high-dimensional ridge regression under mild data assumptions [Patil et al., [2021\]](#page-66-6)
- Question: Is GCV also consistent for gradient descent?
- The answer is no: simple counterexample with Gaussian isotropic features
- GCV is consistent for high-dimensional ridge regression under mild data assumptions [Patil et al., [2021\]](#page-66-6)
- Question: Is GCV also consistent for gradient descent?
- The answer is no: simple counterexample with Gaussian isotropic features
- GCV is consistent for high-dimensional ridge regression under mild data assumptions [Patil et al., [2021\]](#page-66-6)
- Question: Is GCV also consistent for gradient descent?
- The answer is no: simple counterexample with Gaussian isotropic features

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

Discussion and future directions

Summary

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

Discussion and future directions

Summary

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

Discussion and future directions

Summary

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

- GD for high-dimensional least squares regression
- LOOCV is uniformly consistent along the GD path under mild assumptions
- GCV is inconsistent in even simple examples
- Propose shortcut implementation of LOOCV to reduce computational cost (check our paper)

- Extension to general iterative algorithms? Like SGD
- Universality result without the T_2 assumption?
- Develop approximate LOOCV approach

The End Thank you!

[References](#page-66-9)

Ali, A., Dobriban, E., & Tibshirani, R. (2020).The implicit regularization of stochastic gradient flow for least squares. International conference on machine learning, 233–244.

- Ali, A., Kolter, J. Z., & Tibshirani, R. J. (2019). A continuous-time view of early stopping for least squares regression. The 22nd international conference on artificial intelligence and statistics, 1370–1378.
- Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215–223.
- Neu, G., & Rosasco, L. (2018).Iterate averaging as regularization for stochastic **gradient descent.** Conference On Learning Theory, 3222-3242.
- Patil, P., Wei, Y., Rinaldo, A., & Tibshirani, R. (2021). Uniform consistency of cross-validation estimators for high-dimensional ridge regression. International Conference on Artificial Intelligence and Statistics, 3178–3186.