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Bias-variance tradeoff

Implicit regularization: regularization effect induced by the optimization algorithm

Close connection between ℓ2 regularization and gradient descent

[Suggala et al., 2018], [Neu and Rosasco, 2018], [Ali et al., 2019], [Ali et al., 2020]

• Ridge regularization: selecting the regularization parameter λ

• Gradient descent: determining whether and when to early stop the GD iteration 2
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Selecting the optimal amount of regularization – cross validation

• Split cross-validation, K-fold cross-validation with a small K (such as 5 or 10)

Might suffer from significant bias [Rad and Maleki, 2020], [Rad et al., 2020]

• Leave-one-out cross-validation (LOOCV, K = n)

Mitigates bias issues, computationally expensive to implement

• Generalized cross-validation (GCV)

Approximation to LOOCV for estimators that are linear smoothers

• LOOCV and GCV are consistent for the prediction risk of ridge regression in

high-dimensional settings (p ≍ n) [Patil et al., 2021]

• Is LOOCV and GCV consistent for GD, in the context of high-dimensional

regression?
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High-dimensional least squares regression

• Consider i.i.d. data {(xi, yi)}i≤n ⊆ Rp × R, p ≍ n

• The ordinary least squares problem:

minimizeβ∈Rp
1

2n
∥y −Xβ∥22

• Solve with gradient descent:

β̂k = β̂k−1 +
δk−1

n
X⊺(y −Xβ̂k−1), k = 1, 2, · · · ,K

K steps, step size δk

• Wish to estimate the out-of-sample prediction risk:

R(β̂k) = Ex0,y0 [(y0 − x⊺0β̂k)
2 | X, y]

(x0, y0) is a test data point. Expectation is taken over (x0, y0)

• Can we use LOOCV and GCV to tune early-stopped gradient descent?
4
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High-dimensional least squares regression

• Consider i.i.d. data {(xi, yi)}i≤n ⊆ Rp × R, p ≍ n

• The ordinary least squares problem:

minimizeβ∈Rp
1

2n
∥y −Xβ∥22

• Solve with gradient descent:

β̂k = β̂k−1 +
δk−1

n
X⊺(y −Xβ̂k−1), k = 1, 2, · · · ,K

K steps, step size δk

• Want to estimate the out-of-sample prediction risk:

R(β̂k) = Ex0,y0 [(y0 − x⊺0β̂k)
2 | X, y]

(x0, y0) is a test data point. Expectation is taken over (x0, y0)

• How well do LOOCV and GCV estimate R(β̂k)?
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LOOCV

• β̂k,i: output of GD with k iterations trained on (X−i, y−i)

R̂loo(β̂k) =
1

n

n∑
i=1

(yi − x⊺i β̂k,−i)
2

• Under certain conditions,

max
k∈[K]

∣∣R̂loo(β̂k)−R(β̂k)
∣∣ a.s.→ 0

• Application: use LOOCV to tune early-stopped gradient descent:

k∗ = arg min
k∈[K]

R̂loo(β̂k), |R(β̂k∗)− min
k∈[K]

R(β̂k)|
a.s.→ 0
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Assumptions

• Feature vector decomposition: xi = Σ1/2zi, zij ∼i.i.d. µz, ∥Σ∥op ≤ σΣ

• yi = f(xi, εi), f is Lf -Lipschitz, E[y81] ≤ m8, εi ∼i.i.d. µε

• µz, µε satisfy the T2-inequality

• 0 < ζL ≤ p/n ≤ ζU < ∞
• K = o(n(log n)−3/2)

• Initialization is bounded: ∥β̂0∥2 ≤ B0

7
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T2-inequality

Definition (T2-inequality)

We say a distribution µ satisfies the T2-inequality if there exists a constant σ(µ) ≥ 0,

such that for every distribution ν,

W2(µ, ν) ≤
√
2σ2(µ)DKL(ν ∥ µ)

Examples of distributions that satisfy T2:

1. Distributions that satisfy log Sobolev inequality

2. Log-concave distributions

3. Gaussian convolutions of distributions with bounded support
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Dimension-free concentration

Lemma, (Van Handel, 2014)

Let µ be a probability measure, and Xi ∼i.i.d. µ. Then the following are equivalent:

1. µ satisfies T2-inequality with constant σ

2. For every 1-Lipschitz function g,

P (|g(X1, · · · , XN )− E[g(X1, · · · , XN )]| ≥ t) ≤ C0e
−t2/2σ2

9



LOOCV consistency

Theorem

Assume all the aforementioned assumptions, then as n, p → ∞,

max
k∈[K]

∣∣R̂loo(β̂k)−R(β̂k)
∣∣ a.s.→ 0.
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LOOCV consistency

Theorem

Assume all the aforementioned assumptions, also assume L is pseudo-Lipschitz, then

as n, p → ∞,

max
k∈[K]

∣∣L̂loo(β̂k)− L(β̂k)
∣∣ a.s.→ 0.
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Generalized cross-validation (GCV)

• LOOCV is consistent, while in most cases computationally expensive

• For predictors that are linear smoothers, we can use GCV to approximate LOOCV

[Golub et al., 1979]

• Suppose we have a predictor f̂ that is a linear smoother: f̂(x) = s⊺xy, sx ∈ Rn is

a function of the training data X and the test point x

• GCV estimate of the prediction risk:

R̂gcv(f̂) =
∥y − Sy∥22

(1− tr[S]/n)2

S ∈ Rn×n has rows s⊺x1 , · · · , s
⊺
xn

• GD and ridge are linear smoothers
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S ∈ Rn×n has rows s⊺x1 , · · · , s
⊺
xn

• GD and ridge are linear smoothers
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GCV inconsistency

• GCV is consistent for high-dimensional ridge regression under mild data

assumptions [Patil et al., 2021]

• Question: Is GCV also consistent for gradient descent?

• The answer is no: simple counterexample with Gaussian isotropic features
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Discussion and future directions

Summary

• GD for high-dimensional least squares regression

• LOOCV is uniformly consistent along the GD path under mild assumptions

• GCV is inconsistent in even simple examples

• Propose shortcut implementation of LOOCV to reduce computational cost (check

our paper)

Future directions

• Extension to general iterative algorithms? Like SGD

• Universality result without the T2 assumption?

• Develop approximate LOOCV approach
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The End

Thank you!
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