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Overparametrization in machine learning

Modern machine learning models typically fit a huge number of
parameters. Such overparameterization seems to be useful for1:

• Representation: allows rich, expressive models for diverse real data

• Optimization: simple, local optimization methods often find
near-optimal solutions to empirical risk minimization problem

• Generalization: despite overfitting, models generalize well in practice

This talk is about generalization aspect in overparameterized learning.

1Credits to Ryan for this nice partition of distinct benefits of overparameterization.
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Peculiar generalization behavior: double descent
R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin, Hsu, Ma, Mandal, 2018: “Reconciling modern machine learning practice and

the bias variance tradeoff”

• The phenomenon is dubbed “double descent” in the risk curve.

• This trend holds for many model classes including linear regression,
kernel regression, random forest, boosting, neural networks, etc.
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Recent theoretical developments

Understanding generalization of interpolators in simpler settings:

• Linear regression

– Hastie, Montanari, Rosset, Tibshirani, 2019
– Belkin, Hsu, Xu, 2019
– Muthukumar, Vodrahalli, Sahai, 2019
– Bartlett, Long, Lugosi, Tsigler, 2019
– Mei, Montanari, 2019

• Kernel regression

– Liang, Rakhlin, 2018
– Liang, Rakhlin, Zhai, 2019

• Local methods

– Belkin, Hsu, Mitra, 2018
– Belkin, Rakhlin, Tsybakov, 2018

• and many more ...

Nice survey papers:
• Bartlett, Montanari, and Rakhlin, 2021: “Deep learning: a statistical viewpoint”

• Belkin, 2021: “Fit without fear: remarkable mathematical phenomena of deep
learning through the prism of interpolation”
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Motivating questions

We study three operational aspects of overparameterized learning:
1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

1. Does cross-validation still “work” in the overparameterized regime,
especially when optimal regularization and train error can be zero?

2. Is it possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior?

3. Is there a better and more principled measure of model complexity in
general for overparameterized models?

Short answers: YES.

Long answers: Rest of the talk.
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Motivation and main punchlines

• Given D = {(xi , yi ) ∈ Rp × R, 1 ≤ i ≤ n}, let β̂λ be ridge estimator:

minimize
β∈Rp

n∑
i=1

(yi − xTi β)
2/n + λ∥β∥22

• The out-of-sample error of β̂λ is y0 − x⊤0 β̂λ for a test point (x0, y0)

Key question: can we reliably estimate the entire out-of-sample error
distribution and its linear and non-linear functionals in high dimensions?

We show, that under proportional asymptotics, almost surely:

1. the empirical distributions of re-weighted in-sample errors from
leave-one-out and generalized cross-validation converge weakly to
the out-of-sample error distribution, even when λ = 0

2. the plug-in estimators of these empirical distributions consistent for
a broad class of linear and non-linear functionals of error distribution
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Overview of high-dimensional ridge regression

• Let X ∈ Rn×p denote feature matrix, y ∈ Rn denote response vector

• Let β̂λ ∈ Rp denote the ridge estimator at regularization level λ:

β̂λ := argmin
β∈Rp

∥y − Xβ∥22/n + λ∥β∥22

– if λ > 0, the problem is convex in β and has an explicit solution:

β̂λ = (XTX/n + λIp)
−1XT y/n

– for any λ ∈ R, extend the solution using Moore-Penrose inverse:

β̂λ = (XTX/n + λIp)
+XT y/n

– when λ = 0, this reduces to least squares sol with minimum ℓ2 norm;
in particular, when rank(X ) = n ≤ p, the solution interpolates data,

i.e. X β̂ = y , and has minimum ℓ2 norm among all interpolators
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Out-of-sample error distribution and its functionals

• Let Pλ denote distribution of out-of-sample error of β̂λ:

Pλ = L
(
y0 − x⊤0 β̂λ | X , y

)
,

where (x0, y0) is sampled indep from the same training distribution
– a random distribution (conditional on observed data X and y)

• Let ψ denote a functional such that P 7→ ψ(P) ∈ R:
– Linear functional:

ψ(Pλ) =

∫
t(z) dPλ(z) = E

[
t(y0 − x⊤

0 β̂λ) | X , y
]
,

where t : R → R is an error function (e.g., squared or absolute error)
– Nonlinear functional:

ψ(Pλ) = Quantile(Pλ; τ) = inf{z : Fλ(z) ≥ τ},

where Fλ denotes the cumulative distribution function of Pλ

We construct estimators of Pλ and ψ(Pλ) by suitably extending
leave-one-out cross-validation and generalized cross-validation procedures.
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Standard leave-one-out and generalized cross-validation

• Leave-one-out cross-validation (LOOCV):

– for every i , train on all data except (xi , yi ), call the estimate β̂−i
λ

– compute test error on the i th point and take average

loo(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂
−i
λ

)2
(shortcut)

=
1

n

n∑
i=1

(
yi − xT

i β̂λ
1− [Lλ]ii

)2

where Lλ = X (XTX/n + λIp)
+XT/n is the ridge smoothing matrix

• Generalized cross-validation (GCV)

– same as leave-one-out shortcut but a single re-weighting

gcv(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂λ
1− tr[Lλ]/n

)2

• Standard LOOCV and GCV are consistent for the expected squared
out-of-sample prediction error

8 / 33
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Proposed estimators

Natural estimators for Pλ and ψ(Pλ) building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

P̂gcv
λ =

1

n

n∑
i=1

δ

(
yi − x⊤i β̂λ
1− tr[Lλ]/n

)
and P̂ loo

λ =
1

n

n∑
i=1

δ

(
yi − x⊤i β̂λ
1− [Lλ]ii

)

• When β̂λ is an interpolator, i.e. Lλ = In, both estimates are “0/0”2;
we then define the estimates as their respective limits as λ→ 0:

P̂gcv
0 =

1

n

n∑
i=1

δ

(
[(XX⊤)†y ]i
tr[(XX⊤)†]/n

)
and P̂ loo

0 =
1

n

n∑
i=1

δ

(
[(XX⊤)†y ]i
[(XX⊤)†]ii

)

• Plug-in GCV and LOO estimators:

ψ̂gcv
λ = ψ(P̂gcv

λ ) and ψ̂loo
λ = ψ(P̂gcv

λ )

2The idea of analytic continuation at λ = 0 is from Hastie, Montanari, Rosset,
Tibshirani, 2019: “Surprises in high-dimensional ridgeless least squares interpolation”
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Distribution estimation

Theorem. Under i.i.d. sampling of (xi , yi ), i = 1, . . . , n with

1. feature xi decomposable into xi = Σ1/2zi where zi contains i.i.d.
entries with mean 0, variance 1, and finite 4+ moment,
and spectrum of Σ is uniformly away from rmin > 0 and rmax <∞,

2. response yi with bounded 4+ moment,

as n, p → ∞ such that p/n → γ ∈ (0,∞), almost surely, for each λ >
λmin := −(1−√

γ)2rmin ≤ 0,

P̂gcv
λ

d−→ Pλ, and P̂ loo
λ

d−→ Pλ.

Remarks:

• Almost sure convergence with respect to the training data

• The regression function does not need to be linear in x

• Amazingly, this results also holds when λ = 0 (min-norm estimator)
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Distribution estimation: illustration
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• λ = 0, i.e., least squares

• n = 2500, p = 5000, p/n = 2

• λ = 0, i.e., min-norm estimator,
zero in-sample errors
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Linear functional estimation (pointwise in λ)

• Let Tλ be a linear functional of the out-of-sample error distribution:

Tλ = E
[
t(y0 − xT0 β̂λ) | X , y

]
• Let T̂ gcv

λ and T̂ loo
λ be plug-in estimators from GCV and LOOCV:

T̂ gcv
λ =

1

n

n∑
i=1

t

(
yi − xTi β̂λ
1− tr[Lλ]/n

)
and T̂ loo

λ =
1

n

n∑
i=1

t

(
yi − xTi β̂λ
1− [Lλ]ii

)

Theorem. For error functions t : R → R
1. that are continuous

2. have quadratic growth, i.e., there exist constants a, b, c > 0
such that |t(z)| ≤ az2 + b|z |+ c for any z ∈ R,

as n, p → ∞ with p/n → γ ∈ (0,∞), for λ > λmin := −(1−√
γ)2rmin,

T̂ gcv
λ

a.s.−−→ Tλ, and T̂ loo
λ

a.s.−−→ Tλ.
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1− tr[Lλ]/n

)
and T̂ loo

λ =
1

n

n∑
i=1

t

(
yi − xTi β̂λ
1− [Lλ]ii

)

Theorem. For error functions t : R → R
1. that are continuous

2. have quadratic growth, i.e., there exist constants a, b, c > 0
such that |t(z)| ≤ az2 + b|z |+ c for any z ∈ R,

as n, p → ∞ with p/n → γ ∈ (0,∞), for λ > λmin := −(1−√
γ)2rmin,

T̂ gcv
λ

a.s.−−→ Tλ, and T̂ loo
λ

a.s.−−→ Tλ.
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Linear functional estimation (uniform in λ)

Theorem. For error functions t : R → R
1. that are differentiable

2. have derivative with linear growth rate, i.e., there exist constants
g , h > 0 such that |t ′(z)| ≤ g |z |+ h for any z ∈ R

as n, p → ∞ with p/n → γ ∈ (0,∞) for any compact set Λ ⊆ (λmin,∞),

sup
λ∈Λ

|T̂ gcv
λ − Tλ|

a.s.−−→ 0, and sup
λ∈Λ

|T̂ loo
λ − Tλ|

a.s.−−→ 0.

Remarks:

• Special case of t(r) = r2 exploits bias-variance decomposition

• No bias-variance decomposition for general error functions and result
requires a different proof technique via leave-one-out arguments

• Using uniformity arguments, the result can be extended for
non-linear variational functionals
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Application: quantile estimation

• Quantile of the out-of-sample error distribution:

Qλ(τ) = Quantile(y0−xT0 β̂λ; τ) = argmin
u∈R

E
[
tu(y0−xT0 β̂λ; τ) | X , y

]
where tu(y − xT0 β̂λ; τ) is τ -tiled pin-ball loss function with shift u

• Empirical quantiles Q̂gcv and Q̂ loo (of P̂gcv
λ and P̂ loo

λ )
a.s.−−→ Qλ

• Estimated quantiles can be used to construct prediction intervals:

Igcv
λ =

[
x⊤0 β̂λ − Q̂gcv

λ (τl), x
⊤
0 β̂λ + Q̂gcv

λ (τu)
]

and I loo
λ

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely

P(y0 ∈ Igcv
λ | X , y) a.s.−−→ 1− α, and P(y0 ∈ I loo

λ | X , y) a.s.−−→ 1− α.
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Prediction intervals: illustration (coverage and length)
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• n = 2500, p = 5000

• Features: autoregressive feature covariance structure

• Signal: latent signal aligned with the principal eigenvector

• Coverage nearly exact, even for λ = 0!

• The case of λ = 0 provides the minimum interval length!
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Discussion and extensions

Take-away from this work: empirical distributions of GCV and LOOCV
track out-of-sample error distribution and a wide class of its functionals
for ridge regression under proportional asymptotics framework

Key relation that we exploit:

yi − x⊤i β̂−i,λ =
yi − x⊤i β̂λ
1− [Lλ]ii

≈ yi − x⊤i β̂λ
1− tr[Lλ]/n

yi − x⊤i β̂−i,0 =
[(XX⊤)†y ]i
[(XX⊤)†]ii

≈ [(XX⊤)†y ]i
tr[(XX⊤)†]/n

Extensions:

• Generalized ridge/less regression through structural equivalences

• Kernel ridge/less regression through risk equivalences
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Motivation and main punchlines

• When the data comprises of i.i.d. observations, we expect that more
data will help in prediction or estimation.

• Double or multiple descent behaviour implies that for fixed feature
size p (large value), as sample size increases the risk first decreases
and then increases. More data can hurt!

• A procedure leading to worse risk as the number of observations
increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the
double or multiple descent behavior and achieve a monotonic risk behavior?

We propose two methods, dubbed zero-step and one-step, that take an
input an arbitrary procedure and return a modified procedure that has a
monotonic risk behavior. The main idea is that of subsampling.
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Motivation and the problem

Figure: Risk of the minimum ℓ2-norm least squares as a function of p/n ≈ γ.

Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”
18 / 33



The problem

• Given a number of observations (n) and a number of features (p),
how do we know if a lesser number of observations would actually
yield a better risk?

• What is the best sample size to reduce the dataset in order to attain
the best possible risk?

Solution: cross-validation.
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Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio γ = p/n:

1. Risk estimation: construct a (dense grid of) aspect ratios ≥ γ by
using datasets of sizes smaller than n, and estimate risks on test set

2. Model selection: select aspect ratio that delivers the smallest
estimated risk and return the corresponding predictor

3. Risk monotonization: show that the risk profile of the resulting
procedure is asymptotically monotone in the aspect ratio

Method highlights:

• applicable to generic (e.g black-box) prediction methods
and common classification and regression loss functions

• model agnostic and requires minimal distributional assumptions

• works for procedures with diverging risks at some aspect ratios
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Risk monotonization illustration

If Rn represents the “risk” of a procedure at sample size n, then by risk
monotonization we mean a procedure with risk minm≤n Rm.

21 / 33



Risk monotonization guarantee

Theorem. Under the proportional asymptotics regime (p/n → γ), and a

mild assumption on the convergence of the prediction risk of f̂ trained on
datasets with a limiting aspect ratio ζ converges to Rdet(ζ; f̂ ), we show:

R(f̂ cv) = inf
ζ∈[γ,∞]

Rdet(ζ; f̂ ) × (1 + op(1)).

This shows that the zero-step predictor has a monotone risk in terms of
the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the
data. This is unlike most results in overparametrized learning which
require stringent assumptions.
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Risk monotonization (illustration)
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• minimum ℓ2-norm least squares
(ridgeless regression)

• minimum ℓ1-norm least squares
(lassoless regression)

23 / 33



Discussion and extensions

Take-aways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)
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Motivation and main punchlines

Key question: is there a principled measure of model complexity in general
for overparameterized models?

• Propose measures of model complexity that are:

– algorithm-specific and applies for any prediction algorithm
– produce a number between 0 and n (the number of observations)

• Two variants of model complexities are:

– emergent model complexity that depends on the prediction algorithm
as well as underlying the regression function

– intrinsic model complexity that depends on the prediction algorithm
only and its adaptability to pure noise

Based on ideas from optimism theory and degrees of freedom.
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Fixed-X degrees of freedom

Consider data (xi , yi ) ∈ Rp × R, i = 1, . . . , n such that yi = f (xi ) + εi
where f : Rp → R is regression function, εi has mean 0 and variance σ2.

Let A be any fitting algorithm that maps {(xi , yi )}ni=1
A7→ f̂ .

The degrees of freedom of predictor f̂ is defined as

DofF(f̂ ) =
n∑

i=1

Cov(yi , f̂ (xi ))/σ
2 = tr

[
Cov(y , f̂ (X ))

]
/σ2,

where y : response vector, X : feature matrix, f̂ (X ): predicted response

Where does squared error loss come into play?

E
[ n∑

i=1

(ỹi − f̂ (xi ))
2
]

︸ ︷︷ ︸
fixed-X prediction error =:ErrF(f̂ )

− E
[ n∑

i=1

(yi − f̂ (xi ))
2
]

︸ ︷︷ ︸
expected training error =:ErrT(f̂ )

= 2σ2DofF(f̂ )
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(ỹi − f̂ (xi ))
2
]

︸ ︷︷ ︸
fixed-X prediction error =:ErrF(f̂ )

− E
[ n∑

i=1

(yi − f̂ (xi ))
2
]

︸ ︷︷ ︸
expected training error =:ErrT(f̂ )

= 2σ2DofF(f̂ )

26 / 33



Fixed-X degrees of freedom in linear regression

• Suppose p ≤ n and X has full (column) rank, and we take f̂ to be

ordinary least squares predictor f̂ (X ) = X β̂, where

β̂ = argmin
β∈Rp

∥y − Xβ∥22 = (XTX )−1XT y .

DofF(f̂ ) = tr[Cov(y ,X β̂)]/σ2 = tr[σ2X (XTX )−1XT ]/σ2 = p.

• Suppose p ≥ n and X has full (row) rank, and we take f̂ to be

min ℓ2-norm least squares predictor f̂ (X ) = X β̂, where

β̂ = argmin
β∈Rp

{∥β∥2 : Xβ = y} = (X⊤X )†X⊤y .

DofF(f̂ ) = tr[Cov(y ,X β̂)]/σ2 = tr[σ2X⊤(XX⊤)−1X ]/σ2 = n.

Thus, DofF(f̂ ) is p for p ≤ n, but is always n for p ≥ n (not
meaningful).

This is fixed-X degrees of freedom. How to extend for random-X setting?
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Re-interpreting fixed-X degrees of freedom

Fixed-X degrees of freedom is a standard algorithm specific measure of
complexity, but no notion of random-X degrees of freedom we know of.

We cast fixed-X degrees of freedom from a different perspective.

• Define fixed-X optimism of f̂ by OptF(f̂ ) = ErrF(f̂ )− ErrT(f̂ ).

• Consider the following family of “reference” models:

– Aref is the least squares reference algorithm,
– (Uk , v) is random design with k features, and noise with level σ2.

• Recall that DofF(Aref(Uk , v)) = k so long as rank(Uk) = k.

• Thus, for a fitting procedure f̂ = A(X , y), DofF(f̂ ) is also equal to
the value of k that satisfy the following relation:

OptF(A(X , y)) = OptF(Aref(Uk , v)) (dfF)
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Emergent random-X degrees of freedom

“Matching optimism” interpretation can be extended to random-X
setting and leads to the definition of random-X degrees of freedom.

• Define random-X optimism of f̂ by OptR(f̂ ) = ErrR(f̂ )− ErrT(f̂ ),

where ErrR(f̂ ) = E[(y0 − f̂ (x0))
2] is the random-X prediction error.

• We thus define the random-X degrees of freedom, DofR(f̂ ), of any

predictor f̂ = A(X , y), as the value of k for which the following
relation holds:

OptR(A(X , y)) = OptR(Aref(Uk , v)) (dfR, emergent)

Recall here:

• Aref is the least squares reference algorithm,

• (Uk , v) is random design with k features, and noise with level σ2.

We call the measure emergent random-X degrees of freedom.
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Intrisic random-X degrees of freedom

• The emergent random-X degrees of freedom, DofR(f̂ ), depends of

both the the predictor f̂ and the underlying regression function f .

• When matching optimisms, the observed random-X optimism of f̂
consists of bias, which may inflate the degrees of freedom.

• We thus also define intrinsic random-X degrees of freedom, denoted
by DofRi , as the k for which the following relation holds:

OptR(A(X , v)) = OptR(Aref(Uk , v)) (dfR, intrinsic)

The intrinsic random-X degrees of freedom measures the inherent
complexity of the predictor f̂ in terms of overfitting to “pure noise”.
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Random-X degrees of freedom illustration
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• Fixed data with n = 50 and response non-linear in p = 200 features

• Model class: estimators fitted on nested subsets of 1 to 200 feaures

• Fixed-X: increase then constant; random-X: increase then decrease

• Underparameterized: U-curve; overparameterized: also U-curve!

• Punchline: reparameterize overparameterized to underparameterized
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Discussion and future directions

A high-level view of the work:

• Suppose we are given a family of models for which we want a
complexity measure under a specific error metric.

• Construct a family of “reference” models spanning same optimisms.

• Find the model in the reference family that is closest to the observed
optimism. Declare complexity as complexity of that reference model.

Key relation:
OptR(f̂ ) = OptR(f̂ ref)

Future directions:

• Attribute total complexity to various components: bias, variance,
covariate shift, etc.

• Other error metrics beyond squared error
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Motivating thesis questions with take-aways

We studied three operational aspects of overparameterized learning:
1) cross-validation, 2) risk monotonization, 3) model complexity.

1. Cross-validation still works in the overparameterized regime,
especially when optimal regularization and train error can be zero for
ridge regression through analytic continuation.

2. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

3. There is a principled measure of model complexity in general for
overparameterized models in the form of
random-X degrees of freedom.
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Thanks for listening!

Questions/comments/thoughts?
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