Facets of regularization in high-dimensional learning:

Cross-validation, risk monotonization, and model complexity

Pratik Patil

Carnegie Mellon University

November 2022

Committee:

Ryan Tibshirani (Chair) Alessandro Rinaldo Arun Kumar Kuchibhotla Yuting Wei (University of Pennsylvania) Arian Maleki (Columbia University)

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem

• Generalization: despite overfitting, models generalize well in practice

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Peculiar generalization behavior: double descent

Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff" $\!\!$

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

Peculiar generalization behavior: double descent

Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff" $\!\!$

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

Peculiar generalization behavior: double descent

Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff" $\!\!$

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

We study three <u>operational aspects</u> of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \le i \le n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^{p}}{\operatorname{minimize}} \sum_{i=1}^{n} (y_{i} - x_{i}^{\mathsf{T}}\beta)^{2}/n + \lambda \|\beta\|_{2}^{2}$$

• The out-of-sample error of $\widehat{\beta}_{\lambda}$ is $y_0 - x_0^{\top} \widehat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \le i \le n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\operatorname{minimize}} \ \sum_{i=1}^n (y_i - x_i^{\mathsf{T}} \beta)^2 / n + \lambda \|\beta\|_2^2$$

• The out-of-sample error of $\widehat{\beta}_{\lambda}$ is $y_0 - x_0^{\top} \widehat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \leq i \leq n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda \|\beta\|_2^2$$

• The out-of-sample error of $\hat{\beta}_{\lambda}$ is $y_0 - x_0^{\top} \hat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \leq i \leq n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda \|\beta\|_2^2$$

• The out-of-sample error of $\hat{\beta}_{\lambda}$ is $y_0 - x_0^{\top} \hat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \leq i \leq n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda \|\beta\|_2^2$$

• The out-of-sample error of $\hat{\beta}_{\lambda}$ is $y_0 - x_0^\top \hat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda = 0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^{p}$ denote the ridge estimator at regularization level λ :

$$\widehat{\beta}_{\lambda} := \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \|y - X\beta\|_{2}^{2}/n + \lambda \|\beta\|_{2}^{2}$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^{\mathsf{T}}X/n + \lambda I_p)^{-1}X^{\mathsf{T}}y/n$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^T X / n + \lambda I_p)^+ X^T y / n$$

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^{p}$ denote the ridge estimator at regularization level λ :

$$\widehat{\beta}_{\lambda} := \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \|y - X\beta\|_{2}^{2}/n + \lambda\|\beta\|_{2}^{2}$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^{\mathsf{T}}X/n + \lambda I_{p})^{-1}X^{\mathsf{T}}y/n$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^T X / n + \lambda I_p)^+ X^T y / n$$

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^{\rho}$ denote the ridge estimator at regularization level λ :

$$\widehat{eta}_{\lambda} := \operatorname*{arg\,min}_{eta \in \mathbb{R}^p} \|y - Xeta\|_2^2 / n + \lambda \|eta\|_2^2$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^{T}X/n + \lambda I_{p})^{-1}X^{T}y/n$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^T X / n + \lambda I_p)^+ X^T y / n$$

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^{p}$ denote the ridge estimator at regularization level λ :

$$\widehat{eta}_{\lambda} := \operatorname*{arg\,min}_{eta \in \mathbb{R}^p} \|y - Xeta\|_2^2 / n + \lambda \|eta\|_2^2$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^{T}X/n + \lambda I_{p})^{-1}X^{T}y/n$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^{T}X/n + \lambda I_{p})^{+}X^{T}y/n$$

- Let $X \in \mathbb{R}^{n imes p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^{p}$ denote the ridge estimator at regularization level λ :

$$\widehat{eta}_{\lambda} := \operatorname*{arg\,min}_{eta \in \mathbb{R}^p} \|y - Xeta\|_2^2 / n + \lambda \|eta\|_2^2$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^{\mathsf{T}}X/n + \lambda I_p)^{-1}X^{\mathsf{T}}y/n$$

- for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^T X / n + \lambda I_p)^+ X^T y / n$$

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
 - Linear functional:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) Nonlinear functional:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)

• Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:

<u>Linear functional</u>:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - \mathbf{x}_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) - Nonlinear functional:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
 - Linear functional

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E} \big[t(y_0 - x_0^\top \widehat{\beta}_{\lambda}) \mid X, y \big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) - <u>Nonlinear functional</u>:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.
Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
 - Linear functional:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) Nonlinear functional:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
 - Linear functional:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) - <u>Nonlinear functional</u>:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L} \big(y_0 - x_0^\top \widehat{\beta}_{\lambda} \mid X, y \big),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y)
- Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
 - Linear functional:

$$\psi(P_{\lambda}) = \int t(z) \, dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t : \mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error) - <u>Nonlinear functional</u>:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

- Leave-one-out cross-validation (LOOCV):
 - for every i, train on all data except $(x_i,y_i),$ call the estimate $\widehat{eta}_\lambda^{-i}$
 - compute test error on the ith point and take average

$$\log(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2$$

$$\stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2$$

where $L_{\lambda} = X(X^{T}X/n + \lambda I_{p})^{+}X^{T}/n$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

- same as leave-one-out shortcut but a single re-weighting

$$ext{gev}(\lambda) = rac{1}{n}\sum_{i=1}^n \left(rac{y_i - x_i^T \widehat{eta}_\lambda}{1 - ext{tr}[L_\lambda]/n}
ight)^2$$

- Leave-one-out cross-validation (LOOCV):
 - for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
 - compute test error on the i^{th} point and take average

$$\begin{aligned} \log(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ &\stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}$$

where $L_{\lambda} = X(X^{T}X/n + \lambda I_{p})^{+}X^{T}/n$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

- same as leave-one-out shortcut but a single re-weighting

$$ext{gev}(\lambda) = rac{1}{n}\sum_{i=1}^n \left(rac{y_i - x_i^\top \widehat{eta}_\lambda}{1 - ext{tr}[L_\lambda]/n}
ight)^2$$

- Leave-one-out cross-validation (LOOCV):
 - for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
 - compute test error on the i^{th} point and take average

$$\begin{aligned} \log(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ \stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}$$

where $L_{\lambda} = X(X^T X/n + \lambda I_p)^+ X^T/n$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

- same as leave-one-out shortcut but a single re-weighting

$$ext{gev}(\lambda) = rac{1}{n}\sum_{i=1}^n \left(rac{y_i - x_i^T \widehat{eta}_\lambda}{1 - ext{tr}[L_\lambda]/n}
ight)^2$$

- Leave-one-out cross-validation (LOOCV):
 - for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
 - compute test error on the i^{th} point and take average

$$\begin{aligned} \log(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ &\stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}$$

where $L_{\lambda} = X(X^{T}X/n + \lambda I_{p})^{+}X^{T}/n$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

- same as leave-one-out shortcut but a single re-weighting

$$\operatorname{gcv}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n} \right)^2$$

- Leave-one-out cross-validation (LOOCV):
 - for every *i*, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
 - compute test error on the i^{th} point and take average

$$\begin{aligned} \log(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ &\stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}$$

where $L_{\lambda} = X(X^{T}X/n + \lambda I_{p})^{+}X^{T}/n$ is the ridge smoothing matrix • Generalized cross-validation (GCV)

- same as leave-one-out shortcut but a single re-weighting

$$\operatorname{gcv}(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n} \right)^2$$

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

• When $\hat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0"²; we then define the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{P}_0^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^{\dagger} y]_i}{\text{tr}[(XX^\top)^{\dagger}]/n} \right) \quad \text{and} \quad \widehat{P}_0^{\text{loo}} = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^{\dagger} y]_i}{[(XX^\top)^{\dagger}]_{ii}} \right)$$

• Plug-in GCV and LOO estimators:

$$\widehat{\psi}^{ ext{gcv}}_{\lambda} = \psi(\widehat{\mathcal{P}}^{ ext{gcv}}_{\lambda}) \quad ext{and} \quad \widehat{\psi}^{ ext{loo}}_{\lambda} = \psi(\widehat{\mathcal{P}}^{ ext{gcv}}_{\lambda})$$

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

• Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

• When $\hat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0"²; we then define the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{P}_0^{\text{gev}} = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^{\dagger} y]_i}{\text{tr}[(XX^\top)^{\dagger}]/n} \right) \quad \text{and} \quad \widehat{P}_0^{\text{loo}} = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^{\dagger} y]_i}{[(XX^\top)^{\dagger}]_{ii}} \right)$$

• Plug-in GCV and LOO estimators:

$$\widehat{\psi}^{
m gev}_{\lambda} = \psi(\widehat{P}^{
m gev}_{\lambda}) \quad {
m and} \quad \widehat{\psi}^{
m loo}_{\lambda} = \psi(\widehat{P}^{
m gev}_{\lambda})$$

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

• When $\hat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0"²; we then define the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{\mathcal{P}}_0^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^n \delta\left(\frac{[(XX^\top)^{\dagger}y]_i}{\text{tr}[(XX^\top)^{\dagger}]/n}\right) \quad \text{and} \quad \widehat{\mathcal{P}}_0^{\text{loo}} = \frac{1}{n} \sum_{i=1}^n \delta\left(\frac{[(XX^\top)^{\dagger}y]_i}{[(XX^\top)^{\dagger}]_{ii}}\right)$$

• Plug-in GCV and LOO estimators:

 $\widehat{\psi}^{
m gcv}_{\lambda} = \psi(\widehat{P}^{
m gcv}_{\lambda}) \quad {
m and} \quad \widehat{\psi}^{
m loo}_{\lambda} = \psi(\widehat{P}^{
m gcv}_{\lambda})$

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}\right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}}\right)$$

• When $\hat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0"²; we then define the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{\mathcal{P}}_{0}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_{i}}{\text{tr}[(XX^{\top})^{\dagger}]/n}\right) \quad \text{and} \quad \widehat{\mathcal{P}}_{0}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta\left(\frac{[(XX^{\top})^{\dagger}y]_{i}}{[(XX^{\top})^{\dagger}]_{i}}\right)$$

• Plug-in GCV and LOO estimators:

$$\widehat{\psi}^{ ext{gcv}}_{\lambda} = \psi(\widehat{\mathcal{P}}^{ ext{gcv}}_{\lambda}) \quad ext{and} \quad \widehat{\psi}^{ ext{loo}}_{\lambda} = \psi(\widehat{\mathcal{P}}^{ ext{gcv}}_{\lambda})$$

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$

2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}^{\rm gev}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda, \quad {\rm and} \quad \widehat{P}^{\rm loo}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,

2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}^{\rm gev}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda, \quad {\rm and} \quad \widehat{P}^{\rm loo}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}^{\rm gev}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda, \quad {\rm and} \quad \widehat{P}^{\rm loo}_\lambda \xrightarrow{\rm d} {\cal P}_\lambda.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}^{ ext{gcv}}_{\lambda} \xrightarrow{ ext{d}} P_{\lambda}, \quad ext{and} \quad \widehat{P}^{ ext{loo}}_{\lambda} \xrightarrow{ ext{d}} P_{\lambda}.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{d}} \mathcal{P}_{\lambda}, \quad \text{and} \quad \widehat{P}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{d}} \mathcal{P}_{\lambda}.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{d}} \mathcal{P}_{\lambda}, \quad \text{and} \quad \widehat{P}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{d}} \mathcal{P}_{\lambda}.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}_{\lambda}^{\text{gev}} \xrightarrow{d} P_{\lambda}, \text{ and } \widehat{P}_{\lambda}^{\text{loo}} \xrightarrow{d} P_{\lambda}.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

as $n, p \to \infty$ such that $p/n \to \gamma \in (0, \infty)$, almost surely, for each $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min} \le 0$,

$$\widehat{P}_{\lambda}^{\text{gev}} \xrightarrow{d} P_{\lambda}, \text{ and } \widehat{P}_{\lambda}^{\text{loo}} \xrightarrow{d} P_{\lambda}.$$

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also <u>holds when $\lambda = 0$ </u> (min-norm estimator)

- *n* = 2500, *p* = 2000, *p*/*n* = 0.8
- $\lambda = 0$, i.e., least squares

- n = 2500, p = 5000, p/n = 2
- $\lambda = 0$, i.e., min-norm estimator, zero in-sample errors

• *n* = 2500, *p* = 2000, *p*/*n* = 0.8

• $\lambda = 0$, i.e., least squares

• n = 2500, p = 5000, p/n = 2

• $\lambda = 0$, i.e., min-norm estimator, zero in-sample errors

- *n* = 2500, *p* = 2000, *p*/*n* = 0.8
- $\lambda = 0$, i.e., least squares

- n = 2500, p = 5000, p/n = 2
- $\lambda = 0$, i.e., min-norm estimator, zero in-sample errors

- n = 2500, p = 2000, p/n = 0.8
- $\lambda = 0$, i.e., least squares

- n = 2500, p = 5000, p/n = 2
- $\lambda = 0$, i.e., min-norm estimator, zero in-sample errors

- n = 2500, p = 2000, p/n = 0.8
- $\lambda = 0$, i.e., least squares

- n = 2500, p = 5000, p/n = 2
- $\lambda = 0$, i.e., min-norm estimator, zero in-sample errors

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E} \left[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y \right]$

• Let $\widehat{T}_{\lambda}^{\text{gev}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

$$\widehat{T}_{\lambda}^{\text{gev}} \xrightarrow{\text{a.s.}} T_{\lambda}, \text{ and } \widehat{T}_{\lambda}^{\text{loo}} \xrightarrow{\text{a.s.}} T_{\lambda}.$$

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y]$

• Let $\widehat{T}_{\lambda}^{\text{gcv}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

$$\widehat{T}_{\lambda}^{\text{gev}} \xrightarrow{\text{a.s.}} T_{\lambda}, \text{ and } \widehat{T}_{\lambda}^{\text{loo}} \xrightarrow{\text{a.s.}} T_{\lambda}.$$

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y]$

• Let $\widehat{T}_{\lambda}^{\text{gcv}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

$$\widehat{T}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}, \quad \text{and} \quad \widehat{T}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}.$$

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y]$

• Let $\widehat{T}_{\lambda}^{\text{gev}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

$$\widehat{T}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}, \quad \text{and} \quad \widehat{T}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}.$$

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y]$

• Let $\widehat{T}_{\lambda}^{\text{gcv}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0 such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$, for $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min}$,

 $\widehat{T}_{\lambda}^{\text{gev}} \xrightarrow{\text{a.s.}} T_{\lambda}, \text{ and } \widehat{T}_{\lambda}^{\text{loo}} \xrightarrow{\text{a.s.}} T_{\lambda}.$

• Let T_{λ} be a linear functional of the out-of-sample error distribution: $T_{\lambda} = \mathbb{E}[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y]$

• Let $\widehat{T}_{\lambda}^{\text{gcv}}$ and $\widehat{T}_{\lambda}^{\text{loo}}$ be plug-in estimators from GCV and LOOCV: $\widehat{T}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \text{ and } \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0 such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

$$\widehat{\mathcal{T}}_{\lambda}^{ ext{gev}} \xrightarrow{ ext{a.s.}} \mathcal{T}_{\lambda}, \quad ext{and} \quad \widehat{\mathcal{T}}_{\lambda}^{ ext{loo}} \xrightarrow{ ext{a.s.}} \mathcal{T}_{\lambda}.$$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{gcv} - T_{\lambda}| \xrightarrow{\text{a.s.}} 0, \text{ and } \sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{loo} - T_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{gcv} - T_{\lambda}| \xrightarrow{\text{a.s.}} 0, \text{ and } \sup_{\lambda \in \Lambda} |\widehat{T}_{\lambda}^{loo} - T_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

1. that are differentiable

2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$ as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- $1. \ \ \text{that are differentiable}$
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \text{ and } \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals
Linear functional estimation (uniform in λ)

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

Remarks:

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Linear functional estimation (uniform in λ)

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

Remarks:

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Linear functional estimation (uniform in λ)

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{gev}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\text{loo}} - \mathcal{T}_{\lambda}| \xrightarrow{\text{a.s.}} 0$$

Remarks:

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

• Quantile of the out-of-sample error distribution:

$$Q_{\lambda}(\tau) = \text{Quantile}(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) = \operatorname*{arg\,min}_{u \in \mathbb{R}} \mathbb{E} \big[t_u(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) \mid X, y \big]$$

where $t_u(y - x_0^T \widehat{\beta}_{\lambda}; \tau)$ is τ -tiled pin-ball loss function with shift u

- Empirical quantiles \widehat{Q}^{gcv} and \widehat{Q}^{loo} (of $\widehat{P}_{\lambda}^{\text{gcv}}$ and $\widehat{P}_{\lambda}^{\text{loo}}$) $\xrightarrow{\text{a.s.}} Q_{\lambda}$
- Estimated quantiles can be used to construct prediction intervals:

$$\mathcal{I}^{\mathrm{gcv}}_{\lambda} = \begin{bmatrix} x_0^\top \widehat{\beta}_{\lambda} - \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_l), \, x_0^\top \widehat{\beta}_{\lambda} + \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_u) \end{bmatrix} \quad \text{and} \quad \mathcal{I}^{\mathrm{loo}}_{\lambda}$$

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{gev}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$, and $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{loo}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$.

• <u>Quantile</u> of the out-of-sample error distribution:

$$Q_{\lambda}(\tau) = \text{Quantile}(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) = \underset{u \in \mathbb{R}}{\operatorname{arg\,min}} \mathbb{E} \left[t_u(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) \mid X, y \right]$$

where $t_u(y - x_0^T \widehat{\beta}_{\lambda}; \tau)$ is τ -tiled pin-ball loss function with shift u

- Empirical quantiles \widehat{Q}^{gcv} and \widehat{Q}^{loo} (of $\widehat{P}_{\lambda}^{\text{gcv}}$ and $\widehat{P}_{\lambda}^{\text{loo}}$) $\xrightarrow{\text{a.s.}} Q_{\lambda}$
- Estimated quantiles can be used to construct prediction intervals:

$$\mathcal{I}^{\mathrm{gcv}}_{\lambda} = \begin{bmatrix} x_0^\top \widehat{\beta}_{\lambda} - \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_l), \, x_0^\top \widehat{\beta}_{\lambda} + \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_u) \end{bmatrix} \quad \text{and} \quad \mathcal{I}^{\mathrm{loo}}_{\lambda}$$

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely

$$\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{gev}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$$
, and $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{loo}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$.

• <u>Quantile</u> of the out-of-sample error distribution:

$$Q_{\lambda}(\tau) = \text{Quantile}(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) = \underset{u \in \mathbb{R}}{\operatorname{arg\,min}} \mathbb{E} \left[t_u(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) \mid X, y \right]$$

where $t_u(y - x_0^T \widehat{\beta}_{\lambda}; \tau)$ is τ -tiled pin-ball loss function with shift u

- Empirical quantiles \widehat{Q}^{gcv} and \widehat{Q}^{loo} (of $\widehat{P}_{\lambda}^{\text{gcv}}$ and $\widehat{P}_{\lambda}^{\text{loo}}$) $\xrightarrow{\text{a.s.}} Q_{\lambda}$
- Estimated quantiles can be used to construct prediction intervals:

$$\mathcal{I}^{\mathrm{gcv}}_{\lambda} = \begin{bmatrix} x_0^\top \widehat{\beta}_{\lambda} - \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_l), \, x_0^\top \widehat{\beta}_{\lambda} + \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_u) \end{bmatrix} \quad \text{and} \quad \mathcal{I}^{\mathrm{loo}}_{\lambda}$$

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely

$$\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{gev}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$$
, and $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{loo}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$.

• Quantile of the out-of-sample error distribution:

$$Q_{\lambda}(\tau) = \text{Quantile}(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) = \underset{u \in \mathbb{R}}{\operatorname{arg\,min}} \mathbb{E} \left[t_u(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) \mid X, y \right]$$

where $t_u(y - x_0^T \widehat{\beta}_{\lambda}; \tau)$ is τ -tiled pin-ball loss function with shift u

- Empirical quantiles \widehat{Q}^{gcv} and \widehat{Q}^{loo} (of $\widehat{P}_{\lambda}^{\text{gcv}}$ and $\widehat{P}_{\lambda}^{\text{loo}}$) $\xrightarrow{\text{a.s.}} Q_{\lambda}$
- Estimated quantiles can be used to construct prediction intervals:

$$\mathcal{I}^{\mathrm{gcv}}_{\lambda} = \begin{bmatrix} x_0^\top \widehat{\beta}_{\lambda} - \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_l), \, x_0^\top \widehat{\beta}_{\lambda} + \widehat{Q}^{\mathrm{gcv}}_{\lambda}(\tau_u) \end{bmatrix} \quad \text{and} \quad \mathcal{I}^{\mathrm{loo}}_{\lambda}$$

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{gev}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$, and $\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{loo}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha$.

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

- *n* = 2500, *p* = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

Discussion and extensions

Take-away from this work: empirical distributions of GCV and LOOCV track out-of-sample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit:

$$y_{i} - x_{i}^{\top} \widehat{\beta}_{-i,\lambda} = \frac{y_{i} - x_{i}^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_{i} - x_{i}^{\top} \widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n}$$

$$y_{i} - x_{i}^{\top} \widehat{\beta}_{-i,0} = \frac{[(XX^{\top})^{\dagger}y]_{i}}{[(XX^{\top})^{\dagger}]_{ii}} \approx \frac{[(XX^{\top})^{\dagger}y]_{i}}{\operatorname{tr}[(XX^{\top})^{\dagger}]/n}$$

Extensions:

- Generalized ridge/less regression through structural equivalences
- Kernel ridge/less regression through risk equivalences

Discussion and extensions

Take-away from this work: empirical distributions of GCV and LOOCV track out-of-sample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit:

$$y_{i} - x_{i}^{\top}\widehat{\beta}_{-i,\lambda} = \frac{y_{i} - x_{i}^{\top}\widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_{i} - x_{i}^{\top}\widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n}$$

$$y_{i} - x_{i}^{\top}\widehat{\beta}_{-i,0} = \frac{[(XX^{\top})^{\dagger}y]_{i}}{[(XX^{\top})^{\dagger}]_{ii}} \approx \frac{[(XX^{\top})^{\dagger}y]_{i}}{\operatorname{tr}[(XX^{\top})^{\dagger}]/n}$$

Extensions:

- Generalized ridge/less regression through structural equivalences
- Kernel ridge/less regression through risk equivalences

Discussion and extensions

Take-away from this work: empirical distributions of GCV and LOOCV track out-of-sample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit:

$$y_{i} - x_{i}^{\top}\widehat{\beta}_{-i,\lambda} = \frac{y_{i} - x_{i}^{\top}\widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_{i} - x_{i}^{\top}\widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n}$$

$$y_{i} - x_{i}^{\top}\widehat{\beta}_{-i,0} = \frac{[(XX^{\top})^{\dagger}y]_{i}}{[(XX^{\top})^{\dagger}]_{ii}} \approx \frac{[(XX^{\top})^{\dagger}y]_{i}}{\operatorname{tr}[(XX^{\top})^{\dagger}]/n}$$

Extensions:

- Generalized ridge/less regression through structural equivalences
- Kernel ridge/less regression through risk equivalences

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

Motivation and the problem

Isotropic features

Figure: Risk of the minimum ℓ_2 -norm least squares as a function of $p/n \approx \gamma$.

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Risk monotonization illustration

If R_n represents the "risk" of a procedure at sample size n, then by risk monotonization we mean a procedure with risk $\min_{m \le n} R_m$.

Sample size (n)
Risk monotonization guarantee

Theorem. Under the proportional asymptotics regime $(p/n \rightarrow \gamma)$, and a mild assumption on the convergence of the prediction risk of \hat{f} trained on datasets with a limiting aspect ratio ζ converges to $R^{\text{det}}(\zeta; \hat{f})$, we show:

$$R(\widehat{f}^{ ext{cv}}) \;=\; \inf_{\zeta \in [\gamma,\infty]} R^{ ext{det}}(\zeta;\widehat{f}) \; imes\; (1+o_p(1)).$$

This shows that the zero-step predictor has a monotone risk in terms of the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the data. This is unlike most results in overparametrized learning which require stringent assumptions.

Risk monotonization guarantee

Theorem. Under the proportional asymptotics regime $(p/n \rightarrow \gamma)$, and a mild assumption on the convergence of the prediction risk of \hat{f} trained on datasets with a limiting aspect ratio ζ converges to $R^{\text{det}}(\zeta; \hat{f})$, we show:

$$R(\widehat{f}^{ ext{cv}}) \;=\; \inf_{\zeta \in [\gamma,\infty]} R^{ ext{det}}(\zeta;\widehat{f}) \; imes\; (1+o_p(1)).$$

This shows that the zero-step predictor has a monotone risk in terms of the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the data. This is unlike most results in overparametrized learning which require stringent assumptions.

Risk monotonization (illustration)

 minimum l₂-norm least squares (ridgeless regression) minimum last squares (lassoless regression)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and *n* (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\mathrm{DofF}(\widehat{f}) = \sum_{i=1}^{n} \mathrm{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \mathrm{tr} \left[\mathrm{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, f(X): predicted response

$$\mathbb{E}\left[\sum_{i=1}^{n} (\widetilde{y}_{i} - \widehat{f}(x_{i}))^{2}\right] - \mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \mathrm{DofF}(\widehat{f})$$

$$\mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \mathrm{DofF}(\widehat{f})$$

$$\mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \mathrm{DofF}(\widehat{f})$$

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\mathrm{DofF}(\widehat{f}) = \sum_{i=1}^{n} \mathrm{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \mathrm{tr} \left[\mathrm{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, f(X): predicted response

$$\mathbb{E}\left[\sum_{i=1}^{n} (\widetilde{y}_{i} - \widehat{f}(x_{i}))^{2}\right] - \mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \mathrm{DofF}(\widehat{f})$$

$$\mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \mathrm{DofF}(\widehat{f})$$
where the prediction error =: ErrF(\widehat{f}) is the prediction error =

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\mathrm{DofF}(\widehat{f}) = \sum_{i=1}^{n} \mathrm{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \mathrm{tr} \left[\mathrm{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, $\hat{f}(X)$: predicted response

$$\mathbb{E}\left[\sum_{i=1}^{n} (\widetilde{y}_{i} - \widehat{f}(x_{i}))^{2}\right] - \mathbb{E}\left[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\right] = 2\sigma^{2} \text{DofF}(\widehat{f})$$
xed-X prediction error =: ErrF(\widehat{f}) expected training error =: ErrT(\widehat{f})

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\mathrm{DofF}(\widehat{f}) = \sum_{i=1}^{n} \mathrm{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \mathrm{tr} \left[\mathrm{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, $\hat{f}(X)$: predicted response

$$\underbrace{\mathbb{E}\Big[\sum_{i=1}^{n} (\widetilde{y}_{i} - \widehat{f}(x_{i}))^{2}\Big]}_{\text{xed-X prediction error} =: \operatorname{ErrF}(\widehat{f})} - \underbrace{\mathbb{E}\Big[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\Big]}_{\text{expected training error} =: \operatorname{ErrT}(\widehat{f})} = 2\sigma^{2} \operatorname{DofF}(\widehat{f})$$

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\mathrm{DofF}(\widehat{f}) = \sum_{i=1}^{n} \mathrm{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \mathrm{tr} \left[\mathrm{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, $\hat{f}(X)$: predicted response

$$\underbrace{\mathbb{E}\Big[\sum_{i=1}^{n} (\widetilde{y}_{i} - \widehat{f}(x_{i}))^{2}\Big]}_{\text{fixed-X prediction error} =: \operatorname{ErrF}(\widehat{f})} - \underbrace{\mathbb{E}\Big[\sum_{i=1}^{n} (y_{i} - \widehat{f}(x_{i}))^{2}\Big]}_{\text{expected training error} =: \operatorname{ErrT}(\widehat{f})} = 2\sigma^{2} \operatorname{DofF}(\widehat{f})$$

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\arg\min} \|y - X\beta\|_{2}^{2} = (X^{T}X)^{-1}X^{T}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^{\dagger} X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y.$$

 $\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^{\dagger} X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{\mathsf{T}}X)^{-1}X^{\mathsf{T}}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^{\dagger} X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{T}X)^{-1}X^{T}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = \rho.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \{ \|\beta\|_{2} : X\beta = y \} = (X^{\top}X)^{\dagger}X^{\top}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{T}X)^{-1}X^{T}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^{p}} \{ \|\beta\|_{2} : X\beta = y \} = (X^{\top}X)^{\dagger}X^{\top}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{T}X)^{-1}X^{T}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = \rho.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^{\dagger} X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Suppose p ≤ n and X has full (column) rank, and we take f to be ordinary least squares predictor f(X) = Xβ̂, where

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^{p}}{\operatorname{arg\,min}} \| y - X\beta \|_{2}^{2} = (X^{T}X)^{-1}X^{T}y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$$

 Suppose p ≥ n and X has full (row) rank, and we take f to be min ℓ₂-norm least squares predictor f(X) = Xβ, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^{\dagger} X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1}X]/\sigma^2 = n.$$

Thus, $\operatorname{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{ ext{ref}}$ is the least squares reference algorithm,
 - (U_k, v) is random design with k features, and noise with level σ^2 .
- Recall that $DofF(\mathcal{A}^{ref}(U_k, v)) = k$ so long as $rank(U_k) = k$.
- Thus, for a fitting procedure \$\hat{f} = \mathcal{A}(X, y)\$, DofF(\$\hat{f}\$) is also equal to the value of \$k\$ that satisfy the following relation:

$$\operatorname{OptF}(\mathcal{A}(X, y)) = \operatorname{OptF}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (d

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{ ext{ref}}$ is the least squares reference algorithm,
 - (U_k, v) is random design with k features, and noise with level σ^2 .
- Recall that $DofF(\mathcal{A}^{ref}(U_k, v)) = k$ so long as $rank(U_k) = k$.
- Thus, for a fitting procedure \$\hat{f} = \mathcal{A}(X, y)\$, DofF(\$\hat{f}\$) is also equal to the value of \$k\$ that satisfy the following relation:

$$\operatorname{OptF}(\mathcal{A}(X, y)) = \operatorname{OptF}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (c

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{ ext{ref}}$ is the least squares reference algorithm,
 - $-(U_k,v)$ is random design with k features, and noise with level σ^2 .
- Recall that $DofF(\mathcal{A}^{ref}(U_k, v)) = k$ so long as $rank(U_k) = k$.
- Thus, for a fitting procedure \$\hat{f} = \mathcal{A}(X, y)\$, DofF(\$\hat{f}\$) is also equal to the value of \$k\$ that satisfy the following relation:

$$OptF(\mathcal{A}(X, y)) = OptF(\mathcal{A}^{ref}(U_k, v))$$

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
 - (U_k, v) is random design with k features, and noise with level σ^2 .
- Recall that $\operatorname{DofF}(\mathcal{A}^{\operatorname{ref}}(U_k, v)) = k$ so long as $\operatorname{rank}(U_k) = k$.
- Thus, for a fitting procedure \$\hat{f} = A(X, y)\$, DofF(\$\hat{f}\$) is also equal to the value of \$k\$ that satisfy the following relation:

$$OptF(\mathcal{A}(X, y)) = OptF(\mathcal{A}^{ref}(U_k, v))$$
(df

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
 - (U_k, v) is random design with k features, and noise with level σ^2 .
- Recall that $\operatorname{DofF}(\mathcal{A}^{\operatorname{ref}}(U_k, v)) = k$ so long as $\operatorname{rank}(U_k) = k$.

$$\operatorname{OptF}(\mathcal{A}(X, y)) = \operatorname{OptF}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (dfF

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

- Define fixed-X optimism of \hat{f} by $OptF(\hat{f}) = ErrF(\hat{f}) ErrT(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
 - (U_k, v) is random design with k features, and noise with level σ^2 .
- Recall that $\operatorname{DofF}(\mathcal{A}^{\operatorname{ref}}(U_k, v)) = k$ so long as $\operatorname{rank}(U_k) = k$.
- Thus, for a fitting procedure \$\hat{f} = \mathcal{A}(X, y)\$, DofF(\$\hat{f}\$) is also equal to the value of \$k\$ that satisfy the following relation:

$$OptF(\mathcal{A}(X, y)) = OptF(\mathcal{A}^{ref}(U_k, v))$$
(dfF)

Emergent random-X degrees of freedom

"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \hat{f} by $OptR(\hat{f}) = ErrR(\hat{f}) ErrT(\hat{f})$, where $ErrR(\hat{f}) = \mathbb{E}[(y_0 - \hat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, DofR(f), of any predictor f = A(X, y), as the value of k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X, y)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (dfR, emergent)

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

We call the measure emergent random-X degrees of freedom.
"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \hat{f} by $OptR(\hat{f}) = ErrR(\hat{f}) ErrT(\hat{f})$, where $ErrR(\hat{f}) = \mathbb{E}[(y_0 - \hat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, DofR(f), of any predictor f = A(X, y), as the value of k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X, y)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (dfR, emergent)

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \hat{f} by $OptR(\hat{f}) = ErrR(\hat{f}) ErrT(\hat{f})$, where $ErrR(\hat{f}) = \mathbb{E}[(y_0 - \hat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, $\text{DofR}(\hat{f})$, of any predictor $\hat{f} = \mathcal{A}(X, y)$, as the value of k for which the following relation holds:

$$OptR(\mathcal{A}(X, y)) = OptR(\mathcal{A}^{ref}(U_k, v))$$
 (dfR, emergent)

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \hat{f} by $OptR(\hat{f}) = ErrR(\hat{f}) ErrT(\hat{f})$, where $ErrR(\hat{f}) = \mathbb{E}[(y_0 - \hat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, $\text{DofR}(\hat{f})$, of any predictor $\hat{f} = \mathcal{A}(X, y)$, as the value of k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X, y)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (dfR, emergent)

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \hat{f} by $OptR(\hat{f}) = ErrR(\hat{f}) ErrT(\hat{f})$, where $ErrR(\hat{f}) = \mathbb{E}[(y_0 - \hat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, $\text{DofR}(\hat{f})$, of any predictor $\hat{f} = \mathcal{A}(X, y)$, as the value of k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X, y)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$$
 (dfR, emergent)

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

- The emergent random-X degrees of freedom, $\text{DofR}(\hat{f})$, depends of both the predictor \hat{f} and the underlying regression function f.
- When matching optimisms, the observed random-X optimism of \hat{f} consists of bias, which may inflate the degrees of freedom.
- We thus also define intrinsic random-X degrees of freedom, denoted by DofR^{*i*}, as the *k* for which the following relation holds:

 $OptR(\mathcal{A}(X, v)) = OptR(\mathcal{A}^{ref}(U_k, v))$ (dfR, intrinsic)

- The emergent random-X degrees of freedom, $\text{DofR}(\hat{f})$, depends of both the predictor \hat{f} and the underlying regression function f.
- When matching optimisms, the observed random-X optimism of \hat{f} consists of bias, which may inflate the degrees of freedom.
- We thus also define intrinsic random-X degrees of freedom, denoted by DofR^{*i*}, as the *k* for which the following relation holds:

 $\operatorname{OptR}(\mathcal{A}(X, v)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k, v))$ (dfR, intrinsic)

- The emergent random-X degrees of freedom, $\text{DofR}(\hat{f})$, depends of both the predictor \hat{f} and the underlying regression function f.
- When matching optimisms, the observed random-X optimism of \hat{f} consists of bias, which may inflate the degrees of freedom.
- We thus also define intrinsic random-X degrees of freedom, denoted by DofR^{*i*}, as the *k* for which the following relation holds:

 $OptR(\mathcal{A}(X, v)) = OptR(\mathcal{A}^{ref}(U_k, v))$ (dfR, intrinsic)

- The emergent random-X degrees of freedom, $\text{DofR}(\hat{f})$, depends of both the predictor \hat{f} and the underlying regression function f.
- When matching optimisms, the observed random-X optimism of \hat{f} consists of bias, which may inflate the degrees of freedom.
- We thus also define intrinsic random-X degrees of freedom, denoted by DofR^{*i*}, as the *k* for which the following relation holds:

 $OptR(\mathcal{A}(X, v)) = OptR(\mathcal{A}^{ref}(U_k, v))$ (dfR, intrinsic)

- Fixed data with n = 50 and response non-linear in p = 200 features
- Model class: estimators fitted on nested subsets of 1 to 200 feaures
- Fixed-X: increase then constant; random-X: increase then decrease
- Underparameterized: U-curve; overparameterized: also U-curve!
- Punchline: reparameterize overparameterized to underparameterized

- Fixed data with n = 50 and response non-linear in p = 200 features
- Model class: estimators fitted on nested subsets of 1 to 200 feaures
- Fixed-X: increase then constant; random-X: increase then decrease
- Underparameterized: *U*-curve; overparameterized: also *U*-curve!
- Punchline: reparameterize overparameterized to underparameterized

- Fixed data with n = 50 and response non-linear in p = 200 features
- Model class: estimators fitted on nested subsets of 1 to 200 feaures
- Fixed-X: increase then constant; random-X: increase then decrease
- Underparameterized: *U*-curve; overparameterized: also *U*-curve!
- Punchline: reparameterize overparameterized to underparameterized

- Fixed data with n = 50 and response non-linear in p = 200 features
- Model class: estimators fitted on nested subsets of 1 to 200 feaures
- Fixed-X: increase then constant; random-X: increase then decrease
- Underparameterized: U-curve; overparameterized: also U-curve!
- Punchline: reparameterize overparameterized to underparameterized

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

- 1. Cross-validation still works in the overparameterized regime, especially when optimal regularization and train error can be zero for ridge regression through analytic continuation.
- 2. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 3. There is a principled measure of model complexity in general for overparameterized models in the form of random-X degrees of freedom.

- 1. Cross-validation still works in the overparameterized regime, especially when optimal regularization and train error can be zero for ridge regression through analytic continuation.
- 2. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 3. There is a principled measure of model complexity in general for overparameterized models in the form of random-X degrees of freedom.

- 1. Cross-validation still works in the overparameterized regime, especially when optimal regularization and train error can be zero for ridge regression through analytic continuation.
- 2. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 3. There is a principled measure of model complexity in general for overparameterized models in the form of random-X degrees of freedom.

- 1. Cross-validation still works in the overparameterized regime, especially when optimal regularization and train error can be zero for ridge regression through analytic continuation.
- 2. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- There is a principled measure of model complexity in general for overparameterized models in the form of random-X degrees of freedom.

Thanks for listening!

Questions/comments/thoughts?

• Ryan

• Committee: Ale, Arun, Yuting, Arian

- Collaborators
- Faculty
- Staff
- Students
- Funding agency

• Ryan

• Committee: Ale, Arun, Yuting, Arian

- Collaborators
- Faculty
- Staff
- Students
- Funding agency

- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency

- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency

- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency

- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency

- Ryan
- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency