Facets of regularization in high-dimensional learning:

Cross-validation, risk monotonization, and model complexity

Pratik Patil

Carnegie Mellon University

November 2022

Committee:

Ryan Tibshirani (Chair)
Alessandro Rinaldo
Arun Kumar Kuchibhotla
Yuting Wei (University of Pennsylvania)
Arian Maleki (Columbia University)

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extension:

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Overparametrization in machine learning

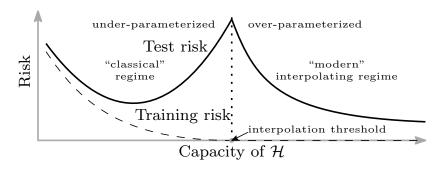
Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for¹:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

This talk is about generalization aspect in overparameterized learning.

¹Credits to Ryan for this nice partition of distinct benefits of overparameterization.

Peculiar generalization behavior: double descent



Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff"

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

Recent theoretical developments

Understanding generalization of interpolators in simpler settings:

- Linear regression
 - Hastie, Montanari, Rosset, Tibshirani, 2019
 - Belkin, Hsu, Xu, 2019
 - Muthukumar, Vodrahalli, Sahai, 2019
 - Bartlett, Long, Lugosi, Tsigler, 2019
 - Mei, Montanari, 2019
- Kernel regression
 - Liang, Rakhlin, 2018
 - Liang, Rakhlin, Zhai, 2019
- Local methods
 - Belkin, Hsu, Mitra, 2018
 - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

Nice survey papers:

- Bartlett, Montanari, and Rakhlin, 2021: "Deep learning: a statistical viewpoint"
- Belkin, 2021: "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Motivating questions

We study three operational aspects of overparameterized learning:

1) cross-validation, 2) risk monotonization, 3) model complexity.

Motivating questions:

- 1. Does cross-validation still "work" in the overparameterized regime, especially when optimal regularization and train error can be zero?
- 2. Is it possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior?
- 3. Is there a better and more principled measure of model complexity in general for overparameterized models?

Short answers: YES.

Long answers: Rest of the talk.

Outline

Overview

Cross-validation

Distribution estimation
Functional estimation
Discussion and extensions

Risk monotonization

Motivation
Zero-step procedure
Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Motivation and main punchlines

• Given $\mathcal{D} = \{(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}, 1 \leq i \leq n\}$, let $\widehat{\beta}_{\lambda}$ be ridge estimator:

$$\underset{\beta \in \mathbb{R}^p}{\text{minimize}} \sum_{i=1}^n (y_i - x_i^T \beta)^2 / n + \lambda \|\beta\|_2^2$$

• The out-of-sample error of $\widehat{\beta}_{\lambda}$ is $y_0 - x_0^{\top} \widehat{\beta}_{\lambda}$ for a test point (x_0, y_0)

Key question: can we reliably estimate the entire out-of-sample error <u>distribution</u> and its linear and non-linear <u>functionals</u> in high dimensions?

We show, that under proportional asymptotics, almost surely:

- 1. the empirical distributions of re-weighted in-sample errors from leave-one-out and generalized cross-validation converge weakly to the out-of-sample error distribution, even when $\lambda=0$
- 2. the <u>plug-in estimators</u> of these empirical distributions consistent for a broad class of linear and non-linear functionals of error distribution

Overview of high-dimensional ridge regression

- Let $X \in \mathbb{R}^{n \times p}$ denote feature matrix, $y \in \mathbb{R}^n$ denote response vector
- Let $\widehat{\beta}_{\lambda} \in \mathbb{R}^p$ denote the ridge estimator at regularization level λ :

$$\widehat{\beta}_{\lambda} := \underset{\beta \in \mathbb{R}^p}{\min} \ \|y - X\beta\|_2^2 / n + \lambda \|\beta\|_2^2$$

– if $\lambda > 0$, the problem is convex in β and has an explicit solution:

$$\widehat{\beta}_{\lambda} = (X^T X/n + \lambda I_p)^{-1} X^T y/n$$

– for any $\lambda \in \mathbb{R}$, extend the solution using Moore-Penrose inverse:

$$\widehat{\beta}_{\lambda} = (X^T X / n + \lambda I_p)^+ X^T y / n$$

- when $\lambda=0$, this reduces to least squares sol with minimum ℓ_2 norm; in particular, when ${\rm rank}(X)=n\leq p$, the solution interpolates data, i.e. $X\widehat{\beta}=y$, and has minimum ℓ_2 norm among all interpolators

Out-of-sample error distribution and its functionals

• Let P_{λ} denote distribution of out-of-sample error of $\widehat{\beta}_{\lambda}$:

$$P_{\lambda} = \mathcal{L}(y_0 - x_0^{\top} \widehat{\beta}_{\lambda} \mid X, y),$$

where (x_0, y_0) is sampled indep from the same training distribution

- a random distribution (conditional on observed data X and y) • Let ψ denote a functional such that $P \mapsto \psi(P) \in \mathbb{R}$:
- Linear functional:

$$\psi(P_{\lambda}) = \int t(z) dP_{\lambda}(z) = \mathbb{E}\big[t(y_0 - x_0^{\top} \widehat{\beta}_{\lambda}) \mid X, y\big],$$

where $t:\mathbb{R} \to \mathbb{R}$ is an error function (e.g., squared or absolute error)

Nonlinear functional:

$$\psi(P_{\lambda}) = \text{Quantile}(P_{\lambda}; \tau) = \inf\{z : F_{\lambda}(z) \ge \tau\},\$$

where F_{λ} denotes the cumulative distribution function of P_{λ}

We construct estimators of P_{λ} and $\psi(P_{\lambda})$ by suitably extending leave-one-out cross-validation and generalized cross-validation procedures.

Standard leave-one-out and generalized cross-validation

- Leave-one-out cross-validation (LOOCV):
 - for every i, train on all data except (x_i, y_i) , call the estimate $\widehat{\beta}_{\lambda}^{-i}$
 - compute test error on the $i^{\rm th}$ point and take average

$$\begin{aligned} \log(\lambda) &= \frac{1}{n} \sum_{i=1}^{n} \left(y_i - x_i^T \widehat{\beta}_{\lambda}^{-i} \right)^2 \\ &\stackrel{\text{(shortcut)}}{=} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)^2 \end{aligned}$$

where $L_{\lambda} = X(X^TX/n + \lambda I_p)^+X^T/n$ is the ridge smoothing matrix

- Generalized cross-validation (GCV)
 - same as leave-one-out shortcut but a single re-weighting

$$\gcd(\lambda) = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \operatorname{tr}[L_{\lambda}]/n} \right)^2$$

 Standard LOOCV and GCV are consistent for the expected <u>squared</u> out-of-sample prediction error

Proposed estimators

Natural estimators for P_{λ} and $\psi(P_{\lambda})$ building off from GCV and LOOCV.

Empirical distributions of the GCV, LOO re-weighted errors:

$$\widehat{P}_{\lambda}^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^{n} \delta \left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \quad \text{and} \quad \widehat{P}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} \delta \left(\frac{y_i - x_i^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$$

• When $\widehat{\beta}_{\lambda}$ is an interpolator, i.e. $L_{\lambda} = I_n$, both estimates are "0/0" 2; we then define the estimates as their respective limits as $\lambda \to 0$:

$$\widehat{P}_0^{\text{gcv}} = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^\dagger y]_i}{\operatorname{tr}[(XX^\top)^\dagger]/n} \right) \quad \text{and} \quad \widehat{P}_0^{\text{loo}} \quad = \frac{1}{n} \sum_{i=1}^n \delta \left(\frac{[(XX^\top)^\dagger y]_i}{[(XX^\top)^\dagger]_{ii}} \right)$$

Plug-in GCV and LOO estimators:

$$\widehat{\psi}_{\lambda}^{
m gcv} = \psi(\widehat{P}_{\lambda}^{
m gcv})$$
 and $\widehat{\psi}_{\lambda}^{
m loo} = \psi(\widehat{P}_{\lambda}^{
m gcv})$

 $^{^2} The$ idea of analytic continuation at $\lambda=0$ is from Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Distribution estimation

Theorem. Under i.i.d. sampling of (x_i, y_i) , i = 1, ..., n with

- 1. <u>feature</u> x_i decomposable into $x_i = \Sigma^{1/2} z_i$ where z_i contains i.i.d. entries with mean 0, variance 1, and finite 4+ moment, and spectrum of Σ is uniformly away from $r_{\min} > 0$ and $r_{\max} < \infty$,
- 2. response y_i with bounded 4+ moment,

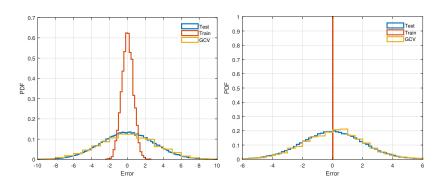
as $n,p\to\infty$ such that $p/n\to\gamma\in(0,\infty)$, almost surely, for each $\lambda>\lambda_{\min}:=-(1-\sqrt{\gamma})^2r_{\min}\le 0$,

$$\widehat{P}_{\lambda}^{\mathrm{gcv}} \xrightarrow{\mathrm{d}} {\textbf{\textit{P}}_{\lambda}}, \quad \text{and} \quad \widehat{P}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{d}} {\textbf{\textit{P}}_{\lambda}}.$$

Remarks:

- Almost sure convergence with respect to the training data
- The regression function does not need to be linear in x
- Amazingly, this results also holds when $\lambda = 0$ (min-norm estimator)

Distribution estimation: illustration



- n = 2500, p = 2000, p/n = 0.8
- $\lambda = 0$, i.e., least squares

- n = 2500, p = 5000, p/n = 2
- $\lambda =$ 0, i.e., min-norm estimator, zero in-sample errors

Linear functional estimation (pointwise in λ)

• Let T_{λ} be a linear functional of the out-of-sample error distribution:

$$T_{\lambda} = \mathbb{E}\big[t(y_0 - x_0^T \widehat{\beta}_{\lambda}) \mid X, y\big]$$

• Let $\widehat{T}_{\lambda}^{
m gcv}$ and $\widehat{T}_{\lambda}^{
m loo}$ be plug-in estimators from GCV and LOOCV:

$$\widehat{T}_{\lambda}^{\text{gev}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n} \right) \quad \text{and} \quad \widehat{T}_{\lambda}^{\text{loo}} = \frac{1}{n} \sum_{i=1}^{n} t \left(\frac{y_i - x_i^T \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \right)$$

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are continuous
- 2. have quadratic growth, i.e., there exist constants a, b, c > 0 such that $|t(z)| \le az^2 + b|z| + c$ for any $z \in \mathbb{R}$,

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$, for $\lambda > \lambda_{\min} := -(1 - \sqrt{\gamma})^2 r_{\min}$,

$$\widehat{T}_{\lambda}^{\mathrm{gev}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}, \quad \text{and} \quad \widehat{T}_{\lambda}^{\mathrm{loo}} \xrightarrow{\mathrm{a.s.}} T_{\lambda}.$$

Linear functional estimation (uniform in λ)

Theorem. For error functions $t : \mathbb{R} \to \mathbb{R}$

- 1. that are differentiable
- 2. have derivative with linear growth rate, i.e., there exist constants g, h > 0 such that $|t'(z)| \le g|z| + h$ for any $z \in \mathbb{R}$

as $n, p \to \infty$ with $p/n \to \gamma \in (0, \infty)$ for any compact set $\Lambda \subseteq (\lambda_{\min}, \infty)$,

$$\sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\rm gcv} - \mathcal{T}_{\lambda}| \xrightarrow{\rm a.s.} 0, \quad \text{and} \quad \sup_{\lambda \in \Lambda} |\widehat{\mathcal{T}}_{\lambda}^{\rm loo} - \mathcal{T}_{\lambda}| \xrightarrow{\rm a.s.} 0.$$

Remarks:

- Special case of $t(r) = r^2$ exploits bias-variance decomposition
- No bias-variance decomposition for general error functions and result requires a different proof technique via leave-one-out arguments
- Using uniformity arguments, the result can be extended for non-linear variational functionals

Application: quantile estimation

• Quantile of the out-of-sample error distribution:

$$Q_{\lambda}(\tau) = \operatorname{Quantile}(y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) = \operatorname*{arg\,min}_{u \in \mathbb{R}} \mathbb{E} \left[t_u (y_0 - x_0^T \widehat{\beta}_{\lambda}; \tau) \mid X, y \right]$$

where $t_u(y - x_0^T \widehat{\beta}_{\lambda}; \tau)$ is τ -tiled pin-ball loss function with shift u

- Empirical quantiles \widehat{Q}^{gcv} and \widehat{Q}^{loo} (of $\widehat{P}_{\lambda}^{gcv}$ and $\widehat{P}_{\lambda}^{loo}$) $\stackrel{\text{a.s.}}{\longrightarrow}$ Q_{λ}
- Estimated quantiles can be used to construct prediction intervals:

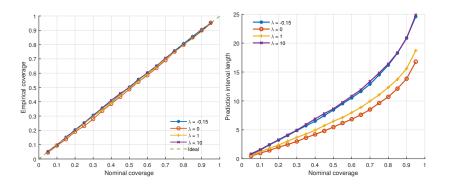
$$\mathcal{I}_{\lambda}^{\mathrm{gcv}} = \left[x_0^{\top} \widehat{\beta}_{\lambda} - \widehat{Q}_{\lambda}^{\mathrm{gcv}}(\tau_I), \, x_0^{\top} \widehat{\beta}_{\lambda} + \widehat{Q}_{\lambda}^{\mathrm{gcv}}(\tau_u) \right] \quad \text{and} \quad \mathcal{I}_{\lambda}^{\mathrm{loo}}$$

Such intervals have correct coverage conditional on the training data:

Corollary. Under proportional asymptotics, almost surely

$$\mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{gcv}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha, \quad \text{and} \quad \mathbb{P}(y_0 \in \mathcal{I}_{\lambda}^{\text{loo}} \mid X, y) \xrightarrow{\text{a.s.}} 1 - \alpha.$$

Prediction intervals: illustration (coverage and length)



- n = 2500, p = 5000
- Features: autoregressive feature covariance structure
- Signal: latent signal aligned with the principal eigenvector
- Coverage nearly exact, even for $\lambda = 0!$
- The case of $\lambda = 0$ provides the minimum interval length!

Discussion and extensions

Take-away from this work: empirical distributions of GCV and LOOCV track out-of-sample error distribution and a wide class of its functionals for ridge regression under proportional asymptotics framework

Key relation that we exploit:

$$y_{i} - x_{i}^{\top} \widehat{\beta}_{-i,\lambda} = \frac{y_{i} - x_{i}^{\top} \widehat{\beta}_{\lambda}}{1 - [L_{\lambda}]_{ii}} \approx \frac{y_{i} - x_{i}^{\top} \widehat{\beta}_{\lambda}}{1 - \text{tr}[L_{\lambda}]/n}$$
$$y_{i} - x_{i}^{\top} \widehat{\beta}_{-i,0} = \frac{[(XX^{\top})^{\dagger}y]_{i}}{[(XX^{\top})^{\dagger}]_{ii}} \approx \frac{[(XX^{\top})^{\dagger}y]_{i}}{\text{tr}[(XX^{\top})^{\dagger}]/n}$$

Extensions:

- Generalized ridge/less regression through structural equivalences
- Kernel ridge/less regression through risk equivalences

Outline

Overview

Cross-validation

Distribution estimation
Functional estimation
Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Motivation and main punchlines

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size p (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

We propose two methods, dubbed <u>zero-step</u> and <u>one-step</u>, that take an input an arbitrary procedure and return a modified procedure that has a monotonic risk behavior. The main idea is that of subsampling.

Motivation and the problem

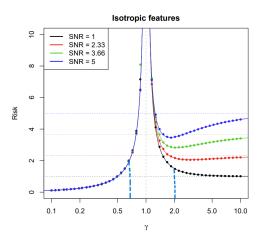


Figure: Risk of the minimum ℓ_2 -norm least squares as a function of $p/n \approx \gamma$.

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

The problem

- Given a number of observations (n) and a number of features (p), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$:

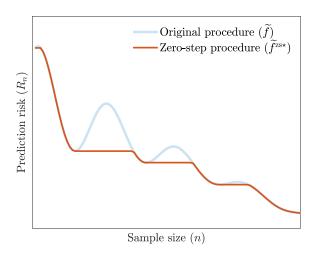
- 1. Risk estimation: construct a (dense grid of) aspect ratios $\geq \gamma$ by using datasets of sizes smaller than n, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

Method highlights:

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Risk monotonization illustration

If R_n represents the "risk" of a procedure at sample size n, then by risk monotonization we mean a procedure with risk $\min_{m < n} R_m$.



Risk monotonization guarantee

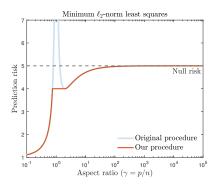
Theorem. Under the proportional asymptotics regime $(p/n \to \gamma)$, and a mild assumption on the convergence of the prediction risk of \hat{f} trained on datasets with a limiting aspect ratio ζ converges to $R^{\text{det}}(\zeta; \hat{f})$, we show:

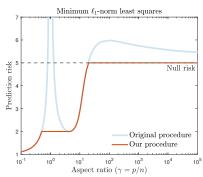
$$R(\widehat{f}^{\mathrm{cv}}) \ = \inf_{\zeta \in [\gamma,\infty]} R^{\mathsf{det}}(\zeta;\widehat{f}) \ imes \ (1+o_p(1)).$$

This shows that the zero-step predictor has a monotone risk in terms of the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the data. This is unlike most results in overparametrized learning which require stringent assumptions.

Risk monotonization (illustration)





- minimum ℓ_2 -norm least squares (ridgeless regression)
- minimum ℓ_1 -norm least squares (lassoless regression)

Discussion and extensions

Take-aways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

Extensions:

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extensions

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Motivation and main punchlines

Key question: is there a principled measure of model complexity in general for overparameterized models?

- Propose measures of model complexity that are:
 - algorithm-specific and applies for any prediction algorithm
 - produce a number between 0 and n (the number of observations)
- Two variants of model complexities are:
 - emergent model complexity that depends on the prediction algorithm as well as underlying the regression function
 - intrinsic model complexity that depends on the prediction algorithm only and its adaptability to pure noise

Based on ideas from optimism theory and degrees of freedom.

Fixed-X degrees of freedom

Consider data $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$, i = 1, ..., n such that $y_i = f(x_i) + \varepsilon_i$ where $f : \mathbb{R}^p \to \mathbb{R}$ is regression function, ε_i has mean 0 and variance σ^2 .

Let \mathcal{A} be any fitting algorithm that maps $\{(x_i, y_i)\}_{i=1}^n \stackrel{\mathcal{A}}{\mapsto} \widehat{f}$. The degrees of freedom of predictor \widehat{f} is defined as

$$\operatorname{DofF}(\widehat{f}) = \sum_{i=1}^{n} \operatorname{Cov}(y_i, \widehat{f}(x_i)) / \sigma^2 = \operatorname{tr} \left[\operatorname{Cov}(y, \widehat{f}(X)) \right] / \sigma^2,$$

where y: response vector, X: feature matrix, $\widehat{f}(X)$: predicted response

Where does squared error loss come into play?

$$\mathbb{E}\Big[\sum_{i=1}^{n}(\widetilde{y}_{i}-\widehat{f}(x_{i}))^{2}\Big] - \mathbb{E}\Big[\sum_{i=1}^{n}(y_{i}-\widehat{f}(x_{i}))^{2}\Big] = 2\sigma^{2}\mathrm{DofF}(\widehat{f})$$
fixed-X prediction error =:ErrF(\widehat{f}) expected training error =:ErrT(\widehat{f})

Fixed-X degrees of freedom in linear regression

• Suppose $p \le n$ and X has full (column) rank, and we take \widehat{f} to be ordinary least squares predictor $\widehat{f}(X) = X\widehat{\beta}$, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \| y - X\beta \|_2^2 = (X^T X)^{-1} X^T y.$$

$$DofF(\widehat{f}) = tr[Cov(y, X\widehat{\beta})]/\sigma^2 = tr[\sigma^2 X(X^T X)^{-1} X^T]/\sigma^2 = p.$$

• Suppose $p \ge n$ and X has full (row) rank, and we take \widehat{f} to be min ℓ_2 -norm least squares predictor $\widehat{f}(X) = X\widehat{\beta}$, where

$$\widehat{\beta} = \operatorname*{arg\,min}_{\beta \in \mathbb{R}^p} \{ \|\beta\|_2 : X\beta = y \} = (X^\top X)^\dagger X^\top y.$$

$$\mathrm{DofF}(\widehat{f}) = \mathrm{tr}[\mathrm{Cov}(y, X\widehat{\beta})]/\sigma^2 = \mathrm{tr}[\sigma^2 X^\top (XX^\top)^{-1} X]/\sigma^2 = n.$$

Thus, $\mathrm{DofF}(\widehat{f})$ is p for $p \leq n$, but is always n for $p \geq n$ (not meaningful).

This is fixed-X degrees of freedom. How to extend for random-X setting?

Re-interpreting fixed-X degrees of freedom

Fixed-X degrees of freedom is a standard algorithm specific measure of complexity, but no notion of random-X degrees of freedom we know of.

We cast fixed-X degrees of freedom from a different perspective.

- Define fixed-X optimism of \hat{f} by $\mathrm{OptF}(\hat{f}) = \mathrm{ErrF}(\hat{f}) \mathrm{ErrT}(\hat{f})$.
- Consider the following family of "reference" models:
 - $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
 - $-(U_k, v)$ is random design with k features, and noise with level σ^2 .
- Recall that $\mathrm{DofF}(\mathcal{A}^{\mathrm{ref}}(U_k, v)) = k$ so long as $\mathrm{rank}(U_k) = k$.
- Thus, for a fitting procedure $\hat{f} = \mathcal{A}(X, y)$, $\mathrm{DofF}(\hat{f})$ is also equal to the value of k that satisfy the following relation:

$$\mathrm{OptF}(\mathcal{A}(X,y)) = \mathrm{OptF}(\mathcal{A}^{\mathrm{ref}}(U_k,v)) \tag{dfF}$$

Emergent random-X degrees of freedom

"Matching optimism" interpretation can be extended to random-X setting and leads to the definition of random-X degrees of freedom.

- Define random-X optimism of \widehat{f} by $\mathrm{OptR}(\widehat{f}) = \mathrm{ErrR}(\widehat{f}) \mathrm{ErrT}(\widehat{f})$, where $\mathrm{ErrR}(\widehat{f}) = \mathbb{E}[(y_0 \widehat{f}(x_0))^2]$ is the random-X prediction error.
- We thus define the random-X degrees of freedom, $\mathrm{DofR}(\widehat{f})$, of any predictor $\widehat{f} = \mathcal{A}(X,y)$, as the value of k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X,y)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k,v)) \tag{dfR, emergent}$$

Recall here:

- $\mathcal{A}^{\mathrm{ref}}$ is the least squares reference algorithm,
- (U_k, v) is random design with k features, and noise with level σ^2 .

We call the measure emergent random-X degrees of freedom.

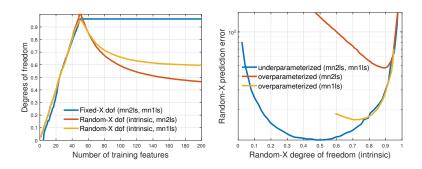
Intrisic random-X degrees of freedom

- The emergent random-X degrees of freedom, $\operatorname{DofR}(\widehat{f})$, depends of both the predictor \widehat{f} and the underlying regression function f.
- When matching optimisms, the observed random-X optimism of \hat{f} consists of bias, which may inflate the degrees of freedom.
- We thus also define intrinsic random-X degrees of freedom, denoted by DofRⁱ, as the k for which the following relation holds:

$$\operatorname{OptR}(\mathcal{A}(X,\nu)) = \operatorname{OptR}(\mathcal{A}^{\operatorname{ref}}(U_k,\nu)) \tag{dfR, intrinsic}$$

The intrinsic random-X degrees of freedom measures the inherent complexity of the predictor \hat{f} in terms of overfitting to "pure noise".

Random-X degrees of freedom illustration



- Fixed data with n = 50 and response non-linear in p = 200 features
- Model class: estimators fitted on nested subsets of 1 to 200 feaures
- Fixed-X: increase then constant; random-X: increase then decrease
- ullet Underparameterized: U-curve; overparameterized: also U-curve!
- Punchline: reparameterize overparameterized to underparameterized

Discussion and future directions

A high-level view of the work:

- Suppose we are given a family of models for which we want a complexity measure under a specific error metric.
- Construct a family of "reference" models spanning same optimisms.
- Find the model in the reference family that is closest to the observed optimism. Declare complexity as complexity of that reference model.

Key relation:

$$\operatorname{OptR}(\widehat{f}) = \operatorname{OptR}(\widehat{f}^{\operatorname{ref}})$$

Future directions:

- Attribute total complexity to various components: bias, variance, covariate shift, etc.
- Other error metrics beyond squared error

Outline

Overview

Cross-validation

Distribution estimation Functional estimation Discussion and extensions

Risk monotonization

Motivation Zero-step procedure Discussion and extension:

Model complexity

Fixed-X degrees of freedom Random-X degrees of freedom Discussion and extensions

Conclusion

Motivating thesis questions with take-aways

We studied three operational aspects of overparameterized learning: 1) cross-validation, 2) risk monotonization, 3) model complexity.

- Cross-validation still works in the overparameterized regime, especially when optimal regularization and train error can be zero for ridge regression through analytic continuation.
- 2. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- There is a principled measure of model complexity in general for overparameterized models in the form of random-X degrees of freedom.

Thanks for listening!

Questions/comments/thoughts?

BIG THANKS!

- Ryan
- Committee: Ale, Arun, Yuting, Arian
- Collaborators
- Faculty
- Staff
- Students
- Funding agency