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Over-parameterization and regularization

▶ In the big data era, the success of machine learning and deep
learning methods typically have much more parameters than
the training samples.

Random forest Kernel method Neural network

▶ Optimizing such over-parameterized models requires different
types of regularization.
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Explicit and implicit regularization
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Ridge ensembles

▶ Ridge estimator: Let Dn = {(xj, yj) ∈ Rp × R : j ∈ [n]} denote a
dataset. The ridge estimator fitted on subsampled dataset DI

with I ⊆ [n], |I| = k is defined as:

β̂λ
k (DI) = argmin

β∈Rp

1
k

∑
j∈I

(yj − x⊤j β)
2 + λ∥β∥2

2.

▶ Ensemble ridge estimator: For λ ≥ 0 fixed,

β̃λ
k,M(Dn; {Iℓ}M

ℓ=1) :=
1
M

∑
ℓ∈[M]

β̂λ
k (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M →∞.
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Prediction risk

Conditional prediction risk: The goal is to quantify and
estimate the prediction risk:

Rλ
k,M := E(x,y)[(y− x⊤β̃λ

k,M)2 | Dn, {Iℓ}M
ℓ=1], (1)

under proportional asymptotics where n, p, k→∞, p/n→ ϕ and
p/k→ ϕs. Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.
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k,M)2 | Dn, {Iℓ}M
ℓ=1], (1)

under proportional asymptotics where n, p, k→∞, p/n→ ϕ and
p/k→ ϕs. Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

Focusing on subsample ridge ensemble, we aim to answer:
(1) What is the role and relationship between implicit subsampling

and explicit ridge regularization with regard to prediction risk?
(2) How to tune the subsample aspect ratio ϕs and the ridge

penalty λ to minimize the prediction risk?

Subsample Ridge Ensembles 5 / 10



Risk equivalence

▶ As p/n→ ϕ and p/k→ ϕs, the
prediction risk in the full
ensemble (M =∞) converges:

Rλ
k,∞

a.s.−−→ Rλ
∞(ϕ, ϕs).

▶ For ϕ = 0.1, the risk profile as a
function of (λ, ϕs) is shown in
the figure in the log-log scale.
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▶ Risk equivalence (Theorem 2.3):

min
ϕs≥ϕ

R0
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridgeless

ensemble

= min
λ≥0

Rλ
∞(ϕ, ϕ)

︸ ︷︷ ︸
opt. ridge
predictor

= min
ϕs≥ϕ,
λ≥0

Rλ
∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridge
ensemble

.
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▶ Implication: the implicit regularization provided by the
subsample ensemble (a larger ϕs, or a smaller k) amounts to
adding more explicit ridge regularization (a larger λ).
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Generalized cross-validation for ridge ensembles

▶ Beyond quantitative analysis, how can one pick (λ, ϕs) to
minimize the prediction risk?

▶ For ordinary ridge (M = 1 or k = n), the generalized
cross-validation (GCV) estimator is known to be consistent.

▶ For general M, the GCV estimator is defined as

▶ The GCV for full ensemble is defined by letting M tend to infinity.
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Tλ
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1
|I1:M |

∑
i∈I1:M

(yi − x⊤i β̃λ
k,M)2

(1− |I1:M|−1 tr(Sλ
k,M))2

,

where Sλ
k,M = 1

M

∑M
ℓ=1 XIℓ(X

⊤
IℓXIℓ/k + λIp)

+X⊤
Iℓ/k is the
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Uniform consistency of GCV for full-ensemble ridge

▶ (Theorem 3.1, informal) For all λ ≥ 0, we have

max
k∈Kn
|gcvλk,∞ − Rλ

k,∞|
a.s.−−→ 0.

▶ This allows selecting the optimal ensemble and subsample
sizes in a data-dependent manner:
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Coupled with the risk equivalence result, it suffices to fix λ and
only tune the subsample size k or subsample aspect ratio ϕs.
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Inconsistency on finite ensembles

▶ (Proposition 3.3, informal) For ensemble size M = 2, ridge
penalty λ = 0, and any ϕ ∈ (0,∞),

|gcv0
k,2 − R0

k,2| ̸
p−→ 0.

▶ The bias scales as 1/M, which is negligible for large M:
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Summary

▶ This work [1] reveals the connections between the implicit
regularization induced by subsampling and explicit ridge
regularization for subsample ridge ensembles.

▶ We establish the uniform consistency of GCV for full ridge
ensembles.

▶ We show that GCV can be inconsistent even for ridge
ensembles when M = 2.

▶ Future directions: bias correction of GCV for finite M; extension
to other metrics [2]; extension to other base predictors.
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