Subsample Ridge Ensembles: Equivalences
and Generalized Cross-Validation

Jin-Hong Du""  Pratik Patil>  Arun Kumar Kuchibhotla’

" Department of Statistics and Data Science, Carnegie Mellon University
2Department of Statistics, University of California, Berkeley
equal contribution

July 2023

Nilions Berkeley

University UNIVERSITY OF CALIFORNIA

Subsample Ridge Ensembles 1/10



Over-parameterization and regularization

> |n the big data era, the success of machine learning and deep
learning methods typically have much more parameters than
the training samples.
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» Optimizing such over-parameterized models requires different
types of regularization.
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Explicit and implicit regularization

implicit regularization explicit regularization
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Explicit and implicit regularization
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Ridge ensembles

» Ridge estimator: Let D, = {(xj,y;) € R” x R : j € [n]} denote a
dataset. The ridge estimator fitted on subsampled dataset D,
with I C [n], |I| = k is defined as:

~ 1
B (Dr) = argmin - > (v —x 8)” + A8
BeERr % ep
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with I C [n], |I| = k is defined as:

B, (D) = argmin Z 7 8)* + )83
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» Ensemble ridge estimator: For A > 0 fixed,

,Bk 11 (Dn; {Iﬁ}e 1) Z ﬁk DII
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With]l,...,IMNIk = {{il,...,ik}: 1< <...<i Sn} The
full-ensemble ridge estimator is defined by letting // — oc.
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Prediction risk

Conditional prediction risk: The goal is to quantify and
estimate the prediction risk:

Rl/c\,M = E(x,y)[()’ _xTBl/c\,M)z 2 {16}24:1]7 (1)

under proportional asymptotics where n,p, k — oo, p/n — ¢ and
p/k — ¢s. Here, ¢ and ¢, are the data and subsample aspect
ratios, respectively.
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Conditional prediction risk: The goal is to quantify and
estimate the prediction risk:

R/?,M = E(x,y)[(y —xTBIZ\,M)Z 2 {16}24:1]7 (1)

under proportional asymptotics where n,p, k — oo, p/n — ¢ and
p/k — ¢s. Here, ¢ and ¢, are the data and subsample aspect
ratios, respectively.

Focusing on subsample ridge ensemble, we aim to answer:

(1) What is the role and relationship between implicit subsampling
and explicit ridge regularization with regard to prediction risk?

(2) How to tune the subsample aspect ratio ¢, and the ridge
penalty A to minimize the prediction risk?
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Risk equivalence

Subsample aspect ratio ¢s
1 ¢, 10

» Asp/n— ¢ andp/k — o, the ool
prediction risk in the full
ensemble (// = ~) converges:
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» For ¢ = 0.1, the risk profile as a
function of (), ¢;) is shown in
the figure in the log-log scale.

10

Subsample Ridge Ensembles 6/10



Risk equivalence

Subsample aspect ratio ¢s
1 ¢, 10

> Asp/n— ¢ and p/k — ¢,, the Lo
prediction risk in the full
ensemble (// — ~c) converges:

Il.lO

-1.15

=]
-
o

-1.20

I1.25
130

Ridge regularization A
- >

» For ¢ = 0.1, the risk profile as a
function of (), ¢;) is shown in
the figure in the log-log scale.

10
» Risk equivalence (Theorem 2.3):

min 72 (6. 6,) = min Ao (6,0) = min Zo(9,6).-
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Risk equivalence

Subsample aspect ratio ¢s
1 9

» Asp/n— ¢ and p/k — ¢, the
prediction risk in the full
ensemble (// = ~) converges:

Ridge regularization A

» For ¢ = 0.1, the risk profile as a - o5
function of (), ¢;) is shown in I
the figure in the log-log scale. 0 120

» Implication: the implicit regularization provided by the
subsample ensemble (a larger ¢;, or a smaller k) amounts to
adding more explicit ridge regularization (a larger \).

Subsample Ridge Ensembles 6/10



Generalized cross-validation for ridge ensembles

» Beyond quantitative analysis, how can one pick (A, ¢,) to
minimize the prediction risk?
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Generalized cross-validation for ridge ensembles

» Beyond quantitative analysis, how can one pick (A, ¢,) to
minimize the prediction risk?

» For ordinary ridge (M = 1 or k = n), the generalized
cross-validation (GCV) estimator is known to be consistent.
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Generalized cross-validation for ridge ensembles

» Beyond quantitative analysis, how can one pick (A, ¢,) to
minimize the prediction risk?

» For ordinary ridge (M = 1 or k = n), the generalized
cross-validation (GCV) estimator is known to be consistent.

» For general M, the GCV estimator is defined as

N -
o, = Tem training error
kM degree of freedom correction
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Generalized cross-validation for ridge ensembles

» Beyond quantitative analysis, how can one pick (A, ¢,) to
minimize the prediction risk?

» For ordinary ridge (M = 1 or k = n), the generalized

cross-validation (GCV) estimator is known to be consistent.

» For general M, the GCV estimator is defined as

A T;\AM \1] M| Zze[, w( —X; ﬁkM)

gCVim =
7 D/Aw 1 - ‘11 \l‘ 5/ w)>

)

where 8}, = LSV X, (XX, K+ M) TX] ks the
smoothlng matrix that represents the degree of freedom.
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Generalized cross-validation for ridge ensembles

» Beyond quantitative analysis, how can one pick (A, ¢,) to
minimize the prediction risk?

» For ordinary ridge (M = 1 or k = n), the generalized
cross-validation (GCV) estimator is known to be consistent.

» For general M, the GCV estimator is defined as

A T;\AM \1] M| Zze[, w( —X; ﬁkM)

gCVim =
7 D/Au 1 - ‘11 \l‘ 5/ w))
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where 8}, = LSV X, (XX, K+ M) TX] ks the
smoothlng matrix that represents the degree of freedom.

» The GCV for full ensemble is defined by letting M tend to infinity.
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Uniform consistency of GCV for full-ensemble ridge
» (Theorem 3.1, informal) For all A > 0, we have
max |gov; o, = R ool = 0.

» This allows selecting the optimal ensemble and subsample
sizes in a data-dependent manner:
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Coupled with the risk equivalence result, it suffices to fix A and
only tune the subsample size k or subsample aspect ratio ¢;.
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Inconsistency on finite ensembles

» (Proposition 3.3, informal) For ensemble size // = 2, ridge
penalty A = 0, and any ¢ € (0, o),

’gCVg,z - R2,2| 7Fz> 0.
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Inconsistency on finite ensembles

» (Proposition 3.3, informal) For ensemble size // = 2, ridge
penalty A = 0, and any ¢ € (0, o),

]gCV%z - R2,2| 7Fz> 0.

» The bias scales as 1/, which is negligible for large //:

M 1 ] () —— () —— 0
3.00
275 | Data aspect
’ iratio9=0.1
L 250 |
n !
c225 |
S 1
2200 !
© !
J175 0
& 1
150 1
I
125 |
100 '
01 0.2 05 1.0 20 5.0 10.0
Subsample aspect ratio ¢s
point - empirical GCV line - theoretical risk

Subsample Ridge Ensembles 9/10



Summary

» This work [1] reveals the connections between the implicit
regularization induced by subsampling and explicit ridge
regularization for subsample ridge ensembles.

» We establish the uniform consistency of GCV for full ridge
ensembles.

» We show that GCV can be inconsistent even for ridge
ensembles when M/ = 2.

» Future directions: bias correction of GCV for finite M; extension
to other metrics [2]; extension to other base predictors.
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