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Ridge regression in high dimensions

Recent interests in high-dimensional ridge regression concern
the ridge estimator:

β̂λ = (X⊤X/n + λIp)
†X⊤y/n,

and its prediction risk:

R(β̂λ) = Ex0,y0 [(y0 − x⊤0 β̂
λ)2 | X, y].

The goal is to study the behavior of its asymptotic prediction
risk:

R(β̂λ) → R(λ, ϕ)

as the feature size p and the sample size n diverge
proportionally to an aspect ratio p/n → ϕ ∈ (0,∞).

2 / 13



Optimal ridge regression under in-distribution

For high-dimensional ridge regression, two questions for the
optimal in-distribution asymptotic risk minλ≥λmin

R(λ, ϕ):
(Q1) What is the behavior of the optimal ridge penalty, as a function

of parameters such as signal-to-noise ratio, data aspect ratio,
feature correlations, and signal structure?

(Q2) What is the behavior of the optimally tuned ridge risk, as a
function of these same problem parameters?

Known results provide partial answers:
(A1) λ∗ = ϕ/SNR > 0 in the isotropic cases when λmin = 0, while

λ∗ < 0 in some anisotropic cases (both signal and features)
and overparameterized regimes.

(A2) R(λ∗, ϕ) is monotonically increasing in ϕ.
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Ridge regression under distribution shifts (motivation)

We consider two types of distribution shifts:

(i) Covariate shift: where Px0 ̸= Px but Py0|x0 = Py|x.
(ii) Regression shift: where Py0|x0 ̸= Py|x but Px0 = Px.

and answer two out-of-distribution problems:

(Q1′) How does distribution shift alter optimal regularization λ∗?
(Q2′) How does distribution shift alter optimal risk behavior R(λ∗, ϕ)?
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Summary of results

Optimal regularization landscape in ridge regression.
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Data assumptions and lower bound on negative
regularization

Data assumptions:
▶ Covariate: Each feature vector xi for i ∈ [n] can be decomposed

as xi = Σ1/2zi, where zi ∈ Rp contains i.i.d. entries zij for j ∈ [p]
with mean 0, variance 1, and bounded 4 + µ moments for some
µ > 0. (RMT structure and bounded moment)

▶ Response: Each response variable yi for i ∈ [n] has mean 0,
and bounded 4 + µ moments. (model-free)

Lower bound on λ: Let µmin ∈ R be the unique solution,
satisfying µmin > −rmin, to the equation:

1 = ϕ t̄r[Σ2(Σ+ µminI)−2],

and let λmin(ϕ) be given by:

λmin(ϕ) = µmin − ϕ t̄r[Σ(Σ+ µminI)−1].
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Out-of-distribution risk characterization

The OOD risk asymptotics read that

R(λ, ϕ) := B(λ, ϕ)︸ ︷︷ ︸
bias

+V (λ, ϕ)︸ ︷︷ ︸
variance

+E (λ, ϕ)︸ ︷︷ ︸
extra bias

+ κ2︸︷︷︸
irreducible error

, (1)

where

B = µ2 · β⊤(Σ+ µI)−1(ṽΣ+Σ0)(Σ+ µI)−1β,

V = σ2ṽ,

E = 2µ · β⊤(Σ+ µI)−1Σ0(β0 − β),

κ2 = (β0 − β)⊤Σ0(β0 − β) + σ2
0.

The optimal regularization is defined as

λ∗ ∈ argmin
λ≥λmin(ϕ)

R(λ, ϕ). (2)
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Optimal regularization sign characterization (IND)

Theorem (Optimal regularization sign for IND risk)

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.

2. (Overparameterized) When ϕ > 1, if for all v < 1/µ(0, ϕ), the
following general alignment holds:

t̄r[BΣ(vΣ+ I)−2] + σ2

t̄r[BΣ(vΣ+ I)−3] + σ2 >
t̄r[Σ(vΣ+ I)−2]

t̄r[Σ(vΣ+ I)−3]
, (3)

where B = ββ⊤, then we have λ∗ < 0.

▶ Alignment condition (3) captures how well the signal B is
aligned with the feature covariance Σ.

▶ λ∗ could be negative in the overparameterized regime when
p > n.

8 / 13



Illustration (optimal IND regularization)
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Figure: Illustration of negative or positive optimal regularization under
general alignment.

▶ λ∗ can be smaller than the previous bound.
▶ The more the alignment (seen as a function of SNR), the lower

λ∗; the more the misalignment, the higher λ∗ (seen as a
function of SNR).
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Optimal regularization sign characterization (OOD,
covariate shift)

1. (Underparameterized) When ϕ < 1, we have λ∗ ≥ 0.

2. (Overparameterized) When ϕ > 1, if Σ0 = I (corresponding to
the estimation risk), then we have λ∗ ≥ 0.

3. (Overparameterized) When ϕ > 1, if Σ = I and

t̄r[Σ0B] > t̄r[Σ0]

(
t̄r[B] +

(1 + µ(0, ϕ))3

µ(0, ϕ)3 σ2
)
, (4)

where B = ββ⊤, then we have λ∗ < 0.
▶ The isotropic test covariance case (Σ0 = I) is similar to

underparameterized cases.
▶ Alignment condition (4) captures how the well the signal B

aligned with covariance matrix of test features Σ0.
▶ λ∗ can be negative even in the isotropic train covariance case

(Σ = I).
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Optimal regularization sign characterization (OOD,
label shift)

1. (Underparameterized) When ϕ < 1, if σ2 = o(1) and for all
µ ≥ 0, the following general alignment holds:

t̄r[B0Σ
2(Σ+ µI)−2] > t̄r[BΣ2(Σ+ µI)−2], (5)

where B = ββ⊤ and B0 = β0β
⊤, then we have λ∗ < 0.

2. (Overparameterized) When ϕ > 1, if the general alignment
conditions (3) and (5) hold, then we have λ∗ < 0.

▶ λ∗ can be negative even if the design is underparameterized!
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Illustration (optimal OOD regularization)
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Figure: Covariate and regression shift can lead to negative optimal
regularization in both underparameterized and overparameterized
regimes.

The design is isotropic on the left.
The design is underparameterized on the right.
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Optimal risk monotonicity

The map ϕ 7→ minλ≥λmin(ϕ) R(λ, ϕ) is monotonically increasing
in ϕ.
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Figure: Ridge regression optimized over λ ≥ ν for different thresholds
ν has monotonic risk profile.

Previous result holds for positive λ and IND risks.
Current result holds for negative λ and OOD risks.
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