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Main punchline

• Standard regression with n data pairs (xi , yi ) ∈ Rp × R
• Given a tuning parameter λ, recall that ridge regression solves

minimize
β∈Rp

n∑
i=1

(yi − xTi β)2/n + λ∥β∥22

• Choice λ crucially affects the performance of the fitted estimator

Key question: how to select λ based on observed data in high dimensions

We show: under proportional asymptotics as n → ∞, p/n → γ ∈ (0,∞),
the leave-one-out and generalized cross-validation almost surely,

1. converge to out-of-sample prediction error uniformly in λ;

2. pick optimal λ for prediction error, including when λ = 0 or negative
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High-dimensional ridge regression

• Let X ∈ Rn×p denote feature matrix, y ∈ Rn denote response vector

• Let β̂λ := argminβ∈Rp ∥y −Xβ∥22/n+λ∥β∥22 denote ridge estimate

– if λ > 0, problem convex in β and has an explicit solution:

β̂λ = (XTX/n + λIp)
−1XT y/n

– for any λ ∈ R, extend using Moore-Penrose inverse:

β̂λ = (XTX/n + λIp)
+XT y/n

– when λ = 0, this reduces to least squares sol with minimum ℓ2 norm;
in particular, when rank(X ) = n ≤ p, the solution interpolates data,

i.e. X β̂ = y , and has minimum ℓ2 norm among all interpolators
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Prediction error and cross validation

• We measure the performance of fitted models β̂λ by their expected
squared out-of-sample prediction error defined as

err(λ) := Ex0,y0

[
(y0 − xT0 β̂λ)

2 | X , y
]
,

where (x0, y0) is test pair sampled from same training distribution

– random (conditional on observed data X and y)
– unknown (depends on characteristics of data generating distribution)

• Several estimators of prediction error:

– k-fold cross validation (large bias when k = 5 or even when k = 10)
– Generalized cross validation
– Stein unbiased error estimate (in-sample prediction error)

We study the case when k = n also called leave-one-out cross-validation,
and generalized cross-validation
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Leave-one-out and generalized cross-validation

• Leave-one-out cross-validation (LOOCV):

– for every i , train on all data except (xi , yi ), call the estimate β̂−i
λ

– compute test error on the i th point and take average

loo(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂−i
λ

)2
(shortcut)

=
1

n

n∑
i=1

(
yi − xT

i β̂λ

1− [Lλ]ii

)2

where Lλ = X (XTX/n + λIp)
+XT/n is the ridge smoothing matrix

• Generalized cross-validation (GCV)
– same as leave-one-out shortcut but a single re-weighting

gcv(λ) =
1

n

n∑
i=1

(
yi − xT

i β̂λ

1− tr[Lλ]/n

)2

• When β̂λ is an interpolator, i.e. Lλ = In, both estimates are “0/0”;
we then define the estimates as their respective limits as λ → 0
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Goals of the paper

There are two main questions that we answer in this paper:

1. How do gcv(λ) and loo(λ) compare to err(λ) as functions of λ?

2. How do err(λ̂gcv
I ) and err(λ̂loo

I ) compare to err(λ⋆
I )

where λ⋆
I denotes the optimal oracle ride tuning parameter

λ⋆
I = argmin

λ∈I⊆R
err(λ),

and λ̂gcv
I and λ̂loo

I denote the corresponding tuning parameters that
minimize GCV and LOOCV over an interval I?
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Summary of main results

Under i.i.d. sampling with

• a well-specified model y = xTβ0 + ε where ε is independent of x

• decomposable features x = Σ1/2z where z contains i.i.d. entries

• certain bnd moment and norm cond. on ε and z , and β0 and Σ, resp.

as n → ∞ and p/n → γ ∈ (0,∞), we show

1. GCV pointwise convergence

– gcv(λ) converges to err(λ) pointwise in λ

2. GCV uniform convergences

– convergence holds uniformly over compact intervals of λ including 0

3. LOOCV convergences

– the analogous results hold for loo(λ) by relating it to gcv(λ)

4. Optimal tuned prediction errors

– both err(λ̂gcv
I ) and err(λ̂loo

I ) converge to err(λ⋆
I )
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Numerical illustration (negative optimal regularization)
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• Autoregressive Σ
• β0 aligned with the top eigendirection of Σ
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Numerical illustration (positive optimal regularization)

-0.2 0 0.2 0.4 0.6 0.8 1

45

50

55

60

65

70

75

80

85

90

Error

Min Error

GCV

Min GCV

LOOCV

Min LOOCV

• Overparametrized regime (p = 12000, n = 6000)
• Autoregressive Σ
• β0 aligned with the bottom eigendirection of Σ

8 / 13



Numerical illustration (positive optimal regularization)

-0.2 0 0.2 0.4 0.6 0.8 1

45

50

55

60

65

70

75

80

85

90

Error

Min Error

GCV

Min GCV

LOOCV

Min LOOCV

• Overparametrized regime (p = 12000, n = 6000)
• Autoregressive Σ
• β0 aligned with the bottom eigendirection of Σ

8 / 13



Outline

Problem setup

Main results

Proof intuitions



GCV versus prediction error: two key proof steps

Step 1: bias and variance decompositions of prediction error and GCV

Let Σ̂ := XTX/n denote the sample covariance matrix.
• limiting bias-like components:

– prediction error

errb(λ) := λ2βT
0 (Σ̂ + λI )+Σ(Σ̂ + λI )+β0

– gcv

gcvb(λ) :=
λ2βT

0 (Σ̂ + λI )+Σ̂(Σ̂ + λI )+β0(
1− tr

[
(Σ̂ + λIp)+Σ̂

]
/n
)2

• limiting variance-like components:
– prediction error

errv (λ) := σ2

[
1 + tr

[
(Σ̂ + λIp)

+Σ
]
/n

]
−σ2 tr

[
(Σ̂+λIp)

+Σ(Σ̂+λIp)
+]/n

– gcv

gcvv (λ) := σ2

[
1

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n

]
−
σ2 tr

[
(Σ̂ + λIp)

+Σ̂(Σ̂ + λIp)
+
]
/n(

1− tr
[
(Σ̂ + λIp)+Σ̂

]
/n
)2
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Bias and variance equivalence numerical illustration
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• Bias minimized at λ = 0 and variance decreases as λ increases
• Optimal λ always positive is underparametrized regime!
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Discussion and future directions

This work shows GCV and LOOCV uniformly track squared out-of-sample
prediction error for ridge regression under proportional asymptotics.

Main tool:

(Σ̂ + λIp)
+Σ ≍ (Σ̂ + λIp)

+Σ̂

1− tr[(Σ̂ + λIp)+Σ̂]/n

where for any two sequences of matrices Ap and Bp, Ap ≍ Bp is used to mean

tr[Cp(Ap−Bp)]
a.s.−−→ 0 for any deterministic seq of matrices Cp of bnd trace norm

Going beyond . . .

• Equivalences for general functionals of out-of-sample distributions

• Equivalences for general estimators

• Finite sample analysis and rates of convergence
...
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Thanks for listening!

Questions/comments/thoughts?
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