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® Given a tuning parameter )\, recall that ridge regression solves

n

L. T 2\2 2
P — X n+ A
mlggl@lze (vi—x'B)°/ 18115

® Choice A crucially affects the performance of the fitted estimator

Key question: how to select \ based on observed data in high dimensions ‘

We show: under proportional asymptotics as n — oo, p/n — v € (0, 00),
the leave-one-out and generalized cross-validation almost surely,

1. converge to out-of-sample prediction error uniformly in A;
2. pick optimal A for prediction error, including when A = 0 or negative
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High-dimensional ridge regression

® Let X € R"™P denote feature matrix, y € R" denote response vector
° Let By := argmingcg, ||y —XB[3/n+ A||B]|3 denote ridge estimate

— if A > 0, problem convex in 8 and has an explicit solution:

Ba=(X"X/n+ )" XTy/n

— for any A € R, extend using Moore-Penrose inverse:

Br = (X"X/n+Ap) X y/n

— when X = 0, this reduces to least squares sol with minimum ¢> norm;
in particular, when rank(X) = n < p, the solution interpolates data,
i.e. XB =y, and has minimum ¢ norm among all interpolators
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® We measure the performance of fitted models B,\ by their expected
squared out-of-sample prediction error defined as

err(N) = By [(v0 — X3 B2)? | X, v].

where (xo, ¥o) is test pair sampled from same training distribution
— random (conditional on observed data X and y)
— unknown (depends on characteristics of data generating distribution)
® Several estimators of prediction error:
— k-fold cross validation (large bias when k = 5 or even when k = 10)
— Generalized cross validation
— Stein unbiased error estimate (in-sample prediction error)

We study the case when k = n also called leave-one-out cross-validation,
and generalized cross-validation
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— compute test error on the /™ point and take average

loo(\) = %Zn: (y,- - X,TB\;")Z

n Th 2
(shor:tcut) 1 Z Yi — X; ,3)\
n ] 1-— [LA],','

where Ly = X(X"X/n+ M,)* X" /n is the ridge smoothing matrix
® Generalized cross-validation (GCV)
— same as leave-one-out shortcut but a single re-weighting

~ 2
B 1< Yi — X,'TﬂA
sV =7 ; <1 - tr[LA]/n>

® \When 3,\ is an interpolator, i.e. Ly = I,, both estimates are “0/0";
we then define the estimates as their respective limits as A — 0
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Goals of the paper

There are two main questions that we answer in this paper:

1. How do gcv(A) and loo(\) compare to err(\) as functions of A?

2. How do err(A5™) and err(Al°°) compare to err(A})
where A7 denotes the optimal oracle ride tuning parameter

AJ = argmin err()),
A€ICR

and X%CV and X}"O denote the corresponding tuning parameters that
minimize GCV and LOOCV over an interval 7
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e decomposable features x = /27 where z contains i.i.d. entries
® certain bnd moment and norm cond. on ¢ and z, and By and X, resp.

as n— oo and p/n — v € (0,00), we show

1. GCV pointwise convergence
— gev(A) converges to err(\) pointwise in A
2. GCV uniform convergences
— convergence holds uniformly over compact intervals of A including 0
3. LOOCV convergences
— the analogous results hold for loo()\) by relating it to gcv())
4. Optimal tuned prediction errors
— both err(A5¥) and err(A\°°) converge to err(\})
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Numerical illustration (positive optimal regularization)
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bias and variance decompositions of prediction error and GCV

Let ¥ := XTX/n denote the sample covariance matrix.

® limiting bias-like components:
— prediction error
errp(N) := A2BJ (Z + M)TE(E + M) Bo
- gcv
N6 (Z 4+ A)TE(E + AI)*
gCVb(A) = BO ( - ) ( L ) 2/80
(1—tr [(X+ Xp)*X]/n)
® |imiting variance-like components:
— prediction error

err,()\) := o®

1+t [(S+ ) 5] /”] —o® tr [(Z+AL) TE(Z+AL) ]/

- gev

1—tr [(Z+ Ap)*E]/n (1 —tr [(Z+ Ap)*E]/n)?
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bias and variance equivalences for prediction error and GCV

® bias component equivalence:

_RBIEAMIEE M) By s
(1—tr [(E + Ap)+E]/n)?

NBJ(E+AN)TE(E+A)TBo

® variance component equivalences:

o2 tr [(Z + Mp)TE(E + Mp)*] /n 2
(1—tr [(f + M) i}/n)2

o2 tr [(S4+A ) E(Z+A) ] /n—

o tr [(%—i— )\Ip)+fA]/n a5, g
1—tr [(Z + )\Ip)+Z}/n
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GCV versus prediction error: two key proof steps

bias and variance equivalences for prediction error and GCV

® bias component equivalence:

_NBI(EHA)TE(E M) Bo as

MBI (AT (42T ~ i 0
Fo (E+AM)TZ(Z+A)" o (1—tr [(E+ M,)*S]/n)° 7

® variance component equivalences:

o2 tr [(Z + Mp)TE(E + Mp)*] /n 2
(1—tr [(f + M) i}/n)2

o2 tr [(S4+A ) E(Z+A) ] /n—

o?tr [(i + )\Ip)+§] /n as.

o2 tr [(Z+ M) Tx] /n — 1—tr [(Z + Al)*E]/n o

Main message: the GCV denominator proves to be the right correction for
for the excess optimism in the biased GCV numerator of training error
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® Overparametrized (p = 12000, n = 6000)
® Bias no longer minimized A = 0 and variance still decreasing in A
® Optimal A may be negative in overparametrized regime!
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Thanks for listening!

Questions/comments/thoughts?
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