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Warmup: inverse problems setup

y︸︷︷︸
Data

= f︸︷︷︸
Forward model

(known)

(
x∗︸︷︷︸

True parameter
(unknown)

)
+ ε︸︷︷︸

Noise
(known distr.)

Goal
Recover an unknown x∗ given observations y and give UQ about the estimate

Today, we will focus on problems in which:
• The only known information on x∗ is x∗ ∈ X
• The problem is possibly ill-posed (those that even without noise, admit multiple

x∗ compatible with an observation y)
• Very few observations are available (no asymptotic results)
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The need for transparent and well-calibrated UQ

For certification in safety-based applications, we need UQ that is:
• Transparent: With a clear set of assumptions and meaningful outputs
• Well-calibrated: Precisely adjustable to the desired level of coverage

• If it undercovers, we incur unnecessary risk
• If it overcovers, we incur economic cost
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Frequentist, well-calibrated intervals

Frequentist guarantees
Find an interval that contains φ(x∗) with probability 1 − α:

inf
x∈X

Py∼Px

(
φ(x) ∈ [I−(y), I+(y)]

)
≥ 1 − α

with finite sample guarantees and that is as small as possible

• Stronger notion than Bayesian credible intervals
• Only assumes likelihood model and constraints
• Well-calibration: Slack in the inequality as small as possible
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Baseline: simultaneous approach

A general method to build intervals with correct coverage is the simultaneous
approach [Stark 1992, 1994]:

1 Find a 1 − α (frequentist) confidence set C(y) for x∗

2 Intersect it with the constraint set X
3 Map through φ(x)

Example:
y = x∗ + ε, φ(x) = x, ε ∼ N (0, 1), x∗ ≥ 0
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Baseline: simultaneous approach

A general to build intervals with correct coverage is the simultaneous approach
[Stark 1992, 1994]:

1 Find a 1 − α confidence set C(y) for x∗

2 Intersect it with the constraint set X
3 Map through φ(x)

• Can be written as “refined worst-case” optimization problems (X → X ∩ C(y))[
min

x∈X∩C(y)
φ(x), max

x∈X∩C(y)
φ(x)

]
=:

min
x
/max

x
φ(x)

s.t. x ∈ X ∩ C(y)

• It overcovers, since C(y) does not need to be 1 − α for the interval to be 1 − α



The linear Gaussian model with linear constraints and FoI

Linear Gaussian model with linear constraints and functional of interest

y = Kx∗ + ε, X = {x : Ax ≤ b}

with y ∈ Rm, x∗ ∈ Rp, ε ∼ N (0, Im), and φ(x) = hTx

• Generally ill-posed for rank-deficient K, incorporating the constraint allows the
computation of finite-length intervals without priors

Example:
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The linear Gaussian model with linear constraints and FoI

Linear Gaussian model with linear constraints and functional of interest

y = Kx∗ + ε, X = {x : Ax ≤ b}

with y ∈ Rm, x∗ ∈ Rp, ε ∼ N (0, Im), and φ(x) = hTx

• Generally ill-posed for rank-deficient K, incorporating the constraint allows the
computation of finite-length intervals without priors

• Originally studied in the context of unfolding gamma-ray and neutron spectra
from pulse-height distributions under rank-deficient linear systems [Burrus 1965]

• Has since then become the most studied/fundamental constrained inference
problem [Rust and Burrus 1972, O’Leary and Rust 1986, 1994, Tenorio 2007]



The Burrus conjecture

Burrus conjecture (informal) [Burrus 1965, Rust and Burrus 1972]

Consider the model y = Kx∗ + ε, φ(x) = hTx, Ax∗ ≤ b, ε ∼ N (0, Im)
A valid 1 − α confidence interval for φ(x∗) has its extremes given by:

min
x
/max

x
hTx

s.t. ∥y − Kx∥2
2 ≤ ψ2

α(y)
Ax ≤ b

With ψ2
α(y) much smaller than the simultaneous approach equivalent constant

Qχ2m
(1 − α)

• The set {x : ∥y − Kx∥2
2 ≤ ψ2

α(y)} plays the role of C(y) in the simultaneous
approach and is not necessarily a 1 − α set

• If true, provides short intervals for a range of fundamental problems



The Burrus conjecture
Burrus conjecture [Burrus 1965, Rust and Burrus 1972]

Consider the model

y = Kx∗ + ε, φ(x) = hTx, Ax∗ ≤ b, ε ∼ N (0, Im)

A valid 1 − α confidence interval for φ(x∗) has its extremes given by:

min
x
/max

x
hTx

s.t. ∥y − Kx∥2
2 ≤ ψ2

α(y)
Ax ≤ b

where ψ2
α(y) = (cα/2)

2 + s2, where P(Z > cα) = α for Z ∼ N (0, 1) and

s2 := min
z

∥y − Kz∥2
2

s.t. z ≥ 0



The Burrus conjecture: more than 50 years of history

• Conjecture proposed [Burrus 1965, Rust and Burrus 1972]

• Theoretical analysis and “proof” [O’Leary and Rust 1986, 1994]

• Mistake pointed out in proof and counterexample proposal [Tenorio et al. 2007]

Theorem [Batlle, Patil, Stanley, Owhadi, Kuusela 2023]̇

– The counterexample provided in Tenorio et al. is not valid
– There exist other counterexamples, so the Burrus conjecture is false

Our proof technique is novel in analyzing this problem and provides:
• A test to identify when the Rust-Burrus approach works and when it does not
• An algorithm to fix the faulty examples
• A generalization of the Rust-Burrus methodology beyond Gaussian-linear settings
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Generalized Burrus conjecture intervals

We develop theoretical tools to study a large class of confidence intervals that contains
the ones posited in the conjecture

Burrus conjecture is a particular choice of qα: qα = Qχ2
1
(1 − α), where Q is the

quantile function
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Finding valid qα

Definition
Let λ(µ, y) := inf

φ(x)=µ
x∈X

− 2ℓx(y)− inf
x∈X

− 2ℓx(y) and, for x ∈ X let Zx := λ(φ(x), y)

where y ∼ Px

Theorem [Batlle, Patil, Stanley, Owhadi, Kuusela 2023] ̇

The Rust-Burrus interval covers φ(x∗) at a level α iff qα ≥ supφ(x)=φ(x∗)
x∈X

QZx(1 − α)

Very strong consequences:
• We know the theoretical optimal values to use in this construction
• We can use qα = QX(1 − α) for a given r.v X at all levels α iff X stochastically

dominates Zx (P(X ≥ β) ≥ P(Zx ≥ β) ∀β, noted X ⪰ Zx) ∀x ∈ X
• We can improve the intervals from qα → qα(φ(x)) (more on that later)



A new provable counterexample
Our theoretical analysis shows that the Burrus conjecture is equivalent to:

Zx∗ = min
hTx=hTx∗

x≥0

∥y − Kx∥2
2 −min

x≥0
∥y − Kx∥2

2 ⪯ χ2
1 when y ∼ Px∗
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↑ Stochastic dominance↓ Not stochastic dominance

Difference of CDFs in previously
proposed 2D counterexample

CDF λ - CDF χ2
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↑ Stochastic dominance
↓ Not stochastic dominance

Difference of CDFs in our
proposed 3D counterexample

CDF λ - CDF χ2

Proof technique
The proof of stochastic dominance (left) is via a coupling of random variables
argument. The disproof of stochastic dominance (right) is via computing E[Z]
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A general recipe for constructing provably correct intervals

The proof technique comes with a general recipe for constructing 1 − α intervals.
1 Write down the random variable Zx for all x ∈ X
2 Obtain valid qα by solving/bounding:

• supx∈X QZx(1 − α) (to set qα)
• supφ(x)=µ

x∈X
QZx(1 − α) (to set qα depending on µ = φ(x))

3 Solve
min

x
/max

x
φ(x)

s.t. x ∈ X
− 2ℓx(y)− inf

x′∈X
−2ℓx′(y) ≤ qα(φ(x))

Remarks: The intervals with qα(φ(x)) are shorter, but harder to compute.



Numerical results
The Burrus conjecture intervals correctly cover in the previously proposed
counterexample

x, y ∈ R2, y = x + ε, x∗ ≥ 0, φ(x) = [1,−1]Tx, ε ∼ N (0, I2)



Numerical results

x, y ∈ R3, y = x + ε, x∗ ≥ 0, φ(x) = [1, 1,−1]Tx, ε ∼ N (0, I3)

The Burrus conjecture intervals undercover for our proposed counterexample, and the
described intervals fix the undercoverage



Numerical results
The Burrus conjecture intervals can overcover, and our described intervals can also fix
the overcoverage

x, y ∈ R2, y = x + ε, 0 ≤ x∗ ≤ 1, φ(x) = [1,−1]Tx, ε ∼ N (0, I2)



Contributions

Our optimization-based framework to the problem of obtaining 1 − α confidence
intervals with frequentist guarantees in constrained inverse problems:

• Reinterprets previously proposed methods and disproves the long-standing Burrus
conjecture (1965)

• Comes with an algorithm for constrained inverse problems that beats previous
approaches in toy and real problems

• Explains the observed coverage (or lack thereof) throughout all numerical
examples

Reach me at pau@caltech.edu
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A high-level framework for certifiable UQ
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A scale of possible assumptions
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The regime of partial information


