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References on risk monotonization:

Subsampling, ensembling, and ridge regularization

1. Mitigating multiple descents: A model-agnostic framework for risk
monotonization (joint with Arun Kuchibhotla, Yuting Wei,
Alessandro Rinaldo) [benefits of subsampling]

2. Bagging in overparameterized learning: Risk characterization and
risk monotonization (joint with Jin-Hong Du, Arun Kuchibhotla)
[benefits of ensembling]

3. Generalized equivalences between subsampling and ridge
regularization (joint with Jin-Hong Du) [connections to ridge]
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Overparametrization in machine learning

Modern machine learning models typically fit a huge number of
parameters. Such overparameterization seems to be useful for:

• Representation: allows rich, expressive models for diverse real data

• Optimization: simple, local optimization methods often find
near-optimal solutions to empirical risk minimization problem

• Generalization: despite overfitting, models generalize well in practice

This talk is about generalization aspect in overparameterized learning.
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An influential experiment

“Understanding deep learning requires rethinking generalization”

Zhang, Bengio, Hardt, Recht, Vinyals, 2017

• CIFAR10 data (60,000 images [32 × 32]) with artificial label noise
• Three neural network architectures (with number of parameters):

Inception (1,649,402), AlexNet (1,387,786), MLP 1x512 (1,209,866)
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Peculiar generalization behavior: double descent
R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”
interpolating regime

interpolation threshold

over-parameterized

“classical”
regime

Belkin, Hsu, Ma, Mandal, 2018: “Reconciling modern machine learning practice and

the bias variance tradeoff”

• The phenomenon is dubbed “double descent” in the risk curve.

• This trend holds for many model classes including linear regression,
kernel regression, random forest, boosting, neural networks, etc.
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Recent theoretical developments

Understanding generalization of interpolators in simpler settings:

• Linear regression
– Hastie, Montanari, Rosset, Tibshirani, 2019
– Belkin, Hsu, Xu, 2019
– Muthukumar, Vodrahalli, Sahai, 2019
– Bartlett, Long, Lugosi, Tsigler, 2019
– Mei, Montanari, 2019

• Kernel regression
– Liang, Rakhlin, 2018
– Liang, Rakhlin, Zhai, 2019

• Local methods
– Belkin, Hsu, Mitra, 2018
– Belkin, Rakhlin, Tsybakov, 2018

• and many more ...
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What do we currently understand?

• In nearly all applications, current practice suggests we should design
models to be massively overparametrized

• Once trained (typically by SGD), these models interpolate the
training data (achieve zero training error)

• Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

However, the story is fairly well-understood for linear models, kernel
models, and random feature models. See, e.g., nice monographs:

• Bartlett, Montanari, and Rakhlin (2021), “Deep learning: a
statistical viewpoint”

• Belkin (2021), “Fit without fear: remarkable mathematical
phenomena of deep learning through the prism of interpolation”
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Simplest linear analysis
Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”

Given i.i.d. training data (xi , yi ) ∈ Rp × R, i = 1, . . . , n, where

yi = x⊤i β︸︷︷︸
f (xi )

+ ϵi , x⊤i β ⊥ ϵi

“Ridgeless” least squares estimator of y on X (which has rows xi ):

β̂ = (X⊤X )†X⊤y = lim
λ→0+

argmin
b∈Rp

{
1

n
∥y − Xb∥22 + λ∥b∥22

}
Let σ2 = Var(ϵi ) [noise energy], ρ2 = Ef (xi )2 [signal energy].
Under simplifying assumptions, as n, p → ∞ with p/n → γ:

E(f (x0)− x⊤0 β̂)
2 →

{
σ2 γ

1−γ γ < 1

ρ2 γ−1
γ + σ2 1

γ−1 γ > 1

(Two terms: estimation bias, and estimation variance)
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Double in linear regression

Here σ2 = 1, thus signal-to-noise ratio (SNR) is ρ2, and γ = p/n.

Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”
7 / 37



Double descent interpretations

• The risk first increases as p/n increases up to some threshold and
then decreases.

• There are two ways to view this:

– If p is thought of as fixed (large value), this implies that as sample
size increases the risk first decreases and then increases.
More data hurts.

– If n is thought of as fixed (large value), this implies that as the
number of features/covariates increase the risk first increases and
then decreases.
More features do not hurt.

• We will focus on the first interpretation: more data can hurt.
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Motivation and main punchlines

• When the data comprises of i.i.d. observations, we expect that more
data will help in prediction or estimation.

• Double or multiple descent behaviour implies that for fixed feature
size p (large value), as sample size increases the risk first decreases
and then increases. More data can hurt!

• A procedure leading to worse risk as the number of observations
increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the
double or multiple descent behavior and achieve a monotonic risk behavior?

We propose two methods, dubbed zero-step and one-step, that take an
input an arbitrary procedure and return a modified procedure that has a
monotonic risk behavior. The main idea is that of subsampling.
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input an arbitrary procedure and return a modified procedure that has a
monotonic risk behavior. The main idea is that of subsampling.
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Method overview and the problem

Hastie, Montanari, Rosset, Tibshirani, 2019: “Surprises in high-dimensional ridgeless

least squares interpolation”
10 / 37



The problem

• Given a number of observations (n) and a number of features (p),
how do we know if a lesser number of observations would actually
yield a better risk?

• What is the best sample size to reduce the dataset in order to attain
the best possible risk?

Solution: cross-validation.
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Basic idea of zero-step procedure

Given any arbitrary prediction procedure at a given aspect ratio γ = p/n:

1. Risk estimation: construct a (dense grid of) aspect ratios ≥ γ by
using datasets of sizes smaller than n, and estimate risks on test set

2. Model selection: select aspect ratio that delivers the smallest
estimated risk and return the corresponding predictor

3. Risk monotonization: show that the risk profile of the resulting
procedure is asymptotically monotone in the aspect ratio

Method highlights:

• applicable to generic (e.g black-box) prediction methods
and common classification and regression loss functions

• model agnostic and requires minimal distributional assumptions

• works for procedures with diverging risks at some aspect ratios
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Risk monotonization illustration

If Rn represents the “risk” of a procedure at sample size n, then by risk
monotonization we mean a procedure with risk minm≤n Rm.
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Split sample cross-validation

• Given data Dn of n i.i.d. observations and a prediction procedure f̃ ,
split Dn into training data Dtr with n(1− 1/ log n) observations and
test data Dte with n/ log n observations.

• Note that
lim
n

p

n
= lim

n

p

n(1− 1/ log n)
.

• For n1/2 ≤ k ≤ |Dtr|, obtain a predictor f̃k by training f̃ on a subset
of Dtr with k observations.

• If p/n converges to γ as n → ∞, then{
p

n1/2
,

p

n1/2 + 1
, . . . ,

p

|Dtr|

}
” → ” [γ,∞].

The set of aspect ratios for the predictors f̃k covers [γ,∞].

• Choose one out of f̃k , n
1/2 ≤ k ≤ |Dtr| using an estimate of

out-of-sample risk computed from Dte This is split sample
cross-validation.
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Cross-validation risk estimate

• Traditionally, the risk of a predictor based on a test data is done via
average loss. For example, with squared error loss, the traditional
estimate of (prediction) risk of a predictor f̃k

R̂(f̃k) :=
1

|Dte|
∑
j∈Dte

(Yj − f̃k(Xj))
2.

• For a good performance simultaneously over O(n) predictors and
also to avoid strong tail assumptions on the loss, we also consider
the median-of-means estimator.

• With either the average or median-of-means estimator of risk, we
return the predictor f̂ := f̃k̂ where

k̂ := argmin
n1/2≤k≤|Dtr|

R̂(f̃k).

• k̂ represents the “best” sample size to use for the given number of
features in the dataset and f̃k̂ is what we call a zero-step predictor
that achieves risk monotonization.
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Risk monotonization guarantee

Theorem. Under the proportional asymptotics regime (p/n → γ), and a

mild assumption on the convergence of the prediction risk of f̂ trained on
datasets with a limiting aspect ratio ζ converges to Rdet(ζ; f̂ ), we show:

R(f̂ cv) = inf
ζ∈[γ,∞]

Rdet(ζ; f̂ ) × (1 + op(1)).

This shows that the zero-step predictor has a monotone risk in terms of
the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the
data. This is unlike most results in overparametrized learning which
require stringent assumptions.
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Risk monotonization (illustration)
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Takeaways and extensions

Takeaways:

• We have introduced the zero-step prediction procedure that provably
monotonizes the risk of a given predictor.

• The main idea is cross-validation based on test data, but with
splitting done so as to maintain the limiting aspect ratio.

Extensions:

• We also introduce a one-step prediction procedure inspired by
classical one-step estimator that improves on zero-step procedure
(similar to boosting)

• Both zero-step and one-step procedures can be further improved by
multiple subsamplings and averaging (similar to bagging)
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Motivation beyond bagging analysis

Key question: How much improvement do we get if we use an ensemble of
M > 1 subsampled datasets, rather than just a single subsampled dataset?
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Null risk

We provide precise risk characterization for ridgeless (and ridge) ensemles.
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Ridge ensembles

• Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset. The ridge
estimator fitted on subsampled dataset DI with I ⊆ [n], |I | = k is:

β̂λk (DI ) = argmin
β∈Rp

1

k

∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥22.

• For λ ≥ 0 fixed, ensemble ridge estimator is:

β̃λk,M(Dn; {Iℓ}Mℓ=1) :=
1

M

∑
ℓ∈[M]

β̂λk (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M → ∞.

• The goal is to quantify and estimate the conditional prediction risk:

Rλk,M := E[(y − x⊤β̃λk,M)2 | Dn, {Iℓ}Mℓ=1]

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ϕs . Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

20 / 37



Ridge ensembles

• Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset. The ridge
estimator fitted on subsampled dataset DI with I ⊆ [n], |I | = k is:

β̂λk (DI ) = argmin
β∈Rp

1

k

∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥22.

• For λ ≥ 0 fixed, ensemble ridge estimator is:

β̃λk,M(Dn; {Iℓ}Mℓ=1) :=
1

M

∑
ℓ∈[M]

β̂λk (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M → ∞.

• The goal is to quantify and estimate the conditional prediction risk:

Rλk,M := E[(y − x⊤β̃λk,M)2 | Dn, {Iℓ}Mℓ=1]

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ϕs . Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

20 / 37



Ridge ensembles

• Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset. The ridge
estimator fitted on subsampled dataset DI with I ⊆ [n], |I | = k is:

β̂λk (DI ) = argmin
β∈Rp

1

k

∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥22.

• For λ ≥ 0 fixed, ensemble ridge estimator is:

β̃λk,M(Dn; {Iℓ}Mℓ=1) :=
1

M

∑
ℓ∈[M]

β̂λk (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M → ∞.

• The goal is to quantify and estimate the conditional prediction risk:

Rλk,M := E[(y − x⊤β̃λk,M)2 | Dn, {Iℓ}Mℓ=1]

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ϕs . Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

20 / 37



Ridge ensembles

• Let Dn = {(xj , yj) ∈ Rp × R : j ∈ [n]} denote a dataset. The ridge
estimator fitted on subsampled dataset DI with I ⊆ [n], |I | = k is:

β̂λk (DI ) = argmin
β∈Rp

1

k

∑
j∈I

(yj − x⊤
j β)2 + λ∥β∥22.

• For λ ≥ 0 fixed, ensemble ridge estimator is:

β̃λk,M(Dn; {Iℓ}Mℓ=1) :=
1

M

∑
ℓ∈[M]

β̂λk (DIℓ),

with I1, . . . , IM ∼ Ik := {{i1, . . . , ik} : 1 ≤ i1 < . . . < ik ≤ n}. The
full-ensemble ridge estimator is defined by letting M → ∞.

• The goal is to quantify and estimate the conditional prediction risk:

Rλk,M := E[(y − x⊤β̃λk,M)2 | Dn, {Iℓ}Mℓ=1]

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ϕs . Here, ϕ and ϕs are the data and subsample aspect
ratios, respectively.

20 / 37



Data assumptions
1. Feature model:

– Feature structure: xi = Σ1/2zi , zi ∈ Rp is a random vector
containing i.i.d. entries with mean 0, variance 1, and bounded
moment of order 4 + δ for some δ > 0.

– Covariance norm: There exist rmin, rmax independent of p with
0 < rmin ≤ rmax < ∞ such that rminIp ⪯ Σ ⪯ rmaxIp.

2. Response model:
– Response structure: yi = x⊤

i β0 + ϵi .
– Noise structure: ϵi is an unobserved error that is assumed to be

independent of xi with mean 0, variance σ2, and bounded moment of
order 4 + δ for some δ > 0.

– Signal norm: ∥β0∥2 uniformly bounded in p and limp ∥β0∥22 = ρ2.
3. Convergence of covariance and signal-weighted spectrums:

– Covariance spectrum: Σ = WRW⊤ is the eigenvalue decomposition.
– Empirical spectrums: Assume there exist fixed distributions H and G

such that the empirical spectral distributions satisfy

Hp(r) :=
1

p

p∑
i=1

1{ri≤r}
d−→ H,

Gp(r) :=
1

∥β0∥22

p∑
i=1

(β⊤
0 wi )

2
1{ri≤r}

d−→ G .
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Risk characterization of bagged ridge predictors
Theorem. Under aforementioned assumptions, as k, n, p → ∞ such that
p/n → ϕ ∈ (0,∞)︸ ︷︷ ︸

data aspect ratio

and p/k → ϕs ∈ [ϕ,∞]︸ ︷︷ ︸
subsample aspect ratio

, the asymptotic risk Rsub
λ,M(ϕ, ϕs) is:

Rsub
λ,M(ϕ, ϕs) = σ2 + Bsub

λ,M(ϕ, ϕs) + V sub
λ,M(ϕ, ϕs),

where the bias and variance terms are given by

Bsub
λ,M(ϕ, ϕs) = M−1Bλ(ϕs , ϕs) + (1−M−1)Bλ(ϕ, ϕs),

V sub
λ,M(ϕ, ϕs) = M−1Vλ(ϕs , ϕs) + (1−M−1)Vλ(ϕ, ϕs),

and the functions Bλ(·, ·) and Vλ(·, ·) are defined as

Bλ(ϑ, θ) = ρ2(1 + ṽ(−λ;ϑ, θ))c̃(−λ; θ), Vλ(ϑ, θ) = σ2ṽ(−λ;ϑ, θ).

Here the non-negative constants ṽ(−λ;ϑ, θ) and c̃(−λ; θ) are defined as:

ṽ(−λ;ϑ, θ) =
ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

v(−λ; θ)−2 − ϑ
∫
r2(1 + v(−λ; θ)r)−2 dH(r)

,

c̃(−λ; θ) =

∫
r

(1 + v(−λ; θ)r)2
dG(r).

Finally, v(−λ; θ) is the unique nonnegative solution to the fixed-point equation:

1

v(−λ; θ)
= λ+ θ

∫
r

1 + v(−λ; θ)r
dH(r).
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Bagged ridge risk characterization (illustration)
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Figure: Asymptotic prediction risk curves for bagged ridgeless predictors
(λ = 0), under AR1 model when ρar1 = 0.25 and σ2 = 1, for varying
subsample sizes k = ⌊p/ϕs⌋ and numbers of bags M. The null risk is marked
as a dotted line. For each value of M, the points denote finite-sample risks
averaged over 100 dataset repetitions, with n = ⌊pϕ⌋ and p = 500. The left
and the right panels correspond to the cases when p < n (ϕ = 0.1) and p > n
(ϕ = 1.1), respectively.
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Optimal bagged ridgeless predictor

Theorem. For any ϕ ≥ 0, the global minimum of ϕs 7→ Rsub
0,∞(ϕ, ϕs) is obtained

in ϕ∗
s ∈ (1,∞). That is

sup
M∈N,ϕs∈[ϕ,∞]

Rsub
0,M(ϕ, ϕs) = Rsub

0,∞(ϕ, ϕ∗
s )︸ ︷︷ ︸

optimal bagged risk

< min{Rsub
0,1 (ϕ, ϕ)︸ ︷︷ ︸

unbagged risk

,Rsub
0,1 (ϕ,∞)︸ ︷︷ ︸
null risk

}
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Subagged ridgeless interpolators always outperform subagged least squares,
even when the full data has more observations than the number of features.
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Back to risk monotonization

• Risk characterization → risk monotonization.
• Data splitting and cross-validation over subsample size.
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Figure: Asymptotic excess risk curves for cross-validated bagged ridgeless
predictors (λ = 0), under the isotopic model when ρ2 = 1 for varying SNR,
subsample sizes k = ⌊p/ϕs⌋, and numbers of bags M with replacement. For
each value of M, the points denote finite-sample risks and the shaded regions
denote the values within one standard deviation, with n = 1000, nte = 63, and
p = ⌊nϕ⌋.
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Comparison with optimal ridge regularization
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Recall here γ = p/n is the aspect ratio. The base predictor is ridgeless.

Key question: Is the connection to ridge regularization just coincedental?
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Prediction risk equivalence

• As p/n → ϕ and p/k → ϕs , the
prediction risk in the full
ensemble (M = ∞) converges:

Rλk,∞
a.s.−−→ Rλ

∞(ϕ, ϕs).

• For ϕ = 0.1, the risk profile as
a function of (λ, ϕs) is shown in
the figure in the log-log scale.
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• Risk equivalence (Theorem 2.3):

min
ϕs≥ϕ

Rsub
0,∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridgeless
ensemble

= min
λ≥0

Rsub
λ,∞(ϕ, ϕ)

︸ ︷︷ ︸
opt. ridge
predictor

= min
ϕs≥ϕ,
λ≥0

Rsub
λ,∞(ϕ, ϕs)

︸ ︷︷ ︸
opt. ridge
ensemble

.
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Generalized risk

• Let β0 = E[xx⊤]−1E[xy ] be the best linear projection of y onto x
• For a linear functional L(β) = Aβ + b, we study generalized risks:

R(β̂;A,b,β0) =
1

nrow(A)
∥L(β̂ − β0)∥22, (1)

under proportional asymptotics where n, p, k → ∞, p/n → ϕ and
p/k → ψ. Here, ϕ and ψ are the data and subsample aspect ratios,
respectively.

Statistical learning problem L(β̂ − β0) A b nrow(A)

vector coefficient estimation β̂ − β0 Ip 0 p

projected coefficient estimation a⊤(β̂ − β0) a⊤ 0 1

training error estimation X β̂ − y X −fnl n

in-sample prediction X (β̂ − β0) X 0 n

out-of-sample prediction x⊤
0 β̂ − y0 x⊤

0 −ϵ0 1
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Asymptotic equivalence and relaxed assumptions

Asymptotic equivalence:

• Let Ap and Bp be sequences of (additively) conformable matrices of
arbitrary dimensions (including vectors and scalars).

• We say that Ap and Bp are asymptotically equivalent, denoted as
Ap ≃ Bp, if limp→∞ | tr[Cp(Ap − Bp)]| = 0 almost surely for any
sequence of random matrices Cp with bounded trace norm that are
(multiplicatively) conformable and independent of Ap and Bp.

• Note that for sequences of scalar random variables, the definition
simply reduces to the typical almost sure convergence of sequences
of random variables involved.

Data assumptions:

• Feature distribution: Each feature vector xi for i ∈ [n] can be
decomposed as xi = Σ1/2zi , where zi ∈ Rp contains i.i.d. entries zij
for j ∈ [p] with mean 0, variance 1, and bounded 4 + µ moments for
some µ > 0.

• Response distribution: Each response variable yi for i ∈ [n] has
mean 0, and bounded 4 + µ moments.
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Generalized risk equivalences

Theorem. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as defined in (4). Then, for
any pair of (λ1, ψ1) and (λ2, ψ2) on the path P(λ̄;ϕ, ψ̄) as defined in
(5), the generalized risk functionals (1) of the full-ensemble estimator are
asymptotically equivalent:

R
(
β̂λ1

⌊p/ψ1⌋,∞;A,b,β0

)
≃ R

(
β̂λ2

⌊p/ψ2⌋,∞;A,b,β0

)
. (2)
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Structural equivalences

Theorem. For any ψ̄ ∈ [ϕ,+∞], let λ̄ be as in (4). Then, for any M ∈
N ∪ {∞} and any pair of (λ1, ψ1) and (λ2, ψ2) on the path (5), the M-
ensemble estimators are asymptotically equivalent:

β̂λ1

⌊p/ψ1⌋,M ≃ β̂λ2

⌊p/ψ2⌋,M , ∀(λ1, ψ1), (λ2, ψ2) ∈ P(λ̄;ϕ, ψ̄). (3)

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 

(a) Uniform, M = 1 Uniform, M = 5 Uniform, M = 50

0.1 1 10

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 

(b) Uniform, M = 100

0.1 1 10
Subsample aspect ratio 

Gaussian, M = 100

0.1 1 10

Student's t, M = 100

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.030

0.025

0.020

0.015

0.010

0.000

0.002

0.004

0.006

0.008

0.010

31 / 37



Equivalence paths

• Given ϕ ∈ (0,∞) and ψ̄ ∈ [ϕ,∞], our statement of equivalences
between different ensemble estimators is defined through certain
paths characterized by two endpoints (0, ψ̄) and (λ̄, ϕ).

• Let Hp be the empirical spectral distribution of Σ:
Hp(r) = p−1

∑p
i=1 1{ri≤r}, where ri ’s are the eigenvalues of Σ.

Consider the following system of equations in λ̄ and v :

1

v
= λ̄+ ϕ

∫
r

1 + vr
dHp(r), and

1

v
= ψ̄

∫
r

1 + vr
dHp(r). (4)

• Now, define a path P(λ̄;ϕ, ψ̄) that passes through the endpoints
(0, ψ̄) and (λ̄, ϕ):

P(λ̄;ϕ, ψ̄) =
{
(1− θ) · (λ̄, ϕ) + θ · (0, ψ̄) | θ ∈ [0, 1]

}
. (5)

• For any M ∈ N ∪ {∞}, let λ̄n be the value that satisfies the
following equation in ensemble ridgeless and ridge gram matrices:

1

M

M∑
ℓ=1

1

k
tr

[( 1

k
LIℓXX⊤LIℓ

)+
]
=

1

n
tr

[(1
n
XX⊤ + λ̄nIn

)−1
]
. (6)

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n).
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Implications: Monotonicity of optimal ridge

• An open problem raised by Nakkiran et al. (2021) asks whether the
prediction risk of ridge regression with optimal ridge penalty λ∗ is
monotonically increasing in the data aspect ratio ϕ = p/n.

• Our equivalences imply that the prediction risk of an optimally-tuned
ridge estimator is monotonically increasing in the data aspect ratio
under mild regularity conditions.

• Under proportional asymptotics, our result settles a recent open
question raised by Conjecture 1 of Nakkiran et al. (2021) concerning
the monotonicity of optimal ridge regression under anisotropic
features and general data models while maintaining a regularity
condition that preserves the linearized signal-to-noise ratios across
regression problems.
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Implications of equivalences: illustration

Theorem. Let k, n, p → ∞ such that p/n → ϕ ∈ (0,∞) and p/k →
ψ ∈ [ϕ,∞]. Then, for A = Σ1/2 and b = 0, the optimal risk of the
ridgeless ensemble, minψ≥ϕ R(0;ϕ, ψ), is monotonically increasing in ϕ.
Consequently, the optimal risk of the ridge predictor, min≥0 R(;ϕ, ϕ), is
also monotonically increasing in ϕ.
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Extension 1: Equivalences for random features

Conjecture. Define ϕn = p/n. Let k ≤ n be the subsample size and
denote by ψ̄n = p/k. Suppose φ satisfies certain regularity conditions.
For any M ∈ N ∪ {∞}, let λ̄n be the value that satisfies

1

M

M∑
ℓ=1

1

k
tr

[( 1

k
φ(LIℓXF⊤)φ(LIℓXF⊤)⊤

)+
]
=

1

n
tr

[( 1

n
φ(XF⊤)φ(XF⊤)⊤+λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then similar equiv-
alences continue to hold along Pn.

0.1 1 10

0.0

0.1

1

10Ri
dg

e 
pe

na
lty

 Sigmoid

0.1 1 10
Subsample aspect ratio 

RuLU

0.1 1 10

Tanh

1.04

1.06

1.08

1.10

1.12

1.14

1.16

1.09

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.06

1.08

1.10

1.12

1.14

35 / 37



Extension 2: Equivalences for kernel features

Conjecture. Define ϕn = p/n. Suppose the kernel K satisfies certain
regularity conditions. Let k ≤ n be the subsample size and denote by
ψ̄n = p/k . For any M ∈ N ∪ {∞}, let λ̄n be a solution to

1

M

M∑
ℓ=1

tr
[
K+

Iℓ

]
= tr

[(
K[n] +

n

p
λ̄nIn

)−1
]
.

Define the data-dependent path Pn = P(λ̄n;ϕn, ψ̄n). Then similar equiv-
alences continue to hold along Pn.
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Main takeaways

1. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

2. Ensembling helps significantly near the interpolator threshold.
Subagged ridgeless interpolators always outperform subagged least
squares, even when the full data has more observations than the
number of features.

3. There are connections between the implicit regularization induced by
subsampling and explicit ridge regularization for subsampled ridge
ensembles.

37 / 37



Main takeaways

1. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

2. Ensembling helps significantly near the interpolator threshold.
Subagged ridgeless interpolators always outperform subagged least
squares, even when the full data has more observations than the
number of features.

3. There are connections between the implicit regularization induced by
subsampling and explicit ridge regularization for subsampled ridge
ensembles.

37 / 37



Main takeaways

1. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

2. Ensembling helps significantly near the interpolator threshold.
Subagged ridgeless interpolators always outperform subagged least
squares, even when the full data has more observations than the
number of features.

3. There are connections between the implicit regularization induced by
subsampling and explicit ridge regularization for subsampled ridge
ensembles.

37 / 37



Main takeaways

1. It is possible to modify any given prediction procedure to mitigate
double descent behavior and achieve a monotonic risk behavior
through subsampling and cross-validation.

2. Ensembling helps significantly near the interpolator threshold.
Subagged ridgeless interpolators always outperform subagged least
squares, even when the full data has more observations than the
number of features.

3. There are connections between the implicit regularization induced by
subsampling and explicit ridge regularization for subsampled ridge
ensembles.

37 / 37



Thanks for listening!

Questions/comments/thoughts?



What about lasso?
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“Mitigating multiple descents: A model-agnostic framework for risk monotonization”

P., Kuchibhotla, Wei, Rinaldo, 2021
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More empirical evidence for lasso
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