# Mitigating multiple descents:

#### A model-agnostic framework for risk monotonization

Pratik Patil

University of California Berkeley

Rutgers University Seminar November 2023

Based on joint work with the following amazing collaborators:

- Arun Kuchibhotla (Carnegie Mellon University)
- Yuting Wei (University of Pennsylvania)
- Alessandro Rinaldo (University of Texas)
- Jin-Hong Du (Carnegie Mellon University)

- Mitigating multiple descents: A model-agnostic framework for risk monotonization (joint with Arun Kuchibhotla, Yuting Wei, Alessandro Rinaldo) [benefits of subsampling]
- 2. Bagging in overparameterized learning: Risk characterization and risk monotonization (joint with Jin-Hong Du, Arun Kuchibhotla) [benefits of ensembling]
- 3. Generalized equivalences between subsampling and ridge regularization (joint with Jin-Hong Du) [connections to ridge]

- Mitigating multiple descents: A model-agnostic framework for risk monotonization (joint with Arun Kuchibhotla, Yuting Wei, Alessandro Rinaldo) [benefits of subsampling]
- 2. Bagging in overparameterized learning: Risk characterization and risk monotonization (joint with Jin-Hong Du, Arun Kuchibhotla) [benefits of ensembling]
- 3. Generalized equivalences between subsampling and ridge regularization (joint with Jin-Hong Du) [connections to ridge]

- 1. Mitigating multiple descents: A model-agnostic framework for risk monotonization (joint with Arun Kuchibhotla, Yuting Wei, Alessandro Rinaldo) [benefits of subsampling]
- 2. Bagging in overparameterized learning: Risk characterization and risk monotonization (joint with Jin-Hong Du, Arun Kuchibhotla) [benefits of ensembling]
- 3. Generalized equivalences between subsampling and ridge regularization (joint with Jin-Hong Du) [connections to ridge]

- 1. Mitigating multiple descents: A model-agnostic framework for risk monotonization (joint with Arun Kuchibhotla, Yuting Wei, Alessandro Rinaldo) [benefits of subsampling]
- 2. Bagging in overparameterized learning: Risk characterization and risk monotonization (joint with Jin-Hong Du, Arun Kuchibhotla) [benefits of ensembling]
- 3. Generalized equivalences between subsampling and ridge regularization (joint with Jin-Hong Du) [connections to ridge]

# Outline

#### Overview of overparameterization

Double descent Current theoretical understanding Case study of linear regression

#### Risk monotonization

Motivation Zero-step procedure Takeaways and extensions

### Bagging analysis

Motivation Risk characterization Optimal subsample size

#### Connections to ridge regularization

Risk and structural equivalences Implications of equivalences Discussion and extensions

### Conclusion

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

Modern machine learning models typically fit a huge number of parameters. Such overparameterization seems to be useful for:

- Representation: allows rich, expressive models for diverse real data
- Optimization: simple, local optimization methods often find near-optimal solutions to empirical risk minimization problem
- Generalization: despite overfitting, models generalize well in practice

## An influential experiment



"Understanding deep learning requires rethinking generalization" Zhang, Bengio, Hardt, Recht, Vinyals, 2017

- CIFAR10 data (60,000 images [32 imes 32]) with artificial label noise
- Three neural network architectures (with number of parameters): Inception (1,649,402), AlexNet (1,387,786), MLP 1x512 (1,209,866

## An influential experiment



"Understanding deep learning requires rethinking generalization" Zhang, Bengio, Hardt, Recht, Vinyals, 2017

- CIFAR10 data (60,000 images  $[32 \times 32]$ ) with artificial label noise
- Three neural network architectures (with number of parameters): Inception (1,649,402), AlexNet (1,387,786), MLP 1x512 (1,209,866

# An influential experiment



"Understanding deep learning requires rethinking generalization" Zhang, Bengio, Hardt, Recht, Vinyals, 2017

- CIFAR10 data (60,000 images [32 imes 32]) with artificial label noise
- Three neural network architectures (with number of parameters): Inception (1,649,402), AlexNet (1,387,786), MLP 1x512 (1,209,866)

# Peculiar generalization behavior: double descent



Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff"  $\!\!$ 

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

# Peculiar generalization behavior: double descent



Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff"  $\!\!$ 

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

# Peculiar generalization behavior: double descent



Belkin, Hsu, Ma, Mandal, 2018: "Reconciling modern machine learning practice and the bias variance tradeoff"  $\!\!$ 

- The phenomenon is dubbed "double descent" in the risk curve.
- This trend holds for many model classes including linear regression, kernel regression, random forest, boosting, neural networks, etc.

- Linear regression
  - Hastie, Montanari, Rosset, Tibshirani, 2019
  - Belkin, Hsu, Xu, 2019
  - Muthukumar, Vodrahalli, Sahai, 2019
  - Bartlett, Long, Lugosi, Tsigler, 2019
  - Mei, Montanari, 2019
- Kernel regression
  - Liang, Rakhlin, 2018
  - Liang, Rakhlin, Zhai, 2019
- Local methods
  - Belkin, Hsu, Mitra, 2018
  - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Linear regression
  - Hastie, Montanari, Rosset, Tibshirani, 2019
  - Belkin, Hsu, Xu, 2019
  - Muthukumar, Vodrahalli, Sahai, 2019
  - Bartlett, Long, Lugosi, Tsigler, 2019
  - Mei, Montanari, 2019
- Kernel regression
  - Liang, Rakhlin, 2018
  - Liang, Rakhlin, Zhai, 2019
- Local methods
  - Belkin, Hsu, Mitra, 2018
  - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

- Linear regression
  - Hastie, Montanari, Rosset, Tibshirani, 2019
  - Belkin, Hsu, Xu, 2019
  - Muthukumar, Vodrahalli, Sahai, 2019
  - Bartlett, Long, Lugosi, Tsigler, 2019
  - Mei, Montanari, 2019
- Kernel regression
  - Liang, Rakhlin, 2018
  - Liang, Rakhlin, Zhai, 2019
- Local methods
  - Belkin, Hsu, Mitra, 2018
  - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

Understanding generalization of interpolators in simpler settings:

- Linear regression
  - Hastie, Montanari, Rosset, Tibshirani, 2019
  - Belkin, Hsu, Xu, 2019
  - Muthukumar, Vodrahalli, Sahai, 2019
  - Bartlett, Long, Lugosi, Tsigler, 2019
  - Mei, Montanari, 2019
- Kernel regression
  - Liang, Rakhlin, 2018
  - Liang, Rakhlin, Zhai, 2019
- Local methods
  - Belkin, Hsu, Mitra, 2018
  - Belkin, Rakhlin, Tsybakov, 2018

• and many more ...

- Linear regression
  - Hastie, Montanari, Rosset, Tibshirani, 2019
  - Belkin, Hsu, Xu, 2019
  - Muthukumar, Vodrahalli, Sahai, 2019
  - Bartlett, Long, Lugosi, Tsigler, 2019
  - Mei, Montanari, 2019
- Kernel regression
  - Liang, Rakhlin, 2018
  - Liang, Rakhlin, Zhai, 2019
- Local methods
  - Belkin, Hsu, Mitra, 2018
  - Belkin, Rakhlin, Tsybakov, 2018
- and many more ...

• In nearly all applications, current practice suggests we should design models to be massively overparametrized

- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

#### Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

- In nearly all applications, current practice suggests we should design models to be massively overparametrized
- Once trained (typically by SGD), these models interpolate the training data (achieve zero training error)
- Still they are capable of having (often do have) good test error

Current understanding of this? In full theoretical rigor, not great.

- Bartlett, Montanari, and Rakhlin (2021), "Deep learning: a statistical viewpoint"
- Belkin (2021), "Fit without fear: remarkable mathematical phenomena of deep learning through the prism of interpolation"

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ , i = 1, ..., n, where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \operatorname{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1 - \gamma} & \gamma < 1\\ \rho^2 \frac{\gamma - 1}{\gamma} + \sigma^2 \frac{1}{\gamma - 1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \operatorname{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1 - \gamma} & \gamma < 1\\ \rho^2 \frac{\gamma - 1}{\gamma} + \sigma^2 \frac{1}{\gamma - 1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \text{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1-\gamma} & \gamma < 1\\ \rho^2 \frac{\gamma-1}{\gamma} + \sigma^2 \frac{1}{\gamma-1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \text{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1 - \gamma} & \gamma < 1\\ \rho^2 \frac{\gamma - 1}{\gamma} + \sigma^2 \frac{1}{\gamma - 1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \text{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1-\gamma} & \gamma < 1\\ \rho^2 \frac{\gamma-1}{\gamma} + \sigma^2 \frac{1}{\gamma-1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \operatorname{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1-\gamma} & \gamma < 1\\ \rho^2 \frac{\gamma-1}{\gamma} + \sigma^2 \frac{1}{\gamma-1} & \gamma > 1 \end{cases}$$

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

Given i.i.d. training data  $(x_i, y_i) \in \mathbb{R}^p \times \mathbb{R}$ ,  $i = 1, \dots, n$ , where

$$y_i = \underbrace{x_i^\top \beta}_{f(x_i)} + \epsilon_i, \quad x_i^\top \beta \perp \epsilon_i$$

"Ridgeless" least squares estimator of y on X (which has rows  $x_i$ ):

$$\widehat{\beta} = (X^{\top}X)^{\dagger}X^{\top}y = \lim_{\lambda \to 0^+} \operatorname*{arg\,min}_{b \in \mathbb{R}^p} \left\{ \frac{1}{n} \|y - Xb\|_2^2 + \lambda \|b\|_2^2 \right\}$$

Let  $\sigma^2 = \text{Var}(\epsilon_i)$  [noise energy],  $\rho^2 = \mathbb{E}f(x_i)^2$  [signal energy]. Under simplifying assumptions, as  $n, p \to \infty$  with  $p/n \to \gamma$ :

$$\mathbb{E}(f(x_0) - x_0^\top \widehat{\beta})^2 \to \begin{cases} \sigma^2 \frac{\gamma}{1-\gamma} & \gamma < 1\\ \rho^2 \frac{\gamma-1}{\gamma} + \sigma^2 \frac{1}{\gamma-1} & \gamma > 1 \end{cases}$$
### **Double in linear regression**



Here  $\sigma^2 = 1$ , thus signal-to-noise ratio (SNR) is  $\rho^2$ , and  $\gamma = p/n$ . Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

#### Isotropic features

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

- The risk first increases as p/n increases up to some threshold and then decreases.
- There are two ways to view this:
  - If p is thought of as fixed (large value), this implies that as sample size increases the risk first decreases and then increases.
    More data hurts.
  - If n is thought of as fixed (large value), this implies that as the number of features/covariates increase the risk first increases and then decreases.

More features do not hurt.

# Outline

#### Overview of overparameterization

Double descent Current theoretical understanding Case study of linear regression

#### Risk monotonization

Motivation Zero-step procedure Takeaways and extensions

### Bagging analysis

Motivation Risk characterization Optimal subsample size

#### Connections to ridge regularization

Risk and structural equivalences Implications of equivalences Discussion and extensions

### Conclusion

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

- When the data comprises of i.i.d. observations, we expect that more data will help in prediction or estimation.
- Double or multiple descent behaviour implies that for fixed feature size *p* (large value), as sample size increases the risk first decreases and then increases. More data can hurt!
- A procedure leading to worse risk as the number of observations increases is not using the data properly.

Key question: Can we modify any prediction procedure to mitigate the double or multiple descent behavior and achieve a monotonic risk behavior?

### Method overview and the problem



Isotropic features

Hastie, Montanari, Rosset, Tibshirani, 2019: "Surprises in high-dimensional ridgeless least squares interpolation"

# The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

# The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

# The problem

- Given a number of observations (*n*) and a number of features (*p*), how do we know if a lesser number of observations would actually yield a better risk?
- What is the best sample size to reduce the dataset in order to attain the best possible risk?

Solution: cross-validation.

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

### Given any arbitrary prediction procedure at a given aspect ratio $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

Given any arbitrary prediction procedure at a given aspect ratio  $\gamma = p/n$ :

- 1. <u>Risk estimation</u>: construct a (dense grid of) aspect ratios  $\geq \gamma$  by using datasets of sizes smaller than *n*, and estimate risks on test set
- 2. <u>Model selection</u>: select aspect ratio that delivers the smallest estimated risk and return the corresponding predictor
- 3. <u>Risk monotonization</u>: show that the risk profile of the resulting procedure is asymptotically monotone in the aspect ratio

- applicable to generic (e.g black-box) prediction methods and common classification and regression loss functions
- model agnostic and requires minimal distributional assumptions
- works for procedures with diverging risks at some aspect ratios

# **Risk monotonization illustration**

If  $R_n$  represents the "risk" of a procedure at sample size n, then by risk monotonization we mean a procedure with risk  $\min_{m \le n} R_m$ .



Sample size (n)

### Split sample cross-validation

- Given data  $\mathcal{D}_n$  of n i.i.d. observations and a prediction procedure  $\tilde{f}$ , split  $\mathcal{D}_n$  into training data  $\mathcal{D}_{tr}$  with  $n(1-1/\log n)$  observations and test data  $\mathcal{D}_{te}$  with  $n/\log n$  observations.
- Note that

$$\lim_n \frac{p}{n} = \lim_n \frac{p}{n(1-1/\log n)}.$$

- For  $n^{1/2} \leq k \leq |\mathcal{D}_{tr}|$ , obtain a predictor  $\tilde{f}_k$  by training  $\tilde{f}$  on a subset of  $\mathcal{D}_{tr}$  with k observations.
- If p/n converges to  $\gamma$  as  $n \to \infty$ , then

$$\left\{\frac{p}{n^{1/2}},\frac{p}{n^{1/2}+1},\ldots,\frac{p}{|\mathcal{D}_{\mathrm{tr}}|}\right\} \quad " \to " \quad [\gamma,\infty].$$

The set of aspect ratios for the predictors  $f_k$  covers  $[\gamma, \infty]$ .

Choose one out of *f*<sub>k</sub>, n<sup>1/2</sup> ≤ k ≤ |D<sub>tr</sub>| using an estimate of out-of-sample risk computed from D<sub>te</sub> This is split sample cross-validation.

### **Cross-validation risk estimate**

 Traditionally, the risk of a predictor based on a test data is done via average loss. For example, with squared error loss, the traditional estimate of (prediction) risk of a predictor f<sub>k</sub>

$$\widehat{R}(\widetilde{f}_k) := rac{1}{|\mathcal{D}_{ ext{te}}|} \sum_{j \in \mathcal{D}_{ ext{te}}} (Y_j - \widetilde{f}_k(X_j))^2.$$

- For a good performance simultaneously over O(n) predictors and also to avoid strong tail assumptions on the loss, we also consider the median-of-means estimator.
- With either the average or median-of-means estimator of risk, we return the predictor  $\widehat{f} := \widetilde{f_{\mu}}$  where

$$\widehat{k} := \operatorname*{argmin}_{n^{1/2} \leq k \leq |\mathcal{D}_{\mathrm{tr}}|} \widehat{R}(\widetilde{f}_k).$$

•  $\hat{k}$  represents the "best" sample size to use for the given number of features in the dataset and  $\tilde{f}_{\hat{k}}$  is what we call a zero-step predictor that achieves risk monotonization.

### **Risk monotonization guarantee**

**Theorem**. Under the proportional asymptotics regime  $(p/n \rightarrow \gamma)$ , and a mild assumption on the convergence of the prediction risk of  $\hat{f}$  trained on datasets with a limiting aspect ratio  $\zeta$  converges to  $R^{\text{det}}(\zeta; \hat{f})$ , we show:

$$R(\widehat{f}^{ ext{cv}}) \;=\; \inf_{\zeta \in [\gamma,\infty]} R^{ ext{det}}(\zeta;\widehat{f}) \; imes\; (1+o_p(1)).$$

This shows that the zero-step predictor has a monotone risk in terms of the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the data. This is unlike most results in overparametrized learning which require stringent assumptions.

### **Risk monotonization guarantee**

**Theorem**. Under the proportional asymptotics regime  $(p/n \rightarrow \gamma)$ , and a mild assumption on the convergence of the prediction risk of  $\hat{f}$  trained on datasets with a limiting aspect ratio  $\zeta$  converges to  $R^{\text{det}}(\zeta; \hat{f})$ , we show:

$$R(\widehat{f}^{ ext{cv}}) \;=\; \inf_{\zeta \in [\gamma,\infty]} R^{ ext{det}}(\zeta;\widehat{f}) \; imes\; (1+o_p(1)).$$

This shows that the zero-step predictor has a monotone risk in terms of the sample size and hence with respect to the limiting aspect ratio.

This is a model-free result in that no parametric model is assumed for the data. This is unlike most results in overparametrized learning which require stringent assumptions.

### **Risk monotonization (illustration)**



#### Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

#### Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)
## Takeaways and extensions

Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

Extensions:

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

## Takeaways and extensions

Takeaways:

- We have introduced the zero-step prediction procedure that provably monotonizes the risk of a given predictor.
- The main idea is cross-validation based on test data, but with splitting done so as to maintain the limiting aspect ratio.

Extensions:

- We also introduce a one-step prediction procedure inspired by classical one-step estimator that improves on zero-step procedure (similar to boosting)
- Both zero-step and one-step procedures can be further improved by multiple subsamplings and averaging (similar to bagging)

# Outline

#### Overview of overparameterization

Double descent Current theoretical understanding Case study of linear regression

#### Risk monotonization

Motivation Zero-step procedure Takeaways and extensions

### Bagging analysis

Motivation Risk characterization Optimal subsample size

#### Connections to ridge regularization

Risk and structural equivalences Implications of equivalences Discussion and extensions

### Conclusion

## Motivation beyond bagging analysis

Key question: How much improvement do we get if we use an ensemble of M > 1 subsampled datasets, rather than just a single subsampled dataset?



We provide precise risk characterization for ridgeless (and ridge) ensemles.

• Let  $\mathcal{D}_n = \{(\mathbf{x}_j, y_j) \in \mathbb{R}^p \times \mathbb{R} : j \in [n]\}$  denote a dataset. The ridge estimator fitted on subsampled dataset  $\mathcal{D}_I$  with  $I \subseteq [n], |I| = k$  is:

$$\widehat{\beta}_k^{\lambda}(\mathcal{D}_l) = \operatorname*{arg\,min}_{\boldsymbol{\beta} \in \mathbb{R}^p} \frac{1}{k} \sum_{j \in I} (y_j - \boldsymbol{x}_j^{\top} \boldsymbol{\beta})^2 + \lambda \|\boldsymbol{\beta}\|_2^2.$$

• For  $\lambda \ge 0$  fixed, ensemble ridge estimator is:

$$\widetilde{eta}_{k,M}^{\lambda}(\mathcal{D}_n; \{I_\ell\}_{\ell=1}^M) := rac{1}{M}\sum_{\ell\in [M]}\widehat{eta}_k^{\lambda}(\mathcal{D}_{I_\ell}),$$

with  $I_1, \ldots, I_M \sim \mathcal{I}_k := \{\{i_1, \ldots, i_k\} : 1 \leq i_1 < \ldots < i_k \leq n\}$ . The *full-ensemble* ridge estimator is defined by letting  $M \to \infty$ .

• The goal is to quantify and estimate the conditional prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}[(y - \boldsymbol{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^2 \mid \mathcal{D}_n, \{I_{\ell}\}_{\ell=1}^M]$$

• Let  $\mathcal{D}_n = \{(\mathbf{x}_j, y_j) \in \mathbb{R}^p \times \mathbb{R} : j \in [n]\}$  denote a dataset. The ridge estimator fitted on subsampled dataset  $\mathcal{D}_I$  with  $I \subseteq [n], |I| = k$  is:

$$\widehat{eta}_k^\lambda(\mathcal{D}_I) = \operatorname*{arg\,min}_{oldsymbol{eta}\in\mathbb{R}^p} rac{1}{k} \sum_{j\in I} (y_j - oldsymbol{x}_j^ opoldsymbol{eta})^2 + \lambda \|oldsymbol{eta}\|_2^2.$$

• For  $\lambda \ge 0$  fixed, ensemble ridge estimator is:

$$\widetilde{eta}_{k,M}^{\lambda}(\mathcal{D}_n; \{I_\ell\}_{\ell=1}^M) := rac{1}{M} \sum_{\ell \in [M]} \widehat{eta}_k^{\lambda}(\mathcal{D}_{I_\ell}),$$

with  $l_1, \ldots, l_M \sim \mathcal{I}_k := \{\{i_1, \ldots, i_k\} : 1 \leq i_1 < \ldots < i_k \leq n\}$ . The *full-ensemble* ridge estimator is defined by letting  $M \to \infty$ .

• The goal is to quantify and estimate the conditional prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}[(y - \boldsymbol{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^2 \mid \mathcal{D}_n, \{I_{\ell}\}_{\ell=1}^M]$$

• Let  $\mathcal{D}_n = \{(\mathbf{x}_j, y_j) \in \mathbb{R}^p \times \mathbb{R} : j \in [n]\}$  denote a dataset. The ridge estimator fitted on subsampled dataset  $\mathcal{D}_I$  with  $I \subseteq [n], |I| = k$  is:

$$\widehat{eta}_k^\lambda(\mathcal{D}_I) = rgmin_{oldsymbol{eta}\in\mathbb{R}^p}rac{1}{k}\sum_{j\in I}(y_j-oldsymbol{x}_j^ opoldsymbol{eta})^2+\lambda\|oldsymbol{eta}\|_2^2.$$

• For  $\lambda \ge 0$  fixed, ensemble ridge estimator is:

$$\widetilde{eta}_{k,M}^{\lambda}(\mathcal{D}_{\mathsf{n}}; \{I_{\ell}\}_{\ell=1}^{M}) := rac{1}{M} \sum_{\ell \in [M]} \widehat{eta}_{k}^{\lambda}(\mathcal{D}_{I_{\ell}}),$$

with  $I_1, \ldots, I_M \sim \mathcal{I}_k := \{\{i_1, \ldots, i_k\} : 1 \le i_1 < \ldots < i_k \le n\}$ . The *full-ensemble* ridge estimator is defined by letting  $M \to \infty$ .

• The goal is to quantify and estimate the conditional prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}[(y - \mathbf{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^2 \mid \mathcal{D}_n, \{I_{\ell}\}_{\ell=1}^M]$$

Let D<sub>n</sub> = {(x<sub>j</sub>, y<sub>j</sub>) ∈ ℝ<sup>p</sup> × ℝ : j ∈ [n]} denote a dataset. The ridge estimator fitted on subsampled dataset D<sub>I</sub> with I ⊆ [n], |I| = k is:

$$\widehat{eta}_k^\lambda(\mathcal{D}_I) = rgmin_{oldsymbol{eta}\in\mathbb{R}^p}rac{1}{k}\sum_{j\in I}(y_j-oldsymbol{x}_j^ opoldsymbol{eta})^2+\lambda\|oldsymbol{eta}\|_2^2.$$

• For  $\lambda \ge 0$  fixed, ensemble ridge estimator is:

$$\widetilde{eta}_{k,M}^{\lambda}(\mathcal{D}_{\mathsf{n}}; \{I_{\ell}\}_{\ell=1}^{M}) := rac{1}{M} \sum_{\ell \in [M]} \widehat{eta}_{k}^{\lambda}(\mathcal{D}_{I_{\ell}}),$$

with  $I_1, \ldots, I_M \sim \mathcal{I}_k := \{\{i_1, \ldots, i_k\} : 1 \le i_1 < \ldots < i_k \le n\}$ . The *full-ensemble* ridge estimator is defined by letting  $M \to \infty$ .

• The goal is to quantify and estimate the conditional prediction risk:

$$R_{k,M}^{\lambda} := \mathbb{E}[(y - \boldsymbol{x}^{\top} \widetilde{\beta}_{k,M}^{\lambda})^2 \mid \mathcal{D}_n, \{I_{\ell}\}_{\ell=1}^M]$$

- 1. Feature model:
  - Feature structure: x<sub>i</sub> = Σ<sup>1/2</sup>z<sub>i</sub>, z<sub>i</sub> ∈ ℝ<sup>p</sup> is a random vector containing i.i.d. entries with mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.
  - Covariance norm: There exist  $r_{\min}, r_{\max}$  independent of p with  $0 \le r_{\min} \le r_{\max} \le \infty$  such that  $r_{\min} t \ge \sum_{i=1}^{\infty} \frac{1}{r_{\min}} t_{i}$
- 2. Response model:
  - Response structure:  $y_i = \mathbf{x}_i^\top \boldsymbol{\beta}_0 + \epsilon_i$ .
  - Noise structure:  $\epsilon_i$  is an unobserved error that is assumed to be independent of  $x_i$  with mean 0, variance  $\sigma^2$ , and bounded moment of order  $4 + \delta$  for some  $\delta > 0$ .
  - Signal norm:  $\|\beta_0\|_2$  uniformly bounded in p and  $\lim_p \|\beta_0\|_2^2 = \rho^2$ .
- 3. Convergence of covariance and signal-weighted spectrums:
  - Covariance spectrum:  $\boldsymbol{\Sigma} = \boldsymbol{W} \boldsymbol{R} \boldsymbol{W}^{ op}$  is the eigenvalue decomposition.
  - Empirical spectrums: Assume there exist fixed distributions H and G such that the empirical spectral distributions satisfy

$$H_p(r) := \frac{1}{p} \sum_{i=1}^p \mathbb{1}_{\{r_i \le r\}} \xrightarrow{\mathrm{d}} H,$$

$$G_p(r):=rac{1}{\|oldsymbol{eta}_0\|_2^2}\sum_{i=1}^{\cdot}(oldsymbol{eta}_0^{ op}oldsymbol{w}_i)^2~\mathbbm{1}_{\{r_i\leq r\}} extsf{d} \in G.$$

- 1. Feature model:
  - Feature structure: x<sub>i</sub> = Σ<sup>1/2</sup>z<sub>i</sub>, z<sub>i</sub> ∈ ℝ<sup>p</sup> is a random vector containing i.i.d. entries with mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.
  - Covariance norm: There exist  $r_{\min}, r_{\max}$  independent of p with  $0 < r_{\min} \le r_{\max} < \infty$  such that  $r_{\min} I_p \le \Sigma \le r_{\max} I_p$ .
- 2. Response model:
  - Response structure:  $y_i = x_i^{\top} \beta_0 + \epsilon_i$ .
  - Noise structure:  $\epsilon_i$  is an unobserved error that is assumed to be independent of  $x_i$  with mean 0, variance  $\sigma^2$ , and bounded moment of order  $4 + \delta$  for some  $\delta > 0$ .
  - Signal norm:  $\|\beta_0\|_2$  uniformly bounded in p and  $\lim_p \|\beta_0\|_2^2 = \rho^2$ .
- 3. Convergence of covariance and signal-weighted spectrums:
  - Covariance spectrum:  $oldsymbol{\Sigma} = oldsymbol{W} oldsymbol{W}^ op$  is the eigenvalue decomposition.
  - Empirical spectrums: Assume there exist fixed distributions H and G such that the empirical spectral distributions satisfy

$$H_p(r) := rac{1}{p} \sum_{i=1}^p \mathbb{1}_{\{r_i \leq r\}} \stackrel{\mathrm{d}}{ o} H,$$

$$G_{p}(r):=rac{1}{\|oldsymbol{eta}_{0}\|_{2}^{2}}\sum_{i=1}^{r}(oldsymbol{eta}_{0}^{ op}oldsymbol{w}_{i})^{2}\ \mathbb{1}_{\{r_{i}\leq r\}}\stackrel{\mathrm{d}}{
ightarrow} G.$$

- 1. Feature model:
  - Feature structure: x<sub>i</sub> = Σ<sup>1/2</sup>z<sub>i</sub>, z<sub>i</sub> ∈ ℝ<sup>p</sup> is a random vector containing i.i.d. entries with mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.
  - Covariance norm: There exist  $r_{\min}, r_{\max}$  independent of p with  $0 < r_{\min} \le r_{\max} < \infty$  such that  $r_{\min}I_p \le \Sigma \le r_{\max}I_p$ .
- 2. Response model:
  - Response structure:  $y_i = \mathbf{x}_i^\top \boldsymbol{\beta}_0 + \epsilon_i$ .
  - Noise structure:  $\epsilon_i$  is an unobserved error that is assumed to be independent of  $x_i$  with mean 0, variance  $\sigma^2$ , and bounded moment of order  $4 + \delta$  for some  $\delta > 0$ .
  - Signal norm:  $\|\beta_0\|_2$  uniformly bounded in p and  $\lim_p \|\beta_0\|_2^2 = \rho^2$ .
- 3. Convergence of covariance and signal-weighted spectrums:
  - Covariance spectrum:  $oldsymbol{\Sigma} = W R W^+$  is the eigenvalue decomposition.
  - Empirical spectrums: Assume there exist fixed distributions H and G such that the empirical spectral distributions satisfy

$$H_p(r) := rac{1}{p} \sum_{i=1}^p \mathbb{1}_{\{r_i \leq r\}} \stackrel{\mathrm{d}}{ o} H,$$

$$G_p(r) := rac{1}{\|oldsymbol{eta}_0\|_2^2} \sum_{i=1}^p (oldsymbol{eta}_0^{ op} oldsymbol{w}_i)^2 \ \mathbbm{1}_{\{r_i \leq r\}} \stackrel{\mathrm{d}}{
ightarrow} G.$$

- 1. Feature model:
  - Feature structure: x<sub>i</sub> = Σ<sup>1/2</sup>z<sub>i</sub>, z<sub>i</sub> ∈ ℝ<sup>p</sup> is a random vector containing i.i.d. entries with mean 0, variance 1, and bounded moment of order 4 + δ for some δ > 0.
  - Covariance norm: There exist  $r_{\min}, r_{\max}$  independent of p with  $0 < r_{\min} \le r_{\max} < \infty$  such that  $r_{\min}I_p \le \Sigma \le r_{\max}I_p$ .
- 2. Response model:
  - Response structure:  $y_i = \mathbf{x}_i^\top \boldsymbol{\beta}_0 + \epsilon_i$ .
  - Noise structure:  $\epsilon_i$  is an unobserved error that is assumed to be independent of  $x_i$  with mean 0, variance  $\sigma^2$ , and bounded moment of order  $4 + \delta$  for some  $\delta > 0$ .
  - Signal norm:  $\|\beta_0\|_2$  uniformly bounded in p and  $\lim_p \|\beta_0\|_2^2 = \rho^2$ .
- 3. Convergence of covariance and signal-weighted spectrums:
  - Covariance spectrum:  $\boldsymbol{\Sigma} = \boldsymbol{W} \boldsymbol{R} \boldsymbol{W}^{ op}$  is the eigenvalue decomposition.
  - Empirical spectrums: Assume there exist fixed distributions H and G such that the empirical spectral distributions satisfy

$$egin{aligned} & H_p(r) := rac{1}{p} \sum_{i=1}^p \mathbbm{1}_{\{r_i \leq r\}} \stackrel{\mathrm{d}}{ o} H, \ & G_p(r) := rac{1}{\|eta_0\|_2^2} \sum_{i=1}^p (eta_0^ o oldsymbol{w}_i)^2 \ \mathbbm{1}_{\{r_i \leq r\}} \stackrel{\mathrm{d}}{ o} \mathcal{G}. \end{aligned}$$

### Risk characterization of bagged ridge predictors

**Theorem.** Under aforementioned assumptions, as  $k, n, p \to \infty$  such that  $p/n \to \phi \in (0, \infty)$  and  $p/k \to \phi_s \in [\phi, \infty]$ , the asymptotic risk  $\mathscr{R}^{\text{sub}}_{\lambda, M}(\phi, \phi_s)$  is:

data aspect ratio

subsample aspect ratio

$$\mathscr{R}^{\mathrm{sub}}_{\lambda,\mathcal{M}}(\phi,\phi_{s})=\sigma^{2}+\mathscr{R}^{\mathrm{sub}}_{\lambda,\mathcal{M}}(\phi,\phi_{s})+\mathscr{V}^{\mathrm{sub}}_{\lambda,\mathcal{M}}(\phi,\phi_{s}),$$

where the bias and variance terms are given by

$$\begin{split} \mathscr{B}_{\lambda,M}^{\mathrm{sub}}(\phi,\phi_s) &= M^{-1}B_{\lambda}(\phi_s,\phi_s) + (1-M^{-1})B_{\lambda}(\phi,\phi_s), \\ \mathscr{V}_{\lambda,M}^{\mathrm{sub}}(\phi,\phi_s) &= M^{-1}V_{\lambda}(\phi_s,\phi_s) + (1-M^{-1})V_{\lambda}(\phi,\phi_s), \end{split}$$

and the functions  $B_\lambda(\cdot,\cdot)$  and  $V_\lambda(\cdot,\cdot)$  are defined as

$$B_{\lambda}(\vartheta,\theta) = \rho^{2}(1+\widetilde{v}(-\lambda;\vartheta,\theta))\widetilde{c}(-\lambda;\theta), \qquad V_{\lambda}(\vartheta,\theta) = \sigma^{2}\widetilde{v}(-\lambda;\vartheta,\theta).$$

Here the non-negative constants  $\tilde{v}(-\lambda; \vartheta, \theta)$  and  $\tilde{c}(-\lambda; \theta)$  are defined as:

$$\begin{split} \widetilde{v}(-\lambda;\vartheta,\theta) &= \frac{\vartheta \int r^2 (1+v(-\lambda;\theta)r)^{-2} \,\mathrm{d}H(r)}{v(-\lambda;\theta)^{-2} - \vartheta \int r^2 (1+v(-\lambda;\theta)r)^{-2} \,\mathrm{d}H(r)},\\ \widetilde{c}(-\lambda;\theta) &= \int \frac{r}{(1+v(-\lambda;\theta)r)^2} \,\mathrm{d}G(r). \end{split}$$

Finally,  $v(-\lambda; \theta)$  is the unique nonnegative solution to the fixed-point equation:

$$\frac{1}{\nu(-\lambda;\theta)} = \lambda + \theta \int \frac{r}{1 + \nu(-\lambda;\theta)r} \,\mathrm{d}H(r).$$

## Bagged ridge risk characterization (illustration)



Figure: Asymptotic prediction risk curves for bagged ridgeless predictors  $(\lambda = 0)$ , under AR1 model when  $\rho_{ar1} = 0.25$  and  $\sigma^2 = 1$ , for varying subsample sizes  $k = \lfloor p/\phi_s \rfloor$  and numbers of bags M. The null risk is marked as a dotted line. For each value of M, the points denote finite-sample risks averaged over 100 dataset repetitions, with  $n = \lfloor p\phi \rfloor$  and p = 500. The left and the right panels correspond to the cases when p < n ( $\phi = 0.1$ ) and p > n ( $\phi = 1.1$ ), respectively.

## **Optimal bagged ridgeless predictor**

**Theorem.** For any  $\phi \ge 0$ , the global minimum of  $\phi_s \mapsto \mathscr{R}^{\text{sub}}_{0,\infty}(\phi, \phi_s)$  is obtained in  $\phi_s^* \in (1,\infty)$ . That is





Subagged ridgeless *interpolators* always outperform subagged least squares, even when the full data has more observations than the number of features.

## Optimal bagged ridgeless predictor

**Theorem.** For any  $\phi \ge 0$ , the global minimum of  $\phi_s \mapsto \mathscr{R}^{\text{sub}}_{0,\infty}(\phi, \phi_s)$  is obtained in  $\phi_s^* \in (1,\infty)$ . That is





Subagged ridgeless *interpolators* always outperform subagged least squares, even when the full data has more observations than the number of features.

### Back to risk monotonization

- Risk characterization  $\rightarrow$  risk monotonization.
- Data splitting and cross-validation over subsample size.



Figure: Asymptotic excess risk curves for cross-validated bagged ridgeless predictors ( $\lambda = 0$ ), under the isotopic model when  $\rho^2 = 1$  for varying SNR, subsample sizes  $k = \lfloor p/\phi_s \rfloor$ , and numbers of bags M with replacement. For each value of M, the points denote finite-sample risks and the shaded regions denote the values within one standard deviation, with n = 1000,  $n_{\rm te} = 63$ , and  $p = \lfloor n\phi \rfloor$ .

## Comparison with optimal ridge regularization



Recall here  $\gamma = p/n$  is the aspect ratio. The base predictor is ridgeless.

Key question: Is the connection to ridge regularization just coincedental?

## Comparison with optimal ridge regularization



Recall here  $\gamma = p/n$  is the aspect ratio. The base predictor is ridgeless.

Key question: Is the connection to ridge regularization just coincedental?

# Outline

#### Overview of overparameterization

Double descent Current theoretical understanding Case study of linear regression

#### Risk monotonization

Motivation Zero-step procedure Takeaways and extensions

#### Bagging analysis

Motivation Risk characterization Optimal subsample size

#### Connections to ridge regularization

Risk and structural equivalences Implications of equivalences Discussion and extensions

### Conclusion

As p/n → φ and p/k → φ<sub>s</sub>, the prediction risk in the full ensemble (M = ∞) converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_{s}).$$

• For  $\phi = 0.1$ , the risk profile as a function of  $(\lambda, \phi_s)$  is shown in the figure in the log-log scale.



• Risk equivalence (Theorem 2.3):

$$\underbrace{\min_{\substack{\phi_s \geq \phi}\\ \phi_s \geq \phi}}_{\substack{\text{opt. ridgeless}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi) = \underbrace{\min_{\substack{\lambda \geq 0\\\\ \lambda \geq 0}}}_{\substack{\lambda \geq 0}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}\\ \text{ensemble}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq \phi,\\ \lambda \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}} \mathcal{R}_{\lambda,\infty}^{\text{sub}}(\phi,\phi_s) \cdot \underbrace{\sum_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq 0\\\\ \text{opt. ridge}}}_{\substack{\phi_s \geq$$

As p/n → φ and p/k → φ<sub>s</sub>, the prediction risk in the full ensemble (M = ∞) converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_{s}).$$

• For  $\phi = 0.1$ , the risk profile as a function of  $(\lambda, \phi_s)$  is shown in the figure in the log-log scale.



$$\underbrace{\min_{\substack{\phi_s \geq \phi}} \mathscr{R}^{\mathrm{sub}}_{0,\infty}(\phi,\phi_s)}_{\text{opt. ridgeless}} = \underbrace{\min_{\lambda \geq 0} \mathscr{R}^{\mathrm{sub}}_{\lambda,\infty}(\phi,\phi)}_{\text{opt. ridge}} = \underbrace{\min_{\substack{\phi_s \geq \phi, \\ \lambda \geq 0}} \mathscr{R}^{\mathrm{sub}}_{\lambda,\infty}(\phi,\phi_s)}_{\text{opt. ridge}}.$$



As p/n → φ and p/k → φ<sub>s</sub>, the prediction risk in the full ensemble (M = ∞) converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_{s}).$$

• For  $\phi = 0.1$ , the risk profile as a function of  $(\lambda, \phi_s)$  is shown in the figure in the log-log scale.



$$\underbrace{\min_{\substack{\phi_s \ge \phi}\\ \phi_s \ge \phi}}_{\substack{\text{opt. ridgeless}\\ \text{ensemble}}} \mathcal{R}_{\lambda \ge 0}^{\text{sub}}(\phi, \phi) = \underbrace{\min_{\substack{\lambda \ge 0\\ \lambda \ge 0}}}_{\substack{\lambda \ge 0}} \mathcal{R}_{\lambda, \infty}^{\text{sub}}(\phi, \phi_s) = \underbrace{\min_{\substack{\phi_s \ge \phi,\\ \lambda \ge 0}}}_{\substack{\phi_s \ge \phi,\\ \lambda \ge 0}} \mathcal{R}_{\lambda, \infty}^{\text{sub}}(\phi, \phi_s)$$



As p/n → φ and p/k → φ<sub>s</sub>, the prediction risk in the full ensemble (M = ∞) converges:

$$R_{k,\infty}^{\lambda} \xrightarrow{\text{a.s.}} \mathscr{R}_{\infty}^{\lambda}(\phi,\phi_{s}).$$

• For  $\phi = 0.1$ , the risk profile as a function of  $(\lambda, \phi_s)$  is shown in the figure in the log-log scale.



$$\underbrace{\min_{\substack{\phi_s \ge \phi}} \mathscr{R}^{\mathrm{sub}}_{0,\infty}(\phi,\phi_s)}_{\text{opt. ridgeless}} = \underbrace{\min_{\lambda \ge 0} \mathscr{R}^{\mathrm{sub}}_{\lambda,\infty}(\phi,\phi)}_{\text{opt. ridge}} = \underbrace{\min_{\substack{\phi_s \ge \phi, \\ \lambda \ge 0}} \mathscr{R}^{\mathrm{sub}}_{\lambda,\infty}(\phi,\phi_s)}_{\text{opt. ridge}}.$$



### **Generalized risk**

- Let  $\beta_0 = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}]^{-1}\mathbb{E}[\mathbf{x}y]$  be the best linear projection of y onto  $\mathbf{x}$
- For a linear functional  $L(\beta) = A\beta + b$ , we study generalized risks:

$$R(\widehat{\beta}; \boldsymbol{A}, \boldsymbol{b}, \beta_0) = \frac{1}{\operatorname{nrow}(\boldsymbol{A})} \|L(\widehat{\beta} - \beta_0)\|_2^2,$$
(1)

| Statistical learning problem     | $L(\widehat{eta}-oldsymbol{eta}_0)$                              | A                  | b             | $\operatorname{nrow}(\boldsymbol{A})$ |
|----------------------------------|------------------------------------------------------------------|--------------------|---------------|---------------------------------------|
| vector coefficient estimation    | $\widehat{eta} - oldsymbol{eta}_{0}$                             | $I_p$              |               | р                                     |
| projected coefficient estimation | $oldsymbol{a}^	op(\widehateta-oldsymbol{eta}_0)$                 | а                  |               | 1                                     |
| training error estimation        | $oldsymbol{X}\widehat{eta}-oldsymbol{y}$                         | X                  | $-f_{\rm NL}$ | п                                     |
| in-sample prediction             | $oldsymbol{X}(\widehat{eta}-oldsymbol{eta}_0)$                   | X                  |               | п                                     |
| out-of-sample prediction         | $\mathbf{x}_{0}^{\top}\widehat{\mathbf{\beta}} - \mathbf{y}_{0}$ | $\boldsymbol{x}_0$ | $-\epsilon_0$ | 1                                     |

### **Generalized risk**

- Let  $\beta_0 = \mathbb{E}[\mathbf{x}\mathbf{x}^{ op}]^{-1}\mathbb{E}[\mathbf{x}y]$  be the best linear projection of y onto  $\mathbf{x}$
- For a linear functional  $L(\beta) = A\beta + b$ , we study generalized risks:

$$R(\widehat{\beta}; \boldsymbol{A}, \boldsymbol{b}, \boldsymbol{\beta}_0) = \frac{1}{\operatorname{nrow}(\boldsymbol{A})} \|L(\widehat{\beta} - \boldsymbol{\beta}_0)\|_2^2, \quad (1)$$

| Statistical learning problem     | $L(\widehat{eta}-oldsymbol{eta}_{0})$                | Α                  | Ь             | $\operatorname{nrow}(\boldsymbol{A})$ |
|----------------------------------|------------------------------------------------------|--------------------|---------------|---------------------------------------|
| vector coefficient estimation    | $\widehat{eta} - oldsymbol{eta}_0$                   | $I_p$              | 0             | p                                     |
| projected coefficient estimation | $oldsymbol{a}^	op(\widehateta-oldsymbol{eta}_0)$     | $a^{	op}$          | 0             | 1                                     |
| training error estimation        | $oldsymbol{X}\widehat{eta}-oldsymbol{y}$             | X                  | $-f_{\rm NL}$ | п                                     |
| in-sample prediction             | $oldsymbol{X}(\widehat{eta}-oldsymbol{eta}_{0})$     | X                  | 0             | п                                     |
| out-of-sample prediction         | $\mathbf{x}_{0}^{	op}\widehat{eta} - \mathbf{y}_{0}$ | $\mathbf{x}_0^	op$ | $-\epsilon_0$ | 1                                     |

## Asymptotic equivalence and relaxed assumptions

Asymptotic equivalence:

- Let  $A_p$  and  $B_p$  be sequences of (additively) conformable matrices of arbitrary dimensions (including vectors and scalars).
- We say that  $\mathbf{A}_{p}$  and  $\mathbf{B}_{p}$  are asymptotically equivalent, denoted as  $\mathbf{A}_{p} \simeq \mathbf{B}_{p}$ , if  $\lim_{p \to \infty} |\operatorname{tr}[\mathbf{C}_{p}(\mathbf{A}_{p} \mathbf{B}_{p})]| = 0$  almost surely for any sequence of random matrices  $\mathbf{C}_{p}$  with bounded trace norm that are (multiplicatively) conformable and independent of  $\mathbf{A}_{p}$  and  $\mathbf{B}_{p}$ .
- Note that for sequences of scalar random variables, the definition simply reduces to the typical almost sure convergence of sequences of random variables involved.

- Feature distribution: Each feature vector x<sub>i</sub> for i ∈ [n] can be decomposed as x<sub>i</sub> = Σ<sup>1/2</sup>z<sub>i</sub>, where z<sub>i</sub> ∈ ℝ<sup>p</sup> contains i.i.d. entries z<sub>ij</sub> for j ∈ [p] with mean 0, variance 1, and bounded 4 + μ moments for some μ > 0.
- Response distribution: Each response variable y<sub>i</sub> for i ∈ [n] has mean 0, and bounded 4 + μ moments.

## Asymptotic equivalence and relaxed assumptions

Asymptotic equivalence:

- Let  $A_p$  and  $B_p$  be sequences of (additively) conformable matrices of arbitrary dimensions (including vectors and scalars).
- We say that  $A_p$  and  $B_p$  are asymptotically equivalent, denoted as  $A_p \simeq B_p$ , if  $\lim_{p\to\infty} |\operatorname{tr}[C_p(A_p B_p)]| = 0$  almost surely for any sequence of random matrices  $C_p$  with bounded trace norm that are (multiplicatively) conformable and independent of  $A_p$  and  $B_p$ .
- Note that for sequences of scalar random variables, the definition simply reduces to the typical almost sure convergence of sequences of random variables involved.

- Feature distribution: Each feature vector *x<sub>i</sub>* for *i* ∈ [*n*] can be decomposed as *x<sub>i</sub>* = Σ<sup>1/2</sup>*z<sub>i</sub>*, where *z<sub>i</sub>* ∈ ℝ<sup>p</sup> contains i.i.d. entries *z<sub>ij</sub>* for *j* ∈ [*p*] with mean 0, variance 1, and bounded 4 + μ moments for some μ > 0.
- Response distribution: Each response variable y<sub>i</sub> for i ∈ [n] has mean 0, and bounded 4 + μ moments.

### Generalized risk equivalences

**Theorem.** For any  $\bar{\psi} \in [\phi, +\infty]$ , let  $\bar{\lambda}$  be as defined in (4). Then, for any pair of  $(\lambda_1, \psi_1)$  and  $(\lambda_2, \psi_2)$  on the path  $\mathcal{P}(\bar{\lambda}; \phi, \bar{\psi})$  as defined in (5), the generalized risk functionals (1) of the full-ensemble estimator are asymptotically equivalent:

$$R(\widehat{\beta}_{\lfloor \boldsymbol{p}/\psi_1 \rfloor,\infty}^{\lambda_1}; \boldsymbol{A}, \boldsymbol{b}, \beta_0) \simeq R(\widehat{\beta}_{\lfloor \boldsymbol{p}/\psi_2 \rfloor,\infty}^{\lambda_2}; \boldsymbol{A}, \boldsymbol{b}, \beta_0).$$
(2)



### **Structural equivalences**

**Theorem**. For any  $\bar{\psi} \in [\phi, +\infty]$ , let  $\bar{\lambda}$  be as in (4). Then, for any  $M \in \mathbb{N} \cup \{\infty\}$  and any pair of  $(\lambda_1, \psi_1)$  and  $(\lambda_2, \psi_2)$  on the path (5), the *M*-ensemble estimators are asymptotically equivalent:

$$\widehat{\beta}_{\lfloor p/\psi_{1}\rfloor,M}^{\lambda_{1}} \simeq \widehat{\beta}_{\lfloor p/\psi_{2}\rfloor,M}^{\lambda_{2}}, \quad \forall (\lambda_{1},\psi_{1}), (\lambda_{2},\psi_{2}) \in \mathcal{P}(\bar{\lambda};\phi,\bar{\psi}).$$
(3)

### **Equivalence** paths

- Given φ ∈ (0,∞) and ψ
   ∈ [φ,∞], our statement of equivalences between different ensemble estimators is defined through certain paths characterized by two endpoints (0, ψ
   ) and (λ
   , φ).
- Let  $H_p$  be the empirical spectral distribution of  $\Sigma$ :  $H_p(r) = p^{-1} \sum_{i=1}^p \mathbb{1}_{\{r_i \leq r\}}$ , where  $r_i$ 's are the eigenvalues of  $\Sigma$ . Consider the following system of equations in  $\overline{\lambda}$  and v:

$$\frac{1}{v} = \bar{\lambda} + \phi \int \frac{r}{1 + vr} \mathrm{d}H_{\rho}(r), \quad \text{and} \quad \frac{1}{v} = \bar{\psi} \int \frac{r}{1 + vr} \mathrm{d}H_{\rho}(r). \tag{4}$$

• Now, define a path  $\mathcal{P}(\bar{\lambda}; \phi, \bar{\psi})$  that passes through the endpoints  $(0, \bar{\psi})$  and  $(\bar{\lambda}, \phi)$ :

$$\mathcal{P}(\overline{\lambda};\phi,\overline{\psi}) = \left\{ (1-\theta) \cdot (\overline{\lambda},\phi) + \theta \cdot (0,\overline{\psi}) \mid \theta \in [0,1] \right\}.$$
(5)

For any M ∈ N ∪ {∞}, let λ
<sub>n</sub> be the value that satisfies the following equation in ensemble ridgeless and ridge gram matrices:

$$\frac{1}{M}\sum_{\ell=1}^{M}\frac{1}{k}\operatorname{tr}\left[\left(\frac{1}{k}\boldsymbol{L}_{l_{\ell}}\boldsymbol{X}\boldsymbol{X}^{\top}\boldsymbol{L}_{l_{\ell}}\right)^{+}\right] = \frac{1}{n}\operatorname{tr}\left[\left(\frac{1}{n}\boldsymbol{X}\boldsymbol{X}^{\top} + \bar{\lambda}_{n}\boldsymbol{I}_{n}\right)^{-1}\right].$$
 (6)

Define the data-dependent path  $\mathcal{P}_n = \mathcal{P}(\overline{\lambda}_n; \phi_n, \overline{\psi}_n).$ 

## Implications: Monotonicity of optimal ridge

- An open problem raised by Nakkiran et al. (2021) asks whether the prediction risk of ridge regression with optimal ridge penalty λ\* is monotonically increasing in the data aspect ratio φ = p/n.
- Our equivalences imply that the prediction risk of an optimally-tuned ridge estimator is monotonically increasing in the data aspect ratio under mild regularity conditions.
- Under proportional asymptotics, our result settles a recent open question raised by Conjecture 1 of Nakkiran et al. (2021) concerning the monotonicity of optimal ridge regression under anisotropic features and general data models while maintaining a regularity condition that preserves the linearized signal-to-noise ratios across regression problems.

### Implications of equivalences: illustration

**Theorem**. Let  $k, n, p \to \infty$  such that  $p/n \to \phi \in (0, \infty)$  and  $p/k \to \psi \in [\phi, \infty]$ . Then, for  $\mathbf{A} = \Sigma^{1/2}$  and  $\mathbf{b} = \mathbf{0}$ , the optimal risk of the ridgeless ensemble,  $\min_{\psi \ge \phi} \mathscr{R}(0; \phi, \psi)$ , is monotonically increasing in  $\phi$ . Consequently, the optimal risk of the ridge predictor,  $\min_{\ge 0} \mathscr{R}(;\phi,\phi)$ , is also monotonically increasing in  $\phi$ .



### **Extension 1: Equivalences for random features**

**Conjecture**. Define  $\phi_n = p/n$ . Let  $k \leq n$  be the subsample size and denote by  $\bar{\psi}_n = p/k$ . Suppose  $\varphi$  satisfies certain regularity conditions. For any  $M \in \mathbb{N} \cup \{\infty\}$ , let  $\bar{\lambda}_n$  be the value that satisfies

$$\frac{1}{M}\sum_{\ell=1}^{M}\frac{1}{k}\operatorname{tr}\left[\left(\frac{1}{k}\varphi(\boldsymbol{L}_{l_{\ell}}\boldsymbol{X}\boldsymbol{F}^{\top})\varphi(\boldsymbol{L}_{l_{\ell}}\boldsymbol{X}\boldsymbol{F}^{\top})^{\top}\right)^{+}\right] = \frac{1}{n}\operatorname{tr}\left[\left(\frac{1}{n}\varphi(\boldsymbol{X}\boldsymbol{F}^{\top})\varphi(\boldsymbol{X}\boldsymbol{F}^{\top})^{\top} + \bar{\lambda}_{n}\boldsymbol{I}_{n}\right)^{-1}\right]$$

Define the data-dependent path  $\mathcal{P}_n = \mathcal{P}(\bar{\lambda}_n; \phi_n, \bar{\psi}_n)$ . Then similar equivalences continue to hold along  $\mathcal{P}_n$ .



### **Extension 2: Equivalences for kernel features**

**Conjecture**. Define  $\phi_n = p/n$ . Suppose the kernel K satisfies certain regularity conditions. Let  $k \leq n$  be the subsample size and denote by  $\bar{\psi}_n = p/k$ . For any  $M \in \mathbb{N} \cup \{\infty\}$ , let  $\bar{\lambda}_n$  be a solution to

$$\frac{1}{M}\sum_{\ell=1}^{M} \operatorname{tr}\left[\boldsymbol{K}_{l_{\ell}}^{+}\right] = \operatorname{tr}\left[\left(\boldsymbol{K}_{[n]} + \frac{n}{p}\bar{\lambda}_{n}\boldsymbol{I}_{n}\right)^{-1}\right]$$

Define the data-dependent path  $\mathcal{P}_n = \mathcal{P}(\bar{\lambda}_n; \phi_n, \bar{\psi}_n)$ . Then similar equivalences continue to hold along  $\mathcal{P}_n$ .



# Outline

#### Overview of overparameterization

Double descent Current theoretical understanding Case study of linear regression

#### Risk monotonization

Motivation Zero-step procedure Takeaways and extensions

#### Bagging analysis

Motivation Risk characterization Optimal subsample size

#### Connections to ridge regularization

Risk and structural equivalences Implications of equivalences Discussion and extensions

#### Conclusion
- 1. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 2. Ensembling helps significantly near the interpolator threshold. Subagged ridgeless interpolators always outperform subagged least squares, even when the full data has more observations than the number of features.
- 3. There are connections between the implicit regularization induced by subsampling and explicit ridge regularization for subsampled ridge ensembles.

- 1. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 2. Ensembling helps significantly near the interpolator threshold. Subagged ridgeless interpolators always outperform subagged least squares, even when the full data has more observations than the number of features.
- 3. There are connections between the implicit regularization induced by subsampling and explicit ridge regularization for subsampled ridge ensembles.

- 1. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 2. Ensembling helps significantly near the interpolator threshold. Subagged ridgeless interpolators always outperform subagged least squares, even when the full data has more observations than the number of features.
- 3. There are connections between the implicit regularization induced by subsampling and explicit ridge regularization for subsampled ridge ensembles.

- 1. It is possible to modify any given prediction procedure to mitigate double descent behavior and achieve a monotonic risk behavior through subsampling and cross-validation.
- 2. Ensembling helps significantly near the interpolator threshold. Subagged ridgeless interpolators always outperform subagged least squares, even when the full data has more observations than the number of features.
- 3. There are connections between the implicit regularization induced by subsampling and explicit ridge regularization for subsampled ridge ensembles.

Thanks for listening!

Questions/comments/thoughts?

#### What about lasso?



"Mitigating multiple descents: A model-agnostic framework for risk monotonization" P., Kuchibhotla, Wei, Rinaldo, 2021

#### What about lasso?



#### More empirical evidence for lasso

