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Why sketch?
• Example: Criteo 1TB dataset

• Binary ad click prediction, 4,195,197,692n =

• 13 numerical features, 26 32-bit categorical features:

• More than 400GiB memory for regression coefficients alone

• Solution: the "hashing trick" (sketching)

• Take each 32-bit feature and hash it (e.g.,  24-bit): 62e59341 73e059

• Use sum of one-hot encodings as features: 107, feasiblep ∼

1011?p ∼
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• Fast database querying (locality sensitive hashing)

•  built from hash functions, fast to apply and approximately invertS

• Compressed sensing

• Store sparse high-dimensional measurements to recover downstream

•  chosen to maximize recovery qualityS
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Where to find sketches
• Numerical linear algebra & optimization

• Approximate the solution to a (sub-)problem efficiently

•  chosen to minimize computational and memory costsS

• Statistics & machine learning

• : regression labels are a sketch of underlying coefficientsy = Xb

• : data is a sketch of population covarianceX = ZΣ1/2

•  or  is determined by nature and may not be observedS = X⊤ S = Z⊤



What do sketches look like?



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)

• Fastest: subsampling matrix



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)

• Fastest: subsampling matrix

• Independently random sketches



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)

• Fastest: subsampling matrix

• Independently random sketches

• Exemplar: i.i.d. (sub-)Gaussian matrix



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)

• Fastest: subsampling matrix

• Independently random sketches

• Exemplar: i.i.d. (sub-)Gaussian matrix

• Faster: sum of independent hashing functions (e.g., CountSketch)



What do sketches look like?
• Orthonormal sketches  ( )S⊤S ∝ Iq q × q

• Exemplar: uniformly random matrix with orthonormal columns

• Faster: subsampled randomized Fourier transforms (e.g., SRHT)

• Fastest: subsampling matrix

• Independently random sketches

• Exemplar: i.i.d. (sub-)Gaussian matrix

• Faster: sum of independent hashing functions (e.g., CountSketch)

requires additional assumptions



Q: How does sketching affect 
the result in machine learning?
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• Orthogonal design setting , i.i.d. Gaussian X⊤X = Ip S

•   while  ̂b = 1
1 + λ (b* + σz) ̂bS = S(S⊤S + λIq)−1S⊤(b* + σz)

• By rotational symmetry, , 𝔼[S(S⊤S + λIq)−1S⊤] = cλIp cλ < 1

• So for any  at ,  for  at some ̂bS λ > 0 𝔼[ ̂bS] = ̂b ̂b λ′￼ > 0

• What about arbitrary ?X

• We need a different "expectation"
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• Also known as "deterministic equivalences" in random matrix theory

• Definition. Two sequences of matrices  and  are asymptotically equivalent, 
written , if for any sequence  independent of  and  with 
bounded trace norm, 

An Bn
An ≃ Bn Θn An Bn

     almost surely.lim
n→∞

tr[Θn(An − Bn)] = 0

• Typical usage:  is complicated and  is simple, but , so we can use 
 to understand 

An Bn An ≃ Bn
Bn An

•  is analogous to , but single-instanceAn ≃ Bn 𝔼[A] = 𝔼[B]



Calculus of asymptotic equivalences



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn

• Product: , An ≃ Bn (An, Bn) ⊥ (Cn, Dn) ⟹ CnAnDn ≃ CnBnDn



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn

• Product: , An ≃ Bn (An, Bn) ⊥ (Cn, Dn) ⟹ CnAnDn ≃ CnBnDn

• Elements: An ≃ Bn ⟹ [An]ij − [Bn]ij
a.s. 0



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn

• Product: , An ≃ Bn (An, Bn) ⊥ (Cn, Dn) ⟹ CnAnDn ≃ CnBnDn

• Elements: An ≃ Bn ⟹ [An]ij − [Bn]ij
a.s. 0

• Derivative: f(An; z) ≃ g(Bn; z) ⟹ f′￼(An; z) ≃ g′￼(Bn; z)



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn

• Product: , An ≃ Bn (An, Bn) ⊥ (Cn, Dn) ⟹ CnAnDn ≃ CnBnDn

• Elements: An ≃ Bn ⟹ [An]ij − [Bn]ij
a.s. 0

• Derivative: f(An; z) ≃ g(Bn; z) ⟹ f′￼(An; z) ≃ g′￼(Bn; z)

• Not nonlinear ops: An ≃ Bn ⟹ Ak
n ≃ Bk

n



Calculus of asymptotic equivalences
• Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum: An ≃ Bn, Cn ≃ Dn ⟹ An + Cn ≃ Bn + Dn

• Product: , An ≃ Bn (An, Bn) ⊥ (Cn, Dn) ⟹ CnAnDn ≃ CnBnDn

• Elements: An ≃ Bn ⟹ [An]ij − [Bn]ij
a.s. 0

• Derivative: f(An; z) ≃ g(Bn; z) ⟹ f′￼(An; z) ≃ g′￼(Bn; z)

• Not nonlinear ops: An ≃ Bn ⟹ Ak
n ≃ Bk

n

• Analogous: 𝔼[A] = 𝔼[B] ⟹ 𝔼[Ak] = 𝔼[Bk]
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The sketched pseudoinverse
• Sketched ridge: ̂bS = S ⋅ argminb{∥y − XSb∥2

2 + λ∥b∥2
2}

• Closed form: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y

• Definition. Given a positive semidefinite matrix  and sketching matrix 
, its sketched pseudoinverse with regularization  is

A ∈ ℝp×p

S ∈ ℝp×q λ

.S(S⊤AS + λIq)−1S⊤

• Called "pseudoinverse" because when  has orthonormal columns and 
, it is the Moore–Penrose pseudoinverse of 

S
λ → 0 SS⊤ASS⊤
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where  is the most positive solution toγ

.1
p tr[(A + μIp)−1](γ − αλ) = 1 − α

• Less distortion:  for i.i.d. sketch when λ < γ < μ μ > 0



Empirical concentration



• Example: A = diag(0,…,1,…,2,…)

Empirical concentration



• Example: A = diag(0,…,1,…,2,…)

• , , , α = 0.8 λ = 1 μ ≈ 1.63 γ ≈ 1.17

Empirical concentration



• Example: A = diag(0,…,1,…,2,…)

• , , , α = 0.8 λ = 1 μ ≈ 1.63 γ ≈ 1.17

• Examine [S(S⊤AS + λIq)−1S⊤]ij ≃ [(A + μIp)−1]ij

Empirical concentration



• Example: A = diag(0,…,1,…,2,…)

• , , , α = 0.8 λ = 1 μ ≈ 1.63 γ ≈ 1.17

• Examine [S(S⊤AS + λIq)−1S⊤]ij ≃ [(A + μIp)−1]ij

                                               I.i.d. sketch

Empirical concentration

0.2 0.4 0.6 0.8

0

5

10

15

20

Diagonals

°0.4 °0.2 0.0 0.2 0.4

0

10

20

30

40

OÆ-diagonals

p = 60

p = 300

p = 1500



• Example: A = diag(0,…,1,…,2,…)

• , , , α = 0.8 λ = 1 μ ≈ 1.63 γ ≈ 1.17

• Examine [S(S⊤AS + λIq)−1S⊤]ij ≃ [(A + μIp)−1]ij

                                               I.i.d. sketch

Empirical concentration

0.2 0.4 0.6 0.8

0

5

10

15

20

Diagonals

°0.4 °0.2 0.0 0.2 0.4

0

10

20

30

40

OÆ-diagonals

p = 60

p = 300

p = 1500

1
2 + μ

1
1 + μ

1
μ



• Example: A = diag(0,…,1,…,2,…)

• , , , α = 0.8 λ = 1 μ ≈ 1.63 γ ≈ 1.17

• Examine [S(S⊤AS + λIq)−1S⊤]ij ≃ [(A + μIp)−1]ij

                                               I.i.d. sketch 0.2 0.4 0.6 0.8 1.0

0

10

20

Orthogonal

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40
CountSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

AdaptiveSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

10

20

FJLT

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p % 2d)

p = 63

p = 255

p = 1023

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p & 2d)

p = 66

p = 258

p = 1026

0.2 0.4 0.6 0.8 1.0

0

10

20

Orthogonal

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40
CountSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

AdaptiveSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

10

20

FJLT

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p % 2d)

p = 63

p = 255

p = 1023

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p & 2d)

p = 66

p = 258

p = 1026

0.2 0.4 0.6 0.8 1.0

0

10

20

Orthogonal

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40
CountSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

AdaptiveSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

10

20

FJLT

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p % 2d)

p = 63

p = 255

p = 1023

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p & 2d)

p = 66

p = 258

p = 1026

0.2 0.4 0.6 0.8 1.0

0

10

20

Orthogonal

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40
CountSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

AdaptiveSketch

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

10

20

FJLT

p = 60

p = 300

p = 1500

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p % 2d)

p = 63

p = 255

p = 1023

0.2 0.4 0.6 0.8 1.0

0

20

40

SRHT (p & 2d)

p = 66

p = 258

p = 1026

Empirical concentration

0.2 0.4 0.6 0.8

0

5

10

15

20

Diagonals

°0.4 °0.2 0.0 0.2 0.4

0

10

20

30

40

OÆ-diagonals

p = 60

p = 300

p = 1500

1
2 + μ

1
1 + μ

1
μ



Some intuition about λ ↦ μ



Some intuition about λ ↦ μ

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

•  decreasing in  for fixed |μ | α λ
° 1

2
° 1

4
0 1

4
1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

•  decreasing in  for fixed |μ | α λ

•  or λ > 0 q < rank(A) ⟹ μ ≥ 0, μ > λ

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

•  decreasing in  for fixed |μ | α λ

•  or λ > 0 q < rank(A) ⟹ μ ≥ 0, μ > λ

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

sketching always adds ridge!

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

•  decreasing in  for fixed |μ | α λ

•  or λ > 0 q < rank(A) ⟹ μ ≥ 0, μ > λ

•  and λ < 0 q > rank(A) ⟹ μ < 0

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

sketching always adds ridge!

λi(A) = {1, i ≤ p/2
0, i > p/2



Some intuition about λ ↦ μ
• Concave and increasing in λ

• Limiting behavior: μ ∼ λ+ 1
q tr[A]

•  decreasing in  for fixed |μ | α λ

•  or λ > 0 q < rank(A) ⟹ μ ≥ 0, μ > λ

•  and λ < 0 q > rank(A) ⟹ μ < 0

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), Isotropic

° 1
2

° 1
4

0 1
4

1
2

3
4

1

∏

0

1

2

3

µ(∏), 1
2
Marchenko–Pastur(2)

° 3
5

0 1

∏

1
6

r

1

Æ

Colormap

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), Isotropic

1
6

1
5

1
4

1
3

r = 1
2

1 2 1

Æ

0

1

2

3

µ(Æ), 1
2
Marchenko–Pastur(2)

sketching always adds ridge!

λi(A) = {1, i ≤ p/2
0, i > p/2



Ridge regression risk?



Ridge regression risk?
• Bias: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y ≃ (X⊤X + μIq)−1X⊤y = ̂bμ



Ridge regression risk?
• Bias: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y ≃ (X⊤X + μIq)−1X⊤y = ̂bμ

• What about risk?



Ridge regression risk?
• Bias: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y ≃ (X⊤X + μIq)−1X⊤y = ̂bμ

• What about risk?

• Problem: ̂bS ≃ ̂bμ ⟹ ̂b⊤
S

̂bS ≃ ̂b⊤
μ

̂bμ



Ridge regression risk?
• Bias: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y ≃ (X⊤X + μIq)−1X⊤y = ̂bμ

• What about risk?

• Problem: ̂bS ≃ ̂bμ ⟹ ̂b⊤
S

̂bS ≃ ̂b⊤
μ

̂bμ

• Just like 𝔼[X] = 𝔼[Y] ⟹ 𝔼[X2] = 𝔼[Y2]



Ridge regression risk?
• Bias: ̂bS = S(S⊤X⊤XS + λIq)−1S⊤X⊤y ≃ (X⊤X + μIq)−1X⊤y = ̂bμ

• What about risk?

• Problem: ̂bS ≃ ̂bμ ⟹ ̂b⊤
S

̂bS ≃ ̂b⊤
μ

̂bμ

• Just like 𝔼[X] = 𝔼[Y] ⟹ 𝔼[X2] = 𝔼[Y2]

• We need a second order equivalence to work out variance
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A second-order asymptotic equivalence
• Theorem (LeJeune, PP, et al., 2024). For any  with uniformly bounded 

operator norm independent of  and the previous conditions, for i.i.d. ,
Ψ

S S

S(S⊤AS + λIq)−1S⊤ΨS(S⊤AS + λIq)−1S⊤ ≃ (A + μIp)−1(Ψ + μ′￼Ip)(A + μIp)−1,

where

μ′￼ =
1
q tr[μ3Ψ(A + μIp)−2]

λ + 1
q tr[μ2A(A + μIp)−2]

≥ 0.

• Proof idea:  with carefully placed ∂
∂z (A − zI)−1 = (A − zI)−2 Ψ

sketching adds variance
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• Consider quadratic functional R( ̂bS) = ̂b⊤

SΨ ̂bS + h⊤ ̂bS + c

• Recall ̂bμ = (X⊤X + μIp)−1X⊤y

• Then R( ̂bS) ≃ R( ̂bμ) + μ′￼
̂b⊤
μ

̂bμ
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When is sketching good/useful?
• When both  and  are smallR( ̂bμ) μ′￼

̂b⊤
μ

̂bμ

• :  should be less than , while essentially R( ̂bμ) λ μ = λopt α ∝ 1
μ − λ

• : consider alternate form μ′￼ μ′￼ = 1
q tr[μ2Ψ(A + μIp)−2]

∂μ
∂λ

•  should be largeα

• not much control via λ

• unless  and !μ = 0 range(Ψ) ⊆ range(A)

• requires  and λ = 0 q > rank(A)

≥ 1
 if ≥ C

rank(Ψ) > rank(A)
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The magic of sketched ridgeless regression

• Example: rank-deficient isotropy, λi(A) = {1, i ≤ p/2
0, i > p/2
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Consistent risk estimation
• Generalized cross-validation (GCV)

• R̂( ̂bS) =
1
n ∥y − X ̂bS∥2

2

(1 − 1
n tr[XS(S⊤X⊤XS + λIq)−1S⊤X]⊤)2

• Costs the same as  to computêbS

• Theorem (PP & LeJeune, 2024). For any asymptotically free sketch , 
under random data assumptions on ,

S
X

.R̂( ̂bS) ≃ R( ̂bS) ≃ R( ̂bμ) + μ′￼Δ



Consistent risk estimation
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Ensemble trick for unsketched risk

• Let ̂bK =
1
K

K

∑
k=1

Sk(S⊤
k X⊤XSk + λIq)−1X⊤y

• Then R̂( ̂bK) ≃ R( ̂bK) ≃ R( ̂bμ) +
μ′￼

K
Δ

• Given the mapping , this admits a consistent estimatorλ ↦ μ

R( ̂bμ) ≃ 2R̂( ̂bK=2) − R̂( ̂bK=1)

• Cost (for iterative solver) is  versus , efficient if 𝒪(4nq) 𝒪(2np) q ≪ p
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Summary
• Our contribution:

• Precise characterization of implicit regularization  of sketchingμ

• Covers free sketches , any data , sketch ratio , (negative) S A α λ
• Includes second order characterization for risk

• Consistency of GCV for sketched ridge regression

• Efficient risk estimation via ensemble trick

• Ongoing work:

• Applying first & second order analysis to sketch-and-project

• Efficient risk estimation for general learning problems



• Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a 
Hilbert space.


• Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. (2013). Faster ridge regression via the 
subsampled randomized Hadamard transform.


• Thanei, G. A., Heinze, C., and Meinshausen, N. (2017). Random projections for large-
scale regression.


• Dobriban, E., and Sheng, Y. (2021). Distributed linear regression by averaging.


• LeJeune, D., PP, Javadi, H., Baraniuk, R. G., and Tibshirani, R. J. (2024). Asymptotics of 
the sketched pseudoinverse.


• PP, LeJeune, D. (2024). Asymptotically free sketched ridge ensembles: Risks, cross-
validation, and tuning.


