Asymptotically Free Sketching and Applications in Ridge Regression

Pratik Patil

MDS 2024

Daniel LeJeune

Hamid Javadi

Thanks to collaborators

Daniel LeJeune

Hamid Javadi

Thanks to collaborators

Rich Baraniuk

Ryan Tibshirani

• A sketch is a (random) linear projection that preserves geometry

- A sketch is a (random) linear projection that preserves geometry

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le \|\mathbf{S}^\top \mathbf{x}_i\|_2$$

• Classical result (Johnson & Lindenstrauss, 1984): n points in \mathbb{R}^p can be embedded by a linear map $\mathbf{S} \in \mathbb{R}^{p \times q}$ for $q \ge C \varepsilon^{-2} \log n$ such that

 $-\mathbf{S}^{\mathsf{T}}\mathbf{x}_{i}\|_{2} \leq (1+\epsilon)\|\mathbf{x}_{i}-\mathbf{x}_{i}\|_{2}$

- A sketch is a (random) linear projection that preserves geometry

$$(1 - \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2 \le \|\mathbf{S}^\top \mathbf{x}_i - \mathbf{S}^\top \mathbf{x}_j\|_2 \le (1 + \epsilon) \|\mathbf{x}_i - \mathbf{x}_j\|_2$$

 $\mathbf{x}_i \in \mathbb{R}^p$

• Classical result (Johnson & Lindenstrauss, 1984): n points in \mathbb{R}^p can be embedded by a linear map $\mathbf{S} \in \mathbb{R}^{p \times q}$ for $q \ge C \varepsilon^{-2} \log n$ such that

 $\mathbf{S}^{\mathsf{T}}\mathbf{X}_i \in \mathbb{R}^q$

• Example: Criteo 1TB dataset

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features:

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features: $p \sim 10^{11}$?

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features: $p \sim 10^{11}$?
 - More than 400GiB memory for regression coefficients alone

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features: $p \sim 10^{11}$?
 - More than 400GiB memory for regression coefficients alone
- Solution: the "hashing trick" (sketching)

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features: $p \sim 10^{11}$?
 - More than 400GiB memory for regression coefficients alone
- Solution: the "hashing trick" (sketching)
 - Take each 32-bit feature and hash it (e.g., 24-bit): $62e59341 \rightarrow 73e059$

- Example: Criteo 1TB dataset
 - Binary ad click prediction, n = 4,195,197,692
 - 13 numerical features, 26 32-bit categorical features: $p \sim 10^{11}$?
 - More than 400GiB memory for regression coefficients alone
- Solution: the "hashing trick" (sketching)
 - Take each 32-bit feature and hash it (e.g., 24-bit): $62e59341 \rightarrow 73e059$
 - Use sum of one-hot encodings as features: $p \sim 10^7$, feasible \checkmark

Computer science

- Computer science

• Find frequent items in data streams (Bloom filters, count(-min) sketch)

- Computer science

 - Find frequent items in data streams (Bloom filters, count(-min) sketch) Fast database querying (locality sensitive hashing)

- Computer science
 - Find frequent items in data streams (Bloom filters, count(-min) sketch)
 - Fast database querying (locality sensitive hashing)
 - ${f S}$ built from hash functions, fast to apply and approximately invert

- Computer science
 - Find frequent items in data streams (Bloom filters, count(-min) sketch)
 - Fast database querying (locality sensitive hashing)
 - ${f S}$ built from hash functions, fast to apply and approximately invert
- Compressed sensing

- Computer science
 - Find frequent items in data streams (Bloom filters, count(-min) sketch)
 - Fast database querying (locality sensitive hashing)
 - ${f S}$ built from hash functions, fast to apply and approximately invert
- Compressed sensing
 - Store sparse high-dimensional measurements to recover downstream

- Computer science
 - Find frequent items in data streams (Bloom filters, count(-min) sketch)
 - Fast database querying (locality sensitive hashing)
 - ${f S}$ built from hash functions, fast to apply and approximately invert
- Compressed sensing
 - Store sparse high-dimensional measurements to recover downstream
 - S chosen to maximize recovery quality

Numerical linear algebra & optimization

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently
 - S chosen to minimize computational and memory costs

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently
 - S chosen to minimize computational and memory costs
- Statistics & machine learning

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently
 - S chosen to minimize computational and memory costs
- Statistics & machine learning
 - $\mathbf{y} = \mathbf{X}\mathbf{b}$: regression labels are a sketch of underlying coefficients

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently
 - S chosen to minimize computational and memory costs
- Statistics & machine learning
 - $\mathbf{y} = \mathbf{X}\mathbf{b}$: regression labels are a sketch of underlying coefficients
 - $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$: data is a sketch of population covariance

- Numerical linear algebra & optimization
 - Approximate the solution to a (sub-)problem efficiently
 - S chosen to minimize computational and memory costs
- Statistics & machine learning
 - y = Xb: regression labels are a sketch of underlying coefficients
 - $\mathbf{X} = \mathbf{Z} \mathbf{\Sigma}^{1/2}$: data is a sketch of population covariance
 - $S = X^{\top}$ or $S = Z^{\top}$ is determined by nature and may not be observed

• Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_q (q \times q)$

- Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_q (q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns

- Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_q (q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)

- Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_q (q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)
 - Fastest: subsampling matrix

- Orthonormal sketches $S^{T}S \propto I_{q}(q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)
 - Fastest: subsampling matrix
- Independently random sketches \bullet

- Orthonormal sketches $S^{T}S \propto I_{q}(q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)
 - Fastest: subsampling matrix
- Independently random sketches \bullet
 - Exemplar: i.i.d. (sub-)Gaussian matrix

- Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_q (q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)
 - Fastest: subsampling matrix
- Independently random sketches \bullet
 - Exemplar: i.i.d. (sub-)Gaussian matrix
 - Faster: sum of independent hashing functions (e.g., CountSketch)

- Orthonormal sketches $\mathbf{S}^{\mathsf{T}}\mathbf{S} \propto \mathbf{I}_{q} (q \times q)$
 - Exemplar: uniformly random matrix with orthonormal columns
 - Faster: subsampled randomized Fourier transforms (e.g., SRHT)
 - Fastest: subsampling matrix requires additional assumptions

- Independently random sketches
 - Exemplar: i.i.d. (sub-)Gaussian matrix
 - Faster: sum of independent hashing functions (e.g., CountSketch)

Q: How does sketching affect the result in machine learning?

sketch results in negligible error in recovering the solution

• Most results: if sketch size is larger than inherent dimensionality, then using a

- sketch results in negligible error in recovering the solution
- **Example:** ridge regression, $y = Xb^* + \sigma z$

• Most results: if sketch size is larger than inherent dimensionality, then using a

- sketch results in negligible error in recovering the solution
- Example: ridge regression, $y = Xb^* + \sigma z$

• Most results: if sketch size is larger than inherent dimensionality, then using a

 $\widehat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}, \quad \widehat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$

- sketch results in negligible error in recovering the solution
- Example: ridge regression, $y = Xb^* + \sigma z$ Fixed design excess risk: $R(\mathbf{b}) = \mathbb{E}_{\mathbf{z}}[\|\mathbf{X}(\mathbf{b} - \mathbf{b}^*)\|_2^2]$

• Most results: if sketch size is larger than inherent dimensionality, then using a

 $\widehat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}, \quad \widehat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$

- sketch results in negligible error in recovering the solution
- **Example:** ridge regression, $y = Xb^* + \sigma z$ $\widehat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \},\$ Fixed design excess risk: $R(\mathbf{b}) = \mathbb{E}_{\mathbf{z}}[\|\mathbf{X}(\mathbf{b} - \mathbf{b}^*)\|_2^2]$

• Most results: if sketch size is larger than inherent dimensionality, then using a

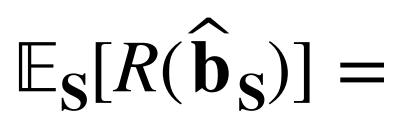
$$\widehat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$$
$$\mathbf{X}(\mathbf{b} - \mathbf{b}^{*})\|_{2}^{2}]$$

Theorem (Lu et al. 2013). Let $r = rank(\mathbf{X})$ and **S** be SRHT. With high probability, $R(\hat{\mathbf{b}}_{\mathbf{S}}) - R(\hat{\mathbf{b}}) \le C \frac{r \log r}{q} R(\hat{\mathbf{b}}).$

- sketch results in negligible error in recovering the solution

• Most results: if sketch size is larger than inherent dimensionality, then using a • Example: ridge regression, $\mathbf{y} = \mathbf{X}\mathbf{b}^* + \sigma \mathbf{z}$ $\hat{\mathbf{b}} = \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_2^2 \}, \quad \hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_2^2 \}$ Fixed design excess risk: $R(\mathbf{b}) = \mathbb{E}_{\mathbf{z}} [\|\mathbf{X}(\mathbf{b} - \mathbf{b}^*)\|_2^2]$ **Theorem** (Lu et al. 2013). Let $r = rank(\mathbf{X})$ and $\mathbf{S} \models SRHT$. With high probability, $R(\hat{\mathbf{b}}_{\mathbf{S}}) - R(\hat{\mathbf{b}}) \le C \frac{r \log r}{q} R(\hat{\mathbf{b}}).$

• Theorem (Thanei et al. 2017). Let $a \leq q \leq p$. Then for $\lambda = 0$,



• Theorem (Thanei et al. 2017). Let S be i.i.d. $\mathcal{N}(0, q^{-1})$, $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, and

$$\sigma^2 q + \|\mathbf{b}^*\|_2^2 \frac{p-q}{p},$$

- Theorem (Thanei et al. 2017). Let $\qquad q \leq p$. Then for $\lambda = 0$,
 - $\mathbb{E}_{\mathbf{S}}[R(\mathbf{\hat{b}}_{\mathbf{S}})] =$
 - $\mathsf{Bias:} R(\mathbb{E}_{\mathbf{S}}[\mathbf{\hat{b}}_{\mathbf{S}}]) =$

• Theorem (Thanei et al. 2017). Let S be i.i.d. $\mathcal{N}(0, q^{-1})$, $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, and

$$\sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2} \frac{p-q}{p},$$

= $\sigma^{2} \frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2} \frac{(p-q)^{2}}{p^{2}}.$

- Theorem (Thanei et al. 2017). Let S be i.i.d. $\mathcal{N}(0, q^{-1})$, $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$, and $q \leq p$. Then for $\lambda = 0$,
 - $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] =$
 - Bias: $R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) =$
- Compare to ridge regression:

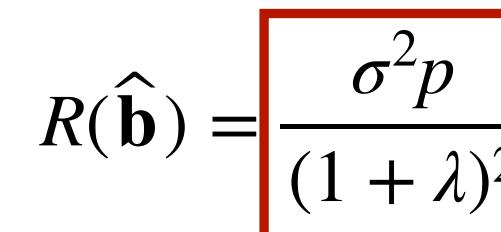
 $R(\hat{\mathbf{b}}) = \frac{1}{(1+\lambda)}$

$$\sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2} \frac{p-q}{p},$$

= $\sigma^{2} \frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2} \frac{(p-q)^{2}}{p^{2}}.$

$$\frac{\lambda^2}{\lambda^2} + \|\mathbf{b}^*\|_2^2 \frac{\lambda^2}{(1+\lambda)^2}$$

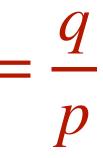
- Theorem (Thanei et al. 2017). Let S be i.i.d. $\mathcal{N}(0, q^{-1})$, $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$, and $q \leq p$. Then for $\lambda = 0$,
 - $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] =$
 - Bias: $R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) =$
- Compare to ridge regression:



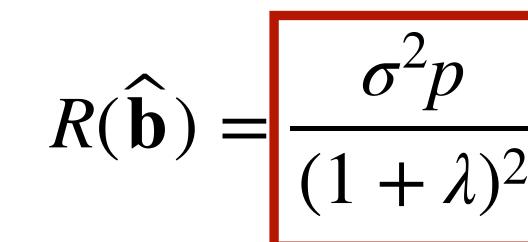
$$\sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2} \frac{p-q}{p},$$

$$\sigma^{2} \frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2} \frac{(p-q)^{2}}{p^{2}},$$
equal when $\frac{1}{1+\lambda}$

$$\frac{1}{1+\lambda}$$



- Theorem (Thanei et al. 2017). Let S be i.i.d. $\mathcal{N}(0, q^{-1})$, $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$, and $q \leq p$. Then for $\lambda = 0$,
 - $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] =$
 - Bias: $R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) =$
- Compare to ridge regression:



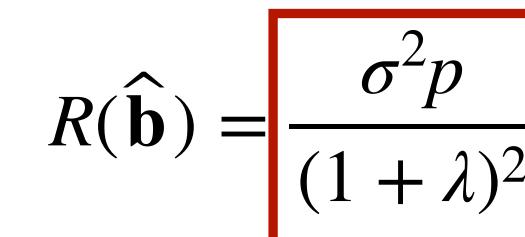
$$\sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2} \frac{p-q}{p},$$

$$\sigma^{2}\frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2} \frac{(p-q)^{2}}{p^{2}}$$
equal when $\frac{1}{1+\lambda} =$

$$\frac{1}{(1+\lambda)^{2}}$$
Does $\mathbb{E}[\hat{\mathbf{b}}_{S}] = \hat{\mathbf{b}}$

- Theorem (Thanei et al. 2017). Let ${f S}$ $q \leq p$. Then for $\lambda = 0$,

- Bias: $R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) =$
- Compare to ridge regression:

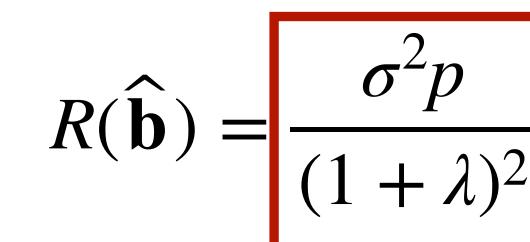


al. 2017). Let **S** be i.i.d.
$$\mathcal{N}(0, q^{-1})$$
 $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_{p}$, and
 $0, \mathbf{1}$
 $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] = \sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2}\frac{p-q}{p},$
 $\mathbb{E}_{\mathbf{S}}[R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) = \sigma^{2}\frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2}\frac{(p-q)^{2}}{p^{2}},$
gression:
 $R(\hat{\mathbf{b}}) = \frac{\sigma^{2}p}{(1+\lambda)^{2}} + \|\mathbf{b}^{*}\|_{2}^{2}\frac{\lambda^{2}}{(1+\lambda)^{2}},$
Does $\mathbb{E}[\hat{\mathbf{b}}_{\mathbf{S}}] = \hat{\mathbf{b}}$



- Theorem (Thanei et al. 2017). Let ${f S}$ $q \leq p$. Then for $\lambda = 0$,

- Bias: $R(\mathbb{E}_{\mathbf{S}}[\mathbf{\hat{b}}_{\mathbf{S}}]) =$
- Compare to ridge regression:

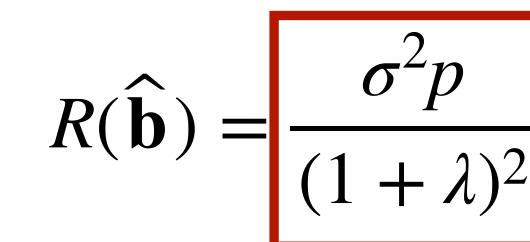


al. 2017). Let
$$\mathbf{S}$$
 be i.i.d. $\mathcal{N}(0, q^{-1})$ $\mathbf{X}^{\top}\mathbf{X} = \mathbf{I}_p$, and
 $0, \mathbf{1}^{2}$
 $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] = \sigma^{2}q + \|\mathbf{b}^{*}\|_{2}^{2}\frac{p-q}{p},$
 $\mathbb{E}_{\mathbf{S}}[R(\mathbb{E}_{\mathbf{S}}[\hat{\mathbf{b}}_{\mathbf{S}}]) = \sigma^{2}\frac{q^{2}}{p} + \|\mathbf{b}^{*}\|_{2}^{2}\frac{(p-q)^{2}}{p^{2}}$
gression:
 $R(\hat{\mathbf{b}}) = \frac{\sigma^{2}p}{(1+\lambda)^{2}} + \|\mathbf{b}^{*}\|_{2}^{2}\frac{\lambda^{2}}{(1+\lambda)^{2}}$
Does $\mathbb{E}[\hat{\mathbf{b}}_{\mathbf{S}}] = \hat{\mathbf{b}}$

• Theorem (Thanei et al. 2017). Let \mathbf{S} $q \le p$. Then for $\lambda = 0$, $\mathbb{E}_{\mathbf{S}}[R(\hat{\mathbf{b}}_{\mathbf{S}})] = d$

$\mathsf{Bias:} R(\mathbb{E}_{\mathbf{S}}[\mathbf{\hat{b}}_{\mathbf{S}}]) =$

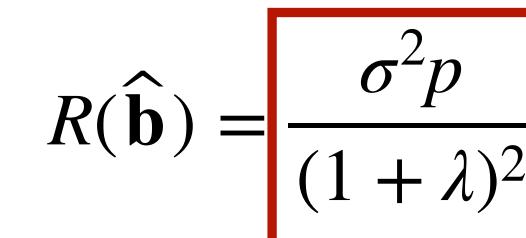
• Compare to ridge regression:



• Theorem (Thanei et al. 2017). Let S $q \le p$. Then for $\lambda = 0$, 3 $4 \mathbb{E}_{S}[R(\hat{\mathbf{b}}_{S})] = d$

$\mathsf{Bias:} R(\mathbb{E}_{\mathbf{S}}[\mathbf{\hat{b}}_{\mathbf{S}}]) =$

• Compare to ridge regression:



• Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

- Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

•
$$\hat{\mathbf{b}} = \frac{1}{1+\lambda} (\mathbf{b}^* + \sigma \mathbf{z})$$
 while $\hat{\mathbf{b}}_{\mathbf{s}}$

 $\mathbf{s} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}}(\mathbf{b}^* + \sigma \mathbf{z})$

• Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

•
$$\hat{\mathbf{b}} = \frac{1}{1+\lambda} (\mathbf{b}^* + \sigma \mathbf{z})$$
 while $\hat{\mathbf{b}}_{\mathbf{s}}$

• By rotational symmetry, $\mathbb{E}[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_a)^{-1}\mathbf{S}^{\mathsf{T}}] = c_{\lambda}\mathbf{I}_p, c_{\lambda} < 1$

$\mathbf{S} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{T}}(\mathbf{b}^{*} + \sigma \mathbf{z})$

• Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

•
$$\hat{\mathbf{b}} = \frac{1}{1+\lambda} (\mathbf{b}^* + \sigma \mathbf{z})$$
 while $\hat{\mathbf{b}}_{\mathbf{s}}$

- So for any $\hat{\mathbf{b}}_{\mathbf{S}}$ at $\lambda > 0$, $\mathbb{E}[\hat{\mathbf{b}}_{\mathbf{S}}] = \hat{\mathbf{b}}$ for $\hat{\mathbf{b}}$ at some $\lambda' > 0$

 $\mathbf{S} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}(\mathbf{b}^{*} + \sigma \mathbf{z})$

• By rotational symmetry, $\mathbb{E}[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}] = c_{\lambda}\mathbf{I}_{n}, c_{\lambda} < 1$

• Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

•
$$\hat{\mathbf{b}} = \frac{1}{1+\lambda} (\mathbf{b}^* + \sigma \mathbf{z})$$
 while $\hat{\mathbf{b}}_{\mathbf{s}}$

- So for any $\hat{\mathbf{b}}_{\mathbf{S}}$ at $\lambda > 0$, $\mathbb{E}[\hat{\mathbf{b}}_{\mathbf{S}}] = \hat{\mathbf{b}}$ for $\hat{\mathbf{b}}$ at some $\lambda' > 0$
- What about arbitrary X?

 $\mathbf{S} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}(\mathbf{b}^{*} + \sigma \mathbf{z})$

• By rotational symmetry, $\mathbb{E}[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}] = c_{\lambda}\mathbf{I}_{p}, c_{\lambda} < 1$

• Orthogonal design setting $\mathbf{X}^{\mathsf{T}}\mathbf{X} = \mathbf{I}_p$, i.i.d. Gaussian \mathbf{S}

•
$$\hat{\mathbf{b}} = \frac{1}{1+\lambda} (\mathbf{b}^* + \sigma \mathbf{z})$$
 while $\hat{\mathbf{b}}_{\mathbf{s}}$

- So for any $\hat{\mathbf{b}}_{\mathbf{S}}$ at $\lambda > 0$, $\mathbb{E}[\hat{\mathbf{b}}_{\mathbf{S}}] = \hat{\mathbf{b}}$ for $\hat{\mathbf{b}}$ at some $\lambda' > 0$
- What about arbitrary X?
 - We need a different "expectation"

 $\mathbf{S} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}(\mathbf{b}^{*} + \sigma \mathbf{z})$

• By rotational symmetry, $\mathbb{E}[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}] = c_{\lambda}\mathbf{I}_{p}, c_{\lambda} < 1$

Also known as "deterministic equivalences" in random matrix theory

- Also known as "deterministic equivalences" in random matrix theory
- bounded trace norm,

$$\lim_{n \to \infty} \operatorname{tr}[\Theta_n(\mathbf{A}_n - \mathbf{E}_n)]$$

• **Definition.** Two sequences of matrices A_n and B_n are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for any sequence $\mathbf{\Theta}_n$ independent of \mathbf{A}_n and \mathbf{B}_n with

 $[\mathbf{B}_{n})] = 0$ almost surely.

- Also known as "deterministic equivalences" in random matrix theory
- bounded trace norm,

$$\lim_{n \to \infty} \operatorname{tr}[\Theta_n(\mathbf{A}_n - \mathbf{F}_n)]$$

 \mathbf{B}_n to understand \mathbf{A}_n

• Definition. Two sequences of matrices A_n and B_n are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for any sequence $\mathbf{\Theta}_n$ independent of \mathbf{A}_n and \mathbf{B}_n with

\mathbf{B}_{n}] = 0 almost surely.

• Typical usage: A_n is complicated and B_n is simple, but $A_n \simeq B_n$, so we can use

- Also known as "deterministic equivalences" in random matrix theory
- bounded trace norm,

$$\lim_{n \to \infty} \operatorname{tr}[\Theta_n(\mathbf{A}_n - \mathbf{F}_n)]$$

- \mathbf{B}_n to understand \mathbf{A}_n
- $\mathbf{A}_n \simeq \mathbf{B}_n$ is analogous to $\mathbb{E}[\mathbf{A}] = \mathbb{E}[\mathbf{B}]$, but single-instance

• Definition. Two sequences of matrices A_n and B_n are asymptotically equivalent, written $\mathbf{A}_n \simeq \mathbf{B}_n$, if for any sequence $\mathbf{\Theta}_n$ independent of \mathbf{A}_n and \mathbf{B}_n with

\mathbf{B}_{n}] = 0 almost surely.

• Typical usage: A_n is complicated and B_n is simple, but $A_n \simeq B_n$, so we can use

Calculus of asymptotic equivalences

Calculus of asymptotic equivalences

Asymptotic equivalences admit a calculus (Dobriban and Sheng, 2021)

• Sum:
$$\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$$

$$\mathbf{A}_n + \mathbf{C}_n \simeq \mathbf{B}_n + \mathbf{D}_n$$

- - Sum: $\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$
 - Product: $\mathbf{A}_n \simeq \mathbf{B}_n$, $(\mathbf{A}_n, \mathbf{B}_n) \perp$

$$\mathbf{A}_{n} + \mathbf{C}_{n} \simeq \mathbf{B}_{n} + \mathbf{D}_{n}$$
$$(\mathbf{C}_{n}, \mathbf{D}_{n}) \Longrightarrow \mathbf{C}_{n} \mathbf{A}_{n} \mathbf{D}_{n} \simeq \mathbf{C}_{n} \mathbf{B}_{n} \mathbf{D}_{n}$$

- - Sum: $\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$
 - Product: $\mathbf{A}_n \simeq \mathbf{B}_n$, $(\mathbf{A}_n, \mathbf{B}_n) \perp$
 - Elements: $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]$

$$\mathbf{A}_{n} + \mathbf{C}_{n} \simeq \mathbf{B}_{n} + \mathbf{D}_{n}$$
$$(\mathbf{C}_{n}, \mathbf{D}_{n}) \Longrightarrow \mathbf{C}_{n} \mathbf{A}_{n} \mathbf{D}_{n} \simeq \mathbf{C}_{n} \mathbf{B}_{n} \mathbf{D}_{n}$$
$$|_{ij} - [\mathbf{B}_{n}]_{ij} \xrightarrow{\text{a.s.}} 0$$

- - Sum: $\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$
 - Product: $\mathbf{A}_n \simeq \mathbf{B}_n, (\mathbf{A}_n, \mathbf{B}_n) \perp$
 - Elements: $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]$
 - Derivative: $f(\mathbf{A}_n; z) \simeq g(\mathbf{B}_n; z)$

$$\mathbf{A}_{n} + \mathbf{C}_{n} \simeq \mathbf{B}_{n} + \mathbf{D}_{n}$$
$$(\mathbf{C}_{n}, \mathbf{D}_{n}) \Longrightarrow \mathbf{C}_{n} \mathbf{A}_{n} \mathbf{D}_{n} \simeq \mathbf{C}_{n} \mathbf{B}_{n} \mathbf{D}_{n}$$
$$\stackrel{ij}{=} [\mathbf{B}_{n}]_{ij} \stackrel{\text{a.s.}}{\longrightarrow} 0$$
$$\implies f'(\mathbf{A}_{n}; z) \simeq g'(\mathbf{B}_{n}; z)$$

- - Sum: $\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$
 - Product: $\mathbf{A}_n \simeq \mathbf{B}_n$, $(\mathbf{A}_n, \mathbf{B}_n) \perp$
 - Elements: $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]$
 - Derivative: $f(\mathbf{A}_n; z) \simeq g(\mathbf{B}_n; z)$
- Not nonlinear ops: $A_n \simeq B_n \neq B_n$

$$\mathbf{A}_{n} + \mathbf{C}_{n} \simeq \mathbf{B}_{n} + \mathbf{D}_{n}$$

$$(\mathbf{C}_{n}, \mathbf{D}_{n}) \Longrightarrow \mathbf{C}_{n} \mathbf{A}_{n} \mathbf{D}_{n} \simeq \mathbf{C}_{n} \mathbf{B}_{n} \mathbf{D}_{n}$$

$$\downarrow_{ij} - [\mathbf{B}_{n}]_{ij} \xrightarrow{\text{a.s.}} 0$$

$$\implies f'(\mathbf{A}_{n}; z) \simeq g'(\mathbf{B}_{n}; z)$$

$$\Rightarrow \mathbf{A}_{n}^{k} \simeq \mathbf{B}_{n}^{k}$$

- - Sum: $\mathbf{A}_n \simeq \mathbf{B}_n, \mathbf{C}_n \simeq \mathbf{D}_n \Longrightarrow$
 - Product: $\mathbf{A}_n \simeq \mathbf{B}_n$, $(\mathbf{A}_n, \mathbf{B}_n) \perp$
 - Elements: $\mathbf{A}_n \simeq \mathbf{B}_n \implies [\mathbf{A}_n]$
 - Derivative: $f(\mathbf{A}_n; z) \simeq g(\mathbf{B}_n; z)$
- Not nonlinear ops: $A_n \simeq B_n \neq B_n$
 - Analogous: $\mathbb{E}[\mathbf{A}] = \mathbb{E}[\mathbf{B}] \implies$

$$\mathbf{A}_{n} + \mathbf{C}_{n} \simeq \mathbf{B}_{n} + \mathbf{D}_{n}$$

$$(\mathbf{C}_{n}, \mathbf{D}_{n}) \Longrightarrow \mathbf{C}_{n} \mathbf{A}_{n} \mathbf{D}_{n} \simeq \mathbf{C}_{n} \mathbf{B}_{n} \mathbf{D}_{n}$$

$$|_{ij} - [\mathbf{B}_{n}]_{ij} \xrightarrow{\text{a.s.}} 0$$

$$\implies f'(\mathbf{A}_{n}; z) \simeq g'(\mathbf{B}_{n}; z)$$

$$\Rightarrow \mathbf{A}_{n}^{k} \simeq \mathbf{B}_{n}^{k}$$

$$\models [\mathbf{A}^{k}] = \mathbb{E}[\mathbf{B}^{k}]$$

• Sketched ridge: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$

- Sketched ridge: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$
 - Closed form: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

- Sketched ridge: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}} \{ \|\mathbf{y} \mathbf{X}\mathbf{S}\mathbf{b}\|_{2}^{2} + \lambda \|\mathbf{b}\|_{2}^{2} \}$
 - Closed form: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

- Sketched ridge: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{b}}$
 - Closed form: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \mathbf{S})$
- \bullet $\mathbf{S} \in \mathbb{R}^{p \times q}$, its sketched pseudoinverse with regularization λ is

 $S(S^{T}AS)$

$$\left\{ \|\mathbf{y} - \mathbf{XSb}\|_2^2 + \lambda \|\mathbf{b}\|_2^2 \right\}$$

$$-\lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Definition. Given a positive semidefinite matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ and sketching matrix

$$\mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{T}}.$$

- Sketched ridge: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S} \cdot \operatorname{argmin}_{\mathbf{h}}$
 - Closed form: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \mathbf{S})$
- $\mathbf{S} \in \mathbb{R}^{p \times q}$, its sketched pseudoinverse with regularization λ is

$S(S^{T}AS)$

 $\lambda \to 0$, it is the Moore–Penrose pseudoinverse of SS^TASS^T

$$\left\{ \|\mathbf{y} - \mathbf{X}\mathbf{S}\mathbf{b}\|_2^2 + \lambda \|\mathbf{b}\|_2^2 \right\}$$

$$-\lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

• **Definition.** Given a positive semidefinite matrix $\mathbf{A} \in \mathbb{R}^{p \times p}$ and sketching matrix

$$\mathbf{S} + \lambda \mathbf{I}_q)^{-1} \mathbf{S}^{\mathsf{T}}$$

• Called "pseudoinverse" because when \mathbf{S} has orthonormal columns and

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0, \infty)$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0, \infty)$

• I.i.d. sketching: $\mathbb{E}[S_{ij}] = 0$, $\mathbb{E}[S_{ij}^2] = \frac{1}{a}$, $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0, \infty)$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I})$

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

- $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$

$$_{q})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0, \infty)$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I})$

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

- $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$

$$_{q})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0,\infty)$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$ 1*

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I})$

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

$$_{q})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in (0, \infty)$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$ 1*

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm 2independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I})$

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

$$_{q})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{p \to \infty} \alpha \in \frac{q}{p}$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$ 1*

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm 2independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda\mathbf{I})$

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

$$\in (0,\infty)$$
 3

$$_{q})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$$

• Proportional asymptotics, $\alpha = \frac{q}{p}$: $\lim_{n \to \infty} \alpha \in \frac{q}{p}$

• I.i.d. sketching:
$$\mathbb{E}[S_{ij}] = 0$$
, $\mathbb{E}[S_{ij}^2] = \frac{1}{q}$, $\mathbb{E}[|\sqrt{q}S_{ij}|^{8+\delta}] < \infty$ 1*

• Theorem (LeJeune, PP, et al., 2024). For A with uniformly bounded in operator norm 2independent of S and any $\lambda > -\lim \lambda_{\min}(S^{T}AS)$, 4

where μ is the most positive solution to

$$\lambda = \mu \left(1 - \frac{1}{q} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

$$\in (0,\infty)$$
 3

 $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$

• Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches
 - Does the same equivalence hold?

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches
 - Does the same equivalence hold?
- $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})$

where μ solves

$$\mu = \lambda S_{\mathbf{S}\mathbf{S}^{\mathsf{T}}}(-\frac{1}{p}\operatorname{tr}[\mathbf{A}(\mathbf{A}+\mu\mathbf{I}_{p})^{-1}]).$$

• Theorem (LeJeune, PP, et al., 2024). Let SS^{\top} be almost surely asymptotically free from A and Θ and have analytic S-transform S_{SST} . Then for $\lambda > -\lim \lambda_{\min}(S^T A S)$

$$(\mathbf{A})^{-1}\mathbf{S}^{\top} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches
 - Does the same equivalence hold?

where μ solves

$$\mu = \lambda S_{\mathbf{S}\mathbf{S}^{\mathsf{T}}}(-$$

- Theorem (LeJeune, PP, et al., 2024). Let $SS^ op$ be almost surely asymptotically free from A and Θ and have analytic S-transform S_{SST} . Then for $\lambda > -\lim \lambda_{\min}(S^{\dagger}AS)$ $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_{n})^{-1},$ $(-\frac{1}{2}$ tr[A(A), T) - 1

$$\frac{1}{p} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}]).$$

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches
 - Does the same equivalence hold?
- 2

where μ solves

$$\mu = \lambda S_{\mathbf{S}\mathbf{S}^{\mathsf{T}}}(-$$

- Theorem (LeJeune, PP, et al., 2024). Let $\mathbf{S}\mathbf{S}^ op$ be almost surely asymptotically free from A and Θ and have analytic S-transform S_{SST} . Then for $\lambda > -\lim \lambda_{\min}(S^{\dagger}AS)$ $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$ $-\frac{1}{\tau r \Gamma \Lambda (\Lambda + ... T + -1)}$

$$\frac{1}{p} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}]).$$

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches
 - Does the same equivalence hold?
- 2 α is implicit where μ solves

• Theorem (LeJeune, PP, et al., 2024). Let $\mathbf{S}\mathbf{S}^ op$ be almost surely asymptotically free from A and Θ and have analytic S-transform S_{SST} . Then for $\lambda > -\lim \lambda_{\min}(S^{\dagger}AS)$ $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$

$$\mu = \lambda S_{\mathbf{SS}^{\mathsf{T}}} \left(-\frac{1}{p} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-1}] \right).$$

- Orthogonal, SRHT, CountSketch, etc. are not i.i.d. sketches ●
 - Does the same equivalence hold?
- 2 α is implicit where μ solves

• Theorem (LeJeune, PP, et al., 2024). Let $\mathbf{S}\mathbf{S}^ op$ be almost surely asymptotically free from A and Θ and have analytic S-transform $S_{SS^{\top}}$. Then for $\lambda > -\lim \lambda_{\min}(S^{\top}AS)$ $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_{p})^{-1},$ $\mu = \lambda S_{\mathbf{S}\mathbf{S}^{\mathsf{T}}} \left(-\frac{1}{p} \operatorname{tr}[\mathbf{A}(\mathbf{A} + \mu \mathbf{I}_{p})^{-1}]\right).$

Orthogonal sketches

Orthogonal sketches

- columns. Then
 - $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})$
 - where γ is the most positive solution to

$$\frac{1}{p} \operatorname{tr}[(\mathbf{A} + \mu \mathbf{I}_p)]$$

• Corollary (LeJeune, PP, et al., 2024). Let $\sqrt{\frac{p}{q}}$ S have orthonormal

$$(\mathbf{J})^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1},$$

 $\gamma^{-1}](\gamma - \alpha \lambda) = 1 - \alpha.$

Orthogonal sketches

columns. Then

$$\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \gamma \mathbf{I}_p)^{-1},$$

where γ is the most positive solution to

$$\frac{1}{p} \operatorname{tr}[(\mathbf{A} + \mu \mathbf{I}_p)^{-1}](\gamma - \alpha \lambda) = 1 - \alpha.$$

Less distortion: $\lambda < \gamma < \mu$ for i.i.d. sketch when $\mu > 0$ lacksquare

• Corollary (LeJeune, PP, et al., 2024). Let $\sqrt{\frac{p}{q}}$ S have orthonormal

• Example: A = diag(0, ..., 1, ..., 2, ...)

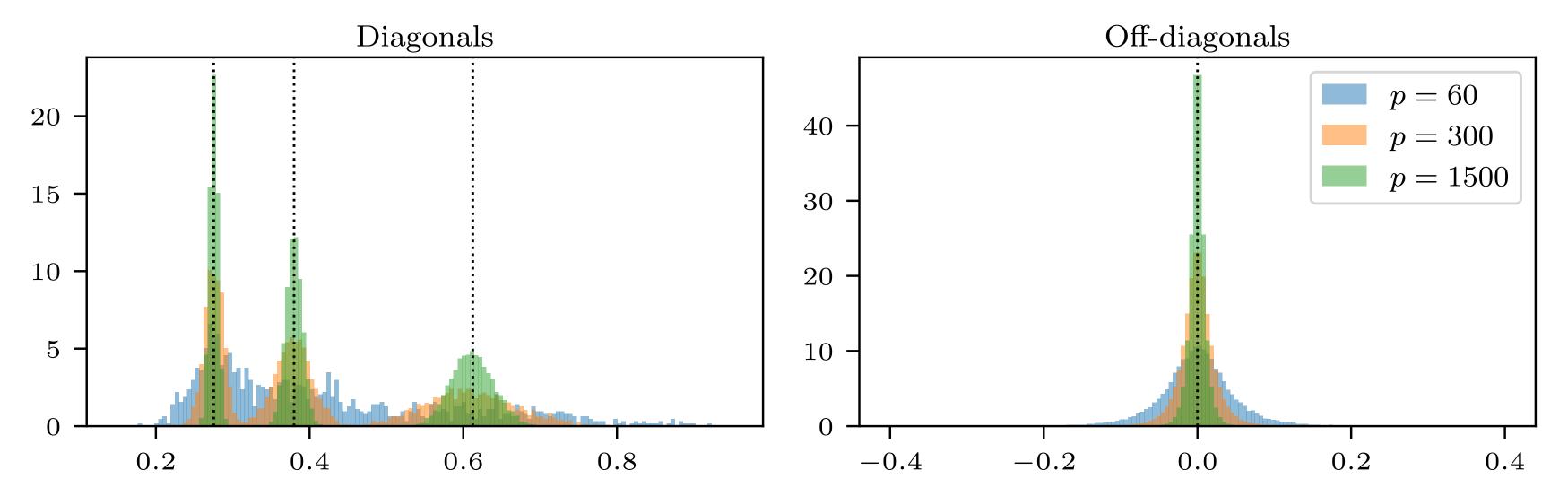
- Example: A = diag(0, ..., 1, ..., 2, ...)
- $\alpha = 0.8, \lambda = 1, \mu \approx 1.63, \gamma \approx 1.17$

- Example: A = diag(0, ..., 1, ..., 2, ...)
- $\alpha = 0.8$, $\lambda = 1$, $\mu \approx 1.63$, $\gamma \approx 1.17$
- Examine $[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}}]_{ij} \simeq [(\mathbf{A} + \mu \mathbf{I}_p)^{-1}]_{ij}$

Empirical concentration

- Example: A = diag(0, ..., 1, ..., 2, ...)
- $\alpha = 0.8$, $\lambda = 1$, $\mu \approx 1.63$, $\gamma \approx 1.17$
- Examine $[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}}]_{ij} \simeq [(\mathbf{A} + \mu \mathbf{I}_p)^{-1}]_{ij}$

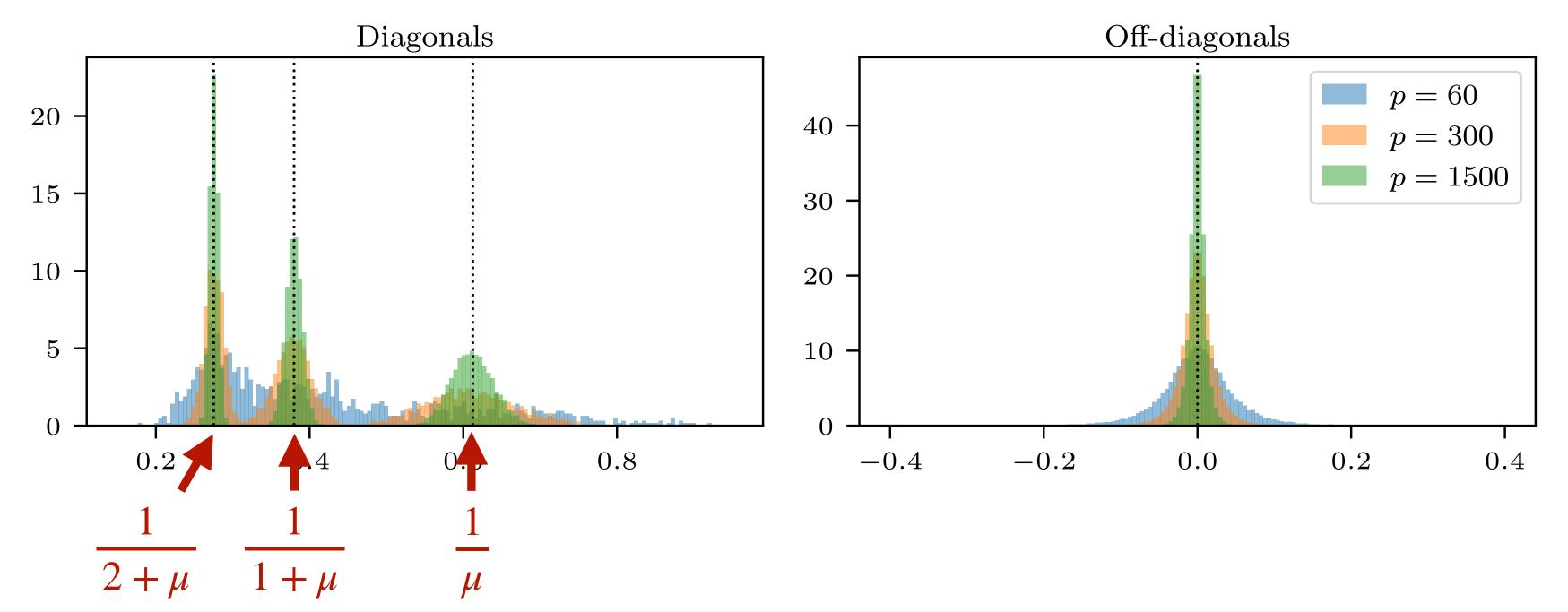
I.i.d. sketch

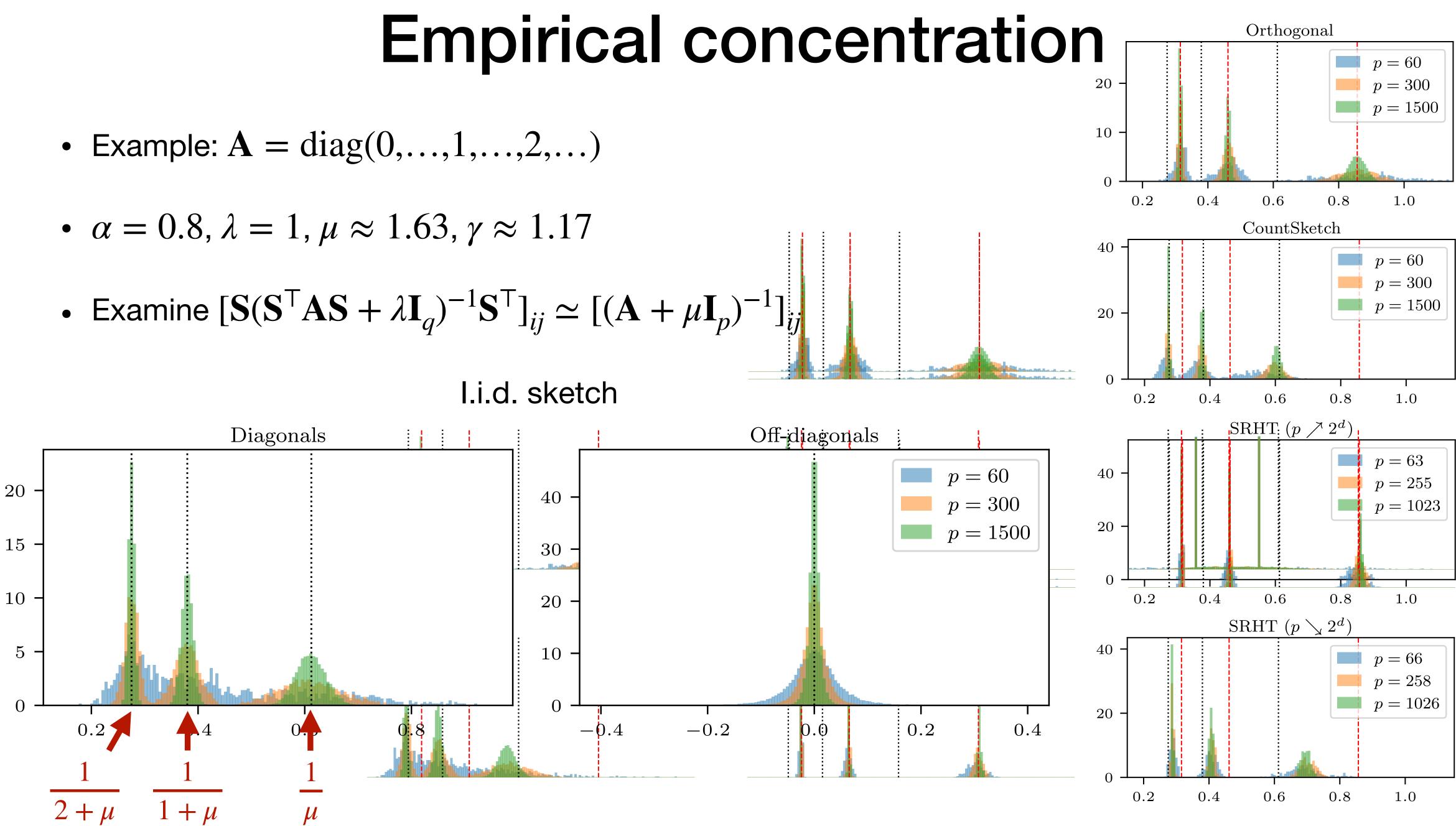


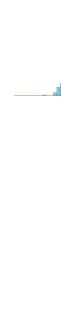
Empirical concentration

- Example: A = diag(0, ..., 1, ..., 2, ...)
- $\alpha = 0.8$, $\lambda = 1$, $\mu \approx 1.63$, $\gamma \approx 1.17$
- Examine $[\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_q)^{-1}\mathbf{S}^{\mathsf{T}}]_{ij} \simeq [(\mathbf{A} + \mu \mathbf{I}_p)^{-1}]_{ij}$

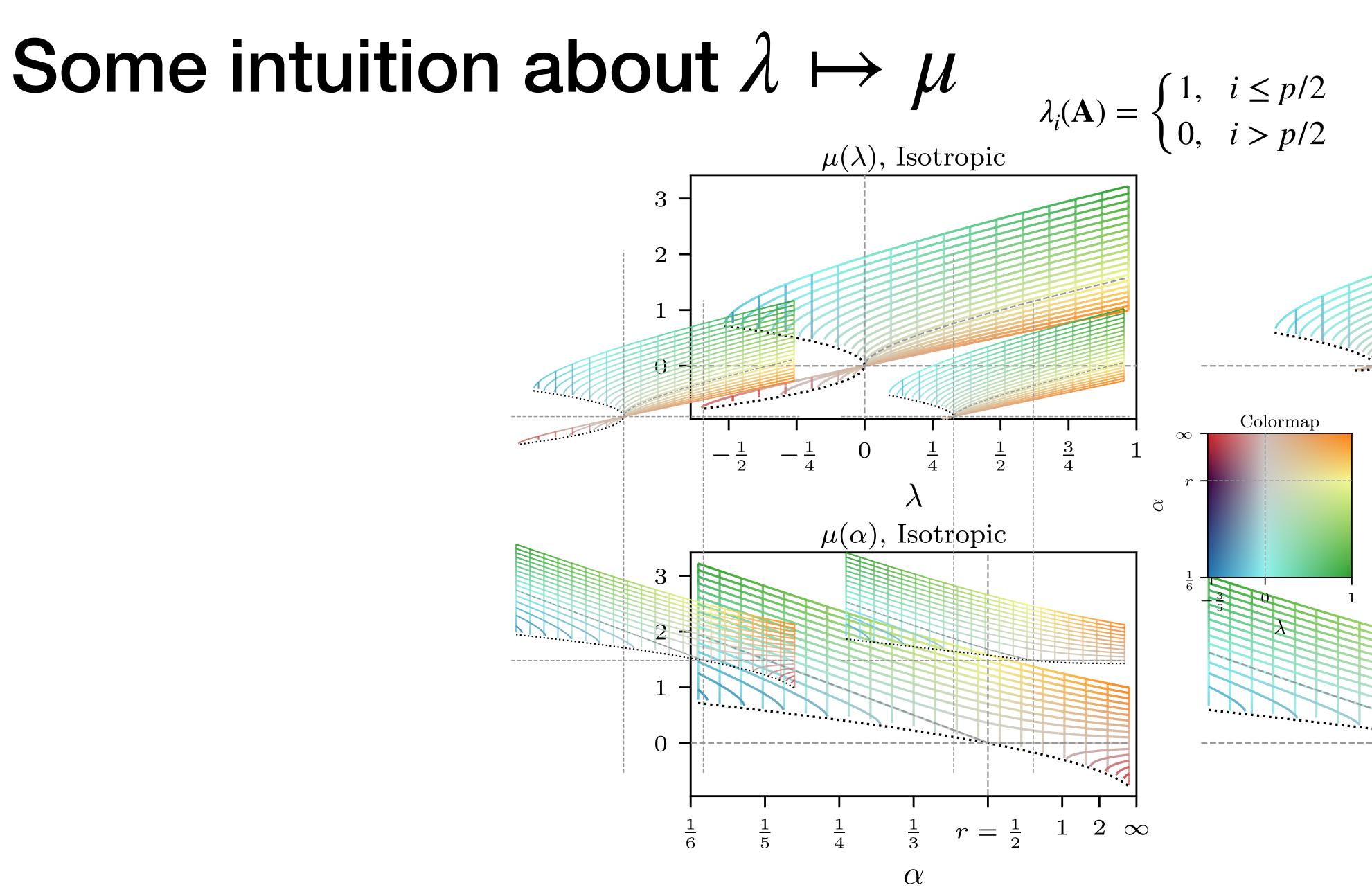
I.i.d. sketch



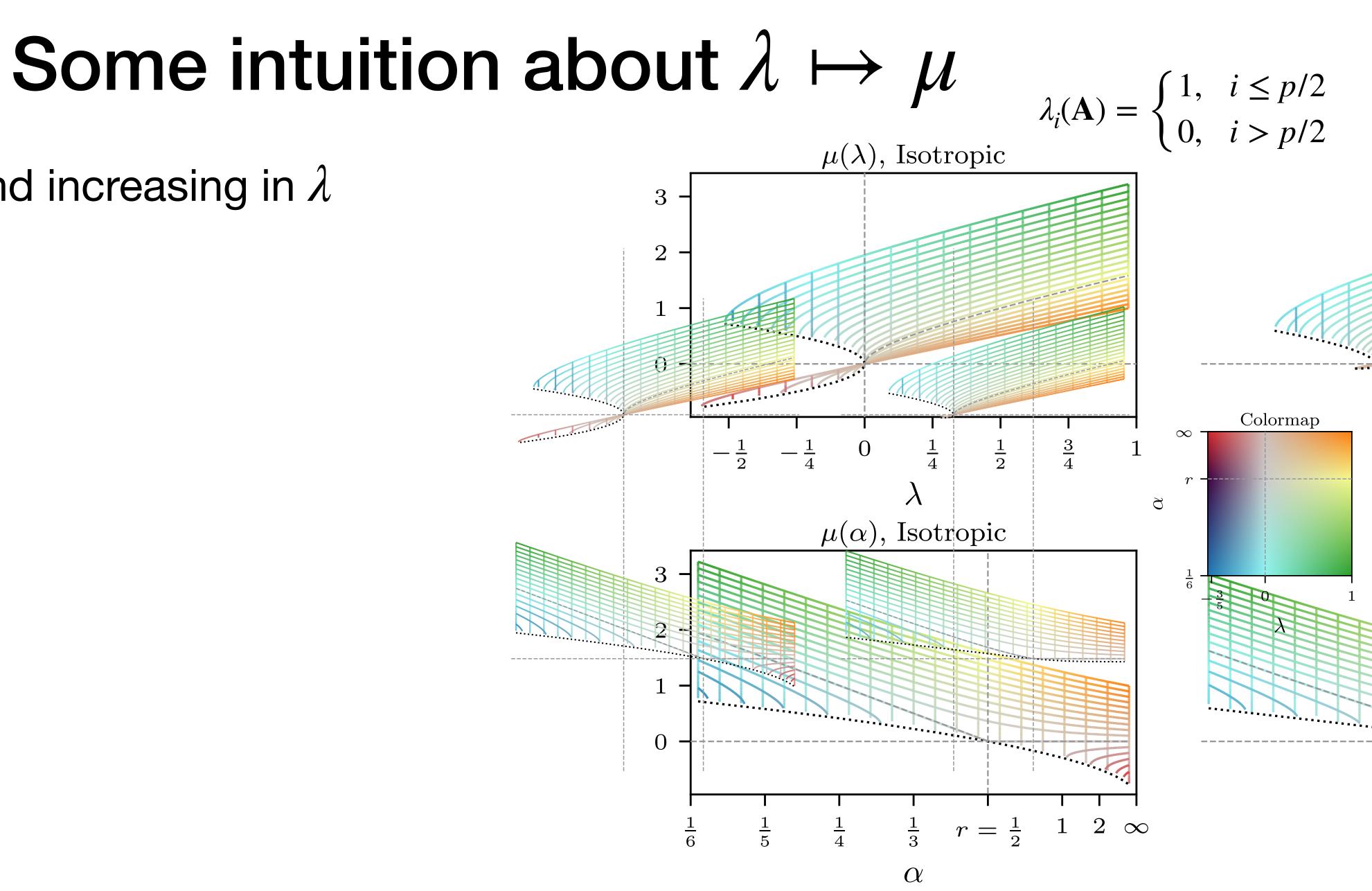




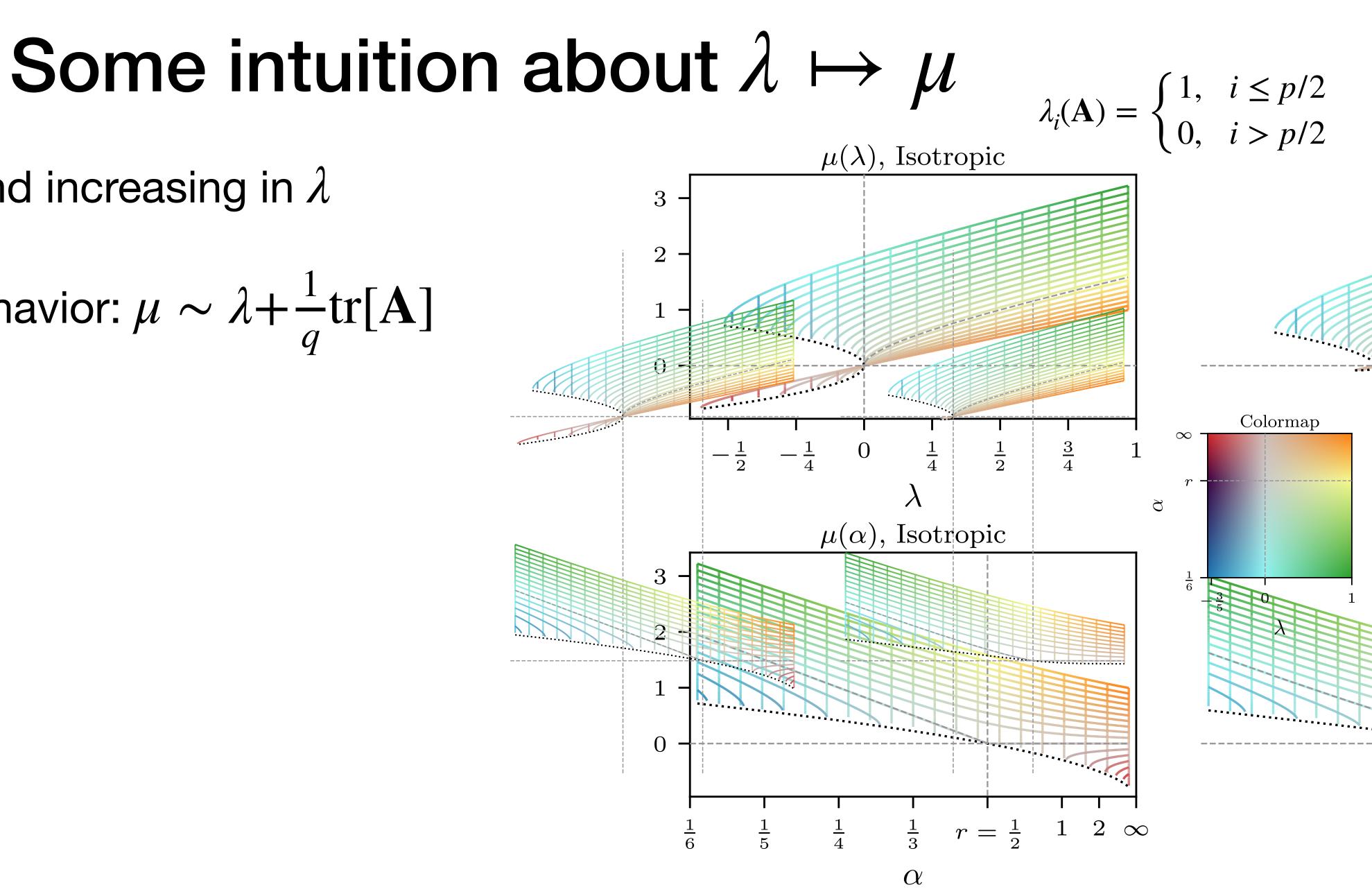
Some intuition about $\lambda \mapsto \mu$



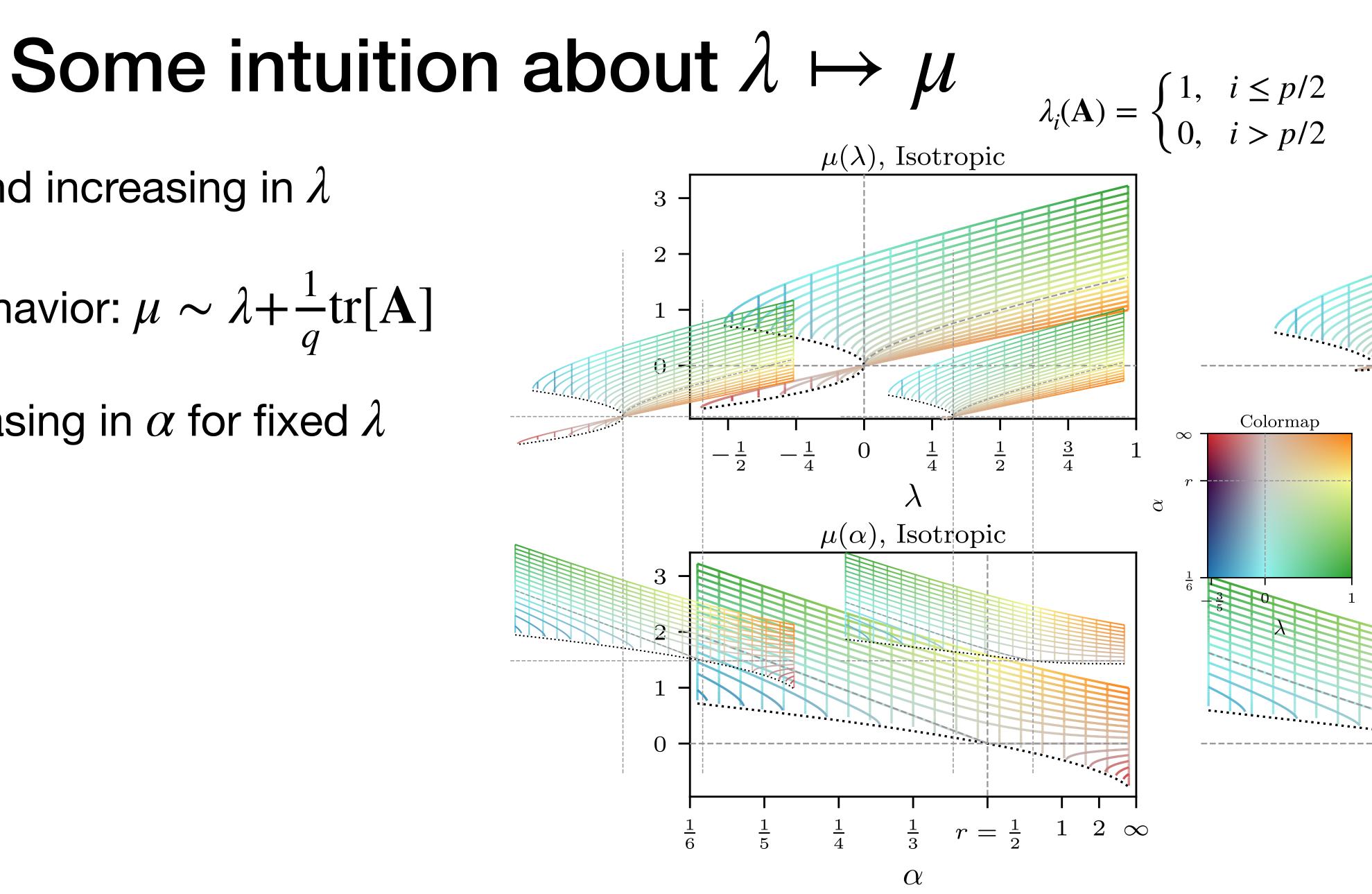
• Concave and increasing in λ



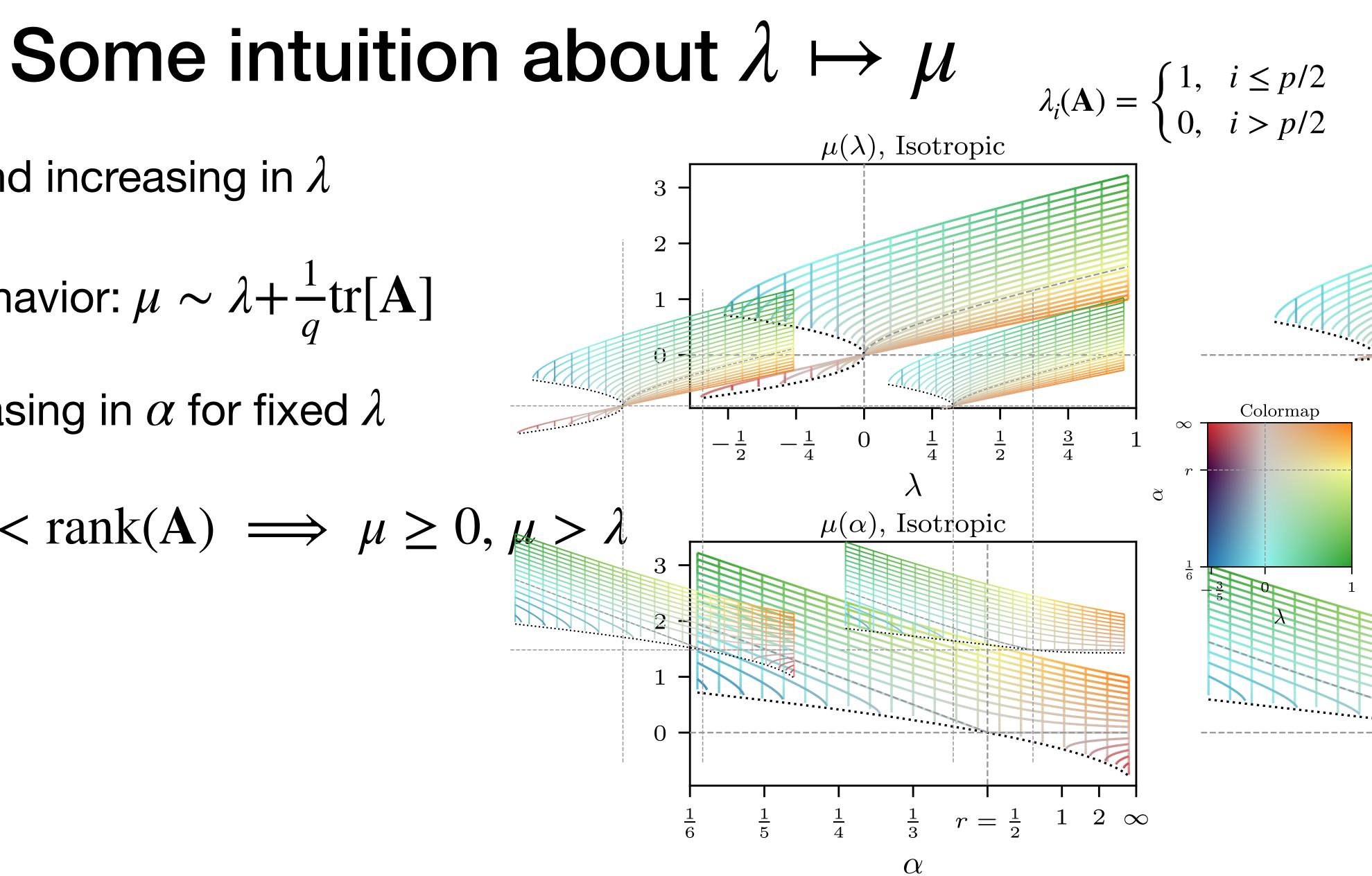
- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[\mathbf{A}]$



- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[A]$
- $|\mu|$ decreasing in α for fixed λ



- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[A]$
- $|\mu|$ decreasing in α for fixed λ
- $\lambda > 0$ or $q < \operatorname{rank}(\mathbf{A}) \implies \mu \ge 0, \mu > \lambda$



- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[A]$
- $|\mu|$ decreasing in α for fixed λ \bullet

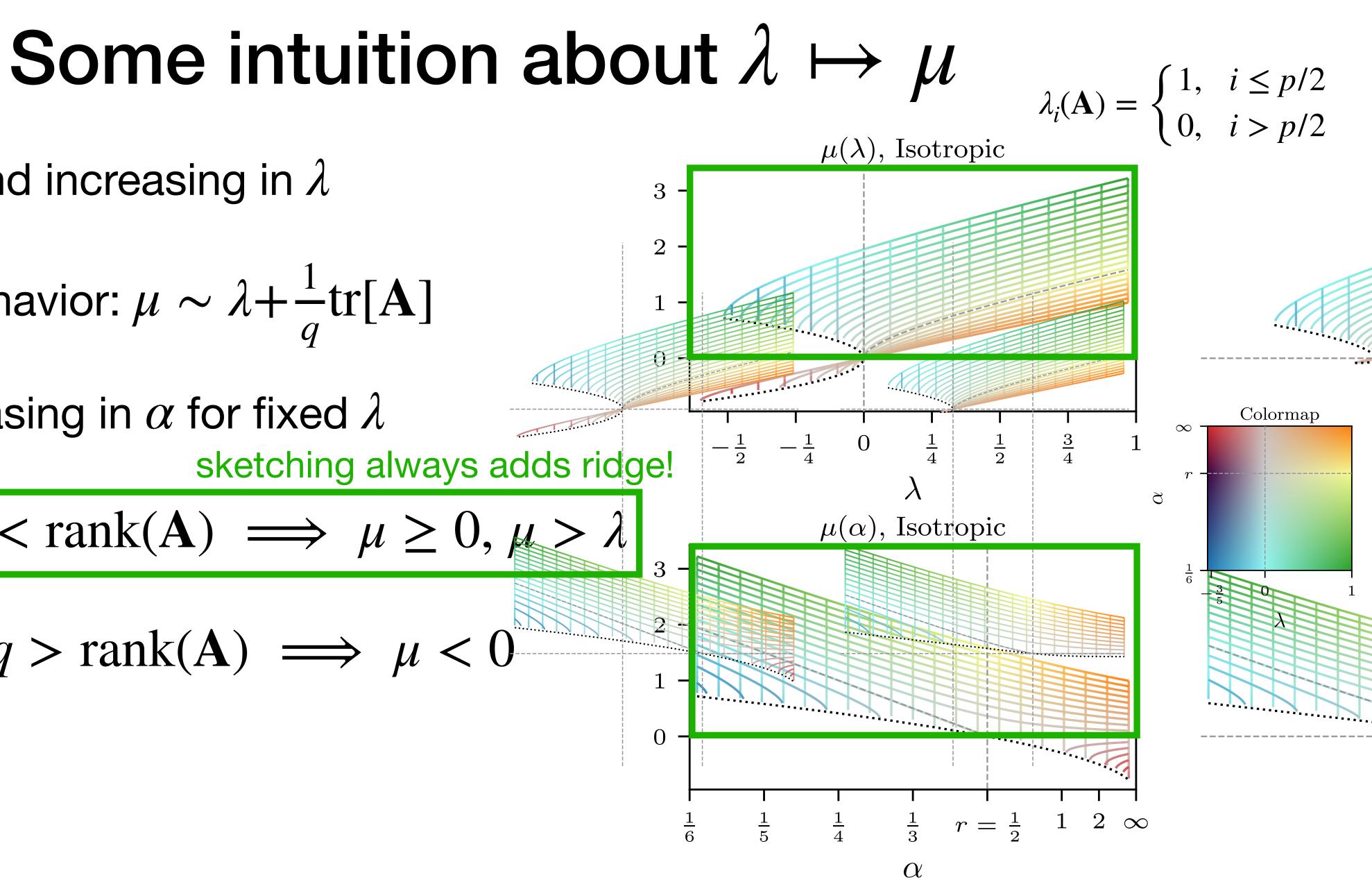
•
$$\lambda > 0 \text{ or } q < \operatorname{rank}(\mathbf{A}) \implies \mu \geq 0$$



- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[A]$
- μ decreasing in α for fixed λ

•
$$\lambda > 0 \text{ or } q < \operatorname{rank}(\mathbf{A}) \implies \mu \geq 0$$

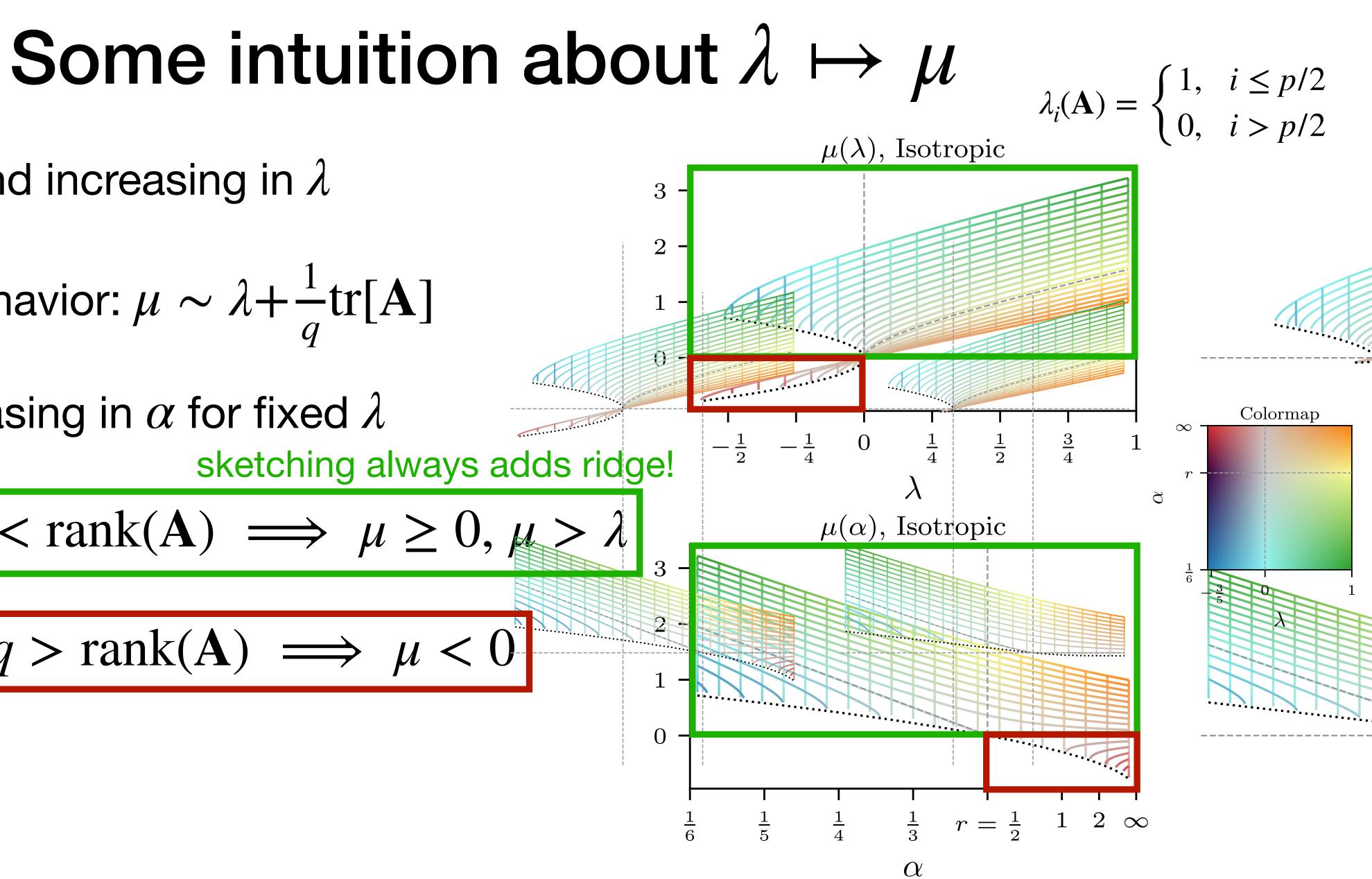
• $\lambda < 0$ and $q > \operatorname{rank}(\mathbf{A}) \implies \mu < 0$



- Concave and increasing in λ
- Limiting behavior: $\mu \sim \lambda + \frac{1}{a} tr[A]$
- $|\mu|$ decreasing in α for fixed λ \bullet

•
$$\lambda > 0 \text{ or } q < \operatorname{rank}(\mathbf{A}) \implies \mu \geq 0$$

•
$$\lambda < 0$$
 and $q > \operatorname{rank}(\mathbf{A}) \implies \mu$



Ridge regression risk?

Ridge regression risk? • Bias: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} \simeq (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{q})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \hat{\mathbf{b}}_{\mu}$

Ridge regression risk?

- What about risk? lacksquare

• Bias: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} \simeq (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{q})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \hat{\mathbf{b}}_{\mu}$

Ridge regression risk? • Bias: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} \simeq (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{a})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \hat{\mathbf{b}}_{\mu}$

- What about risk? \bullet
 - Problem: $\hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu} \iff \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$

Ridge regression risk? • Bias: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} \simeq (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{a})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \hat{\mathbf{b}}_{u}$

- What about risk? lacksquare
 - Problem: $\hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu} \iff \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$
 - Just like $\mathbb{E}[X] = \mathbb{E}[Y] \implies \mathbb{E}[X^2] = \mathbb{E}[Y^2]$

Ridge regression risk? • Bias: $\hat{\mathbf{b}}_{\mathbf{S}} = \mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} \simeq (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{a})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y} = \hat{\mathbf{b}}_{u}$

- What about risk?
 - Problem: $\hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu} \iff \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} \simeq \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$
 - Just like $\mathbb{E}[X] = \mathbb{E}[Y] \implies \mathbb{E}[X^2] = \mathbb{E}[Y^2]$
 - We need a second order equivalence to work out variance

 $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{\Psi}\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})$

where

$$\mu' = \frac{\frac{1}{q} \operatorname{tr}[\mu^3 \Psi(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]}{\lambda + \frac{1}{q} \operatorname{tr}[\mu^2 \mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]} \ge 0.$$

• Theorem (LeJeune, PP, et al., 2024). For any Ψ with uniformly bounded operator norm independent of S and the previous conditions, for i.i.d. S,

$$^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1} (\mathbf{\Psi} + \mu' \mathbf{I}_p) (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

 $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{\Psi}\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})$

where

$$\mu' = \frac{\frac{1}{q} \operatorname{tr}[\mu^3 \Psi(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]}{\lambda + \frac{1}{q} \operatorname{tr}[\mu^2 \mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]} \ge 0.$$

• Theorem (LeJeune, PP, et al., 2024). For any Ψ with uniformly bounded operator norm independent of S and the previous conditions, for i.i.d. S,

$$^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1} (\boldsymbol{\Psi} + \mu' \mathbf{I}_p) (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

sketching adds variance

 $\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})^{-1}\mathbf{S}^{\mathsf{T}}\boldsymbol{\Psi}\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{A}\mathbf{S} + \lambda \mathbf{I}_{a})$

where

 $\mu' = \frac{\frac{1}{q} \operatorname{tr}[\mu^{3} \Psi]}{\lambda + \frac{1}{q} \operatorname{tr}[\mu^{2}]}$

• Proof idea: $\frac{\partial}{\partial z} (\mathbf{A} - z\mathbf{I})^{-1} = (\mathbf{A} - z\mathbf{I})^{-2}$ with carefully placed Ψ

• Theorem (LeJeune, PP, et al., 2024). For any Ψ with uniformly bounded operator norm independent of S and the previous conditions, for i.i.d. S,

$$^{-1}\mathbf{S}^{\mathsf{T}} \simeq (\mathbf{A} + \mu \mathbf{I}_p)^{-1} (\Psi + \mu' \mathbf{I}_p) (\mathbf{A} + \mu \mathbf{I}_p)^{-1},$$

sketching adds variance

$$\frac{\Psi(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]}{2^2 \mathbf{A}(\mathbf{A} + \mu \mathbf{I}_p)^{-2}]} \ge 0.$$

Ridge regression risk

Ridge regression risk

• Consider quadratic functional $R(\hat{\mathbf{b}}_{\mathbf{S}}) = \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \Psi \hat{\mathbf{b}}_{\mathbf{S}} + \mathbf{h}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} + c$

Ridge regression risk

• Consider quadratic functional $R(\hat{\mathbf{b}}_{\mathbf{S}}) = \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \Psi \hat{\mathbf{b}}_{\mathbf{S}} + \mathbf{h}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} + c$

• Recall
$$\hat{\mathbf{b}}_{\mu} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{p})^{-1}\mathbf{X}$$

 $^{\mathsf{T}}\mathbf{y}$

Ridge regression risk • Consider quadratic functional $R(\hat{\mathbf{b}}_{\mathbf{S}}) = \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \Psi \hat{\mathbf{b}}_{\mathbf{S}} + \mathbf{h}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} + c$ Ty

• Recall
$$\hat{\mathbf{b}}_{\mu} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{p})^{-1}\mathbf{X}$$

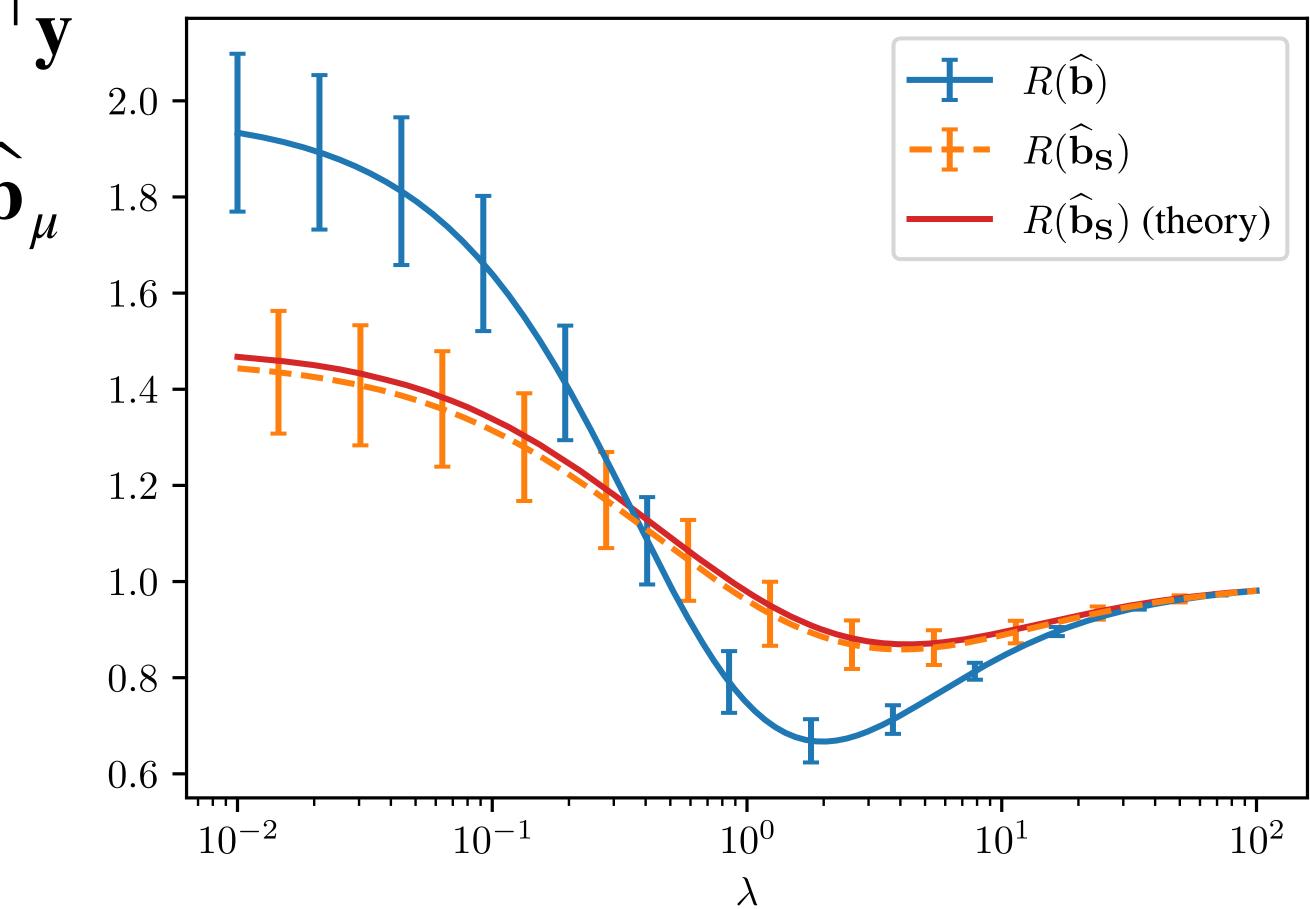
- Then $R(\hat{\mathbf{b}}_{\mathbf{S}}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \mu' \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$

• Consider quadratic functional $R(\hat{\mathbf{b}}_{\mathbf{S}}) = \hat{\mathbf{b}}_{\mathbf{S}}^{\mathsf{T}} \Psi \hat{\mathbf{b}}_{\mathbf{S}} + \mathbf{h}^{\mathsf{T}} \hat{\mathbf{b}}_{\mathbf{S}} + c$

• Recall
$$\hat{\mathbf{b}}_{\mu} = (\mathbf{X}^{\mathsf{T}}\mathbf{X} + \mu \mathbf{I}_{p})^{-1}\mathbf{X}$$

• Then $R(\hat{\mathbf{b}}_{\mathbf{S}}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \mu' \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$

Ridge regression risk



• When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\mathsf{T}} \hat{\mathbf{b}}_{\mu}$ are small

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small
 - $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than $\mu = \lambda_{\text{opt}}$, while essentially $\alpha \propto \frac{1}{\mu \lambda}$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small

• $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than $\mu = \lambda_{\text{opt}}$, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$ • μ' : consider alternate form $\mu' = \frac{1}{q} \text{tr}[\mu^2 \Psi (\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small

 - - α should be large

• $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than $\mu = \lambda_{\text{opt}}$, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$ • μ' : consider alternate form $\mu' = \frac{1}{q} \text{tr}[\mu^2 \Psi (\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small

 - - α should be large
 - not much control via λ

• $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than $\mu = \lambda_{\text{opt}}$, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$ • μ' : consider alternate form $\mu' = \frac{1}{q} \text{tr}[\mu^2 \Psi (\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small

 - - α should be large
 - not much control via λ

• $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than $\mu = \lambda_{\text{opt}}$, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$ • μ' : consider alternate form $\mu' = \frac{1}{q} \text{tr}[\mu^2 \Psi (\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$ > C if $rank(\Psi) > rank(A)$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small
 - $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than μ =
 - μ' : consider alternate form $\mu' =$
 - α should be large
 - not much control via λ

=
$$\lambda_{opt}$$
, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$

$$\frac{1}{q} \operatorname{tr}[\mu^{2} \Psi(\mathbf{A} + \mu \mathbf{I}_{p})^{-2}] \frac{\partial \mu}{\partial \lambda}$$

$$\geq C \text{ if}$$

$$\operatorname{rank}(\Psi) > \operatorname{rank}(\mathbf{A}) \geq 1$$

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small
 - $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than μ =
 - μ' : consider alternate form $\mu' =$
 - α should be large
 - not much control via λ
 - unless $\mu = 0$ and range(Ψ) \subseteq range(\mathbf{A})!

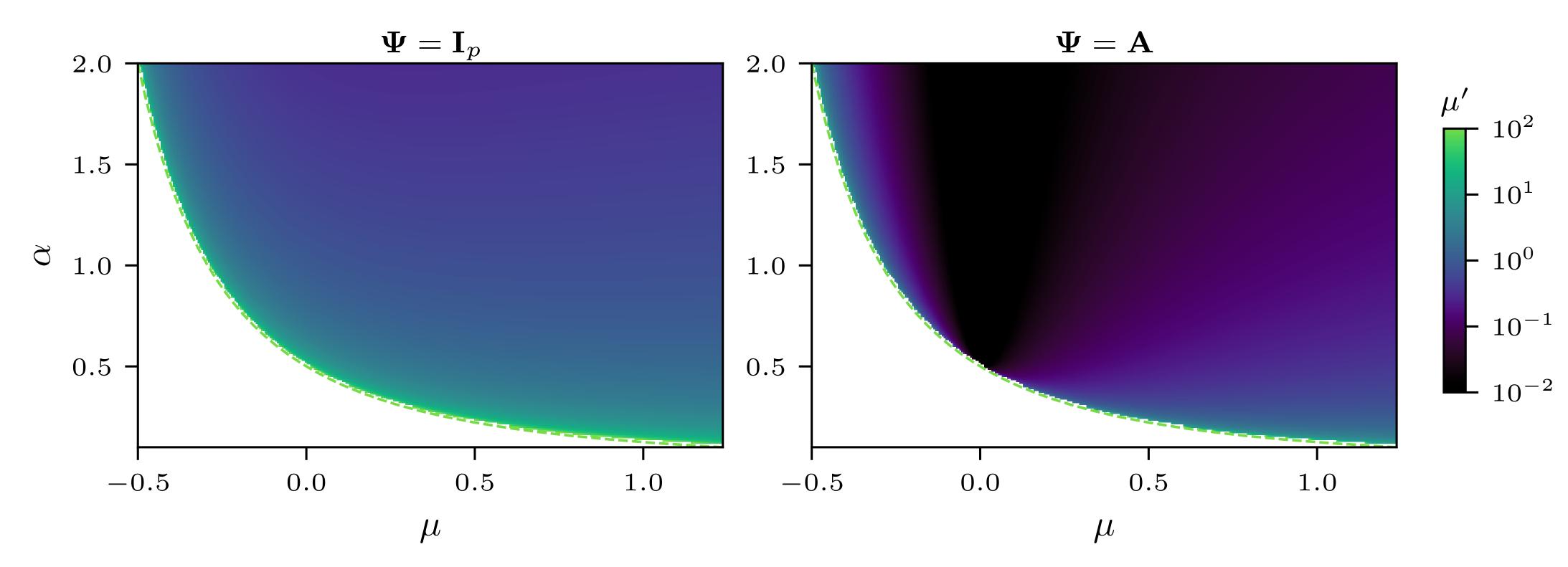
=
$$\lambda_{opt}$$
, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$
 $\frac{1}{q} \operatorname{tr}[\mu^2 \Psi(\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$
 $\geq C \text{ if}$
 $\operatorname{rank}(\Psi) > \operatorname{rank}(\mathbf{A}) \geq 1$

When is sketching good/useful?

- When both $R(\hat{\mathbf{b}}_{\mu})$ and $\mu' \hat{\mathbf{b}}_{\mu}^{\top} \hat{\mathbf{b}}_{\mu}$ are small
 - $R(\hat{\mathbf{b}}_{\mu})$: λ should be less than μ =
 - μ' : consider alternate form $\mu' =$
 - α should be large
 - not much control via λ
 - unless $\mu = 0$ and range(Ψ) \subseteq range(\mathbf{A})!
 - requires $\lambda = 0$ and $q > \operatorname{rank}(\mathbf{A})$

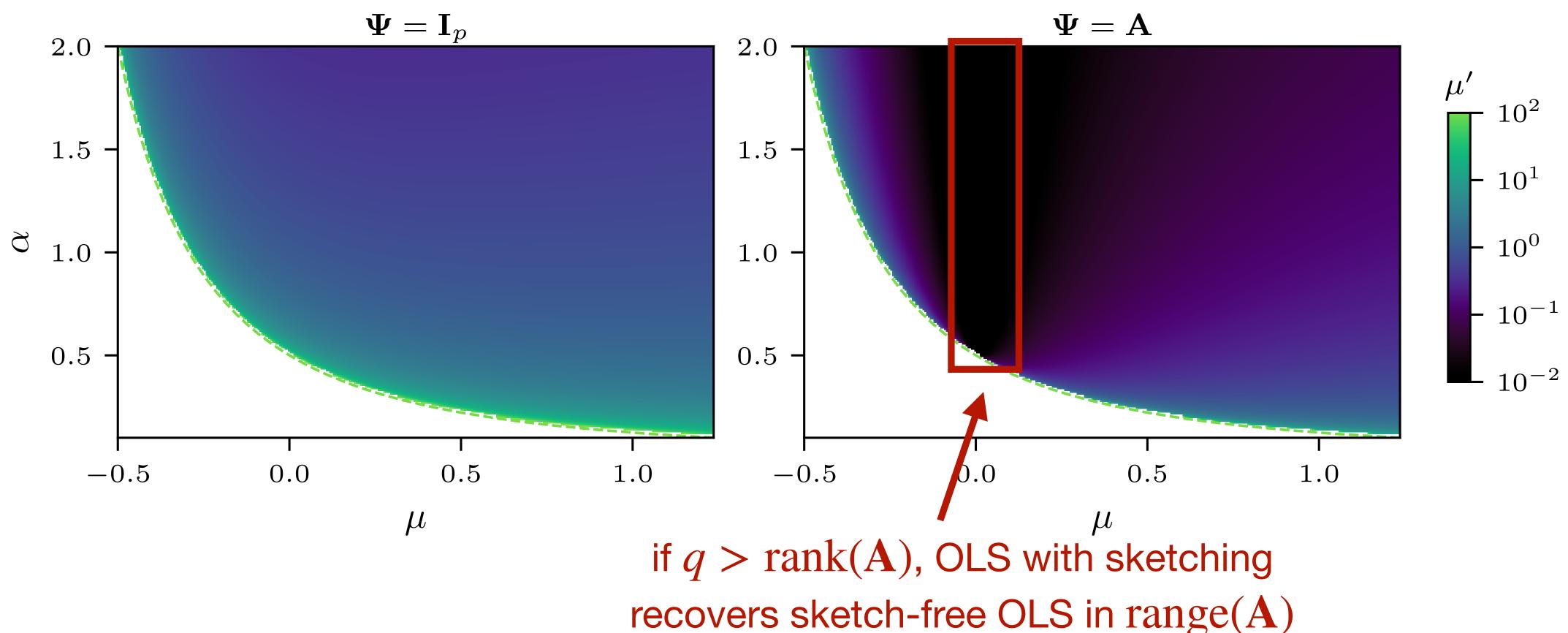
=
$$\lambda_{opt}$$
, while essentially $\alpha \propto \frac{1}{\mu - \lambda}$
 $\frac{1}{q} \operatorname{tr}[\mu^2 \Psi(\mathbf{A} + \mu \mathbf{I}_p)^{-2}] \frac{\partial \mu}{\partial \lambda}$
 $\geq C \text{ if}$
 $\operatorname{rank}(\Psi) > \operatorname{rank}(\mathbf{A}) \geq 1$

• Example: rank-deficient isotropy, $\lambda_i(\mathbf{A}) = \begin{cases} 1, & i \leq p/2 \\ 0, & i > p/2 \end{cases}$



• Example: rank-deficient isotropy, $\lambda_i(\mathbf{A}) = \begin{cases} 1, & i \leq p/2 \\ 0, & i > p/2 \end{cases}$

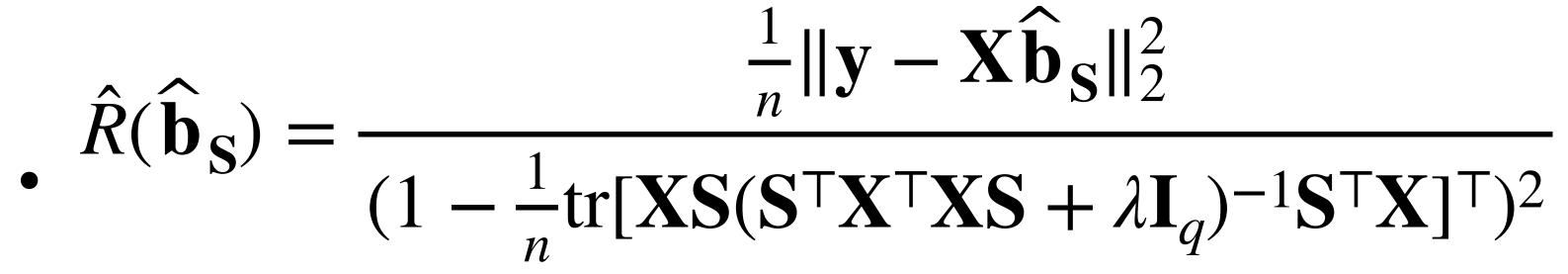
Example: rank-deficient isotropy,



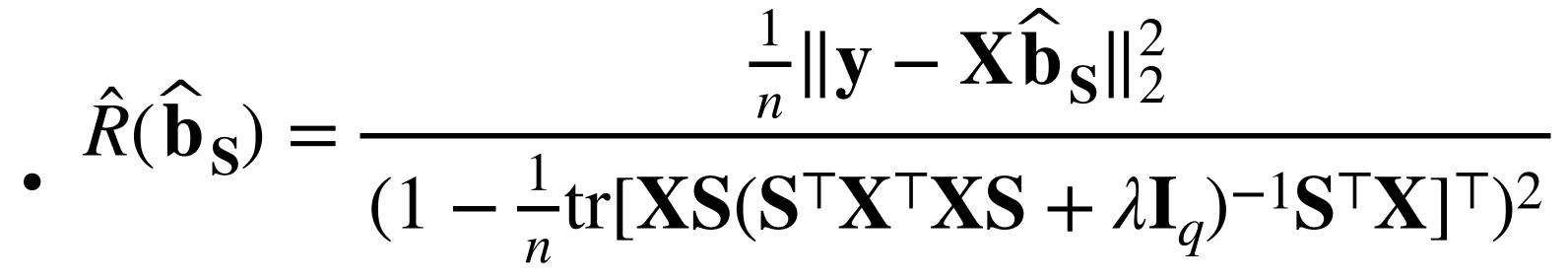
$$\lambda_i(\mathbf{A}) = \begin{cases} 1, & i \le p/2\\ 0, & i > p/2 \end{cases}$$

Generalized cross-validation (GCV)

Generalized cross-validation (GCV)



Generalized cross-validation (GCV)



- Costs the same as \widehat{b}_{S} to compute

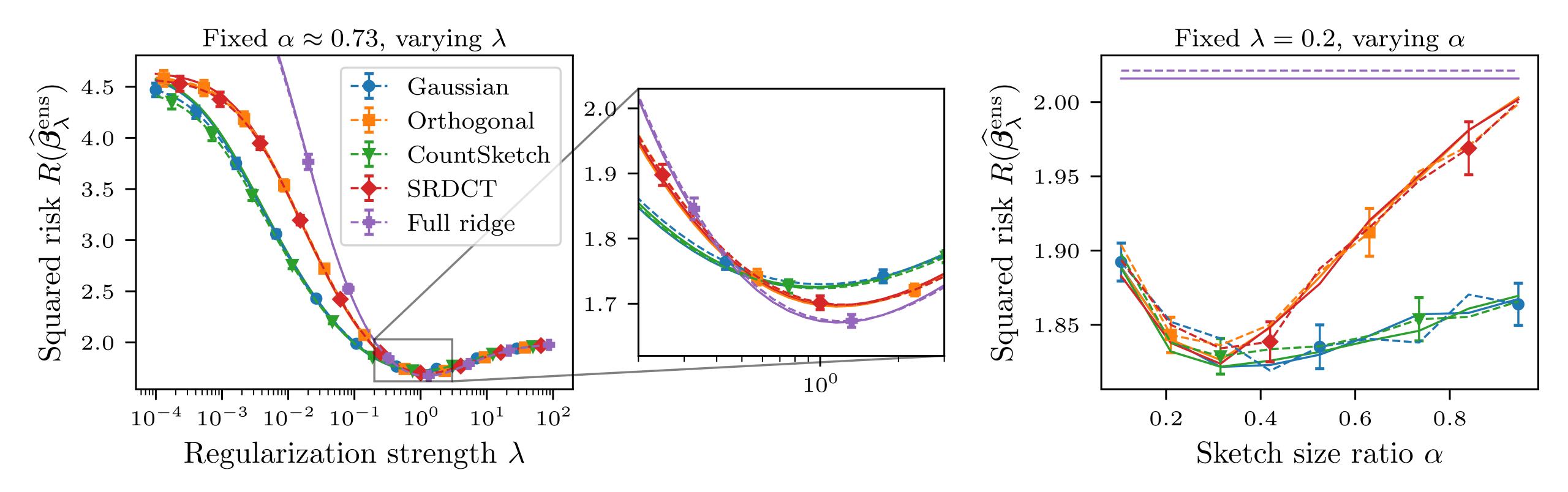
Generalized cross-validation (GCV)

 $\hat{R}(\hat{\mathbf{b}}_{\mathbf{S}}) = \frac{\frac{1}{n} \|\mathbf{y} - \mathbf{X}\hat{\mathbf{b}}_{\mathbf{S}}\|_{2}^{2}}{(1 - \frac{1}{n} \operatorname{tr}[\mathbf{X}\mathbf{S}(\mathbf{S}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{S} + \lambda\mathbf{I}_{q})^{-1}\mathbf{S}^{\mathsf{T}}\mathbf{X}]^{\mathsf{T}})^{2}}$

- Costs the same as $\hat{\mathbf{b}}_{\mathbf{S}}$ to compute
- Theorem (PP & LeJeune, 2024). For any asymptotically free sketch S, under random data assumptions on X,

 $R(\mathbf{b}_{\mathbf{S}}) \simeq R(\mathbf{b}_{\mathbf{S}})$

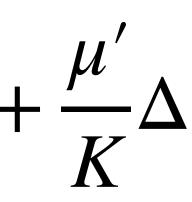
$$\hat{\mathbf{b}}_{\mathbf{S}}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \mu' \Delta.$$



• Let $\widehat{\mathbf{b}}_{K} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} (\mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} + \lambda \mathbf{I}_{q})^{-1} \mathbf{X}^{\top} \mathbf{y}$

• Let $\hat{\mathbf{b}}_{K} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} (\mathbf{S}_{k}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{S}_{k} + \lambda \mathbf{I}_{q})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

• Then $\hat{R}(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \frac{\mu'}{K}\Delta$

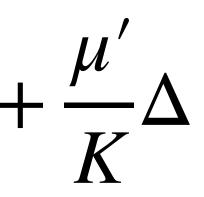


• Let $\widehat{\mathbf{b}}_{K} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} (\mathbf{S}_{k}^{\top} \mathbf{X}^{\top} \mathbf{X} \mathbf{S}_{k} + \lambda \mathbf{I}_{q})^{-1} \mathbf{X}^{\top} \mathbf{y}$

• Then $\hat{R}(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \frac{\mu'}{K}\Delta$

• Given the mapping $\lambda \mapsto \mu$, this admits a consistent estimator

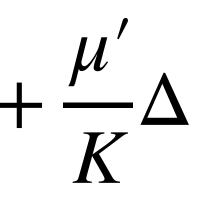
$$R(\hat{\mathbf{b}}_{\mu}) \simeq 2\hat{R}(\hat{\mathbf{b}}_{K=2}) - \hat{R}(\hat{\mathbf{b}}_{K=1})$$



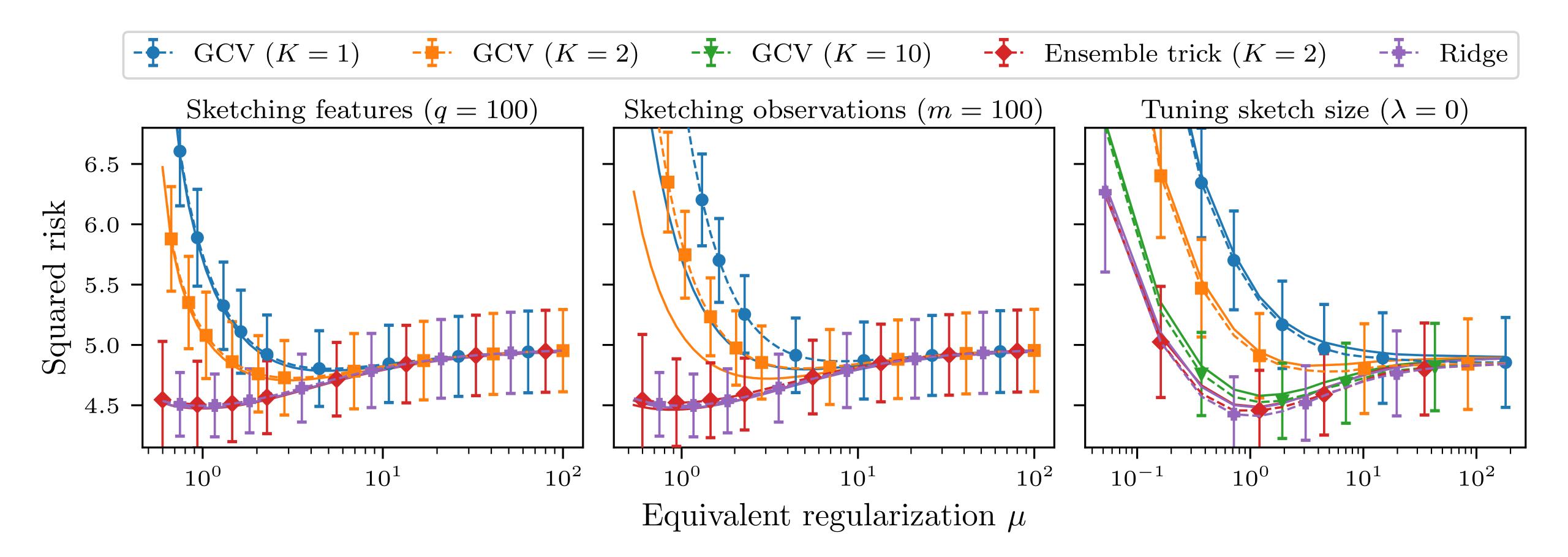
• Let $\hat{\mathbf{b}}_{K} = \frac{1}{K} \sum_{k=1}^{K} \mathbf{S}_{k} (\mathbf{S}_{k}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \mathbf{S}_{k} + \lambda \mathbf{I}_{q})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{y}$

• Then $\hat{R}(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{K}) \simeq R(\hat{\mathbf{b}}_{\mu}) + \frac{\mu'}{K}\Delta$

- Given the mapping $\lambda \mapsto \mu$, this admits a consistent estimator $R(\hat{\mathbf{b}}_{\mu}) \simeq 2\hat{R}($
- Cost (for iterative solver) is $\mathcal{O}(4nq)$ versus $\mathcal{O}(2np)$, efficient if $q \ll p$



$$(\hat{\mathbf{b}}_{K=2}) - \hat{R}(\hat{\mathbf{b}}_{K=1})$$



• Our contribution:

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk
 - Consistency of GCV for sketched ridge regression

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk
 - Consistency of GCV for sketched ridge regression
 - Efficient risk estimation via ensemble trick

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk
 - Consistency of GCV for sketched ridge regression
 - Efficient risk estimation via ensemble trick
- Ongoing work:

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk
 - Consistency of GCV for sketched ridge regression
 - Efficient risk estimation via ensemble trick
- Ongoing work:
 - Applying first & second order analysis to sketch-and-project

- Our contribution:
 - Precise characterization of implicit regularization μ of sketching
 - Covers free sketches S, any data A, sketch ratio α , (negative) λ
 - Includes second order characterization for risk
 - Consistency of GCV for sketched ridge regression
 - Efficient risk estimation via ensemble trick
- Ongoing work:
 - Applying first & second order analysis to sketch-and-project
 - Efficient risk estimation for general learning problems

- Hilbert space.
- subsampled randomized Hadamard transform.
- scale regression.
- Dobriban, E., and Sheng, Y. (2021). Distributed linear regression by averaging. lacksquare
- the sketched pseudoinverse.
- \bullet validation, and tuning.

• Johnson, W. B. and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into a

• Lu, Y., Dhillon, P., Foster, D. P., and Ungar, L. (2013). Faster ridge regression via the

• Thanei, G. A., Heinze, C., and Meinshausen, N. (2017). Random projections for large-

• LeJeune, D., PP, Javadi, H., Baraniuk, R. G., and Tibshirani, R. J. (2024). Asymptotics of

PP, LeJeune, D. (2024). Asymptotically free sketched ridge ensembles: Risks, cross-